]> git.proxmox.com Git - ceph.git/blob - ceph/src/msg/async/AsyncConnection.cc
update sources to v12.1.1
[ceph.git] / ceph / src / msg / async / AsyncConnection.cc
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3 /*
4 * Ceph - scalable distributed file system
5 *
6 * Copyright (C) 2014 UnitedStack <haomai@unitedstack.com>
7 *
8 * Author: Haomai Wang <haomaiwang@gmail.com>
9 *
10 * This is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License version 2.1, as published by the Free Software
13 * Foundation. See file COPYING.
14 *
15 */
16
17 #include <unistd.h>
18
19 #include "include/Context.h"
20 #include "common/errno.h"
21 #include "AsyncMessenger.h"
22 #include "AsyncConnection.h"
23
24 #include "messages/MOSDOp.h"
25 #include "messages/MOSDOpReply.h"
26 #include "common/EventTrace.h"
27
28 // Constant to limit starting sequence number to 2^31. Nothing special about it, just a big number. PLR
29 #define SEQ_MASK 0x7fffffff
30
31 #define dout_subsys ceph_subsys_ms
32 #undef dout_prefix
33 #define dout_prefix _conn_prefix(_dout)
34 ostream& AsyncConnection::_conn_prefix(std::ostream *_dout) {
35 return *_dout << "-- " << async_msgr->get_myinst().addr << " >> " << peer_addr << " conn(" << this
36 << " :" << port
37 << " s=" << get_state_name(state)
38 << " pgs=" << peer_global_seq
39 << " cs=" << connect_seq
40 << " l=" << policy.lossy
41 << ").";
42 }
43
44 // Notes:
45 // 1. Don't dispatch any event when closed! It may cause AsyncConnection alive even if AsyncMessenger dead
46
47 const int AsyncConnection::TCP_PREFETCH_MIN_SIZE = 512;
48 const int ASYNC_COALESCE_THRESHOLD = 256;
49
50 class C_time_wakeup : public EventCallback {
51 AsyncConnectionRef conn;
52
53 public:
54 explicit C_time_wakeup(AsyncConnectionRef c): conn(c) {}
55 void do_request(int fd_or_id) override {
56 conn->wakeup_from(fd_or_id);
57 }
58 };
59
60 class C_handle_read : public EventCallback {
61 AsyncConnectionRef conn;
62
63 public:
64 explicit C_handle_read(AsyncConnectionRef c): conn(c) {}
65 void do_request(int fd_or_id) override {
66 conn->process();
67 }
68 };
69
70 class C_handle_write : public EventCallback {
71 AsyncConnectionRef conn;
72
73 public:
74 explicit C_handle_write(AsyncConnectionRef c): conn(c) {}
75 void do_request(int fd) override {
76 conn->handle_write();
77 }
78 };
79
80 class C_clean_handler : public EventCallback {
81 AsyncConnectionRef conn;
82 public:
83 explicit C_clean_handler(AsyncConnectionRef c): conn(c) {}
84 void do_request(int id) override {
85 conn->cleanup();
86 delete this;
87 }
88 };
89
90 class C_tick_wakeup : public EventCallback {
91 AsyncConnectionRef conn;
92
93 public:
94 explicit C_tick_wakeup(AsyncConnectionRef c): conn(c) {}
95 void do_request(int fd_or_id) override {
96 conn->tick(fd_or_id);
97 }
98 };
99
100 static void alloc_aligned_buffer(bufferlist& data, unsigned len, unsigned off)
101 {
102 // create a buffer to read into that matches the data alignment
103 unsigned left = len;
104 if (off & ~CEPH_PAGE_MASK) {
105 // head
106 unsigned head = 0;
107 head = MIN(CEPH_PAGE_SIZE - (off & ~CEPH_PAGE_MASK), left);
108 data.push_back(buffer::create(head));
109 left -= head;
110 }
111 unsigned middle = left & CEPH_PAGE_MASK;
112 if (middle > 0) {
113 data.push_back(buffer::create_page_aligned(middle));
114 left -= middle;
115 }
116 if (left) {
117 data.push_back(buffer::create(left));
118 }
119 }
120
121 AsyncConnection::AsyncConnection(CephContext *cct, AsyncMessenger *m, DispatchQueue *q,
122 Worker *w)
123 : Connection(cct, m), delay_state(NULL), async_msgr(m), conn_id(q->get_id()),
124 logger(w->get_perf_counter()), global_seq(0), connect_seq(0), peer_global_seq(0),
125 state(STATE_NONE), state_after_send(STATE_NONE), port(-1),
126 dispatch_queue(q), can_write(WriteStatus::NOWRITE),
127 keepalive(false), recv_buf(NULL),
128 recv_max_prefetch(MAX(msgr->cct->_conf->ms_tcp_prefetch_max_size, TCP_PREFETCH_MIN_SIZE)),
129 recv_start(0), recv_end(0),
130 last_active(ceph::coarse_mono_clock::now()),
131 inactive_timeout_us(cct->_conf->ms_tcp_read_timeout*1000*1000),
132 got_bad_auth(false), authorizer(NULL), replacing(false),
133 is_reset_from_peer(false), once_ready(false), state_buffer(NULL), state_offset(0),
134 worker(w), center(&w->center)
135 {
136 read_handler = new C_handle_read(this);
137 write_handler = new C_handle_write(this);
138 wakeup_handler = new C_time_wakeup(this);
139 tick_handler = new C_tick_wakeup(this);
140 memset(msgvec, 0, sizeof(msgvec));
141 // double recv_max_prefetch see "read_until"
142 recv_buf = new char[2*recv_max_prefetch];
143 state_buffer = new char[4096];
144 logger->inc(l_msgr_created_connections);
145 }
146
147 AsyncConnection::~AsyncConnection()
148 {
149 assert(out_q.empty());
150 assert(sent.empty());
151 delete authorizer;
152 if (recv_buf)
153 delete[] recv_buf;
154 if (state_buffer)
155 delete[] state_buffer;
156 assert(!delay_state);
157 }
158
159 void AsyncConnection::maybe_start_delay_thread()
160 {
161 if (!delay_state) {
162 auto pos = async_msgr->cct->_conf->get_val<std::string>("ms_inject_delay_type").find(ceph_entity_type_name(peer_type));
163 if (pos != string::npos) {
164 ldout(msgr->cct, 1) << __func__ << " setting up a delay queue" << dendl;
165 delay_state = new DelayedDelivery(async_msgr, center, dispatch_queue, conn_id);
166 }
167 }
168 }
169
170 /* return -1 means `fd` occurs error or closed, it should be closed
171 * return 0 means EAGAIN or EINTR */
172 ssize_t AsyncConnection::read_bulk(char *buf, unsigned len)
173 {
174 ssize_t nread;
175 again:
176 nread = cs.read(buf, len);
177 if (nread < 0) {
178 if (nread == -EAGAIN) {
179 nread = 0;
180 } else if (nread == -EINTR) {
181 goto again;
182 } else {
183 ldout(async_msgr->cct, 1) << __func__ << " reading from fd=" << cs.fd()
184 << " : "<< strerror(nread) << dendl;
185 return -1;
186 }
187 } else if (nread == 0) {
188 ldout(async_msgr->cct, 1) << __func__ << " peer close file descriptor "
189 << cs.fd() << dendl;
190 return -1;
191 }
192 return nread;
193 }
194
195 // return the remaining bytes, it may larger than the length of ptr
196 // else return < 0 means error
197 ssize_t AsyncConnection::_try_send(bool more)
198 {
199 if (async_msgr->cct->_conf->ms_inject_socket_failures && cs) {
200 if (rand() % async_msgr->cct->_conf->ms_inject_socket_failures == 0) {
201 ldout(async_msgr->cct, 0) << __func__ << " injecting socket failure" << dendl;
202 cs.shutdown();
203 }
204 }
205
206 assert(center->in_thread());
207 ssize_t r = cs.send(outcoming_bl, more);
208 if (r < 0) {
209 ldout(async_msgr->cct, 1) << __func__ << " send error: " << cpp_strerror(r) << dendl;
210 return r;
211 }
212
213 ldout(async_msgr->cct, 10) << __func__ << " sent bytes " << r
214 << " remaining bytes " << outcoming_bl.length() << dendl;
215
216 if (!open_write && is_queued()) {
217 center->create_file_event(cs.fd(), EVENT_WRITABLE, write_handler);
218 open_write = true;
219 }
220
221 if (open_write && !is_queued()) {
222 center->delete_file_event(cs.fd(), EVENT_WRITABLE);
223 open_write = false;
224 if (state_after_send != STATE_NONE)
225 center->dispatch_event_external(read_handler);
226 }
227
228 return outcoming_bl.length();
229 }
230
231 // Because this func will be called multi times to populate
232 // the needed buffer, so the passed in bufferptr must be the same.
