]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/e1000/base/e1000_api.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / drivers / net / e1000 / base / e1000_api.c
1 /*******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ***************************************************************************/
33
34 #include "e1000_api.h"
35
36 /**
37 * e1000_init_mac_params - Initialize MAC function pointers
38 * @hw: pointer to the HW structure
39 *
40 * This function initializes the function pointers for the MAC
41 * set of functions. Called by drivers or by e1000_setup_init_funcs.
42 **/
43 s32 e1000_init_mac_params(struct e1000_hw *hw)
44 {
45 s32 ret_val = E1000_SUCCESS;
46
47 if (hw->mac.ops.init_params) {
48 ret_val = hw->mac.ops.init_params(hw);
49 if (ret_val) {
50 DEBUGOUT("MAC Initialization Error\n");
51 goto out;
52 }
53 } else {
54 DEBUGOUT("mac.init_mac_params was NULL\n");
55 ret_val = -E1000_ERR_CONFIG;
56 }
57
58 out:
59 return ret_val;
60 }
61
62 /**
63 * e1000_init_nvm_params - Initialize NVM function pointers
64 * @hw: pointer to the HW structure
65 *
66 * This function initializes the function pointers for the NVM
67 * set of functions. Called by drivers or by e1000_setup_init_funcs.
68 **/
69 s32 e1000_init_nvm_params(struct e1000_hw *hw)
70 {
71 s32 ret_val = E1000_SUCCESS;
72
73 if (hw->nvm.ops.init_params) {
74 ret_val = hw->nvm.ops.init_params(hw);
75 if (ret_val) {
76 DEBUGOUT("NVM Initialization Error\n");
77 goto out;
78 }
79 } else {
80 DEBUGOUT("nvm.init_nvm_params was NULL\n");
81 ret_val = -E1000_ERR_CONFIG;
82 }
83
84 out:
85 return ret_val;
86 }
87
88 /**
89 * e1000_init_phy_params - Initialize PHY function pointers
90 * @hw: pointer to the HW structure
91 *
92 * This function initializes the function pointers for the PHY
93 * set of functions. Called by drivers or by e1000_setup_init_funcs.
94 **/
95 s32 e1000_init_phy_params(struct e1000_hw *hw)
96 {
97 s32 ret_val = E1000_SUCCESS;
98
99 if (hw->phy.ops.init_params) {
100 ret_val = hw->phy.ops.init_params(hw);
101 if (ret_val) {
102 DEBUGOUT("PHY Initialization Error\n");
103 goto out;
104 }
105 } else {
106 DEBUGOUT("phy.init_phy_params was NULL\n");
107 ret_val = -E1000_ERR_CONFIG;
108 }
109
110 out:
111 return ret_val;
112 }
113
114 /**
115 * e1000_init_mbx_params - Initialize mailbox function pointers
116 * @hw: pointer to the HW structure
117 *
118 * This function initializes the function pointers for the PHY
119 * set of functions. Called by drivers or by e1000_setup_init_funcs.
120 **/
121 s32 e1000_init_mbx_params(struct e1000_hw *hw)
122 {
123 s32 ret_val = E1000_SUCCESS;
124
125 if (hw->mbx.ops.init_params) {
126 ret_val = hw->mbx.ops.init_params(hw);
127 if (ret_val) {
128 DEBUGOUT("Mailbox Initialization Error\n");
129 goto out;
130 }
131 } else {
132 DEBUGOUT("mbx.init_mbx_params was NULL\n");
133 ret_val = -E1000_ERR_CONFIG;
134 }
135
136 out:
137 return ret_val;
138 }
139
140 /**
141 * e1000_set_mac_type - Sets MAC type
142 * @hw: pointer to the HW structure
143 *
144 * This function sets the mac type of the adapter based on the
145 * device ID stored in the hw structure.
146 * MUST BE FIRST FUNCTION CALLED (explicitly or through
147 * e1000_setup_init_funcs()).
148 **/
149 s32 e1000_set_mac_type(struct e1000_hw *hw)
150 {
151 struct e1000_mac_info *mac = &hw->mac;
152 s32 ret_val = E1000_SUCCESS;
153
154 DEBUGFUNC("e1000_set_mac_type");
155
156 switch (hw->device_id) {
157 case E1000_DEV_ID_82542:
158 mac->type = e1000_82542;
159 break;
160 case E1000_DEV_ID_82543GC_FIBER:
161 case E1000_DEV_ID_82543GC_COPPER:
162 mac->type = e1000_82543;
163 break;
164 case E1000_DEV_ID_82544EI_COPPER:
165 case E1000_DEV_ID_82544EI_FIBER:
166 case E1000_DEV_ID_82544GC_COPPER:
167 case E1000_DEV_ID_82544GC_LOM:
168 mac->type = e1000_82544;
169 break;
170 case E1000_DEV_ID_82540EM:
171 case E1000_DEV_ID_82540EM_LOM:
172 case E1000_DEV_ID_82540EP:
173 case E1000_DEV_ID_82540EP_LOM:
174 case E1000_DEV_ID_82540EP_LP:
175 mac->type = e1000_82540;
176 break;
177 case E1000_DEV_ID_82545EM_COPPER:
178 case E1000_DEV_ID_82545EM_FIBER:
179 mac->type = e1000_82545;
180 break;
181 case E1000_DEV_ID_82545GM_COPPER:
182 case E1000_DEV_ID_82545GM_FIBER:
183 case E1000_DEV_ID_82545GM_SERDES:
184 mac->type = e1000_82545_rev_3;
185 break;
186 case E1000_DEV_ID_82546EB_COPPER:
187 case E1000_DEV_ID_82546EB_FIBER:
188 case E1000_DEV_ID_82546EB_QUAD_COPPER:
