]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/multiprecision/example/gauss_laguerre_quadrature.cpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / libs / multiprecision / example / gauss_laguerre_quadrature.cpp
1 // Copyright Nick Thompson, 2017
2 // Copyright John Maddock 2017
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt
6 // or copy at http://www.boost.org/LICENSE_1_0.txt)
7
8 #include <cmath>
9 #include <cstdint>
10 #include <functional>
11 #include <iomanip>
12 #include <iostream>
13 #include <numeric>
14 #include <boost/math/constants/constants.hpp>
15 #include <boost/math/special_functions/cbrt.hpp>
16 #include <boost/math/special_functions/factorials.hpp>
17 #include <boost/math/special_functions/gamma.hpp>
18 #include <boost/math/tools/roots.hpp>
19 #include <boost/noncopyable.hpp>
20
21 #define CPP_BIN_FLOAT 1
22 #define CPP_DEC_FLOAT 2
23 #define CPP_MPFR_FLOAT 3
24
25 //#define MP_TYPE CPP_BIN_FLOAT
26 #define MP_TYPE CPP_DEC_FLOAT
27 //#define MP_TYPE CPP_MPFR_FLOAT
28
29 namespace
30 {
31 struct digits_characteristics
32 {
33 static const int digits10 = 300;
34 static const int guard_digits = 6;
35 };
36 }
37
38 #if (MP_TYPE == CPP_BIN_FLOAT)
39 #include <boost/multiprecision/cpp_bin_float.hpp>
40 namespace mp = boost::multiprecision;
41 typedef mp::number<mp::cpp_bin_float<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
42 #elif (MP_TYPE == CPP_DEC_FLOAT)
43 #include <boost/multiprecision/cpp_dec_float.hpp>
44 namespace mp = boost::multiprecision;
45 typedef mp::number<mp::cpp_dec_float<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
46 #elif (MP_TYPE == CPP_MPFR_FLOAT)
47 #include <boost/multiprecision/mpfr.hpp>
48 namespace mp = boost::multiprecision;
49 typedef mp::number<mp::mpfr_float_backend<digits_characteristics::digits10 + digits_characteristics::guard_digits>, mp::et_off> mp_type;
50 #else
51 #error MP_TYPE is undefined
52 #endif
53
54 template<typename T>
55 class laguerre_function_object
56 {
57 public:
58 laguerre_function_object(const int n, const T a) : order(n),
59 alpha(a),
60 p1 (0),
61 d2 (0) { }
62
63 laguerre_function_object(const laguerre_function_object& other) : order(other.order),
64 alpha(other.alpha),
65 p1 (other.p1),
66 d2 (other.d2) { }
67
68 ~laguerre_function_object() { }
69
70 T operator()(const T& x) const
71 {
72 // Calculate (via forward recursion):
73 // * the value of the Laguerre function L(n, alpha, x), called (p2),
74 // * the value of the derivative of the Laguerre function (d2),
75 // * and the value of the corresponding Laguerre function of
76 // previous order (p1).
77
78 // Return the value of the function (p2) in order to be used as a
79 // function object with Boost.Math root-finding. Store the values
80 // of the Laguerre function derivative (d2) and the Laguerre function
81 // of previous order (p1) in class members for later use.
82
83 p1 = T(0);
84 T p2 = T(1);
85 d2 = T(0);
86
87 T j_plus_alpha(alpha);
88 T two_j_plus_one_plus_alpha_minus_x(1 + alpha - x);
89
90 int j;
91
92 const T my_two(2);
93
94 for(j = 0; j < order; ++j)
95 {
96 const T p0(p1);
97
98 // Set the value of the previous Laguerre function.
99 p1 = p2;
100
101 // Use a recurrence relation to compute the value of the Laguerre function.
102 p2 = ((two_j_plus_one_plus_alpha_minus_x * p1) - (j_plus_alpha * p0)) / (j + 1);
103
104 ++j_plus_alpha;
105 two_j_plus_one_plus_alpha_minus_x += my_two;
106 }
107
108 // Set the value of the derivative of the Laguerre function.
109 d2 = ((p2 * j) - (j_plus_alpha * p1)) / x;
110
111 // Return the value of the Laguerre function.
112 return p2;
113 }
114
115 const T& previous () const { return p1; }
116 const T& derivative() const { return d2; }
117
118 static bool root_tolerance(const T& a, const T& b)
119 {
120 using std::abs;
121
122 // The relative tolerance here is: ((a - b) * 2) / (a + b).
