]> git.proxmox.com Git - ceph.git/blob - ceph/src/mds/MDSMap.h
update sources to v12.1.1
[ceph.git] / ceph / src / mds / MDSMap.h
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3 /*
4 * Ceph - scalable distributed file system
5 *
6 * Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
7 *
8 * This is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License version 2.1, as published by the Free Software
11 * Foundation. See file COPYING.
12 *
13 */
14
15
16 #ifndef CEPH_MDSMAP_H
17 #define CEPH_MDSMAP_H
18
19 #include <errno.h>
20
21 #include "include/types.h"
22 #include "common/Clock.h"
23 #include "msg/Message.h"
24 #include "include/health.h"
25
26 #include <set>
27 #include <map>
28 #include <string>
29 #include <algorithm>
30
31 #include "common/config.h"
32
33 #include "include/CompatSet.h"
34 #include "include/ceph_features.h"
35 #include "common/Formatter.h"
36 #include "mds/mdstypes.h"
37
38 /*
39
40 boot --> standby, creating, or starting.
41
42
43 dne ----> creating -----> active*
44 ^ ^___________/ / ^ ^
45 | / / |
46 destroying / / |
47 ^ / / |
48 | / / |
49 stopped <---- stopping* <-/ / |
50 \ / |
51 ----- starting* ----/ |
52 |
53 failed |
54 \ |
55 \--> replay* --> reconnect* --> rejoin*
56
57 * = can fail
58
59 */
60
61 class CephContext;
62 class health_check_map_t;
63
64 extern CompatSet get_mdsmap_compat_set_all();
65 extern CompatSet get_mdsmap_compat_set_default();
66 extern CompatSet get_mdsmap_compat_set_base(); // pre v0.20
67
68 #define MDS_FEATURE_INCOMPAT_BASE CompatSet::Feature(1, "base v0.20")
69 #define MDS_FEATURE_INCOMPAT_CLIENTRANGES CompatSet::Feature(2, "client writeable ranges")
70 #define MDS_FEATURE_INCOMPAT_FILELAYOUT CompatSet::Feature(3, "default file layouts on dirs")
71 #define MDS_FEATURE_INCOMPAT_DIRINODE CompatSet::Feature(4, "dir inode in separate object")
72 #define MDS_FEATURE_INCOMPAT_ENCODING CompatSet::Feature(5, "mds uses versioned encoding")
73 #define MDS_FEATURE_INCOMPAT_OMAPDIRFRAG CompatSet::Feature(6, "dirfrag is stored in omap")
74 #define MDS_FEATURE_INCOMPAT_INLINE CompatSet::Feature(7, "mds uses inline data")
75 #define MDS_FEATURE_INCOMPAT_NOANCHOR CompatSet::Feature(8, "no anchor table")
76 #define MDS_FEATURE_INCOMPAT_FILE_LAYOUT_V2 CompatSet::Feature(8, "file layout v2")
77
78 #define MDS_FS_NAME_DEFAULT "cephfs"
79
80 class MDSMap {
81 public:
82 /* These states are the union of the set of possible states of an MDS daemon,
83 * and the set of possible states of an MDS rank */
84 typedef enum {
85 // States of an MDS daemon not currently holding a rank
86 // ====================================================
87 STATE_NULL = CEPH_MDS_STATE_NULL, // null value for fns returning this type.
88 STATE_BOOT = CEPH_MDS_STATE_BOOT, // up, boot announcement. destiny unknown.
89 STATE_STANDBY = CEPH_MDS_STATE_STANDBY, // up, idle. waiting for assignment by monitor.
90 STATE_STANDBY_REPLAY = CEPH_MDS_STATE_STANDBY_REPLAY, // up, replaying active node, ready to take over.
91
92 // States of an MDS rank, and of any MDS daemon holding that rank
93 // ==============================================================
94 STATE_STOPPED = CEPH_MDS_STATE_STOPPED, // down, once existed, but no subtrees. empty log. may not be held by a daemon.