189 mac->type = e1000_82546;
190 break;
191 case E1000_DEV_ID_82546GB_COPPER:
192 case E1000_DEV_ID_82546GB_FIBER:
193 case E1000_DEV_ID_82546GB_SERDES:
194 case E1000_DEV_ID_82546GB_PCIE:
195 case E1000_DEV_ID_82546GB_QUAD_COPPER:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
197 mac->type = e1000_82546_rev_3;
198 break;
199 case E1000_DEV_ID_82541EI:
200 case E1000_DEV_ID_82541EI_MOBILE:
201 case E1000_DEV_ID_82541ER_LOM:
202 mac->type = e1000_82541;
203 break;
204 case E1000_DEV_ID_82541ER:
205 case E1000_DEV_ID_82541GI:
206 case E1000_DEV_ID_82541GI_LF:
207 case E1000_DEV_ID_82541GI_MOBILE:
208 mac->type = e1000_82541_rev_2;
209 break;
210 case E1000_DEV_ID_82547EI:
211 case E1000_DEV_ID_82547EI_MOBILE:
212 mac->type = e1000_82547;
213 break;
214 case E1000_DEV_ID_82547GI:
215 mac->type = e1000_82547_rev_2;
216 break;
217 case E1000_DEV_ID_82571EB_COPPER:
218 case E1000_DEV_ID_82571EB_FIBER:
219 case E1000_DEV_ID_82571EB_SERDES:
220 case E1000_DEV_ID_82571EB_SERDES_DUAL:
221 case E1000_DEV_ID_82571EB_SERDES_QUAD:
222 case E1000_DEV_ID_82571EB_QUAD_COPPER:
223 case E1000_DEV_ID_82571PT_QUAD_COPPER:
224 case E1000_DEV_ID_82571EB_QUAD_FIBER:
225 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
226 mac->type = e1000_82571;
227 break;
228 case E1000_DEV_ID_82572EI:
229 case E1000_DEV_ID_82572EI_COPPER:
230 case E1000_DEV_ID_82572EI_FIBER:
231 case E1000_DEV_ID_82572EI_SERDES:
232 mac->type = e1000_82572;
233 break;
234 case E1000_DEV_ID_82573E:
235 case E1000_DEV_ID_82573E_IAMT:
236 case E1000_DEV_ID_82573L:
237 mac->type = e1000_82573;
238 break;
239 case E1000_DEV_ID_82574L:
240 case E1000_DEV_ID_82574LA:
241 mac->type = e1000_82574;
242 break;
243 case E1000_DEV_ID_82583V:
244 mac->type = e1000_82583;
245 break;
246 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
247 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
248 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
249 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
250 mac->type = e1000_80003es2lan;
251 break;
252 case E1000_DEV_ID_ICH8_IFE:
253 case E1000_DEV_ID_ICH8_IFE_GT:
254 case E1000_DEV_ID_ICH8_IFE_G:
255 case E1000_DEV_ID_ICH8_IGP_M:
256 case E1000_DEV_ID_ICH8_IGP_M_AMT:
257 case E1000_DEV_ID_ICH8_IGP_AMT:
258 case E1000_DEV_ID_ICH8_IGP_C:
259 case E1000_DEV_ID_ICH8_82567V_3:
260 mac->type = e1000_ich8lan;
261 break;
262 case E1000_DEV_ID_ICH9_IFE:
263 case E1000_DEV_ID_ICH9_IFE_GT:
264 case E1000_DEV_ID_ICH9_IFE_G:
265 case E1000_DEV_ID_ICH9_IGP_M:
266 case E1000_DEV_ID_ICH9_IGP_M_AMT:
267 case E1000_DEV_ID_ICH9_IGP_M_V:
268 case E1000_DEV_ID_ICH9_IGP_AMT:
269 case E1000_DEV_ID_ICH9_BM:
270 case E1000_DEV_ID_ICH9_IGP_C:
271 case E1000_DEV_ID_ICH10_R_BM_LM:
272 case E1000_DEV_ID_ICH10_R_BM_LF:
273 case E1000_DEV_ID_ICH10_R_BM_V:
274 mac->type = e1000_ich9lan;
275 break;
276 case E1000_DEV_ID_ICH10_D_BM_LM:
277 case E1000_DEV_ID_ICH10_D_BM_LF:
278 case E1000_DEV_ID_ICH10_D_BM_V:
279 mac->type = e1000_ich10lan;
280 break;
281 case E1000_DEV_ID_PCH_D_HV_DM:
282 case E1000_DEV_ID_PCH_D_HV_DC:
283 case E1000_DEV_ID_PCH_M_HV_LM:
284 case E1000_DEV_ID_PCH_M_HV_LC:
285 mac->type = e1000_pchlan;
286 break;
287 case E1000_DEV_ID_PCH2_LV_LM:
288 case E1000_DEV_ID_PCH2_LV_V:
289 mac->type = e1000_pch2lan;
290 break;
291 case E1000_DEV_ID_PCH_LPT_I217_LM:
292 case E1000_DEV_ID_PCH_LPT_I217_V:
293 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
294 case E1000_DEV_ID_PCH_LPTLP_I218_V:
295 case E1000_DEV_ID_PCH_I218_LM2:
296 case E1000_DEV_ID_PCH_I218_V2:
297 case E1000_DEV_ID_PCH_I218_LM3:
298 case E1000_DEV_ID_PCH_I218_V3:
299 mac->type = e1000_pch_lpt;
300 break;
301 case E1000_DEV_ID_82575EB_COPPER:
302 case E1000_DEV_ID_82575EB_FIBER_SERDES:
303 case E1000_DEV_ID_82575GB_QUAD_COPPER:
304 mac->type = e1000_82575;
305 break;
306 case E1000_DEV_ID_82576:
307 case E1000_DEV_ID_82576_FIBER:
308 case E1000_DEV_ID_82576_SERDES:
309 case E1000_DEV_ID_82576_QUAD_COPPER:
310 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
311 case E1000_DEV_ID_82576_NS:
312 case E1000_DEV_ID_82576_NS_SERDES:
313 case E1000_DEV_ID_82576_SERDES_QUAD:
314 mac->type = e1000_82576;
315 break;
316 case E1000_DEV_ID_82580_COPPER:
317 case E1000_DEV_ID_82580_FIBER:
318 case E1000_DEV_ID_82580_SERDES:
319 case E1000_DEV_ID_82580_SGMII:
320 case E1000_DEV_ID_82580_COPPER_DUAL:
321 case E1000_DEV_ID_82580_QUAD_FIBER:
322 case E1000_DEV_ID_DH89XXCC_SGMII:
323 case E1000_DEV_ID_DH89XXCC_SERDES:
324 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
325 case E1000_DEV_ID_DH89XXCC_SFP:
326 mac->type = e1000_82580;
327 break;
328 case E1000_DEV_ID_I350_COPPER:
329 case E1000_DEV_ID_I350_FIBER:
330 case E1000_DEV_ID_I350_SERDES:
331 case E1000_DEV_ID_I350_SGMII:
332 case E1000_DEV_ID_I350_DA4:
333 mac->type = e1000_i350;
334 break;
335 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
336 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
337 case E1000_DEV_ID_I210_COPPER:
338 case E1000_DEV_ID_I210_COPPER_OEM1:
339 case E1000_DEV_ID_I210_COPPER_IT:
340 case E1000_DEV_ID_I210_FIBER:
341 case E1000_DEV_ID_I210_SERDES:
342 case E1000_DEV_ID_I210_SGMII:
343 mac->type = e1000_i210;
344 break;
345 case E1000_DEV_ID_I211_COPPER:
346 mac->type = e1000_i211;
347 break;
348 case E1000_DEV_ID_82576_VF:
349 case E1000_DEV_ID_82576_VF_HV:
350 mac->type = e1000_vfadapt;
351 break;
352 case E1000_DEV_ID_I350_VF:
353 case E1000_DEV_ID_I350_VF_HV:
354 mac->type = e1000_vfadapt_i350;
355 break;
356
357 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
358 case E1000_DEV_ID_I354_SGMII:
359 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
360 mac->type = e1000_i354;
361 break;
362 default:
363 /* Should never have loaded on this device */
364 ret_val = -E1000_ERR_MAC_INIT;
365 break;
366 }
367
368 return ret_val;
369 }
370
371 /**
372 * e1000_setup_init_funcs - Initializes function pointers
373 * @hw: pointer to the HW structure
374 * @init_device: true will initialize the rest of the function pointers
375 * getting the device ready for use. false will only set
376 * MAC type and the function pointers for the other init
377 * functions. Passing false will not generate any hardware
378 * reads or writes.
379 *
380 * This function must be called by a driver in order to use the rest
381 * of the 'shared' code files. Called by drivers only.
382 **/
383 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
384 {
385 s32 ret_val;
386
387 /* Can't do much good without knowing the MAC type. */
388 ret_val = e1000_set_mac_type(hw);
389 if (ret_val) {
390 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
391 goto out;
392 }
393
394 if (!hw->hw_addr) {
395 DEBUGOUT("ERROR: Registers not mapped\n");
396 ret_val = -E1000_ERR_CONFIG;
397 goto out;
398 }
399
400 /*
401 * Init function pointers to generic implementations. We do this first
402 * allowing a driver module to override it afterward.
403 */
404 e1000_init_mac_ops_generic(hw);
405 e1000_init_phy_ops_generic(hw);
406 e1000_init_nvm_ops_generic(hw);
407 e1000_init_mbx_ops_generic(hw);
408
409 /*
410 * Set up the init function pointers. These are functions within the
411 * adapter family file that sets up function pointers for the rest of
412 * the functions in that family.
413 */
414 switch (hw->mac.type) {
415 case e1000_82542:
416 e1000_init_function_pointers_82542(hw);
417 break;
418 case e1000_82543:
419 case e1000_82544:
420 e1000_init_function_pointers_82543(hw);
421 break;
422 case e1000_82540:
423 case e1000_82545:
424 case e1000_82545_rev_3:
425 case e1000_82546:
426 case e1000_82546_rev_3:
427 e1000_init_function_pointers_82540(hw);
428 break;
429 case e1000_82541:
430 case e1000_82541_rev_2:
431 case e1000_82547:
432 case e1000_82547_rev_2:
433 e1000_init_function_pointers_82541(hw);
434 break;
435 case e1000_82571:
436 case e1000_82572:
437 case e1000_82573:
438 case e1000_82574:
439 case e1000_82583:
440 e1000_init_function_pointers_82571(hw);
441 break;
442 case e1000_80003es2lan:
443 e1000_init_function_pointers_80003es2lan(hw);
444 break;
445 case e1000_ich8lan:
446 case e1000_ich9lan:
447 case e1000_ich10lan:
448 case e1000_pchlan:
449 case e1000_pch2lan:
450 case e1000_pch_lpt:
451 e1000_init_function_pointers_ich8lan(hw);
452 break;
453 case e1000_82575:
454 case e1000_82576:
455 case e1000_82580:
456 case e1000_i350:
457 case e1000_i354:
458 e1000_init_function_pointers_82575(hw);
459 break;
460 case e1000_i210:
461 case e1000_i211:
462 e1000_init_function_pointers_i210(hw);
463 break;
464 case e1000_vfadapt:
465 e1000_init_function_pointers_vf(hw);
466 break;
467 case e1000_vfadapt_i350:
468 e1000_init_function_pointers_vf(hw);
469 break;
470 default:
471 DEBUGOUT("Hardware not supported\n");
472 ret_val = -E1000_ERR_CONFIG;
473 break;
474 }
475
476 /*
477 * Initialize the rest of the function pointers. These require some
478 * register reads/writes in some cases.