233 // Normally, only "read_message" will pass existing bufferptr in
234 //
235 // And it will uses readahead method to reduce small read overhead,
236 // "recv_buf" is used to store read buffer
237 //
238 // return the remaining bytes, 0 means this buffer is finished
239 // else return < 0 means error
240 ssize_t AsyncConnection::read_until(unsigned len, char *p)
241 {
242 ldout(async_msgr->cct, 25) << __func__ << " len is " << len << " state_offset is "
243 << state_offset << dendl;
244
245 if (async_msgr->cct->_conf->ms_inject_socket_failures && cs) {
246 if (rand() % async_msgr->cct->_conf->ms_inject_socket_failures == 0) {
247 ldout(async_msgr->cct, 0) << __func__ << " injecting socket failure" << dendl;
248 cs.shutdown();
249 }
250 }
251
252 ssize_t r = 0;
253 uint64_t left = len - state_offset;
254 if (recv_end > recv_start) {
255 uint64_t to_read = MIN(recv_end - recv_start, left);
256 memcpy(p, recv_buf+recv_start, to_read);
257 recv_start += to_read;
258 left -= to_read;
259 ldout(async_msgr->cct, 25) << __func__ << " got " << to_read << " in buffer "
260 << " left is " << left << " buffer still has "
261 << recv_end - recv_start << dendl;
262 if (left == 0) {
263 return 0;
264 }
265 state_offset += to_read;
266 }
267
268 recv_end = recv_start = 0;
269 /* nothing left in the prefetch buffer */
270 if (len > recv_max_prefetch) {
271 /* this was a large read, we don't prefetch for these */
272 do {
273 r = read_bulk(p+state_offset, left);
274 ldout(async_msgr->cct, 25) << __func__ << " read_bulk left is " << left << " got " << r << dendl;
275 if (r < 0) {
276 ldout(async_msgr->cct, 1) << __func__ << " read failed" << dendl;
277 return -1;
278 } else if (r == static_cast<int>(left)) {
279 state_offset = 0;
280 return 0;
281 }
282 state_offset += r;
283 left -= r;
284 } while (r > 0);
285 } else {
286 do {
287 r = read_bulk(recv_buf+recv_end, recv_max_prefetch);
288 ldout(async_msgr->cct, 25) << __func__ << " read_bulk recv_end is " << recv_end
289 << " left is " << left << " got " << r << dendl;
290 if (r < 0) {
291 ldout(async_msgr->cct, 1) << __func__ << " read failed" << dendl;
292 return -1;
293 }
294 recv_end += r;
295 if (r >= static_cast<int>(left)) {
296 recv_start = len - state_offset;
297 memcpy(p+state_offset, recv_buf, recv_start);
298 state_offset = 0;
299 return 0;
300 }
301 left -= r;
302 } while (r > 0);
303 memcpy(p+state_offset, recv_buf, recv_end-recv_start);
304 state_offset += (recv_end - recv_start);
305 recv_end = recv_start = 0;
306 }
307 ldout(async_msgr->cct, 25) << __func__ << " need len " << len << " remaining "
308 << len - state_offset << " bytes" << dendl;
309 return len - state_offset;
310 }
311
312 void AsyncConnection::inject_delay() {
313 if (async_msgr->cct->_conf->ms_inject_internal_delays) {
314 ldout(async_msgr->cct, 10) << __func__ << " sleep for " <<
315 async_msgr->cct->_conf->ms_inject_internal_delays << dendl;
316 utime_t t;
317 t.set_from_double(async_msgr->cct->_conf->ms_inject_internal_delays);
318 t.sleep();
319 }
320 }
321
322 void AsyncConnection::process()
323 {
324 ssize_t r = 0;
325 int prev_state = state;
326 #if defined(WITH_LTTNG) && defined(WITH_EVENTTRACE)
327 utime_t ltt_recv_stamp = ceph_clock_now();
328 #endif
329 bool need_dispatch_writer = false;
330 std::lock_guard<std::mutex> l(lock);
331 last_active = ceph::coarse_mono_clock::now();
332 auto recv_start_time = ceph::mono_clock::now();
333 do {
334 ldout(async_msgr->cct, 20) << __func__ << " prev state is " << get_state_name(prev_state) << dendl;
335 prev_state = state;
336 switch (state) {
337 case STATE_OPEN:
338 {
339 char tag = -1;
340 r = read_until(sizeof(tag), &tag);
341 if (r < 0) {
342 ldout(async_msgr->cct, 1) << __func__ << " read tag failed" << dendl;
343 goto fail;
344 } else if (r > 0) {
345 break;
346 }
347
348 if (tag == CEPH_MSGR_TAG_KEEPALIVE) {
349 ldout(async_msgr->cct, 20) << __func__ << " got KEEPALIVE" << dendl;
350 set_last_keepalive(ceph_clock_now());
351 } else if (tag == CEPH_MSGR_TAG_KEEPALIVE2) {
352 state = STATE_OPEN_KEEPALIVE2;
353 } else if (tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
354 state = STATE_OPEN_KEEPALIVE2_ACK;
355 } else if (tag == CEPH_MSGR_TAG_ACK) {
356 state = STATE_OPEN_TAG_ACK;
357 } else if (tag == CEPH_MSGR_TAG_MSG) {
358 state = STATE_OPEN_MESSAGE_HEADER;
359 } else if (tag == CEPH_MSGR_TAG_CLOSE) {
360 state = STATE_OPEN_TAG_CLOSE;
361 } else {
362 ldout(async_msgr->cct, 0) << __func__ << " bad tag " << (int)tag << dendl;
363 goto fail;
364 }
365
366 break;
367 }
368
369 case STATE_OPEN_KEEPALIVE2:
370 {
371 ceph_timespec *t;
372 r = read_until(sizeof(*t), state_buffer);
373 if (r < 0) {
374 ldout(async_msgr->cct, 1) << __func__ << " read keeplive timespec failed" << dendl;
375 goto fail;
376 } else if (r > 0) {
377 break;
378 }
379
380 ldout(async_msgr->cct, 30) << __func__ << " got KEEPALIVE2 tag ..." << dendl;
381 t = (ceph_timespec*)state_buffer;
382 utime_t kp_t = utime_t(*t);
383 write_lock.lock();
384 _append_keepalive_or_ack(true, &kp_t);
385 write_lock.unlock();
386 ldout(async_msgr->cct, 20) << __func__ << " got KEEPALIVE2 " << kp_t << dendl;
387 set_last_keepalive(ceph_clock_now());
388 need_dispatch_writer = true;
389 state = STATE_OPEN;
390 break;
391 }
392
393 case STATE_OPEN_KEEPALIVE2_ACK:
394 {
395 ceph_timespec *t;
396 r = read_until(sizeof(*t), state_buffer);
397 if (r < 0) {
398 ldout(async_msgr->cct, 1) << __func__ << " read keeplive timespec failed" << dendl;
399 goto fail;
400 } else if (r > 0) {
401 break;
402 }
403
404 t = (ceph_timespec*)state_buffer;
405 set_last_keepalive_ack(utime_t(*t));
406 ldout(async_msgr->cct, 20) << __func__ << " got KEEPALIVE_ACK" << dendl;
407 state = STATE_OPEN;
408 break;
409 }
410
411 case STATE_OPEN_TAG_ACK:
412 {
413 ceph_le64 *seq;
414 r = read_until(sizeof(*seq), state_buffer);
415 if (r < 0) {
416 ldout(async_msgr->cct, 1) << __func__ << " read ack seq failed" << dendl;
417 goto fail;
418 } else if (r > 0) {
419 break;
420 }
421
422 seq = (ceph_le64*)state_buffer;
423 ldout(async_msgr->cct, 20) << __func__ << " got ACK" << dendl;
424 handle_ack(*seq);
425 state = STATE_OPEN;
426 break;
427 }
428
429 case STATE_OPEN_MESSAGE_HEADER:
430 {
431 #if defined(WITH_LTTNG) && defined(WITH_EVENTTRACE)
432 ltt_recv_stamp = ceph_clock_now();
433 #endif
434 recv_stamp = ceph_clock_now();
435 ldout(async_msgr->cct, 20) << __func__ << " begin MSG" << dendl;
436 ceph_msg_header header;
437 ceph_msg_header_old oldheader;
438 __u32 header_crc = 0;
439 unsigned len;
440 if (has_feature(CEPH_FEATURE_NOSRCADDR))
441 len = sizeof(header);
442 else
443 len = sizeof(oldheader);
444
445 r = read_until(len, state_buffer);
446 if (r < 0) {
447 ldout(async_msgr->cct, 1) << __func__ << " read message header failed" << dendl;
448 goto fail;
449 } else if (r > 0) {
450 break;
451 }
452
453 ldout(async_msgr->cct, 20) << __func__ << " got MSG header" << dendl;
454
455 if (has_feature(CEPH_FEATURE_NOSRCADDR)) {
456 header = *((ceph_msg_header*)state_buffer);
457 if (msgr->crcflags & MSG_CRC_HEADER)
458 header_crc = ceph_crc32c(0, (unsigned char *)&header,
459 sizeof(header) - sizeof(header.crc));
460 } else {
461 oldheader = *((ceph_msg_header_old*)state_buffer);
462 // this is fugly
463 memcpy(&header, &oldheader, sizeof(header));
464 header.src = oldheader.src.name;
465 header.reserved = oldheader.reserved;
466 if (msgr->crcflags & MSG_CRC_HEADER) {
467 header.crc = oldheader.crc;
468 header_crc = ceph_crc32c(0, (unsigned char *)&oldheader, sizeof(oldheader) - sizeof(oldheader.crc));
469 }
470 }
471
472 ldout(async_msgr->cct, 20) << __func__ << " got envelope type=" << header.type
473 << " src " << entity_name_t(header.src)
474 << " front=" << header.front_len
475 << " data=" << header.data_len
476 << " off " << header.data_off << dendl;
477
478 // verify header crc
479 if (msgr->crcflags & MSG_CRC_HEADER && header_crc != header.crc) {
480 ldout(async_msgr->cct,0) << __func__ << " got bad header crc "
481 << header_crc << " != " << header.crc << dendl;
482 goto fail;
483 }
484
485 // Reset state
486 data_buf.clear();
487 front.clear();
488 middle.clear();
489 data.clear();
490 current_header = header;
491 state = STATE_OPEN_MESSAGE_THROTTLE_MESSAGE;
492 break;
493 }
494
495 case STATE_OPEN_MESSAGE_THROTTLE_MESSAGE:
496 {
497 if (policy.throttler_messages) {
498 ldout(async_msgr->cct, 10) << __func__ << " wants " << 1 << " message from policy throttler "
499 << policy.throttler_messages->get_current() << "/"
500 << policy.throttler_messages->get_max() << dendl;
501 if (!policy.throttler_messages->get_or_fail()) {
502 ldout(async_msgr->cct, 10) << __func__ << " wants 1 message from policy throttle "
503 << policy.throttler_messages->get_current() << "/"
504 << policy.throttler_messages->get_max() << " failed, just wait." << dendl;
505 // following thread pool deal with th full message queue isn't a
506 // short time, so we can wait a ms.
507 if (register_time_events.empty())
508 register_time_events.insert(center->create_time_event(1000, wakeup_handler));
509 break;
510 }
511 }
512
513 state = STATE_OPEN_MESSAGE_THROTTLE_BYTES;
514 break;
515 }
516
517 case STATE_OPEN_MESSAGE_THROTTLE_BYTES:
518 {
519 cur_msg_size = current_header.front_len + current_header.middle_len + current_header.data_len;
520 if (cur_msg_size) {
521 if (policy.throttler_bytes) {
522 ldout(async_msgr->cct, 10) << __func__ << " wants " << cur_msg_size << " bytes from policy throttler "
523 << policy.throttler_bytes->get_current() << "/"
524 << policy.throttler_bytes->get_max() << dendl;
525 if (!policy.throttler_bytes->get_or_fail(cur_msg_size)) {
526 ldout(async_msgr->cct, 10) << __func__ << " wants " << cur_msg_size << " bytes from policy throttler "
527 << policy.throttler_bytes->get_current() << "/"
528 << policy.throttler_bytes->get_max() << " failed, just wait." << dendl;
529 // following thread pool deal with th full message queue isn't a
530 // short time, so we can wait a ms.
531 if (register_time_events.empty())
532 register_time_events.insert(center->create_time_event(1000, wakeup_handler));
533 break;
534 }
535 }
536 }
537
538 state = STATE_OPEN_MESSAGE_THROTTLE_DISPATCH_QUEUE;
539 break;
540 }
541
542 case STATE_OPEN_MESSAGE_THROTTLE_DISPATCH_QUEUE:
543 {
544 if (cur_msg_size) {
545 if (!dispatch_queue->dispatch_throttler.get_or_fail(cur_msg_size)) {
546 ldout(async_msgr->cct, 10) << __func__ << " wants " << cur_msg_size << " bytes from dispatch throttle "
547 << dispatch_queue->dispatch_throttler.get_current() << "/"
548 << dispatch_queue->dispatch_throttler.get_max() << " failed, just wait." << dendl;
549 // following thread pool deal with th full message queue isn't a
550 // short time, so we can wait a ms.