95
96 STATE_CREATING = CEPH_MDS_STATE_CREATING, // up, creating MDS instance (new journal, idalloc..).
97 STATE_STARTING = CEPH_MDS_STATE_STARTING, // up, starting prior stopped MDS instance.
98
99 STATE_REPLAY = CEPH_MDS_STATE_REPLAY, // up, starting prior failed instance. scanning journal.
100 STATE_RESOLVE = CEPH_MDS_STATE_RESOLVE, // up, disambiguating distributed operations (import, rename, etc.)
101 STATE_RECONNECT = CEPH_MDS_STATE_RECONNECT, // up, reconnect to clients
102 STATE_REJOIN = CEPH_MDS_STATE_REJOIN, // up, replayed journal, rejoining distributed cache
103 STATE_CLIENTREPLAY = CEPH_MDS_STATE_CLIENTREPLAY, // up, active
104 STATE_ACTIVE = CEPH_MDS_STATE_ACTIVE, // up, active
105 STATE_STOPPING = CEPH_MDS_STATE_STOPPING, // up, exporting metadata (-> standby or out)
106 STATE_DNE = CEPH_MDS_STATE_DNE, // down, rank does not exist
107
108 // State which a daemon may send to MDSMonitor in its beacon
109 // to indicate that offline repair is required. Daemon must stop
110 // immediately after indicating this state.
111 STATE_DAMAGED = CEPH_MDS_STATE_DAMAGED
112
113 /*
114 * In addition to explicit states, an MDS rank implicitly in state:
115 * - STOPPED if it is not currently associated with an MDS daemon gid but it
116 * is in MDSMap::stopped
117 * - FAILED if it is not currently associated with an MDS daemon gid but it
118 * is in MDSMap::failed
119 * - DNE if it is not currently associated with an MDS daemon gid and it is
120 * missing from both MDSMap::failed and MDSMap::stopped
121 */
122 } DaemonState;
123
124 struct mds_info_t {
125 mds_gid_t global_id;
126 std::string name;
127 mds_rank_t rank;
128 int32_t inc;
129 MDSMap::DaemonState state;
130 version_t state_seq;
131 entity_addr_t addr;
132 utime_t laggy_since;
133 mds_rank_t standby_for_rank;
134 std::string standby_for_name;
135 fs_cluster_id_t standby_for_fscid;
136 bool standby_replay;
137 std::set<mds_rank_t> export_targets;
138 uint64_t mds_features;
139
140 mds_info_t() : global_id(MDS_GID_NONE), rank(MDS_RANK_NONE), inc(0),
141 state(STATE_STANDBY), state_seq(0),
142 standby_for_rank(MDS_RANK_NONE),
143 standby_for_fscid(FS_CLUSTER_ID_NONE),
144 standby_replay(false)
145 { }
146
147 bool laggy() const { return !(laggy_since == utime_t()); }
148 void clear_laggy() { laggy_since = utime_t(); }
149
150 entity_inst_t get_inst() const { return entity_inst_t(entity_name_t::MDS(rank), addr); }
151
152 void encode(bufferlist& bl, uint64_t features) const {
153 if ((features & CEPH_FEATURE_MDSENC) == 0 ) encode_unversioned(bl);
154 else encode_versioned(bl, features);
155 }
156 void decode(bufferlist::iterator& p);
157 void dump(Formatter *f) const;
158 void print_summary(ostream &out) const;
159 static void generate_test_instances(list<mds_info_t*>& ls);
160 private:
161 void encode_versioned(bufferlist& bl, uint64_t features) const;
162 void encode_unversioned(bufferlist& bl) const;
163 };
164
165
166 protected:
167 // base map
168 epoch_t epoch;
169 bool enabled;
170 std::string fs_name;
171 uint32_t flags; // flags
172 epoch_t last_failure; // mds epoch of last failure
173 epoch_t last_failure_osd_epoch; // osd epoch of last failure; any mds entering replay needs
174 // at least this osdmap to ensure the blacklist propagates.