479 */
480 if (!(ret_val) && init_device) {
481 ret_val = e1000_init_mac_params(hw);
482 if (ret_val)
483 goto out;
484
485 ret_val = e1000_init_nvm_params(hw);
486 if (ret_val)
487 goto out;
488
489 ret_val = e1000_init_phy_params(hw);
490 if (ret_val)
491 goto out;
492
493 ret_val = e1000_init_mbx_params(hw);
494 if (ret_val)
495 goto out;
496 }
497
498 out:
499 return ret_val;
500 }
501
502 /**
503 * e1000_get_bus_info - Obtain bus information for adapter
504 * @hw: pointer to the HW structure
505 *
506 * This will obtain information about the HW bus for which the
507 * adapter is attached and stores it in the hw structure. This is a
508 * function pointer entry point called by drivers.
509 **/
510 s32 e1000_get_bus_info(struct e1000_hw *hw)
511 {
512 if (hw->mac.ops.get_bus_info)
513 return hw->mac.ops.get_bus_info(hw);
514
515 return E1000_SUCCESS;
516 }
517
518 /**
519 * e1000_clear_vfta - Clear VLAN filter table
520 * @hw: pointer to the HW structure
521 *
522 * This clears the VLAN filter table on the adapter. This is a function
523 * pointer entry point called by drivers.
524 **/
525 void e1000_clear_vfta(struct e1000_hw *hw)
526 {
527 if (hw->mac.ops.clear_vfta)
528 hw->mac.ops.clear_vfta(hw);
529 }
530
531 /**
532 * e1000_write_vfta - Write value to VLAN filter table
533 * @hw: pointer to the HW structure
534 * @offset: the 32-bit offset in which to write the value to.
535 * @value: the 32-bit value to write at location offset.
536 *
537 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
538 * table. This is a function pointer entry point called by drivers.
539 **/
540 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
541 {
542 if (hw->mac.ops.write_vfta)
543 hw->mac.ops.write_vfta(hw, offset, value);
544 }
545
546 /**
547 * e1000_update_mc_addr_list - Update Multicast addresses
548 * @hw: pointer to the HW structure
549 * @mc_addr_list: array of multicast addresses to program
550 * @mc_addr_count: number of multicast addresses to program
551 *
552 * Updates the Multicast Table Array.
553 * The caller must have a packed mc_addr_list of multicast addresses.
554 **/
555 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
556 u32 mc_addr_count)
557 {
558 if (hw->mac.ops.update_mc_addr_list)
559 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
560 mc_addr_count);
561 }
562
563 /**
564 * e1000_force_mac_fc - Force MAC flow control
565 * @hw: pointer to the HW structure
566 *
567 * Force the MAC's flow control settings. Currently no func pointer exists
568 * and all implementations are handled in the generic version of this
569 * function.
570 **/
571 s32 e1000_force_mac_fc(struct e1000_hw *hw)
572 {
573 return e1000_force_mac_fc_generic(hw);
574 }
575
576 /**
577 * e1000_check_for_link - Check/Store link connection
578 * @hw: pointer to the HW structure
579 *
580 * This checks the link condition of the adapter and stores the
581 * results in the hw->mac structure. This is a function pointer entry
582 * point called by drivers.
583 **/
584 s32 e1000_check_for_link(struct e1000_hw *hw)
585 {
586 if (hw->mac.ops.check_for_link)
587 return hw->mac.ops.check_for_link(hw);
588
589 return -E1000_ERR_CONFIG;
590 }
591
592 /**
593 * e1000_check_mng_mode - Check management mode
594 * @hw: pointer to the HW structure
595 *
596 * This checks if the adapter has manageability enabled.
597 * This is a function pointer entry point called by drivers.
598 **/
599 bool e1000_check_mng_mode(struct e1000_hw *hw)
600 {
601 if (hw->mac.ops.check_mng_mode)
602 return hw->mac.ops.check_mng_mode(hw);
603
604 return false;
605 }
606
607 /**
608 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
609 * @hw: pointer to the HW structure
610 * @buffer: pointer to the host interface
611 * @length: size of the buffer
612 *
613 * Writes the DHCP information to the host interface.
614 **/
615 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
616 {
617 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
618 }
619
620 /**
621 * e1000_reset_hw - Reset hardware
622 * @hw: pointer to the HW structure
623 *
624 * This resets the hardware into a known state. This is a function pointer
625 * entry point called by drivers.
626 **/
627 s32 e1000_reset_hw(struct e1000_hw *hw)
628 {
629 if (hw->mac.ops.reset_hw)
630 return hw->mac.ops.reset_hw(hw);
631
632 return -E1000_ERR_CONFIG;
633 }
634
635 /**
636 * e1000_init_hw - Initialize hardware
637 * @hw: pointer to the HW structure
638 *
639 * This inits the hardware readying it for operation. This is a function
640 * pointer entry point called by drivers.