551 if (register_time_events.empty())
552 register_time_events.insert(center->create_time_event(1000, wakeup_handler));
553 break;
554 }
555 }
556
557 throttle_stamp = ceph_clock_now();
558 state = STATE_OPEN_MESSAGE_READ_FRONT;
559 break;
560 }
561
562 case STATE_OPEN_MESSAGE_READ_FRONT:
563 {
564 // read front
565 unsigned front_len = current_header.front_len;
566 if (front_len) {
567 if (!front.length())
568 front.push_back(buffer::create(front_len));
569
570 r = read_until(front_len, front.c_str());
571 if (r < 0) {
572 ldout(async_msgr->cct, 1) << __func__ << " read message front failed" << dendl;
573 goto fail;
574 } else if (r > 0) {
575 break;
576 }
577
578 ldout(async_msgr->cct, 20) << __func__ << " got front " << front.length() << dendl;
579 }
580 state = STATE_OPEN_MESSAGE_READ_MIDDLE;
581 }
582
583 case STATE_OPEN_MESSAGE_READ_MIDDLE:
584 {
585 // read middle
586 unsigned middle_len = current_header.middle_len;
587 if (middle_len) {
588 if (!middle.length())
589 middle.push_back(buffer::create(middle_len));
590
591 r = read_until(middle_len, middle.c_str());
592 if (r < 0) {
593 ldout(async_msgr->cct, 1) << __func__ << " read message middle failed" << dendl;
594 goto fail;
595 } else if (r > 0) {
596 break;
597 }
598 ldout(async_msgr->cct, 20) << __func__ << " got middle " << middle.length() << dendl;
599 }
600
601 state = STATE_OPEN_MESSAGE_READ_DATA_PREPARE;
602 }
603
604 case STATE_OPEN_MESSAGE_READ_DATA_PREPARE:
605 {
606 // read data
607 unsigned data_len = le32_to_cpu(current_header.data_len);
608 unsigned data_off = le32_to_cpu(current_header.data_off);
609 if (data_len) {
610 // get a buffer
611 map<ceph_tid_t,pair<bufferlist,int> >::iterator p = rx_buffers.find(current_header.tid);
612 if (p != rx_buffers.end()) {
613 ldout(async_msgr->cct,10) << __func__ << " seleting rx buffer v " << p->second.second
614 << " at offset " << data_off
615 << " len " << p->second.first.length() << dendl;
616 data_buf = p->second.first;
617 // make sure it's big enough
618 if (data_buf.length() < data_len)
619 data_buf.push_back(buffer::create(data_len - data_buf.length()));
620 data_blp = data_buf.begin();
621 } else {
622 ldout(async_msgr->cct,20) << __func__ << " allocating new rx buffer at offset " << data_off << dendl;
623 alloc_aligned_buffer(data_buf, data_len, data_off);
624 data_blp = data_buf.begin();
625 }
626 }
627
628 msg_left = data_len;
629 state = STATE_OPEN_MESSAGE_READ_DATA;
630 }
631
632 case STATE_OPEN_MESSAGE_READ_DATA:
633 {
634 while (msg_left > 0) {
635 bufferptr bp = data_blp.get_current_ptr();
636 unsigned read = MIN(bp.length(), msg_left);
637 r = read_until(read, bp.c_str());
638 if (r < 0) {
639 ldout(async_msgr->cct, 1) << __func__ << " read data error " << dendl;
640 goto fail;
641 } else if (r > 0) {
642 break;
643 }
644
645 data_blp.advance(read);
646 data.append(bp, 0, read);
647 msg_left -= read;
648 }
649
650 if (msg_left > 0)
651 break;
652
653 state = STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH;
654 }
655
656 case STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH:
657 {
658 ceph_msg_footer footer;
659 ceph_msg_footer_old old_footer;
660 unsigned len;
661 // footer
662 if (has_feature(CEPH_FEATURE_MSG_AUTH))
663 len = sizeof(footer);
664 else
665 len = sizeof(old_footer);
666
667 r = read_until(len, state_buffer);
668 if (r < 0) {
669 ldout(async_msgr->cct, 1) << __func__ << " read footer data error " << dendl;
670 goto fail;
671 } else if (r > 0) {
672 break;
673 }
674
675 if (has_feature(CEPH_FEATURE_MSG_AUTH)) {
676 footer = *((ceph_msg_footer*)state_buffer);
677 } else {
678 old_footer = *((ceph_msg_footer_old*)state_buffer);
679 footer.front_crc = old_footer.front_crc;
680 footer.middle_crc = old_footer.middle_crc;
681 footer.data_crc = old_footer.data_crc;
682 footer.sig = 0;
683 footer.flags = old_footer.flags;
684 }
685 int aborted = (footer.flags & CEPH_MSG_FOOTER_COMPLETE) == 0;
686 ldout(async_msgr->cct, 10) << __func__ << " aborted = " << aborted << dendl;
687 if (aborted) {
688 ldout(async_msgr->cct, 0) << __func__ << " got " << front.length() << " + " << middle.length() << " + " << data.length()
689 << " byte message.. ABORTED" << dendl;
690 goto fail;
691 }
692
693 ldout(async_msgr->cct, 20) << __func__ << " got " << front.length() << " + " << middle.length()
694 << " + " << data.length() << " byte message" << dendl;
695 Message *message = decode_message(async_msgr->cct, async_msgr->crcflags, current_header, footer,
696 front, middle, data, this);
697 if (!message) {
698 ldout(async_msgr->cct, 1) << __func__ << " decode message failed " << dendl;
699 goto fail;
700 }
701
702 //
703 // Check the signature if one should be present. A zero return indicates success. PLR
704 //
705
706 if (session_security.get() == NULL) {
707 ldout(async_msgr->cct, 10) << __func__ << " no session security set" << dendl;
708 } else {
709 if (session_security->check_message_signature(message)) {
710 ldout(async_msgr->cct, 0) << __func__ << " Signature check failed" << dendl;
711 message->put();
712 goto fail;
713 }
714 }
715 message->set_byte_throttler(policy.throttler_bytes);
716 message->set_message_throttler(policy.throttler_messages);
717
718 // store reservation size in message, so we don't get confused
719 // by messages entering the dispatch queue through other paths.
720 message->set_dispatch_throttle_size(cur_msg_size);
721
722 message->set_recv_stamp(recv_stamp);
723 message->set_throttle_stamp(throttle_stamp);
724 message->set_recv_complete_stamp(ceph_clock_now());
725
726 // check received seq#. if it is old, drop the message.
727 // note that incoming messages may skip ahead. this is convenient for the client
728 // side queueing because messages can't be renumbered, but the (kernel) client will
729 // occasionally pull a message out of the sent queue to send elsewhere. in that case
730 // it doesn't matter if we "got" it or not.
731 uint64_t cur_seq = in_seq;
732 if (message->get_seq() <= cur_seq) {
733 ldout(async_msgr->cct,0) << __func__ << " got old message "
734 << message->get_seq() << " <= " << cur_seq << " " << message << " " << *message
735 << ", discarding" << dendl;
736 message->put();
737 if (has_feature(CEPH_FEATURE_RECONNECT_SEQ) && async_msgr->cct->_conf->ms_die_on_old_message)
738 assert(0 == "old msgs despite reconnect_seq feature");
739 break;
740 }
741 if (message->get_seq() > cur_seq + 1) {
742 ldout(async_msgr->cct, 0) << __func__ << " missed message? skipped from seq "
743 << cur_seq << " to " << message->get_seq() << dendl;
744 if (async_msgr->cct->_conf->ms_die_on_skipped_message)
745 assert(0 == "skipped incoming seq");
746 }
747
748 message->set_connection(this);
749
750 #if defined(WITH_LTTNG) && defined(WITH_EVENTTRACE)
751 if (message->get_type() == CEPH_MSG_OSD_OP || message->get_type() == CEPH_MSG_OSD_OPREPLY) {
752 utime_t ltt_processed_stamp = ceph_clock_now();
753 double usecs_elapsed = (ltt_processed_stamp.to_nsec()-ltt_recv_stamp.to_nsec())/1000;
754 ostringstream buf;
755 if (message->get_type() == CEPH_MSG_OSD_OP)
756 OID_ELAPSED_WITH_MSG(message, usecs_elapsed, "TIME_TO_DECODE_OSD_OP", false);
757 else
758 OID_ELAPSED_WITH_MSG(message, usecs_elapsed, "TIME_TO_DECODE_OSD_OPREPLY", false);
759 }
760 #endif
761
762 // note last received message.
763 in_seq = message->get_seq();
764 ldout(async_msgr->cct, 5) << " rx " << message->get_source() << " seq "
765 << message->get_seq() << " " << message
766 << " " << *message << dendl;
767
768 if (!policy.lossy) {
769 ack_left++;
770 need_dispatch_writer = true;
771 }
772 state = STATE_OPEN;
773
774 logger->inc(l_msgr_recv_messages);
775 logger->inc(l_msgr_recv_bytes, cur_msg_size + sizeof(ceph_msg_header) + sizeof(ceph_msg_footer));
776
777 async_msgr->ms_fast_preprocess(message);
778 auto fast_dispatch_time = ceph::mono_clock::now();
779 logger->tinc(l_msgr_running_recv_time, fast_dispatch_time - recv_start_time);
780 if (delay_state) {
781 utime_t release = message->get_recv_stamp();
782 double delay_period = 0;
783 if (rand() % 10000 < async_msgr->cct->_conf->ms_inject_delay_probability * 10000.0) {
784 delay_period = async_msgr->cct->_conf->ms_inject_delay_max * (double)(rand() % 10000) / 10000.0;
785 release += delay_period;
786 ldout(async_msgr->cct, 1) << "queue_received will delay until " << release << " on "
787 << message << " " << *message << dendl;
788 }
789 delay_state->queue(delay_period, release, message);
790 } else if (async_msgr->ms_can_fast_dispatch(message)) {
791 lock.unlock();
792 dispatch_queue->fast_dispatch(message);
793 recv_start_time = ceph::mono_clock::now();
794 logger->tinc(l_msgr_running_fast_dispatch_time,
795 recv_start_time - fast_dispatch_time);
796 lock.lock();
797 } else {
798 dispatch_queue->enqueue(message, message->get_priority(), conn_id);
799 }
800
801 break;
802 }
803
804 case STATE_OPEN_TAG_CLOSE:
805 {
806 ldout(async_msgr->cct, 20) << __func__ << " got CLOSE" << dendl;
807 _stop();
808 return ;
809 }
810
811 case STATE_STANDBY:
812 {
813 ldout(async_msgr->cct, 20) << __func__ << " enter STANDY" << dendl;
814
815 break;
816 }
817
818 case STATE_NONE:
819 {
820 ldout(async_msgr->cct, 20) << __func__ << " enter none state" << dendl;
821 break;
822 }
823
824 case STATE_CLOSED:
825 {
826 ldout(async_msgr->cct, 20) << __func__ << " socket closed" << dendl;
827 break;
828 }
829
830 case STATE_WAIT:
831 {
832 ldout(async_msgr->cct, 1) << __func__ << " enter wait state, failing" << dendl;
833 goto fail;
834 }
835
836 default:
837 {
838 if (_process_connection() < 0)
839 goto fail;
840 break;
841 }
842 }
843 } while (prev_state != state);
844
845 if (need_dispatch_writer && is_connected())
846 center->dispatch_event_external(write_handler);
847
848 logger->tinc(l_msgr_running_recv_time, ceph::mono_clock::now() - recv_start_time);
849 return;
850
851 fail:
852 fault();
853 }
854
855 ssize_t AsyncConnection::_process_connection()
856 {
857 ssize_t r = 0;
858
859 switch(state) {
860 case STATE_WAIT_SEND:
861 {
862 std::lock_guard<std::mutex> l(write_lock);
863 if (!outcoming_bl.length()) {
864 assert(state_after_send);
865 state = state_after_send;
866 state_after_send = STATE_NONE;
867 }
868 break;
869 }
870
871 case STATE_CONNECTING:
872 {
873 assert(!policy.server);
874
875 // reset connect state variables
876 got_bad_auth = false;
877 delete authorizer;
878 authorizer = NULL;
879 authorizer_buf.clear();
880 memset(&connect_msg, 0, sizeof(connect_msg));
881 memset(&connect_reply, 0, sizeof(connect_reply));
882
883 global_seq = async_msgr->get_global_seq();
884 // close old socket. this is safe because we stopped the reader thread above.