175 utime_t created, modified;
176
177 mds_rank_t tableserver; // which MDS has snaptable
178 mds_rank_t root; // which MDS has root directory
179
180 __u32 session_timeout;
181 __u32 session_autoclose;
182 uint64_t max_file_size;
183
184 std::vector<int64_t> data_pools; // file data pools available to clients (via an ioctl). first is the default.
185 int64_t cas_pool; // where CAS objects go
186 int64_t metadata_pool; // where fs metadata objects go
187
188 /*
189 * in: the set of logical mds #'s that define the cluster. this is the set
190 * of mds's the metadata may be distributed over.
191 * up: map from logical mds #'s to the addrs filling those roles.
192 * failed: subset of @in that are failed.
193 * stopped: set of nodes that have been initialized, but are not active.
194 *
195 * @up + @failed = @in. @in * @stopped = {}.
196 */
197
198 mds_rank_t max_mds; /* The maximum number of active MDSes. Also, the maximum rank. */
199 mds_rank_t standby_count_wanted;
200 string balancer; /* The name/version of the mantle balancer (i.e. the rados obj name) */
201
202 std::set<mds_rank_t> in; // currently defined cluster
203
204 // which ranks are failed, stopped, damaged (i.e. not held by a daemon)
205 std::set<mds_rank_t> failed, stopped, damaged;
206 std::map<mds_rank_t, mds_gid_t> up; // who is in those roles
207 std::map<mds_gid_t, mds_info_t> mds_info;
208
209 uint8_t ever_allowed_features; //< bitmap of features the cluster has allowed
210 uint8_t explicitly_allowed_features; //< bitmap of features explicitly enabled
211
212 bool inline_data_enabled;
213
214 uint64_t cached_up_features;
215
216 public:
217 CompatSet compat;
218
219 friend class MDSMonitor;
220 friend class Filesystem;
221 friend class FSMap;
222
223 public:
224 MDSMap()
225 : epoch(0), enabled(false), fs_name(MDS_FS_NAME_DEFAULT),
226 flags(CEPH_MDSMAP_DEFAULTS), last_failure(0),
227 last_failure_osd_epoch(0),
228 tableserver(0), root(0),
229 session_timeout(0),
230 session_autoclose(0),
231 max_file_size(0),
232 cas_pool(-1),
233 metadata_pool(-1),
234 max_mds(0),
235 standby_count_wanted(-1),
236 ever_allowed_features(0),
237 explicitly_allowed_features(0),
238 inline_data_enabled(false),
239 cached_up_features(0)
240 { }
241
242 bool get_inline_data_enabled() const { return inline_data_enabled; }
243 void set_inline_data_enabled(bool enabled) { inline_data_enabled = enabled; }
244
245 utime_t get_session_timeout() const {
246 return utime_t(session_timeout,0);
247 }
248 uint64_t get_max_filesize() const { return max_file_size; }
249 void set_max_filesize(uint64_t m) { max_file_size = m; }
250
251 int get_flags() const { return flags; }
252 bool test_flag(int f) const { return flags & f; }
253 void set_flag(int f) { flags |= f; }
254 void clear_flag(int f) { flags &= ~f; }
255
256 const std::string &get_fs_name() const {return fs_name;}
257
258 void set_snaps_allowed() {
259 set_flag(CEPH_MDSMAP_ALLOW_SNAPS);
260 ever_allowed_features |= CEPH_MDSMAP_ALLOW_SNAPS;
261 explicitly_allowed_features |= CEPH_MDSMAP_ALLOW_SNAPS;
262 }
263 void clear_snaps_allowed() { clear_flag(CEPH_MDSMAP_ALLOW_SNAPS); }
264 bool allows_snaps() const { return test_flag(CEPH_MDSMAP_ALLOW_SNAPS); }
265
266 void set_multimds_allowed() {
267 set_flag(CEPH_MDSMAP_ALLOW_MULTIMDS);
268 ever_allowed_features |= CEPH_MDSMAP_ALLOW_MULTIMDS;
269 explicitly_allowed_features |= CEPH_MDSMAP_ALLOW_MULTIMDS;
270 }