641 **/
642 s32 e1000_init_hw(struct e1000_hw *hw)
643 {
644 if (hw->mac.ops.init_hw)
645 return hw->mac.ops.init_hw(hw);
646
647 return -E1000_ERR_CONFIG;
648 }
649
650 /**
651 * e1000_setup_link - Configures link and flow control
652 * @hw: pointer to the HW structure
653 *
654 * This configures link and flow control settings for the adapter. This
655 * is a function pointer entry point called by drivers. While modules can
656 * also call this, they probably call their own version of this function.
657 **/
658 s32 e1000_setup_link(struct e1000_hw *hw)
659 {
660 if (hw->mac.ops.setup_link)
661 return hw->mac.ops.setup_link(hw);
662
663 return -E1000_ERR_CONFIG;
664 }
665
666 /**
667 * e1000_get_speed_and_duplex - Returns current speed and duplex
668 * @hw: pointer to the HW structure
669 * @speed: pointer to a 16-bit value to store the speed
670 * @duplex: pointer to a 16-bit value to store the duplex.
671 *
672 * This returns the speed and duplex of the adapter in the two 'out'
673 * variables passed in. This is a function pointer entry point called
674 * by drivers.
675 **/
676 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
677 {
678 if (hw->mac.ops.get_link_up_info)
679 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
680
681 return -E1000_ERR_CONFIG;
682 }
683
684 /**
685 * e1000_setup_led - Configures SW controllable LED
686 * @hw: pointer to the HW structure
687 *
688 * This prepares the SW controllable LED for use and saves the current state
689 * of the LED so it can be later restored. This is a function pointer entry
690 * point called by drivers.
691 **/
692 s32 e1000_setup_led(struct e1000_hw *hw)
693 {
694 if (hw->mac.ops.setup_led)
695 return hw->mac.ops.setup_led(hw);
696
697 return E1000_SUCCESS;
698 }
699
700 /**
701 * e1000_cleanup_led - Restores SW controllable LED
702 * @hw: pointer to the HW structure
703 *
704 * This restores the SW controllable LED to the value saved off by
705 * e1000_setup_led. This is a function pointer entry point called by drivers.
706 **/
707 s32 e1000_cleanup_led(struct e1000_hw *hw)
708 {
709 if (hw->mac.ops.cleanup_led)
710 return hw->mac.ops.cleanup_led(hw);
711
712 return E1000_SUCCESS;
713 }
714
715 /**
716 * e1000_blink_led - Blink SW controllable LED
717 * @hw: pointer to the HW structure
718 *
719 * This starts the adapter LED blinking. Request the LED to be setup first
720 * and cleaned up after. This is a function pointer entry point called by
721 * drivers.
722 **/
723 s32 e1000_blink_led(struct e1000_hw *hw)
724 {
725 if (hw->mac.ops.blink_led)
726 return hw->mac.ops.blink_led(hw);
727
728 return E1000_SUCCESS;
729 }
730
731 /**
732 * e1000_id_led_init - store LED configurations in SW
733 * @hw: pointer to the HW structure
734 *
735 * Initializes the LED config in SW. This is a function pointer entry point
736 * called by drivers.
737 **/
738 s32 e1000_id_led_init(struct e1000_hw *hw)
739 {
740 if (hw->mac.ops.id_led_init)
741 return hw->mac.ops.id_led_init(hw);
742
743 return E1000_SUCCESS;
744 }
745
746 /**
747 * e1000_led_on - Turn on SW controllable LED
748 * @hw: pointer to the HW structure
749 *
750 * Turns the SW defined LED on. This is a function pointer entry point
751 * called by drivers.
752 **/
753 s32 e1000_led_on(struct e1000_hw *hw)
754 {
755 if (hw->mac.ops.led_on)
756 return hw->mac.ops.led_on(hw);
757
758 return E1000_SUCCESS;
759 }
760
761 /**
762 * e1000_led_off - Turn off SW controllable LED
763 * @hw: pointer to the HW structure
764 *
765 * Turns the SW defined LED off. This is a function pointer entry point
766 * called by drivers.
767 **/
768 s32 e1000_led_off(struct e1000_hw *hw)
769 {
770 if (hw->mac.ops.led_off)
771 return hw->mac.ops.led_off(hw);
772
773 return E1000_SUCCESS;
774 }
775
776 /**
777 * e1000_reset_adaptive - Reset adaptive IFS
778 * @hw: pointer to the HW structure
779 *
780 * Resets the adaptive IFS. Currently no func pointer exists and all
781 * implementations are handled in the generic version of this function.
782 **/
783 void e1000_reset_adaptive(struct e1000_hw *hw)
784 {
785 e1000_reset_adaptive_generic(hw);
786 }
787
788 /**
789 * e1000_update_adaptive - Update adaptive IFS
790 * @hw: pointer to the HW structure
791 *
792 * Updates adapter IFS. Currently no func pointer exists and all
793 * implementations are handled in the generic version of this function.
794 **/
795 void e1000_update_adaptive(struct e1000_hw *hw)
796 {
797 e1000_update_adaptive_generic(hw);
798 }
799
800 /**
801 * e1000_disable_pcie_master - Disable PCI-Express master access
802 * @hw: pointer to the HW structure
803 *
804 * Disables PCI-Express master access and verifies there are no pending
805 * requests. Currently no func pointer exists and all implementations are
806 * handled in the generic version of this function.
807 **/
808 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
809 {
810 return e1000_disable_pcie_master_generic(hw);
811 }
812
813 /**
814 * e1000_config_collision_dist - Configure collision distance
815 * @hw: pointer to the HW structure
816 *
817 * Configures the collision distance to the default value and is used
818 * during link setup.