885 if (cs) {
886 center->delete_file_event(cs.fd(), EVENT_READABLE|EVENT_WRITABLE);
887 cs.close();
888 }
889
890 SocketOptions opts;
891 opts.priority = async_msgr->get_socket_priority();
892 opts.connect_bind_addr = msgr->get_myaddr();
893 r = worker->connect(get_peer_addr(), opts, &cs);
894 if (r < 0)
895 goto fail;
896
897 center->create_file_event(cs.fd(), EVENT_READABLE, read_handler);
898 state = STATE_CONNECTING_RE;
899 break;
900 }
901
902 case STATE_CONNECTING_RE:
903 {
904 r = cs.is_connected();
905 if (r < 0) {
906 ldout(async_msgr->cct, 1) << __func__ << " reconnect failed " << dendl;
907 if (r == -ECONNREFUSED) {
908 ldout(async_msgr->cct, 2) << __func__ << " connection refused!" << dendl;
909 dispatch_queue->queue_refused(this);
910 }
911 goto fail;
912 } else if (r == 0) {
913 ldout(async_msgr->cct, 10) << __func__ << " nonblock connect inprogress" << dendl;
914 if (async_msgr->get_stack()->nonblock_connect_need_writable_event())
915 center->create_file_event(cs.fd(), EVENT_WRITABLE, read_handler);
916 break;
917 }
918
919 center->delete_file_event(cs.fd(), EVENT_WRITABLE);
920 ldout(async_msgr->cct, 10) << __func__ << " connect successfully, ready to send banner" << dendl;
921
922 bufferlist bl;
923 bl.append(CEPH_BANNER, strlen(CEPH_BANNER));
924 r = try_send(bl);
925 if (r == 0) {
926 state = STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY;
927 ldout(async_msgr->cct, 10) << __func__ << " connect write banner done: "
928 << get_peer_addr() << dendl;
929 } else if (r > 0) {
930 state = STATE_WAIT_SEND;
931 state_after_send = STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY;
932 ldout(async_msgr->cct, 10) << __func__ << " connect wait for write banner: "
933 << get_peer_addr() << dendl;
934 } else {
935 goto fail;
936 }
937
938 break;
939 }
940
941 case STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY:
942 {
943 entity_addr_t paddr, peer_addr_for_me;
944 bufferlist myaddrbl;
945 unsigned banner_len = strlen(CEPH_BANNER);
946 unsigned need_len = banner_len + sizeof(ceph_entity_addr)*2;
947 r = read_until(need_len, state_buffer);
948 if (r < 0) {
949 ldout(async_msgr->cct, 1) << __func__ << " read banner and identify addresses failed" << dendl;
950 goto fail;
951 } else if (r > 0) {
952 break;
953 }
954
955 if (memcmp(state_buffer, CEPH_BANNER, banner_len)) {
956 ldout(async_msgr->cct, 0) << __func__ << " connect protocol error (bad banner) on peer "
957 << get_peer_addr() << dendl;
958 goto fail;
959 }
960
961 bufferlist bl;
962 bl.append(state_buffer+banner_len, sizeof(ceph_entity_addr)*2);
963 bufferlist::iterator p = bl.begin();
964 try {
965 ::decode(paddr, p);
966 ::decode(peer_addr_for_me, p);
967 } catch (const buffer::error& e) {
968 lderr(async_msgr->cct) << __func__ << " decode peer addr failed " << dendl;
969 goto fail;
970 }
971 ldout(async_msgr->cct, 20) << __func__ << " connect read peer addr "
972 << paddr << " on socket " << cs.fd() << dendl;
973 if (peer_addr != paddr) {
974 if (paddr.is_blank_ip() && peer_addr.get_port() == paddr.get_port() &&
975 peer_addr.get_nonce() == paddr.get_nonce()) {
976 ldout(async_msgr->cct, 0) << __func__ << " connect claims to be " << paddr
977 << " not " << peer_addr
978 << " - presumably this is the same node!" << dendl;
979 } else {
980 ldout(async_msgr->cct, 10) << __func__ << " connect claims to be "
981 << paddr << " not " << peer_addr
982 << " (peer is possibly using public_bind_addr?) " << dendl;
983 }
984 }
985
986 ldout(async_msgr->cct, 20) << __func__ << " connect peer addr for me is " << peer_addr_for_me << dendl;
987 lock.unlock();
988 async_msgr->learned_addr(peer_addr_for_me);
989 if (async_msgr->cct->_conf->ms_inject_internal_delays) {
990 if (rand() % async_msgr->cct->_conf->ms_inject_socket_failures == 0) {
991 ldout(msgr->cct, 10) << __func__ << " sleep for "
992 << async_msgr->cct->_conf->ms_inject_internal_delays << dendl;
993 utime_t t;
994 t.set_from_double(async_msgr->cct->_conf->ms_inject_internal_delays);
995 t.sleep();
996 }
997 }
998
999 lock.lock();
1000 if (state != STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY) {
1001 ldout(async_msgr->cct, 1) << __func__ << " state changed while learned_addr, mark_down or "
1002 << " replacing must be happened just now" << dendl;
1003 return 0;
1004 }
1005
1006 ::encode(async_msgr->get_myaddr(), myaddrbl, 0); // legacy
1007 r = try_send(myaddrbl);
1008 if (r == 0) {
1009 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1010 ldout(async_msgr->cct, 10) << __func__ << " connect sent my addr "
1011 << async_msgr->get_myaddr() << dendl;
1012 } else if (r > 0) {
1013 state = STATE_WAIT_SEND;
1014 state_after_send = STATE_CONNECTING_SEND_CONNECT_MSG;
1015 ldout(async_msgr->cct, 10) << __func__ << " connect send my addr done: "
1016 << async_msgr->get_myaddr() << dendl;
1017 } else {
1018 ldout(async_msgr->cct, 2) << __func__ << " connect couldn't write my addr, "
1019 << cpp_strerror(r) << dendl;
1020 goto fail;
1021 }
1022
1023 break;
1024 }
1025
1026 case STATE_CONNECTING_SEND_CONNECT_MSG:
1027 {
1028 if (!got_bad_auth) {
1029 delete authorizer;
1030 authorizer = async_msgr->get_authorizer(peer_type, false);
1031 }
1032 bufferlist bl;
1033
1034 connect_msg.features = policy.features_supported;
1035 connect_msg.host_type = async_msgr->get_myinst().name.type();
1036 connect_msg.global_seq = global_seq;
1037 connect_msg.connect_seq = connect_seq;
1038 connect_msg.protocol_version = async_msgr->get_proto_version(peer_type, true);
1039 connect_msg.authorizer_protocol = authorizer ? authorizer->protocol : 0;
1040 connect_msg.authorizer_len = authorizer ? authorizer->bl.length() : 0;
1041 if (authorizer)
1042 ldout(async_msgr->cct, 10) << __func__ << " connect_msg.authorizer_len="
1043 << connect_msg.authorizer_len << " protocol="
1044 << connect_msg.authorizer_protocol << dendl;
1045 connect_msg.flags = 0;
1046 if (policy.lossy)
1047 connect_msg.flags |= CEPH_MSG_CONNECT_LOSSY; // this is fyi, actually, server decides!
1048 bl.append((char*)&connect_msg, sizeof(connect_msg));
1049 if (authorizer) {
1050 bl.append(authorizer->bl.c_str(), authorizer->bl.length());
1051 }
1052 ldout(async_msgr->cct, 10) << __func__ << " connect sending gseq=" << global_seq << " cseq="
1053 << connect_seq << " proto=" << connect_msg.protocol_version << dendl;
1054
1055 r = try_send(bl);
1056 if (r == 0) {
1057 state = STATE_CONNECTING_WAIT_CONNECT_REPLY;
1058 ldout(async_msgr->cct,20) << __func__ << " connect wrote (self +) cseq, waiting for reply" << dendl;
1059 } else if (r > 0) {
1060 state = STATE_WAIT_SEND;
1061 state_after_send = STATE_CONNECTING_WAIT_CONNECT_REPLY;
1062 ldout(async_msgr->cct, 10) << __func__ << " continue send reply " << dendl;
1063 } else {
1064 ldout(async_msgr->cct, 2) << __func__ << " connect couldn't send reply "
1065 << cpp_strerror(r) << dendl;
1066 goto fail;
1067 }
1068
1069 break;
1070 }
1071
1072 case STATE_CONNECTING_WAIT_CONNECT_REPLY:
1073 {
1074 r = read_until(sizeof(connect_reply), state_buffer);
1075 if (r < 0) {
1076 ldout(async_msgr->cct, 1) << __func__ << " read connect reply failed" << dendl;
1077 goto fail;
1078 } else if (r > 0) {
1079 break;
1080 }
1081
1082 connect_reply = *((ceph_msg_connect_reply*)state_buffer);
1083
1084 ldout(async_msgr->cct, 20) << __func__ << " connect got reply tag " << (int)connect_reply.tag
1085 << " connect_seq " << connect_reply.connect_seq << " global_seq "
1086 << connect_reply.global_seq << " proto " << connect_reply.protocol_version
1087 << " flags " << (int)connect_reply.flags << " features "
1088 << connect_reply.features << dendl;
1089 state = STATE_CONNECTING_WAIT_CONNECT_REPLY_AUTH;
1090
1091 break;
1092 }
1093
1094 case STATE_CONNECTING_WAIT_CONNECT_REPLY_AUTH:
1095 {
1096 bufferlist authorizer_reply;
1097 if (connect_reply.authorizer_len) {
1098 ldout(async_msgr->cct, 10) << __func__ << " reply.authorizer_len=" << connect_reply.authorizer_len << dendl;
1099 assert(connect_reply.authorizer_len < 4096);
1100 r = read_until(connect_reply.authorizer_len, state_buffer);
1101 if (r < 0) {
1102 ldout(async_msgr->cct, 1) << __func__ << " read connect reply authorizer failed" << dendl;
1103 goto fail;
1104 } else if (r > 0) {
1105 break;
1106 }
1107
1108 authorizer_reply.append(state_buffer, connect_reply.authorizer_len);
1109 bufferlist::iterator iter = authorizer_reply.begin();
1110 if (authorizer && !authorizer->verify_reply(iter)) {
1111 ldout(async_msgr->cct, 0) << __func__ << " failed verifying authorize reply" << dendl;
1112 goto fail;
1113 }
1114 }
1115 r = handle_connect_reply(connect_msg, connect_reply);
1116 if (r < 0)
1117 goto fail;
1118
1119 // state must be changed!