271 void clear_multimds_allowed() { clear_flag(CEPH_MDSMAP_ALLOW_MULTIMDS); }
272 bool allows_multimds() const { return test_flag(CEPH_MDSMAP_ALLOW_MULTIMDS); }
273
274 void set_dirfrags_allowed() {
275 set_flag(CEPH_MDSMAP_ALLOW_DIRFRAGS);
276 ever_allowed_features |= CEPH_MDSMAP_ALLOW_DIRFRAGS;
277 explicitly_allowed_features |= CEPH_MDSMAP_ALLOW_DIRFRAGS;
278 }
279 void clear_dirfrags_allowed() { clear_flag(CEPH_MDSMAP_ALLOW_DIRFRAGS); }
280 bool allows_dirfrags() const { return test_flag(CEPH_MDSMAP_ALLOW_DIRFRAGS); }
281
282 epoch_t get_epoch() const { return epoch; }
283 void inc_epoch() { epoch++; }
284
285 bool get_enabled() const { return enabled; }
286
287 const utime_t& get_created() const { return created; }
288 void set_created(utime_t ct) { modified = created = ct; }
289 const utime_t& get_modified() const { return modified; }
290 void set_modified(utime_t mt) { modified = mt; }
291
292 epoch_t get_last_failure() const { return last_failure; }
293 epoch_t get_last_failure_osd_epoch() const { return last_failure_osd_epoch; }
294
295 mds_rank_t get_max_mds() const { return max_mds; }
296 void set_max_mds(mds_rank_t m) { max_mds = m; }
297
298 mds_rank_t get_standby_count_wanted(mds_rank_t standby_daemon_count) const {
299 assert(standby_daemon_count >= 0);
300 std::set<mds_rank_t> s;
301 get_standby_replay_mds_set(s);
302 mds_rank_t standbys_avail = (mds_rank_t)s.size()+standby_daemon_count;
303 mds_rank_t wanted = std::max(0, standby_count_wanted);
304 return wanted > standbys_avail ? wanted - standbys_avail : 0;
305 }
306 void set_standby_count_wanted(mds_rank_t n) { standby_count_wanted = n; }
307 bool check_health(mds_rank_t standby_daemon_count);
308
309 const std::string get_balancer() const { return balancer; }
310 void set_balancer(std::string val) { balancer.assign(val); }
311
312 mds_rank_t get_tableserver() const { return tableserver; }
313 mds_rank_t get_root() const { return root; }
314
315 const std::vector<int64_t> &get_data_pools() const { return data_pools; }
316 int64_t get_first_data_pool() const { return *data_pools.begin(); }
317 int64_t get_metadata_pool() const { return metadata_pool; }
318 bool is_data_pool(int64_t poolid) const {
319 return std::binary_search(data_pools.begin(), data_pools.end(), poolid);
320 }
321
322 bool pool_in_use(int64_t poolid) const {
323 return get_enabled() && (is_data_pool(poolid) || metadata_pool == poolid);
324 }
325
326 const std::map<mds_gid_t,mds_info_t>& get_mds_info() const { return mds_info; }
327 const mds_info_t& get_mds_info_gid(mds_gid_t gid) const {
328 return mds_info.at(gid);
329 }
330 const mds_info_t& get_mds_info(mds_rank_t m) const {
331 assert(up.count(m) && mds_info.count(up.at(m)));
332 return mds_info.at(up.at(m));
333 }
334 mds_gid_t find_mds_gid_by_name(const std::string& s) const {
335 for (std::map<mds_gid_t,mds_info_t>::const_iterator p = mds_info.begin();
336 p != mds_info.end();
337 ++p) {
338 if (p->second.name == s) {
339 return p->first;
340 }
341 }
342 return MDS_GID_NONE;
343 }
344
345 // counts
346 unsigned get_num_in_mds() const {
347 return in.size();
348 }
349 unsigned get_num_up_mds() const {
350 return up.size();
351 }
352 mds_rank_t get_last_in_mds() const {
353 auto p = in.rbegin();
354 return p == in.rend() ? MDS_RANK_NONE : *p;
355 }
356 int get_num_failed_mds() const {
357 return failed.size();
358 }
359 unsigned get_num_mds(int state) const {
360 unsigned n = 0;
361 for (std::map<mds_gid_t,mds_info_t>::const_iterator p = mds_info.begin();