123 return (abs((a - b) * 2) < ((a + b) * boost::math::tools::epsilon<T>()));
124 }
125
126 private:
127 const int order;
128 const T alpha;
129 mutable T p1;
130 mutable T d2;
131
132 laguerre_function_object();
133
134 const laguerre_function_object& operator=(const laguerre_function_object&);
135 };
136
137 template<typename T>
138 class guass_laguerre_abscissas_and_weights : private boost::noncopyable
139 {
140 public:
141 guass_laguerre_abscissas_and_weights(const int n, const T a) : order(n),
142 alpha(a),
143 valid(true),
144 xi (),
145 wi ()
146 {
147 if(alpha < -20.0F)
148 {
149 // TBD: If we ever boostify this, throw a range error here.
150 // If so, then also document it in the docs.
151 std::cout << "Range error: the order of the Laguerre function must exceed -20.0." << std::endl;
152 }
153 else
154 {
155 calculate();
156 }
157 }
158
159 virtual ~guass_laguerre_abscissas_and_weights() { }
160
161 const std::vector<T>& abscissas() const { return xi; }
162 const std::vector<T>& weights () const { return wi; }
163
164 bool get_valid() const { return valid; }
165
166 private:
167 const int order;
168 const T alpha;
169 bool valid;
170
171 std::vector<T> xi;
172 std::vector<T> wi;
173
174 void calculate()
175 {
176 using std::abs;
177
178 std::cout << "finding approximate roots..." << std::endl;
179
180 std::vector<boost::math::tuple<T, T> > root_estimates;
181
182 root_estimates.reserve(static_cast<typename std::vector<boost::math::tuple<T, T> >::size_type>(order));
183
184 const laguerre_function_object<T> laguerre_object(order, alpha);
185
186 // Set the initial values of the step size and the running step
187 // to be used for finding the estimate of the first root.
188 T step_size = 0.01F;
189 T step = step_size;
190
191 T first_laguerre_root = 0.0F;
192
193 bool first_laguerre_root_has_been_found = true;
194
195 if(alpha < -1.0F)
196 {
197 // Iteratively step through the Laguerre function using a
198 // small step-size in order to find a rough estimate of
199 // the first zero.
200
201 bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
202
203 static const int j_max = 10000;
204
205 int j;
206
207 for(j = 0; (j < j_max) && (this_laguerre_value_is_negative != (laguerre_object(step) < 0)); ++j)
208 {
209 // Increment the step size until the sign of the Laguerre function
210 // switches. This indicates a zero-crossing, signalling the next root.
211 step += step_size;
212 }
213
214 if(j >= j_max)
215 {
216 first_laguerre_root_has_been_found = false;
217 }
218 else
219 {
220 // We have found the first zero-crossing. Put a loose bracket around
221 // the root using a window. Here, we know that the first root lies
222 // between (x - step_size) < root < x.
223
224 // Before storing the approximate root, perform a couple of
225 // bisection steps in order to tighten up the root bracket.
226 boost::uintmax_t a_couple_of_iterations = 3U;
227 const std::pair<T, T>
228 first_laguerre_root = boost::math::tools::bisect(laguerre_object,
229 step - step_size,
230 step,
231 laguerre_function_object<T>::root_tolerance,
232 a_couple_of_iterations);
233
234 static_cast<void>(a_couple_of_iterations);
235 }
236 }
237 else
238 {
239 // Calculate an estimate of the 1st root of a generalized Laguerre
240 // function using either a Taylor series or an expansion in Bessel
241 // function zeros. The Bessel function zeros expansion is from Tricomi.
242
243 // Here, we obtain an estimate of the first zero of J_alpha(x).
244
245 T j_alpha_m1;
246
247 if(alpha < 1.4F)
248 {
249 // For small alpha, use a short series obtained from Mathematica(R).
250 // Series[BesselJZero[v, 1], {v, 0, 3}]
251 // N[%, 12]
252 j_alpha_m1 = ((( 0.09748661784476F
253 * alpha - 0.17549359276115F)
254 * alpha + 1.54288974259931F)
255 * alpha + 2.40482555769577F);
256 }
257 else
258 {
259 // For larger alpha, use the first line of Eqs. 10.21.40 in the NIST Handbook.
260 const T alpha_pow_third(boost::math::cbrt(alpha));
261 const T alpha_pow_minus_two_thirds(T(1) / (alpha_pow_third * alpha_pow_third));
262
263 j_alpha_m1 = alpha * ((((( + 0.043F
264 * alpha_pow_minus_two_thirds - 0.0908F)
265 * alpha_pow_minus_two_thirds - 0.00397F)
266 * alpha_pow_minus_two_thirds + 1.033150F)
267 * alpha_pow_minus_two_thirds + 1.8557571F)
268 * alpha_pow_minus_two_thirds + 1.0F);
269 }
270
271 const T vf = ((order * 4.0F) + (alpha * 2.0F) + 2.0F);
272 const T vf2 = vf * vf;
273 const T j_alpha_m1_sqr = j_alpha_m1 * j_alpha_m1;
274
275 first_laguerre_root = (j_alpha_m1_sqr * (-0.6666666666667F + ((0.6666666666667F * alpha) * alpha) + (0.3333333333333F * j_alpha_m1_sqr) + vf2)) / (vf2 * vf);
276 }
277
278 if(first_laguerre_root_has_been_found)
279 {
280 bool this_laguerre_value_is_negative = (laguerre_object(mp_type(0)) < 0);
281
282 // Re-set the initial value of the step-size based on the
283 // estimate of the first root.