819 **/
820 void e1000_config_collision_dist(struct e1000_hw *hw)
821 {
822 if (hw->mac.ops.config_collision_dist)
823 hw->mac.ops.config_collision_dist(hw);
824 }
825
826 /**
827 * e1000_rar_set - Sets a receive address register
828 * @hw: pointer to the HW structure
829 * @addr: address to set the RAR to
830 * @index: the RAR to set
831 *
832 * Sets a Receive Address Register (RAR) to the specified address.
833 **/
834 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
835 {
836 if (hw->mac.ops.rar_set)
837 return hw->mac.ops.rar_set(hw, addr, index);
838
839 return E1000_SUCCESS;
840 }
841
842 /**
843 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
844 * @hw: pointer to the HW structure
845 *
846 * Ensures that the MDI/MDIX SW state is valid.
847 **/
848 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
849 {
850 if (hw->mac.ops.validate_mdi_setting)
851 return hw->mac.ops.validate_mdi_setting(hw);
852
853 return E1000_SUCCESS;
854 }
855
856 /**
857 * e1000_hash_mc_addr - Determines address location in multicast table
858 * @hw: pointer to the HW structure
859 * @mc_addr: Multicast address to hash.
860 *
861 * This hashes an address to determine its location in the multicast
862 * table. Currently no func pointer exists and all implementations
863 * are handled in the generic version of this function.
864 **/
865 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
866 {
867 return e1000_hash_mc_addr_generic(hw, mc_addr);
868 }
869
870 /**
871 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
872 * @hw: pointer to the HW structure
873 *
874 * Enables packet filtering on transmit packets if manageability is enabled
875 * and host interface is enabled.
876 * Currently no func pointer exists and all implementations are handled in the
877 * generic version of this function.
878 **/
879 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
880 {
881 return e1000_enable_tx_pkt_filtering_generic(hw);
882 }
883
884 /**
885 * e1000_mng_host_if_write - Writes to the manageability host interface
886 * @hw: pointer to the HW structure
887 * @buffer: pointer to the host interface buffer
888 * @length: size of the buffer
889 * @offset: location in the buffer to write to
890 * @sum: sum of the data (not checksum)
891 *
892 * This function writes the buffer content at the offset given on the host if.
893 * It also does alignment considerations to do the writes in most efficient
894 * way. Also fills up the sum of the buffer in *buffer parameter.
895 **/
896 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
897 u16 offset, u8 *sum)
898 {
899 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
900 }
901
902 /**
903 * e1000_mng_write_cmd_header - Writes manageability command header
904 * @hw: pointer to the HW structure
905 * @hdr: pointer to the host interface command header
906 *
907 * Writes the command header after does the checksum calculation.
908 **/
909 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
910 struct e1000_host_mng_command_header *hdr)
911 {
912 return e1000_mng_write_cmd_header_generic(hw, hdr);
913 }
914
915 /**
916 * e1000_mng_enable_host_if - Checks host interface is enabled
917 * @hw: pointer to the HW structure
918 *
919 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
920 *
921 * This function checks whether the HOST IF is enabled for command operation
922 * and also checks whether the previous command is completed. It busy waits
923 * in case of previous command is not completed.
924 **/
925 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
926 {
927 return e1000_mng_enable_host_if_generic(hw);
928 }
929
930 /**
931 * e1000_check_reset_block - Verifies PHY can be reset
932 * @hw: pointer to the HW structure
933 *
934 * Checks if the PHY is in a state that can be reset or if manageability
935 * has it tied up. This is a function pointer entry point called by drivers.
936 **/
937 s32 e1000_check_reset_block(struct e1000_hw *hw)
938 {
939 if (hw->phy.ops.check_reset_block)
940 return hw->phy.ops.check_reset_block(hw);
941
942 return E1000_SUCCESS;
943 }
944
945 /**
946 * e1000_read_phy_reg - Reads PHY register
947 * @hw: pointer to the HW structure
948 * @offset: the register to read
949 * @data: the buffer to store the 16-bit read.
950 *
951 * Reads the PHY register and returns the value in data.
952 * This is a function pointer entry point called by drivers.
953 **/
954 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
955 {
956 if (hw->phy.ops.read_reg)
957 return hw->phy.ops.read_reg(hw, offset, data);
958
959 return E1000_SUCCESS;
960 }
961
962 /**
963 * e1000_write_phy_reg - Writes PHY register
964 * @hw: pointer to the HW structure
965 * @offset: the register to write
966 * @data: the value to write.
967 *
968 * Writes the PHY register at offset with the value in data.
969 * This is a function pointer entry point called by drivers.
970 **/
971 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
972 {
973 if (hw->phy.ops.write_reg)
974 return hw->phy.ops.write_reg(hw, offset, data);
975
976 return E1000_SUCCESS;
977 }
978
979 /**
980 * e1000_release_phy - Generic release PHY
981 * @hw: pointer to the HW structure
982 *
983 * Return if silicon family does not require a semaphore when accessing the
984 * PHY.
985 **/
986 void e1000_release_phy(struct e1000_hw *hw)
987 {
988 if (hw->phy.ops.release)
989 hw->phy.ops.release(hw);
990 }
991
992 /**
993 * e1000_acquire_phy - Generic acquire PHY
994 * @hw: pointer to the HW structure
995 *
996 * Return success if silicon family does not require a semaphore when
997 * accessing the PHY.