362 p != mds_info.end();
363 ++p)
364 if (p->second.state == state) ++n;
365 return n;
366 }
367
368 // data pools
369 void add_data_pool(int64_t poolid) {
370 data_pools.push_back(poolid);
371 }
372 int remove_data_pool(int64_t poolid) {
373 std::vector<int64_t>::iterator p = std::find(data_pools.begin(), data_pools.end(), poolid);
374 if (p == data_pools.end())
375 return -ENOENT;
376 data_pools.erase(p);
377 return 0;
378 }
379
380 // sets
381 void get_mds_set(std::set<mds_rank_t>& s) const {
382 s = in;
383 }
384 void get_up_mds_set(std::set<mds_rank_t>& s) const {
385 for (std::map<mds_rank_t, mds_gid_t>::const_iterator p = up.begin();
386 p != up.end();
387 ++p)
388 s.insert(p->first);
389 }
390 void get_active_mds_set(std::set<mds_rank_t>& s) const {
391 get_mds_set(s, MDSMap::STATE_ACTIVE);
392 }
393 void get_standby_replay_mds_set(std::set<mds_rank_t>& s) const {
394 get_mds_set(s, MDSMap::STATE_STANDBY_REPLAY);
395 }
396 void get_failed_mds_set(std::set<mds_rank_t>& s) const {
397 s = failed;
398 }
399
400 // features
401 uint64_t get_up_features() {
402 if (!cached_up_features) {
403 bool first = true;
404 for (std::map<mds_rank_t, mds_gid_t>::const_iterator p = up.begin();
405 p != up.end();
406 ++p) {
407 std::map<mds_gid_t, mds_info_t>::const_iterator q =
408 mds_info.find(p->second);
409 assert(q != mds_info.end());
410 if (first) {
411 cached_up_features = q->second.mds_features;
412 first = false;
413 } else {
414 cached_up_features &= q->second.mds_features;
415 }
416 }
417 }
418 return cached_up_features;
419 }
420
421 /**
422 * Get MDS ranks which are in but not up.
423 */
424 void get_down_mds_set(std::set<mds_rank_t> *s) const
425 {
426 assert(s != NULL);
427 s->insert(failed.begin(), failed.end());
428 s->insert(damaged.begin(), damaged.end());
429 }
430
431 int get_failed() const {
432 if (!failed.empty()) return *failed.begin();
433 return -1;
434 }
435 void get_stopped_mds_set(std::set<mds_rank_t>& s) const {
436 s = stopped;
437 }
438 void get_recovery_mds_set(std::set<mds_rank_t>& s) const {
439 s = failed;
440 for (const auto& p : damaged)
441 s.insert(p);
442 for (const auto& p : mds_info)
443 if (p.second.state >= STATE_REPLAY && p.second.state <= STATE_STOPPING)
444 s.insert(p.second.rank);
445 }
446
447 void
448 get_clientreplay_or_active_or_stopping_mds_set(std::set<mds_rank_t>& s) const {
449 for (std::map<mds_gid_t, mds_info_t>::const_iterator p = mds_info.begin();
450 p != mds_info.end();
451 ++p)
452 if (p->second.state >= STATE_CLIENTREPLAY && p->second.state <= STATE_STOPPING)
453 s.insert(p->second.rank);
454 }
455 void get_mds_set(std::set<mds_rank_t>& s, DaemonState state) const {
456 for (std::map<mds_gid_t, mds_info_t>::const_iterator p = mds_info.begin();
457 p != mds_info.end();
458 ++p)
459 if (p->second.state == state)
460 s.insert(p->second.rank);
461 }
462
463 void get_health(list<pair<health_status_t,std::string> >& summary,
464 list<pair<health_status_t,std::string> > *detail) const;
465
466 void get_health_checks(health_check_map_t *checks) const;
467
468 typedef enum
469 {
470 AVAILABLE = 0,
471 TRANSIENT_UNAVAILABLE = 1,
472 STUCK_UNAVAILABLE = 2
473
474 } availability_t;
475
476 /**
477 * Return indication of whether cluster is available. This is a
478 * heuristic for clients to see if they should bother waiting to talk to
479 * MDSs, or whether they should error out at startup/mount.