1120 assert(state != STATE_CONNECTING_WAIT_CONNECT_REPLY_AUTH);
1121 break;
1122 }
1123
1124 case STATE_CONNECTING_WAIT_ACK_SEQ:
1125 {
1126 uint64_t newly_acked_seq = 0;
1127
1128 r = read_until(sizeof(newly_acked_seq), state_buffer);
1129 if (r < 0) {
1130 ldout(async_msgr->cct, 1) << __func__ << " read connect ack seq failed" << dendl;
1131 goto fail;
1132 } else if (r > 0) {
1133 break;
1134 }
1135
1136 newly_acked_seq = *((uint64_t*)state_buffer);
1137 ldout(async_msgr->cct, 2) << __func__ << " got newly_acked_seq " << newly_acked_seq
1138 << " vs out_seq " << out_seq << dendl;
1139 discard_requeued_up_to(newly_acked_seq);
1140 //while (newly_acked_seq > out_seq.read()) {
1141 // Message *m = _get_next_outgoing(NULL);
1142 // assert(m);
1143 // ldout(async_msgr->cct, 2) << __func__ << " discarding previously sent " << m->get_seq()
1144 // << " " << *m << dendl;
1145 // assert(m->get_seq() <= newly_acked_seq);
1146 // m->put();
1147 // out_seq.inc();
1148 //}
1149
1150 bufferlist bl;
1151 uint64_t s = in_seq;
1152 bl.append((char*)&s, sizeof(s));
1153 r = try_send(bl);
1154 if (r == 0) {
1155 state = STATE_CONNECTING_READY;
1156 ldout(async_msgr->cct, 10) << __func__ << " send in_seq done " << dendl;
1157 } else if (r > 0) {
1158 state_after_send = STATE_CONNECTING_READY;
1159 state = STATE_WAIT_SEND;
1160 ldout(async_msgr->cct, 10) << __func__ << " continue send in_seq " << dendl;
1161 } else {
1162 goto fail;
1163 }
1164 break;
1165 }
1166
1167 case STATE_CONNECTING_READY:
1168 {
1169 // hooray!
1170 peer_global_seq = connect_reply.global_seq;
1171 policy.lossy = connect_reply.flags & CEPH_MSG_CONNECT_LOSSY;
1172 state = STATE_OPEN;
1173 once_ready = true;
1174 connect_seq += 1;
1175 assert(connect_seq == connect_reply.connect_seq);
1176 backoff = utime_t();
1177 set_features((uint64_t)connect_reply.features & (uint64_t)connect_msg.features);
1178 ldout(async_msgr->cct, 10) << __func__ << " connect success " << connect_seq
1179 << ", lossy = " << policy.lossy << ", features "
1180 << get_features() << dendl;
1181
1182 // If we have an authorizer, get a new AuthSessionHandler to deal with ongoing security of the
1183 // connection. PLR
1184 if (authorizer != NULL) {
1185 session_security.reset(
1186 get_auth_session_handler(async_msgr->cct,
1187 authorizer->protocol,
1188 authorizer->session_key,
1189 get_features()));
1190 } else {
1191 // We have no authorizer, so we shouldn't be applying security to messages in this AsyncConnection. PLR
1192 session_security.reset();
1193 }
1194
1195 if (delay_state)
1196 assert(delay_state->ready());
1197 dispatch_queue->queue_connect(this);
1198 async_msgr->ms_deliver_handle_fast_connect(this);
1199
1200 // make sure no pending tick timer
1201 if (last_tick_id)
1202 center->delete_time_event(last_tick_id);
1203 last_tick_id = center->create_time_event(inactive_timeout_us, tick_handler);
1204
1205 // message may in queue between last _try_send and connection ready
1206 // write event may already notify and we need to force scheduler again
1207 write_lock.lock();
1208 can_write = WriteStatus::CANWRITE;
1209 if (is_queued())
1210 center->dispatch_event_external(write_handler);
1211 write_lock.unlock();
1212 maybe_start_delay_thread();
1213 break;
1214 }
1215
1216 case STATE_ACCEPTING:
1217 {
1218 bufferlist bl;
1219 center->create_file_event(cs.fd(), EVENT_READABLE, read_handler);
1220
1221 bl.append(CEPH_BANNER, strlen(CEPH_BANNER));
1222
1223 ::encode(async_msgr->get_myaddr(), bl, 0); // legacy
1224 port = async_msgr->get_myaddr().get_port();
1225 ::encode(socket_addr, bl, 0); // legacy
1226 ldout(async_msgr->cct, 1) << __func__ << " sd=" << cs.fd() << " " << socket_addr << dendl;
1227
1228 r = try_send(bl);
1229 if (r == 0) {
1230 state = STATE_ACCEPTING_WAIT_BANNER_ADDR;
1231 ldout(async_msgr->cct, 10) << __func__ << " write banner and addr done: "
1232 << get_peer_addr() << dendl;
1233 } else if (r > 0) {
1234 state = STATE_WAIT_SEND;
1235 state_after_send = STATE_ACCEPTING_WAIT_BANNER_ADDR;
1236 ldout(async_msgr->cct, 10) << __func__ << " wait for write banner and addr: "
1237 << get_peer_addr() << dendl;
1238 } else {
1239 goto fail;
1240 }
1241
1242 break;
1243 }
1244 case STATE_ACCEPTING_WAIT_BANNER_ADDR:
1245 {
1246 bufferlist addr_bl;
1247 entity_addr_t peer_addr;
1248
1249 r = read_until(strlen(CEPH_BANNER) + sizeof(ceph_entity_addr), state_buffer);
1250 if (r < 0) {
1251 ldout(async_msgr->cct, 1) << __func__ << " read peer banner and addr failed" << dendl;
1252 goto fail;
1253 } else if (r > 0) {
1254 break;
1255 }
1256
1257 if (memcmp(state_buffer, CEPH_BANNER, strlen(CEPH_BANNER))) {
1258 ldout(async_msgr->cct, 1) << __func__ << " accept peer sent bad banner '" << state_buffer
1259 << "' (should be '" << CEPH_BANNER << "')" << dendl;
1260 goto fail;
1261 }
1262
1263 addr_bl.append(state_buffer+strlen(CEPH_BANNER), sizeof(ceph_entity_addr));
1264 {
1265 bufferlist::iterator ti = addr_bl.begin();
1266 ::decode(peer_addr, ti);
1267 }
1268
1269 ldout(async_msgr->cct, 10) << __func__ << " accept peer addr is " << peer_addr << dendl;
1270 if (peer_addr.is_blank_ip()) {
1271 // peer apparently doesn't know what ip they have; figure it out for them.