284 step_size = first_laguerre_root / 2;
285 step = step_size;
286
287 // Step through the Laguerre function using a step-size
288 // of dynamic width in order to find the zero crossings
289 // of the Laguerre function, providing rough estimates
290 // of the roots. Refine the brackets with a few bisection
291 // steps, and store the results as bracketed root estimates.
292
293 while(static_cast<int>(root_estimates.size()) < order)
294 {
295 // Increment the step size until the sign of the Laguerre function
296 // switches. This indicates a zero-crossing, signalling the next root.
297 step += step_size;
298
299 if(this_laguerre_value_is_negative != (laguerre_object(step) < 0))
300 {
301 // We have found the next zero-crossing.
302
303 // Change the running sign of the Laguerre function.
304 this_laguerre_value_is_negative = (!this_laguerre_value_is_negative);
305
306 // We have found the first zero-crossing. Put a loose bracket around
307 // the root using a window. Here, we know that the first root lies
308 // between (x - step_size) < root < x.
309
310 // Before storing the approximate root, perform a couple of
311 // bisection steps in order to tighten up the root bracket.
312 boost::uintmax_t a_couple_of_iterations = 3U;
313 const std::pair<T, T>
314 root_estimate_bracket = boost::math::tools::bisect(laguerre_object,
315 step - step_size,
316 step,
317 laguerre_function_object<T>::root_tolerance,
318 a_couple_of_iterations);
319
320 static_cast<void>(a_couple_of_iterations);
321
322 // Store the refined root estimate as a bracketed range in a tuple.
323 root_estimates.push_back(boost::math::tuple<T, T>(root_estimate_bracket.first,
324 root_estimate_bracket.second));
325
326 if(root_estimates.size() >= static_cast<std::size_t>(2U))
327 {
328 // Determine the next step size. This is based on the distance between
329 // the previous two roots, whereby the estimates of the previous roots
330 // are computed by taking the average of the lower and upper range of
331 // the root-estimate bracket.
332
333 const T r0 = ( boost::math::get<0>(*(root_estimates.rbegin() + 1U))
334 + boost::math::get<1>(*(root_estimates.rbegin() + 1U))) / 2;
335
336 const T r1 = ( boost::math::get<0>(*root_estimates.rbegin())
337 + boost::math::get<1>(*root_estimates.rbegin())) / 2;
338
339 const T distance_between_previous_roots = r1 - r0;
340
341 step_size = distance_between_previous_roots / 3;
342 }
343 }
344 }
345
346 const T norm_g =
347 ((alpha == 0) ? T(-1)
348 : -boost::math::tgamma(alpha + order) / boost::math::factorial<T>(order - 1));
349
350 xi.reserve(root_estimates.size());
351 wi.reserve(root_estimates.size());
352
353 // Calculate the abscissas and weights to full precision.
354 for(std::size_t i = static_cast<std::size_t>(0U); i < root_estimates.size(); ++i)
355 {
356 std::cout << "calculating abscissa and weight for index: " << i << std::endl;
357
358 // Calculate the abscissas using iterative root-finding.
359
360 // Select the maximum allowed iterations, being at least 20.
361 // The determination of the maximum allowed iterations is
362 // based on the number of decimal digits in the numerical
363 // type T.
364 const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>()) * 0.301F);
365 const boost::uintmax_t number_of_iterations_allowed = (std::max)(20, my_digits10 / 2);
366
367 boost::uintmax_t number_of_iterations_used = number_of_iterations_allowed;
368
369 // Perform the root-finding using ACM TOMS 748 from Boost.Math.
370 const std::pair<T, T>
371 laguerre_root_bracket = boost::math::tools::toms748_solve(laguerre_object,
372 boost::math::get<0>(root_estimates[i]),
373 boost::math::get<1>(root_estimates[i]),
374 laguerre_function_object<T>::root_tolerance,
375 number_of_iterations_used);
376
377 // Based on the result of *each* root-finding operation, re-assess
378 // the validity of the Guass-Laguerre abscissas and weights object.
379 valid &= (number_of_iterations_used < number_of_iterations_allowed);
380
381 // Compute the Laguerre root as the average of the values from
382 // the solved root bracket.