480 *
481 * A TRANSIENT_UNAVAILABLE result indicates that the cluster is in a
482 * transition state like replaying, or is potentially about the fail over.
483 * Clients should wait for an updated map before making a final decision
484 * about whether the filesystem is mountable.
485 *
486 * A STUCK_UNAVAILABLE result indicates that we can't see a way that
487 * the cluster is about to recover on its own, so it'll probably require
488 * administrator intervention: clients should probaly not bother trying
489 * to mount.
490 */
491 availability_t is_cluster_available() const;
492
493 // mds states
494 bool is_down(mds_rank_t m) const { return up.count(m) == 0; }
495 bool is_up(mds_rank_t m) const { return up.count(m); }
496 bool is_in(mds_rank_t m) const { return up.count(m) || failed.count(m); }
497 bool is_out(mds_rank_t m) const { return !is_in(m); }
498
499 bool is_failed(mds_rank_t m) const { return failed.count(m); }
500 bool is_stopped(mds_rank_t m) const { return stopped.count(m); }
501
502 bool is_dne(mds_rank_t m) const { return in.count(m) == 0; }
503 bool is_dne_gid(mds_gid_t gid) const { return mds_info.count(gid) == 0; }
504
505 /**
506 * Get MDS rank state if the rank is up, else STATE_NULL
507 */
508 DaemonState get_state(mds_rank_t m) const {
509 std::map<mds_rank_t, mds_gid_t>::const_iterator u = up.find(m);
510 if (u == up.end())
511 return STATE_NULL;
512 return get_state_gid(u->second);
513 }
514
515 /**
516 * Get MDS daemon status by GID
517 */
518 DaemonState get_state_gid(mds_gid_t gid) const {
519 std::map<mds_gid_t,mds_info_t>::const_iterator i = mds_info.find(gid);
520 if (i == mds_info.end())
521 return STATE_NULL;
522 return i->second.state;
523 }
524
525 const mds_info_t& get_info(const mds_rank_t m) const {
526 return mds_info.at(up.at(m));
527 }
528 const mds_info_t& get_info_gid(const mds_gid_t gid) const {
529 return mds_info.at(gid);
530 }
531
532 bool is_boot(mds_rank_t m) const { return get_state(m) == STATE_BOOT; }
533 bool is_creating(mds_rank_t m) const { return get_state(m) == STATE_CREATING; }
534 bool is_starting(mds_rank_t m) const { return get_state(m) == STATE_STARTING; }
535 bool is_replay(mds_rank_t m) const { return get_state(m) == STATE_REPLAY; }
536 bool is_resolve(mds_rank_t m) const { return get_state(m) == STATE_RESOLVE; }
537 bool is_reconnect(mds_rank_t m) const { return get_state(m) == STATE_RECONNECT; }
538 bool is_rejoin(mds_rank_t m) const { return get_state(m) == STATE_REJOIN; }
539 bool is_clientreplay(mds_rank_t m) const { return get_state(m) == STATE_CLIENTREPLAY; }
540 bool is_active(mds_rank_t m) const { return get_state(m) == STATE_ACTIVE; }
541 bool is_stopping(mds_rank_t m) const { return get_state(m) == STATE_STOPPING; }
542 bool is_active_or_stopping(mds_rank_t m) const {
543 return is_active(m) || is_stopping(m);
544 }
545 bool is_clientreplay_or_active_or_stopping(mds_rank_t m) const {
546 return is_clientreplay(m) || is_active(m) || is_stopping(m);
547 }
548
549 bool is_followable(mds_rank_t m) const {
550 return (is_resolve(m) ||
551 is_replay(m) ||
552 is_rejoin(m) ||
553 is_clientreplay(m) ||
554 is_active(m) ||
555 is_stopping(m));
556 }
557
558 bool is_laggy_gid(mds_gid_t gid) const {
559 if (!mds_info.count(gid))
560 return false;
561 std::map<mds_gid_t,mds_info_t>::const_iterator p = mds_info.find(gid);
562 return p->second.laggy();
563 }
564
565 // degraded = some recovery in process. fixes active membership and
566 // recovery_set.