1272 int port = peer_addr.get_port();
1273 peer_addr.u = socket_addr.u;
1274 peer_addr.set_port(port);
1275 ldout(async_msgr->cct, 0) << __func__ << " accept peer addr is really " << peer_addr
1276 << " (socket is " << socket_addr << ")" << dendl;
1277 }
1278 set_peer_addr(peer_addr); // so that connection_state gets set up
1279 state = STATE_ACCEPTING_WAIT_CONNECT_MSG;
1280 break;
1281 }
1282
1283 case STATE_ACCEPTING_WAIT_CONNECT_MSG:
1284 {
1285 r = read_until(sizeof(connect_msg), state_buffer);
1286 if (r < 0) {
1287 ldout(async_msgr->cct, 1) << __func__ << " read connect msg failed" << dendl;
1288 goto fail;
1289 } else if (r > 0) {
1290 break;
1291 }
1292
1293 connect_msg = *((ceph_msg_connect*)state_buffer);
1294 state = STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH;
1295 break;
1296 }
1297
1298 case STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH:
1299 {
1300 bufferlist authorizer_reply;
1301
1302 if (connect_msg.authorizer_len) {
1303 if (!authorizer_buf.length())
1304 authorizer_buf.push_back(buffer::create(connect_msg.authorizer_len));
1305
1306 r = read_until(connect_msg.authorizer_len, authorizer_buf.c_str());
1307 if (r < 0) {
1308 ldout(async_msgr->cct, 1) << __func__ << " read connect authorizer failed" << dendl;
1309 goto fail;
1310 } else if (r > 0) {
1311 break;
1312 }
1313 }
1314
1315 ldout(async_msgr->cct, 20) << __func__ << " accept got peer connect_seq "
1316 << connect_msg.connect_seq << " global_seq "
1317 << connect_msg.global_seq << dendl;
1318 set_peer_type(connect_msg.host_type);
1319 policy = async_msgr->get_policy(connect_msg.host_type);
1320 ldout(async_msgr->cct, 10) << __func__ << " accept of host_type " << connect_msg.host_type
1321 << ", policy.lossy=" << policy.lossy << " policy.server="
1322 << policy.server << " policy.standby=" << policy.standby
1323 << " policy.resetcheck=" << policy.resetcheck << dendl;
1324
1325 r = handle_connect_msg(connect_msg, authorizer_buf, authorizer_reply);
1326 if (r < 0)
1327 goto fail;
1328
1329 // state is changed by "handle_connect_msg"
1330 assert(state != STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH);
1331 break;
1332 }
1333
1334 case STATE_ACCEPTING_WAIT_SEQ:
1335 {
1336 uint64_t newly_acked_seq;
1337 r = read_until(sizeof(newly_acked_seq), state_buffer);
1338 if (r < 0) {
1339 ldout(async_msgr->cct, 1) << __func__ << " read ack seq failed" << dendl;
1340 goto fail_registered;
1341 } else if (r > 0) {
1342 break;
1343 }
1344
1345 newly_acked_seq = *((uint64_t*)state_buffer);
1346 ldout(async_msgr->cct, 2) << __func__ << " accept get newly_acked_seq " << newly_acked_seq << dendl;
1347 discard_requeued_up_to(newly_acked_seq);
1348 state = STATE_ACCEPTING_READY;
1349 break;
1350 }
1351
1352 case STATE_ACCEPTING_READY:
1353 {
1354 ldout(async_msgr->cct, 20) << __func__ << " accept done" << dendl;
1355 state = STATE_OPEN;
1356 memset(&connect_msg, 0, sizeof(connect_msg));
1357
1358 if (delay_state)
1359 assert(delay_state->ready());
1360 // make sure no pending tick timer
1361 if (last_tick_id)
1362 center->delete_time_event(last_tick_id);
1363 last_tick_id = center->create_time_event(inactive_timeout_us, tick_handler);
1364
1365 write_lock.lock();
1366 can_write = WriteStatus::CANWRITE;
1367 if (is_queued())
1368 center->dispatch_event_external(write_handler);
1369 write_lock.unlock();
1370 maybe_start_delay_thread();
1371 break;
1372 }
1373
1374 default:
1375 {
1376 lderr(async_msgr->cct) << __func__ << " bad state: " << state << dendl;
1377 ceph_abort();
1378 }
1379 }
1380
1381 return 0;
1382
1383 fail_registered:
1384 ldout(async_msgr->cct, 10) << "accept fault after register" << dendl;
1385 inject_delay();
1386
1387 fail:
1388 return -1;
1389 }
1390
1391 int AsyncConnection::handle_connect_reply(ceph_msg_connect &connect, ceph_msg_connect_reply &reply)
1392 {
1393 uint64_t feat_missing;
1394 if (reply.tag == CEPH_MSGR_TAG_FEATURES) {
1395 ldout(async_msgr->cct, 0) << __func__ << " connect protocol feature mismatch, my "
1396 << std::hex << connect.features << " < peer "
1397 << reply.features << " missing "
1398 << (reply.features & ~policy.features_supported)
1399 << std::dec << dendl;
1400 goto fail;
1401 }
1402
1403 if (reply.tag == CEPH_MSGR_TAG_BADPROTOVER) {
1404 ldout(async_msgr->cct, 0) << __func__ << " connect protocol version mismatch, my "
1405 << connect.protocol_version << " != " << reply.protocol_version
1406 << dendl;
1407 goto fail;
1408 }
1409
1410 if (reply.tag == CEPH_MSGR_TAG_BADAUTHORIZER) {
1411 ldout(async_msgr->cct,0) << __func__ << " connect got BADAUTHORIZER" << dendl;
1412 if (got_bad_auth)
1413 goto fail;
1414 got_bad_auth = true;
1415 delete authorizer;
1416 authorizer = async_msgr->get_authorizer(peer_type, true); // try harder
1417 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1418 }
1419 if (reply.tag == CEPH_MSGR_TAG_RESETSESSION) {
1420 ldout(async_msgr->cct, 0) << __func__ << " connect got RESETSESSION" << dendl;
1421 was_session_reset();
1422 // see was_session_reset
1423 outcoming_bl.clear();
1424 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1425 }
1426 if (reply.tag == CEPH_MSGR_TAG_RETRY_GLOBAL) {
1427 global_seq = async_msgr->get_global_seq(reply.global_seq);
1428 ldout(async_msgr->cct, 5) << __func__ << " connect got RETRY_GLOBAL "
1429 << reply.global_seq << " chose new "
1430 << global_seq << dendl;
1431 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1432 }
1433 if (reply.tag == CEPH_MSGR_TAG_RETRY_SESSION) {
1434 assert(reply.connect_seq > connect_seq);
1435 ldout(async_msgr->cct, 5) << __func__ << " connect got RETRY_SESSION "
1436 << connect_seq << " -> "
1437 << reply.connect_seq << dendl;
1438 connect_seq = reply.connect_seq;
1439 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1440 }
1441 if (reply.tag == CEPH_MSGR_TAG_WAIT) {
1442 ldout(async_msgr->cct, 1) << __func__ << " connect got WAIT (connection race)" << dendl;
1443 state = STATE_WAIT;
1444 }
1445
1446 feat_missing = policy.features_required & ~(uint64_t)connect_reply.features;
1447 if (feat_missing) {
1448 ldout(async_msgr->cct, 1) << __func__ << " missing required features " << std::hex
1449 << feat_missing << std::dec << dendl;
1450 goto fail;
1451 }
1452
1453 if (reply.tag == CEPH_MSGR_TAG_SEQ) {
1454 ldout(async_msgr->cct, 10) << __func__ << " got CEPH_MSGR_TAG_SEQ, reading acked_seq and writing in_seq" << dendl;
1455 state = STATE_CONNECTING_WAIT_ACK_SEQ;
1456 }
1457 if (reply.tag == CEPH_MSGR_TAG_READY) {
1458 ldout(async_msgr->cct, 10) << __func__ << " got CEPH_MSGR_TAG_READY " << dendl;
1459 state = STATE_CONNECTING_READY;
1460 }
1461
1462 return 0;
1463
1464 fail:
1465 return -1;
1466 }
1467
1468 ssize_t AsyncConnection::handle_connect_msg(ceph_msg_connect &connect, bufferlist &authorizer_bl,
1469 bufferlist &authorizer_reply)
1470 {
1471 ssize_t r = 0;
1472 ceph_msg_connect_reply reply;
1473 bufferlist reply_bl;
1474
1475 memset(&reply, 0, sizeof(reply));
1476 reply.protocol_version = async_msgr->get_proto_version(peer_type, false);
1477
1478 // mismatch?
1479 ldout(async_msgr->cct, 10) << __func__ << " accept my proto " << reply.protocol_version
1480 << ", their proto " << connect.protocol_version << dendl;
1481 if (connect.protocol_version != reply.protocol_version) {
1482 return _reply_accept(CEPH_MSGR_TAG_BADPROTOVER, connect, reply, authorizer_reply);
1483 }
1484 // require signatures for cephx?
1485 if (connect.authorizer_protocol == CEPH_AUTH_CEPHX) {
1486 if (peer_type == CEPH_ENTITY_TYPE_OSD ||
1487 peer_type == CEPH_ENTITY_TYPE_MDS) {
1488 if (async_msgr->cct->_conf->cephx_require_signatures ||
1489 async_msgr->cct->_conf->cephx_cluster_require_signatures) {
1490 ldout(async_msgr->cct, 10) << __func__ << " using cephx, requiring MSG_AUTH feature bit for cluster" << dendl;
1491 policy.features_required |= CEPH_FEATURE_MSG_AUTH;
1492 }
1493 } else {
1494 if (async_msgr->cct->_conf->cephx_require_signatures ||
1495 async_msgr->cct->_conf->cephx_service_require_signatures) {
1496 ldout(async_msgr->cct, 10) << __func__ << " using cephx, requiring MSG_AUTH feature bit for service" << dendl;
1497 policy.features_required |= CEPH_FEATURE_MSG_AUTH;
1498 }
1499 }
1500 }
1501 uint64_t feat_missing = policy.features_required & ~(uint64_t)connect.features;
1502 if (feat_missing) {
1503 ldout(async_msgr->cct, 1) << __func__ << " peer missing required features "
1504 << std::hex << feat_missing << std::dec << dendl;
1505 return _reply_accept(CEPH_MSGR_TAG_FEATURES, connect, reply, authorizer_reply);
1506 }
1507
1508 lock.unlock();
1509
1510 bool authorizer_valid;
1511 if (!async_msgr->verify_authorizer(this, peer_type, connect.authorizer_protocol, authorizer_bl,
1512 authorizer_reply, authorizer_valid, session_key) || !authorizer_valid) {
1513 lock.lock();
1514 ldout(async_msgr->cct,0) << __func__ << ": got bad authorizer" << dendl;
1515 session_security.reset();
1516 return _reply_accept(CEPH_MSGR_TAG_BADAUTHORIZER, connect, reply, authorizer_reply);
1517 }
1518
1519 // We've verified the authorizer for this AsyncConnection, so set up the session security structure. PLR
1520 ldout(async_msgr->cct, 10) << __func__ << " accept setting up session_security." << dendl;
1521
1522 // existing?
1523 AsyncConnectionRef existing = async_msgr->lookup_conn(peer_addr);
1524
1525 inject_delay();
1526
1527 lock.lock();
1528 if (state != STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH) {
1529 ldout(async_msgr->cct, 1) << __func__ << " state changed while accept, it must be mark_down" << dendl;
1530 assert(state == STATE_CLOSED);
1531 goto fail;
1532 }
1533
1534 if (existing == this)
1535 existing = NULL;
1536 if (existing) {
1537 // There is no possible that existing connection will acquire this
1538 // connection's lock
1539 existing->lock.lock(); // skip lockdep check (we are locking a second AsyncConnection here)
1540
1541 if (existing->state == STATE_CLOSED) {
1542 ldout(async_msgr->cct, 1) << __func__ << " existing already closed." << dendl;
1543 existing->lock.unlock();
1544 existing = NULL;
1545 goto open;
1546 }
1547
1548 if (existing->replacing) {
1549 ldout(async_msgr->cct, 1) << __func__ << " existing racing replace happened while replacing."
1550 << " existing_state=" << get_state_name(existing->state) << dendl;
1551 reply.global_seq = existing->peer_global_seq;
1552 r = _reply_accept(CEPH_MSGR_TAG_RETRY_GLOBAL, connect, reply, authorizer_reply);
1553 existing->lock.unlock();
1554 if (r < 0)
1555 goto fail;
1556 return 0;
1557 }
1558
1559 if (connect.global_seq < existing->peer_global_seq) {
1560 ldout(async_msgr->cct, 10) << __func__ << " accept existing " << existing
1561 << ".gseq " << existing->peer_global_seq << " > "
1562 << connect.global_seq << ", RETRY_GLOBAL" << dendl;
1563 reply.global_seq = existing->peer_global_seq; // so we can send it below..
1564 existing->lock.unlock();
1565 return _reply_accept(CEPH_MSGR_TAG_RETRY_GLOBAL, connect, reply, authorizer_reply);
1566 } else {
1567 ldout(async_msgr->cct, 10) << __func__ << " accept existing " << existing
1568 << ".gseq " << existing->peer_global_seq
1569 << " <= " << connect.global_seq << ", looks ok" << dendl;
1570 }
1571
1572 if (existing->policy.lossy) {
1573 ldout(async_msgr->cct, 0) << __func__ << " accept replacing existing (lossy) channel (new one lossy="
1574 << policy.lossy << ")" << dendl;
1575 existing->was_session_reset();
1576 goto replace;
1577 }
1578
1579 ldout(async_msgr->cct, 0) << __func__ << " accept connect_seq " << connect.connect_seq
1580 << " vs existing csq=" << existing->connect_seq << " existing_state="
1581 << get_state_name(existing->state) << dendl;
1582
1583 if (connect.connect_seq == 0 && existing->connect_seq > 0) {
1584 ldout(async_msgr->cct,0) << __func__ << " accept peer reset, then tried to connect to us, replacing" << dendl;
1585 // this is a hard reset from peer
1586 is_reset_from_peer = true;
1587 if (policy.resetcheck)
1588 existing->was_session_reset(); // this resets out_queue, msg_ and connect_seq #'s
1589 goto replace;
1590 }
1591
1592 if (connect.connect_seq < existing->connect_seq) {
1593 // old attempt, or we sent READY but they didn't get it.