383 const T laguerre_root = ( laguerre_root_bracket.first
384 + laguerre_root_bracket.second) / 2;
385
386 // Calculate the weight for this Laguerre root. Here, we calculate
387 // the derivative of the Laguerre function and the value of the
388 // previous Laguerre function on the x-axis at the value of this
389 // Laguerre root.
390 static_cast<void>(laguerre_object(laguerre_root));
391
392 // Store the abscissa and weight for this index.
393 xi.push_back(laguerre_root);
394 wi.push_back(norm_g / ((laguerre_object.derivative() * order) * laguerre_object.previous()));
395 }
396 }
397 }
398 };
399
400 namespace
401 {
402 template<typename T>
403 struct gauss_laguerre_ai
404 {
405 public:
406 gauss_laguerre_ai(const T X) : x(X)
407 {
408 using std::exp;
409 using std::sqrt;
410
411 zeta = ((sqrt(x) * x) * 2) / 3;
412
413 const T zeta_times_48_pow_sixth = sqrt(boost::math::cbrt(zeta * 48));
414
415 factor = 1 / ((sqrt(boost::math::constants::pi<T>()) * zeta_times_48_pow_sixth) * (exp(zeta) * gamma_of_five_sixths()));
416 }
417
418 gauss_laguerre_ai(const gauss_laguerre_ai& other) : x (other.x),
419 zeta (other.zeta),
420 factor(other.factor) { }
421
422 T operator()(const T& t) const
423 {
424 using std::sqrt;
425
426 return factor / sqrt(boost::math::cbrt(2 + (t / zeta)));
427 }
428
429 private:
430 const T x;
431 T zeta;
432 T factor;
433
434 static const T& gamma_of_five_sixths()
435 {
436 static const T value = boost::math::tgamma(T(5) / 6);
437
438 return value;
439 }
440
441 const gauss_laguerre_ai& operator=(const gauss_laguerre_ai&);
442 };
443
444 template<typename T>
445 T gauss_laguerre_airy_ai(const T x)
446 {
447 static const float digits_factor = static_cast<float>(std::numeric_limits<mp_type>::digits10) / 300.0F;
448 static const int laguerre_order = static_cast<int>(600.0F * digits_factor);
449
450 static const guass_laguerre_abscissas_and_weights<T> abscissas_and_weights(laguerre_order, -T(1) / 6);
451
452 T airy_ai_result;
453
454 if(abscissas_and_weights.get_valid())
455 {
456 const gauss_laguerre_ai<T> this_gauss_laguerre_ai(x);
457
458 airy_ai_result =
459 std::inner_product(abscissas_and_weights.abscissas().begin(),
460 abscissas_and_weights.abscissas().end(),
461 abscissas_and_weights.weights().begin(),
462 T(0),
463 std::plus<T>(),
464 [&this_gauss_laguerre_ai](const T& this_abscissa, const T& this_weight) -> T
465 {
466 return this_gauss_laguerre_ai(this_abscissa) * this_weight;
467 });
468 }
469 else
470 {
471 // TBD: Consider an error message.
472 airy_ai_result = T(0);
473 }
474
475 return airy_ai_result;
476 }
477 }
478
479 int main()
480 {
481 // Use Gauss-Laguerre integration to compute airy_ai(120 / 7).
482
483 // 9 digits
484 // 3.89904210e-22
485
486 // 10 digits
487 // 3.899042098e-22
488
489 // 50 digits.
490 // 3.8990420982303275013276114626640705170145070824318e-22
491
492 // 100 digits.
493 // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
494 // 864136051942933142648e-22
495
496 // 200 digits.
497 // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
498 // 86413605194293314264788265460938200890998546786740097437064263800719644346113699
499 // 77010905030516409847054404055843899790277e-22
500
501 // 300 digits.
502 // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
503 // 86413605194293314264788265460938200890998546786740097437064263800719644346113699
504 // 77010905030516409847054404055843899790277083960877617919088116211775232728792242
505 // 9346416823281460245814808276654088201413901972239996130752528e-22
506
507 // 500 digits.
508 // 3.899042098230327501327611462664070517014507082431797677146153303523108862015228
509 // 86413605194293314264788265460938200890998546786740097437064263800719644346113699
510 // 77010905030516409847054404055843899790277083960877617919088116211775232728792242
511 // 93464168232814602458148082766540882014139019722399961307525276722937464859521685
512 // 42826483602153339361960948844649799257455597165900957281659632186012043089610827
513 // 78871305322190941528281744734605934497977375094921646511687434038062987482900167
514 // 45127557400365419545e-22
515
516 // Mathematica(R) or Wolfram's Alpha:
517 // N[AiryAi[120 / 7], 300]
518 std::cout << std::setprecision(digits_characteristics::digits10)
519 << gauss_laguerre_airy_ai(mp_type(120) / 7)
520 << std::endl;
521 }