998 **/
999 s32 e1000_acquire_phy(struct e1000_hw *hw)
1000 {
1001 if (hw->phy.ops.acquire)
1002 return hw->phy.ops.acquire(hw);
1003
1004 return E1000_SUCCESS;
1005 }
1006
1007 /**
1008 * e1000_cfg_on_link_up - Configure PHY upon link up
1009 * @hw: pointer to the HW structure
1010 **/
1011 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1012 {
1013 if (hw->phy.ops.cfg_on_link_up)
1014 return hw->phy.ops.cfg_on_link_up(hw);
1015
1016 return E1000_SUCCESS;
1017 }
1018
1019 /**
1020 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1021 * @hw: pointer to the HW structure
1022 * @offset: the register to read
1023 * @data: the location to store the 16-bit value read.
1024 *
1025 * Reads a register out of the Kumeran interface. Currently no func pointer
1026 * exists and all implementations are handled in the generic version of
1027 * this function.
1028 **/
1029 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1030 {
1031 return e1000_read_kmrn_reg_generic(hw, offset, data);
1032 }
1033
1034 /**
1035 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1036 * @hw: pointer to the HW structure
1037 * @offset: the register to write
1038 * @data: the value to write.
1039 *
1040 * Writes a register to the Kumeran interface. Currently no func pointer
1041 * exists and all implementations are handled in the generic version of
1042 * this function.
1043 **/
1044 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1045 {
1046 return e1000_write_kmrn_reg_generic(hw, offset, data);
1047 }
1048
1049 /**
1050 * e1000_get_cable_length - Retrieves cable length estimation
1051 * @hw: pointer to the HW structure
1052 *
1053 * This function estimates the cable length and stores them in
1054 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1055 * entry point called by drivers.
1056 **/
1057 s32 e1000_get_cable_length(struct e1000_hw *hw)
1058 {
1059 if (hw->phy.ops.get_cable_length)
1060 return hw->phy.ops.get_cable_length(hw);
1061
1062 return E1000_SUCCESS;
1063 }
1064
1065 /**
1066 * e1000_get_phy_info - Retrieves PHY information from registers
1067 * @hw: pointer to the HW structure
1068 *
1069 * This function gets some information from various PHY registers and
1070 * populates hw->phy values with it. This is a function pointer entry
1071 * point called by drivers.
1072 **/
1073 s32 e1000_get_phy_info(struct e1000_hw *hw)
1074 {
1075 if (hw->phy.ops.get_info)
1076 return hw->phy.ops.get_info(hw);
1077
1078 return E1000_SUCCESS;
1079 }
1080
1081 /**
1082 * e1000_phy_hw_reset - Hard PHY reset
1083 * @hw: pointer to the HW structure
1084 *
1085 * Performs a hard PHY reset. This is a function pointer entry point called
1086 * by drivers.
1087 **/
1088 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1089 {
1090 if (hw->phy.ops.reset)
1091 return hw->phy.ops.reset(hw);
1092
1093 return E1000_SUCCESS;
1094 }
1095
1096 /**
1097 * e1000_phy_commit - Soft PHY reset
1098 * @hw: pointer to the HW structure
1099 *
1100 * Performs a soft PHY reset on those that apply. This is a function pointer
1101 * entry point called by drivers.
1102 **/
1103 s32 e1000_phy_commit(struct e1000_hw *hw)
1104 {
1105 if (hw->phy.ops.commit)
1106 return hw->phy.ops.commit(hw);
1107
1108 return E1000_SUCCESS;
1109 }
1110
1111 /**
1112 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1113 * @hw: pointer to the HW structure
1114 * @active: boolean used to enable/disable lplu
1115 *
1116 * Success returns 0, Failure returns 1
1117 *
1118 * The low power link up (lplu) state is set to the power management level D0
1119 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1120 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1121 * is used during Dx states where the power conservation is most important.
1122 * During driver activity, SmartSpeed should be enabled so performance is
1123 * maintained. This is a function pointer entry point called by drivers.
1124 **/
1125 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1126 {
1127 if (hw->phy.ops.set_d0_lplu_state)
1128 return hw->phy.ops.set_d0_lplu_state(hw, active);
1129
1130 return E1000_SUCCESS;
1131 }
1132
1133 /**
1134 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1135 * @hw: pointer to the HW structure
1136 * @active: boolean used to enable/disable lplu
1137 *
1138 * Success returns 0, Failure returns 1
1139 *
1140 * The low power link up (lplu) state is set to the power management level D3
1141 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1142 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1143 * is used during Dx states where the power conservation is most important.
1144 * During driver activity, SmartSpeed should be enabled so performance is
1145 * maintained. This is a function pointer entry point called by drivers.
1146 **/
1147 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1148 {
1149 if (hw->phy.ops.set_d3_lplu_state)
1150 return hw->phy.ops.set_d3_lplu_state(hw, active);
1151
1152 return E1000_SUCCESS;
1153 }
1154
1155 /**
1156 * e1000_read_mac_addr - Reads MAC address
1157 * @hw: pointer to the HW structure
1158 *
1159 * Reads the MAC address out of the adapter and stores it in the HW structure.
1160 * Currently no func pointer exists and all implementations are handled in the
1161 * generic version of this function.
1162 **/
1163 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1164 {
1165 if (hw->mac.ops.read_mac_addr)
1166 return hw->mac.ops.read_mac_addr(hw);
1167
1168 return e1000_read_mac_addr_generic(hw);
1169 }
1170
1171 /**
1172 * e1000_read_pba_string - Read device part number string
1173 * @hw: pointer to the HW structure
1174 * @pba_num: pointer to device part number
1175 * @pba_num_size: size of part number buffer
1176 *
1177 * Reads the product board assembly (PBA) number from the EEPROM and stores
1178 * the value in pba_num.