1594 ldout(async_msgr->cct, 10) << __func__ << " accept existing " << existing << ".cseq "
1595 << existing->connect_seq << " > " << connect.connect_seq
1596 << ", RETRY_SESSION" << dendl;
1597 reply.connect_seq = existing->connect_seq + 1;
1598 existing->lock.unlock();
1599 return _reply_accept(CEPH_MSGR_TAG_RETRY_SESSION, connect, reply, authorizer_reply);
1600 }
1601
1602 if (connect.connect_seq == existing->connect_seq) {
1603 // if the existing connection successfully opened, and/or
1604 // subsequently went to standby, then the peer should bump
1605 // their connect_seq and retry: this is not a connection race
1606 // we need to resolve here.
1607 if (existing->state == STATE_OPEN ||
1608 existing->state == STATE_STANDBY) {
1609 ldout(async_msgr->cct, 10) << __func__ << " accept connection race, existing " << existing
1610 << ".cseq " << existing->connect_seq << " == "
1611 << connect.connect_seq << ", OPEN|STANDBY, RETRY_SESSION" << dendl;
1612 reply.connect_seq = existing->connect_seq + 1;
1613 existing->lock.unlock();
1614 return _reply_accept(CEPH_MSGR_TAG_RETRY_SESSION, connect, reply, authorizer_reply);
1615 }
1616
1617 // connection race?
1618 if (peer_addr < async_msgr->get_myaddr() || existing->policy.server) {
1619 // incoming wins
1620 ldout(async_msgr->cct, 10) << __func__ << " accept connection race, existing " << existing
1621 << ".cseq " << existing->connect_seq << " == " << connect.connect_seq
1622 << ", or we are server, replacing my attempt" << dendl;
1623 goto replace;
1624 } else {
1625 // our existing outgoing wins
1626 ldout(async_msgr->cct,10) << __func__ << " accept connection race, existing "
1627 << existing << ".cseq " << existing->connect_seq
1628 << " == " << connect.connect_seq << ", sending WAIT" << dendl;
1629 assert(peer_addr > async_msgr->get_myaddr());
1630 existing->lock.unlock();
1631 return _reply_accept(CEPH_MSGR_TAG_WAIT, connect, reply, authorizer_reply);
1632 }
1633 }
1634
1635 assert(connect.connect_seq > existing->connect_seq);
1636 assert(connect.global_seq >= existing->peer_global_seq);
1637 if (policy.resetcheck && // RESETSESSION only used by servers; peers do not reset each other
1638 existing->connect_seq == 0) {
1639 ldout(async_msgr->cct, 0) << __func__ << " accept we reset (peer sent cseq "
1640 << connect.connect_seq << ", " << existing << ".cseq = "
1641 << existing->connect_seq << "), sending RESETSESSION" << dendl;
1642 existing->lock.unlock();
1643 return _reply_accept(CEPH_MSGR_TAG_RESETSESSION, connect, reply, authorizer_reply);
1644 }
1645
1646 // reconnect
1647 ldout(async_msgr->cct, 10) << __func__ << " accept peer sent cseq " << connect.connect_seq
1648 << " > " << existing->connect_seq << dendl;
1649 goto replace;
1650 } // existing
1651 else if (!replacing && connect.connect_seq > 0) {
1652 // we reset, and they are opening a new session
1653 ldout(async_msgr->cct, 0) << __func__ << " accept we reset (peer sent cseq "
1654 << connect.connect_seq << "), sending RESETSESSION" << dendl;
1655 return _reply_accept(CEPH_MSGR_TAG_RESETSESSION, connect, reply, authorizer_reply);
1656 } else {
1657 // new session
1658 ldout(async_msgr->cct, 10) << __func__ << " accept new session" << dendl;
1659 existing = NULL;
1660 goto open;
1661 }
1662 ceph_abort();
1663
1664 replace:
1665 ldout(async_msgr->cct, 10) << __func__ << " accept replacing " << existing << dendl;
1666
1667 inject_delay();
1668 if (existing->policy.lossy) {
1669 // disconnect from the Connection
1670 ldout(async_msgr->cct, 1) << __func__ << " replacing on lossy channel, failing existing" << dendl;
1671 existing->_stop();
1672 existing->dispatch_queue->queue_reset(existing.get());
1673 } else {
1674 assert(can_write == WriteStatus::NOWRITE);
1675 existing->write_lock.lock();
1676
1677 // reset the in_seq if this is a hard reset from peer,
1678 // otherwise we respect our original connection's value
1679 if (is_reset_from_peer) {
1680 existing->is_reset_from_peer = true;
1681 }
1682
1683 center->delete_file_event(cs.fd(), EVENT_READABLE|EVENT_WRITABLE);
1684
1685 if (existing->delay_state) {
1686 existing->delay_state->flush();
1687 assert(!delay_state);
1688 }
1689 existing->reset_recv_state();
1690
1691 auto temp_cs = std::move(cs);
1692 EventCenter *new_center = center;
1693 Worker *new_worker = worker;
1694 // avoid _stop shutdown replacing socket
1695 // queue a reset on the new connection, which we're dumping for the old
1696 _stop();
1697
1698 dispatch_queue->queue_reset(this);
1699 ldout(async_msgr->cct, 1) << __func__ << " stop myself to swap existing" << dendl;
1700 existing->can_write = WriteStatus::REPLACING;
1701 existing->replacing = true;
1702 existing->state_offset = 0;
1703 // avoid previous thread modify event
1704 existing->state = STATE_NONE;
1705 // Discard existing prefetch buffer in `recv_buf`
1706 existing->recv_start = existing->recv_end = 0;
1707 // there shouldn't exist any buffer
1708 assert(recv_start == recv_end);
1709
1710 auto deactivate_existing = std::bind(
1711 [existing, new_worker, new_center, connect, reply, authorizer_reply](ConnectedSocket &cs) mutable {
1712 // we need to delete time event in original thread
1713 {
1714 std::lock_guard<std::mutex> l(existing->lock);
1715 existing->write_lock.lock();
1716 existing->requeue_sent();
1717 existing->outcoming_bl.clear();
1718 existing->open_write = false;
1719 existing->write_lock.unlock();
1720 if (existing->state == STATE_NONE) {
1721 existing->shutdown_socket();
1722 existing->cs = std::move(cs);
1723 existing->worker->references--;
1724 new_worker->references++;
1725 existing->logger = new_worker->get_perf_counter();
1726 existing->worker = new_worker;
1727 existing->center = new_center;
1728 if (existing->delay_state)
1729 existing->delay_state->set_center(new_center);
1730 } else if (existing->state == STATE_CLOSED) {
1731 auto back_to_close = std::bind(
1732 [](ConnectedSocket &cs) mutable { cs.close(); }, std::move(cs));
1733 new_center->submit_to(
1734 new_center->get_id(), std::move(back_to_close), true);
1735 return ;
1736 } else {
1737 ceph_abort();
1738 }
1739 }
1740
1741 // Before changing existing->center, it may already exists some events in existing->center's queue.
1742 // Then if we mark down `existing`, it will execute in another thread and clean up connection.
1743 // Previous event will result in segment fault
1744 auto transfer_existing = [existing, connect, reply, authorizer_reply]() mutable {
1745 std::lock_guard<std::mutex> l(existing->lock);
1746 if (existing->state == STATE_CLOSED)
1747 return ;
1748 assert(existing->state == STATE_NONE);
1749
1750 existing->state = STATE_ACCEPTING_WAIT_CONNECT_MSG;
1751 existing->center->create_file_event(existing->cs.fd(), EVENT_READABLE, existing->read_handler);
1752 reply.global_seq = existing->peer_global_seq;
1753 if (existing->_reply_accept(CEPH_MSGR_TAG_RETRY_GLOBAL, connect, reply, authorizer_reply) < 0) {
1754 // handle error
1755 existing->fault();
1756 }
1757 };
1758 if (existing->center->in_thread())
1759 transfer_existing();
1760 else
1761 existing->center->submit_to(
1762 existing->center->get_id(), std::move(transfer_existing), true);
1763 }, std::move(temp_cs));
1764
1765 existing->center->submit_to(
1766 existing->center->get_id(), std::move(deactivate_existing), true);
1767 existing->write_lock.unlock();
1768 existing->lock.unlock();
1769 return 0;
1770 }
1771 existing->lock.unlock();
1772
1773 open:
1774 connect_seq = connect.connect_seq + 1;
1775 peer_global_seq = connect.global_seq;
1776 ldout(async_msgr->cct, 10) << __func__ << " accept success, connect_seq = "
1777 << connect_seq << " in_seq=" << in_seq << ", sending READY" << dendl;
1778
1779 int next_state;
1780
1781 // if it is a hard reset from peer, we don't need a round-trip to negotiate in/out sequence
1782 if ((connect.features & CEPH_FEATURE_RECONNECT_SEQ) && !is_reset_from_peer) {
1783 reply.tag = CEPH_MSGR_TAG_SEQ;
1784 next_state = STATE_ACCEPTING_WAIT_SEQ;
1785 } else {
1786 reply.tag = CEPH_MSGR_TAG_READY;
1787 next_state = STATE_ACCEPTING_READY;
1788 discard_requeued_up_to(0);
1789 is_reset_from_peer = false;
1790 in_seq = 0;
1791 }
1792
1793 // send READY reply
1794 reply.features = policy.features_supported;
1795 reply.global_seq = async_msgr->get_global_seq();
1796 reply.connect_seq = connect_seq;
1797 reply.flags = 0;
1798 reply.authorizer_len = authorizer_reply.length();
1799 if (policy.lossy)
1800 reply.flags = reply.flags | CEPH_MSG_CONNECT_LOSSY;
1801
1802 set_features((uint64_t)reply.features & (uint64_t)connect.features);
1803 ldout(async_msgr->cct, 10) << __func__ << " accept features " << get_features() << dendl;
1804
1805 session_security.reset(
1806 get_auth_session_handler(async_msgr->cct, connect.authorizer_protocol,
1807 session_key, get_features()));
1808
1809 reply_bl.append((char*)&reply, sizeof(reply));
1810
1811 if (reply.authorizer_len)
1812 reply_bl.append(authorizer_reply.c_str(), authorizer_reply.length());
1813
1814 if (reply.tag == CEPH_MSGR_TAG_SEQ) {
1815 uint64_t s = in_seq;
1816 reply_bl.append((char*)&s, sizeof(s));
1817 }
1818
1819 lock.unlock();
1820 // Because "replacing" will prevent other connections preempt this addr,