567 bool is_degraded() const {
568 if (!failed.empty() || !damaged.empty())
569 return true;
570 for (std::map<mds_gid_t,mds_info_t>::const_iterator p = mds_info.begin();
571 p != mds_info.end();
572 ++p)
573 if (p->second.state >= STATE_REPLAY && p->second.state <= STATE_CLIENTREPLAY)
574 return true;
575 return false;
576 }
577 bool is_any_failed() const {
578 return failed.size();
579 }
580 bool is_resolving() const {
581 return
582 get_num_mds(STATE_RESOLVE) > 0 &&
583 get_num_mds(STATE_REPLAY) == 0 &&
584 failed.empty() && damaged.empty();
585 }
586 bool is_rejoining() const {
587 // nodes are rejoining cache state
588 return
589 get_num_mds(STATE_REJOIN) > 0 &&
590 get_num_mds(STATE_REPLAY) == 0 &&
591 get_num_mds(STATE_RECONNECT) == 0 &&
592 get_num_mds(STATE_RESOLVE) == 0 &&
593 failed.empty() && damaged.empty();
594 }
595 bool is_stopped() const {
596 return up.empty();
597 }
598
599 /**
600 * Get whether a rank is 'up', i.e. has
601 * an MDS daemon's entity_inst_t associated
602 * with it.
603 */
604 bool have_inst(mds_rank_t m) const {
605 return up.count(m);
606 }
607
608 /**
609 * Get the MDS daemon entity_inst_t for a rank
610 * known to be up.
611 */
612 const entity_inst_t get_inst(mds_rank_t m) {
613 assert(up.count(m));
614 return mds_info[up[m]].get_inst();
615 }
616 const entity_addr_t get_addr(mds_rank_t m) {
617 assert(up.count(m));
618 return mds_info[up[m]].addr;
619 }
620
621 /**
622 * Get the MDS daemon entity_inst_t for a rank,
623 * if it is up.
624 *
625 * @return true if the rank was up and the inst
626 * was populated, else false.
627 */
628 bool get_inst(mds_rank_t m, entity_inst_t& inst) {
629 if (up.count(m)) {
630 inst = get_inst(m);
631 return true;
632 }
633 return false;
634 }
635
636 mds_rank_t get_rank_gid(mds_gid_t gid) const {
637 if (mds_info.count(gid)) {
638 return mds_info.at(gid).rank;
639 } else {
640 return MDS_RANK_NONE;
641 }
642 }
643
644 int get_inc_gid(mds_gid_t gid) const {
645 auto mds_info_entry = mds_info.find(gid);
646 if (mds_info_entry != mds_info.end())
647 return mds_info_entry->second.inc;
648 return -1;
649 }
650 void encode(bufferlist& bl, uint64_t features) const;
651 void decode(bufferlist::iterator& p);
652 void decode(bufferlist& bl) {
653 bufferlist::iterator p = bl.begin();
654 decode(p);
655 }
656
657
658 void print(ostream& out) const;
659 void print_summary(Formatter *f, ostream *out) const;
660
661 void dump(Formatter *f) const;
662 static void generate_test_instances(list<MDSMap*>& ls);
663
664 static bool state_transition_valid(DaemonState prev, DaemonState next);
665 };
666 WRITE_CLASS_ENCODER_FEATURES(MDSMap::mds_info_t)
667 WRITE_CLASS_ENCODER_FEATURES(MDSMap)
668
669 inline ostream& operator<<(ostream &out, const MDSMap &m) {
670 m.print_summary(NULL, &out);
671 return out;
672 }
673
674 #endif