1179 * Currently no func pointer exists and all implementations are handled in the
1180 * generic version of this function.
1181 **/
1182 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1183 {
1184 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1185 }
1186
1187 /**
1188 * e1000_read_pba_length - Read device part number string length
1189 * @hw: pointer to the HW structure
1190 * @pba_num_size: size of part number buffer
1191 *
1192 * Reads the product board assembly (PBA) number length from the EEPROM and
1193 * stores the value in pba_num.
1194 * Currently no func pointer exists and all implementations are handled in the
1195 * generic version of this function.
1196 **/
1197 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1198 {
1199 return e1000_read_pba_length_generic(hw, pba_num_size);
1200 }
1201
1202 /**
1203 * e1000_read_pba_num - Read device part number
1204 * @hw: pointer to the HW structure
1205 * @pba_num: pointer to device part number
1206 *
1207 * Reads the product board assembly (PBA) number from the EEPROM and stores
1208 * the value in pba_num.
1209 * Currently no func pointer exists and all implementations are handled in the
1210 * generic version of this function.
1211 **/
1212 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1213 {
1214 return e1000_read_pba_num_generic(hw, pba_num);
1215 }
1216
1217 /**
1218 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1219 * @hw: pointer to the HW structure
1220 *
1221 * Validates the NVM checksum is correct. This is a function pointer entry
1222 * point called by drivers.
1223 **/
1224 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1225 {
1226 if (hw->nvm.ops.validate)
1227 return hw->nvm.ops.validate(hw);
1228
1229 return -E1000_ERR_CONFIG;
1230 }
1231
1232 /**
1233 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1234 * @hw: pointer to the HW structure
1235 *
1236 * Updates the NVM checksum. Currently no func pointer exists and all
1237 * implementations are handled in the generic version of this function.
1238 **/
1239 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1240 {
1241 if (hw->nvm.ops.update)
1242 return hw->nvm.ops.update(hw);
1243
1244 return -E1000_ERR_CONFIG;
1245 }
1246
1247 /**
1248 * e1000_reload_nvm - Reloads EEPROM
1249 * @hw: pointer to the HW structure
1250 *
1251 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1252 * extended control register.
1253 **/
1254 void e1000_reload_nvm(struct e1000_hw *hw)
1255 {
1256 if (hw->nvm.ops.reload)
1257 hw->nvm.ops.reload(hw);
1258 }
1259
1260 /**
1261 * e1000_read_nvm - Reads NVM (EEPROM)
1262 * @hw: pointer to the HW structure
1263 * @offset: the word offset to read
1264 * @words: number of 16-bit words to read
1265 * @data: pointer to the properly sized buffer for the data.
1266 *
1267 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1268 * pointer entry point called by drivers.
1269 **/
1270 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1271 {
1272 if (hw->nvm.ops.read)
1273 return hw->nvm.ops.read(hw, offset, words, data);
1274
1275 return -E1000_ERR_CONFIG;
1276 }
1277
1278 /**
1279 * e1000_write_nvm - Writes to NVM (EEPROM)
1280 * @hw: pointer to the HW structure
1281 * @offset: the word offset to read
1282 * @words: number of 16-bit words to write
1283 * @data: pointer to the properly sized buffer for the data.
1284 *
1285 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1286 * pointer entry point called by drivers.
1287 **/
1288 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1289 {
1290 if (hw->nvm.ops.write)
1291 return hw->nvm.ops.write(hw, offset, words, data);
1292
1293 return E1000_SUCCESS;
1294 }
1295
1296 /**
1297 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1298 * @hw: pointer to the HW structure
1299 * @reg: 32bit register offset
1300 * @offset: the register to write
1301 * @data: the value to write.
1302 *
1303 * Writes the PHY register at offset with the value in data.
1304 * This is a function pointer entry point called by drivers.
1305 **/
1306 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1307 u8 data)
1308 {
1309 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1310 }
1311
1312 /**
1313 * e1000_power_up_phy - Restores link in case of PHY power down
1314 * @hw: pointer to the HW structure
1315 *
1316 * The phy may be powered down to save power, to turn off link when the
1317 * driver is unloaded, or wake on lan is not enabled (among others).
1318 **/
1319 void e1000_power_up_phy(struct e1000_hw *hw)
1320 {
1321 if (hw->phy.ops.power_up)
1322 hw->phy.ops.power_up(hw);
1323
1324 e1000_setup_link(hw);
1325 }
1326
1327 /**
1328 * e1000_power_down_phy - Power down PHY
1329 * @hw: pointer to the HW structure
1330 *
1331 * The phy may be powered down to save power, to turn off link when the
1332 * driver is unloaded, or wake on lan is not enabled (among others).
1333 **/
1334 void e1000_power_down_phy(struct e1000_hw *hw)
1335 {
1336 if (hw->phy.ops.power_down)
1337 hw->phy.ops.power_down(hw);
1338 }
1339
1340 /**
1341 * e1000_power_up_fiber_serdes_link - Power up serdes link
1342 * @hw: pointer to the HW structure
1343 *
1344 * Power on the optics and PCS.
1345 **/
1346 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1347 {
1348 if (hw->mac.ops.power_up_serdes)
1349 hw->mac.ops.power_up_serdes(hw);
1350 }
1351
1352 /**
1353 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1354 * @hw: pointer to the HW structure
1355 *
1356 * Shutdown the optics and PCS on driver unload.
1357 **/
1358 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1359 {
1360 if (hw->mac.ops.shutdown_serdes)
1361 hw->mac.ops.shutdown_serdes(hw);
1362 }
1363