1821 // it's safe that here we don't acquire Connection's lock
1822 r = async_msgr->accept_conn(this);
1823
1824 inject_delay();
1825
1826 lock.lock();
1827 replacing = false;
1828 if (r < 0) {
1829 ldout(async_msgr->cct, 1) << __func__ << " existing race replacing process for addr=" << peer_addr
1830 << " just fail later one(this)" << dendl;
1831 goto fail_registered;
1832 }
1833 if (state != STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH) {
1834 ldout(async_msgr->cct, 1) << __func__ << " state changed while accept_conn, it must be mark_down" << dendl;
1835 assert(state == STATE_CLOSED);
1836 goto fail_registered;
1837 }
1838
1839 r = try_send(reply_bl);
1840 if (r < 0)
1841 goto fail_registered;
1842
1843 // notify
1844 dispatch_queue->queue_accept(this);
1845 async_msgr->ms_deliver_handle_fast_accept(this);
1846 once_ready = true;
1847
1848 if (r == 0) {
1849 state = next_state;
1850 ldout(async_msgr->cct, 2) << __func__ << " accept write reply msg done" << dendl;
1851 } else {
1852 state = STATE_WAIT_SEND;
1853 state_after_send = next_state;
1854 }
1855
1856 return 0;
1857
1858 fail_registered:
1859 ldout(async_msgr->cct, 10) << __func__ << " accept fault after register" << dendl;
1860 inject_delay();
1861
1862 fail:
1863 ldout(async_msgr->cct, 10) << __func__ << " failed to accept." << dendl;
1864 return -1;
1865 }
1866
1867 void AsyncConnection::_connect()
1868 {
1869 ldout(async_msgr->cct, 10) << __func__ << " csq=" << connect_seq << dendl;
1870
1871 state = STATE_CONNECTING;
1872 // rescheduler connection in order to avoid lock dep
1873 // may called by external thread(send_message)
1874 center->dispatch_event_external(read_handler);
1875 }
1876
1877 void AsyncConnection::accept(ConnectedSocket socket, entity_addr_t &addr)
1878 {
1879 ldout(async_msgr->cct, 10) << __func__ << " sd=" << socket.fd() << dendl;
1880 assert(socket.fd() >= 0);
1881
1882 std::lock_guard<std::mutex> l(lock);
1883 cs = std::move(socket);
1884 socket_addr = addr;
1885 state = STATE_ACCEPTING;
1886 // rescheduler connection in order to avoid lock dep
1887 center->dispatch_event_external(read_handler);
1888 }
1889
1890 int AsyncConnection::send_message(Message *m)
1891 {
1892 FUNCTRACE();
1893 lgeneric_subdout(async_msgr->cct, ms,
1894 1) << "-- " << async_msgr->get_myaddr() << " --> "
1895 << get_peer_addr() << " -- "
1896 << *m << " -- " << m << " con "
1897 << m->get_connection().get()
1898 << dendl;
1899
1900 // optimistic think it's ok to encode(actually may broken now)
1901 if (!m->get_priority())
1902 m->set_priority(async_msgr->get_default_send_priority());
1903
1904 m->get_header().src = async_msgr->get_myname();
1905 m->set_connection(this);
1906
1907 if (m->get_type() == CEPH_MSG_OSD_OP)
1908 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OP_BEGIN", true);
1909 else if (m->get_type() == CEPH_MSG_OSD_OPREPLY)
1910 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OPREPLY_BEGIN", true);
1911
1912 if (async_msgr->get_myaddr() == get_peer_addr()) { //loopback connection
1913 ldout(async_msgr->cct, 20) << __func__ << " " << *m << " local" << dendl;
1914 std::lock_guard<std::mutex> l(write_lock);
1915 if (can_write != WriteStatus::CLOSED) {
1916 dispatch_queue->local_delivery(m, m->get_priority());
1917 } else {
1918 ldout(async_msgr->cct, 10) << __func__ << " loopback connection closed."
1919 << " Drop message " << m << dendl;
1920 m->put();
1921 }
1922 return 0;
1923 }
1924
1925 last_active = ceph::coarse_mono_clock::now();
1926 // we don't want to consider local message here, it's too lightweight which
1927 // may disturb users
1928 logger->inc(l_msgr_send_messages);
1929
1930 bufferlist bl;
1931 uint64_t f = get_features();
1932
1933 // TODO: Currently not all messages supports reencode like MOSDMap, so here
1934 // only let fast dispatch support messages prepare message
1935 bool can_fast_prepare = async_msgr->ms_can_fast_dispatch(m);
1936 if (can_fast_prepare)
1937 prepare_send_message(f, m, bl);
1938
1939 std::lock_guard<std::mutex> l(write_lock);
1940 // "features" changes will change the payload encoding
1941 if (can_fast_prepare && (can_write == WriteStatus::NOWRITE || get_features() != f)) {
1942 // ensure the correctness of message encoding
1943 bl.clear();
1944 m->get_payload().clear();
1945 ldout(async_msgr->cct, 5) << __func__ << " clear encoded buffer previous "
1946 << f << " != " << get_features() << dendl;
1947 }
1948 if (can_write == WriteStatus::CLOSED) {
1949 ldout(async_msgr->cct, 10) << __func__ << " connection closed."
1950 << " Drop message " << m << dendl;
1951 m->put();
1952 } else {
1953 m->trace.event("async enqueueing message");
1954 out_q[m->get_priority()].emplace_back(std::move(bl), m);
1955 ldout(async_msgr->cct, 15) << __func__ << " inline write is denied, reschedule m=" << m << dendl;
1956 if (can_write != WriteStatus::REPLACING)
1957 center->dispatch_event_external(write_handler);
1958 }
1959 return 0;
1960 }
1961
1962 void AsyncConnection::requeue_sent()
1963 {
1964 if (sent.empty())
1965 return;
1966
1967 list<pair<bufferlist, Message*> >& rq = out_q[CEPH_MSG_PRIO_HIGHEST];
1968 while (!sent.empty()) {
1969 Message* m = sent.back();
1970 sent.pop_back();
1971 ldout(async_msgr->cct, 10) << __func__ << " " << *m << " for resend "
1972 << " (" << m->get_seq() << ")" << dendl;
1973 rq.push_front(make_pair(bufferlist(), m));
1974 out_seq--;
1975 }
1976 }
1977
1978 void AsyncConnection::discard_requeued_up_to(uint64_t seq)
1979 {
1980 ldout(async_msgr->cct, 10) << __func__ << " " << seq << dendl;
1981 std::lock_guard<std::mutex> l(write_lock);
1982 if (out_q.count(CEPH_MSG_PRIO_HIGHEST) == 0)
1983 return;
1984 list<pair<bufferlist, Message*> >& rq = out_q[CEPH_MSG_PRIO_HIGHEST];
1985 while (!rq.empty()) {
1986 pair<bufferlist, Message*> p = rq.front();
1987 if (p.second->get_seq() == 0 || p.second->get_seq() > seq)
1988 break;
1989 ldout(async_msgr->cct, 10) << __func__ << " " << *(p.second) << " for resend seq " << p.second->get_seq()
1990 << " <= " << seq << ", discarding" << dendl;
1991 p.second->put();
1992 rq.pop_front();
1993 out_seq++;
1994 }
1995 if (rq.empty())
1996 out_q.erase(CEPH_MSG_PRIO_HIGHEST);
1997 }
1998
1999 /*
2000 * Tears down the AsyncConnection's message queues, and removes them from the DispatchQueue
2001 * Must hold write_lock prior to calling.
2002 */
2003 void AsyncConnection::discard_out_queue()
2004 {
2005 ldout(async_msgr->cct, 10) << __func__ << " started" << dendl;
2006
2007 for (list<Message*>::iterator p = sent.begin(); p != sent.end(); ++p) {
2008 ldout(async_msgr->cct, 20) << __func__ << " discard " << *p << dendl;
2009 (*p)->put();
2010 }
2011 sent.clear();
2012 for (map<int, list<pair<bufferlist, Message*> > >::iterator p = out_q.begin(); p != out_q.end(); ++p)
2013 for (list<pair<bufferlist, Message*> >::iterator r = p->second.begin(); r != p->second.end(); ++r) {
2014 ldout(async_msgr->cct, 20) << __func__ << " discard " << r->second << dendl;
2015 r->second->put();
2016 }
2017 out_q.clear();
2018 }
2019
2020 int AsyncConnection::randomize_out_seq()
2021 {
2022 if (get_features() & CEPH_FEATURE_MSG_AUTH) {
2023 // Set out_seq to a random value, so CRC won't be predictable. Don't bother checking seq_error
2024 // here. We'll check it on the call. PLR
2025 uint64_t rand_seq;
2026 int seq_error = get_random_bytes((char *)&rand_seq, sizeof(rand_seq));
2027 rand_seq &= SEQ_MASK;
2028 lsubdout(async_msgr->cct, ms, 10) << __func__ << " randomize_out_seq " << rand_seq << dendl;
2029 out_seq = rand_seq;
2030 return seq_error;
2031 } else {
2032 // previously, seq #'s always started at 0.
2033 out_seq = 0;
2034 return 0;
2035 }
2036 }
2037
2038 void AsyncConnection::fault()
2039 {
2040 if (state == STATE_CLOSED || state == STATE_NONE) {
2041 ldout(async_msgr->cct, 10) << __func__ << " connection is already closed" << dendl;
2042 return ;
2043 }
2044
2045 if (policy.lossy && !(state >= STATE_CONNECTING && state < STATE_CONNECTING_READY)) {
2046 ldout(async_msgr->cct, 1) << __func__ << " on lossy channel, failing" << dendl;
2047 _stop();
2048 dispatch_queue->queue_reset(this);
2049 return ;
2050 }
2051
2052 write_lock.lock();
2053 can_write = WriteStatus::NOWRITE;
2054 shutdown_socket();
2055 open_write = false;
2056
2057 // queue delayed items immediately
2058 if (delay_state)
2059 delay_state->flush();
2060 // requeue sent items
2061 requeue_sent();
2062 recv_start = recv_end = 0;
2063 state_offset = 0;
2064 replacing = false;
2065 is_reset_from_peer = false;
2066 outcoming_bl.clear();
2067 if (!once_ready && !is_queued() &&
2068 state >=STATE_ACCEPTING && state <= STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH) {
2069 ldout(async_msgr->cct, 10) << __func__ << " with nothing to send and in the half "
2070 << " accept state just closed" << dendl;
2071 write_lock.unlock();
2072 _stop();
2073 dispatch_queue->queue_reset(this);
2074 return ;
2075 }
2076 reset_recv_state();
2077 if (policy.standby && !is_queued() && state != STATE_WAIT) {
2078 ldout(async_msgr->cct, 10) << __func__ << " with nothing to send, going to standby" << dendl;
2079 state = STATE_STANDBY;
2080 write_lock.unlock();
2081 return;
2082 }
2083
2084 write_lock.unlock();
2085 if (!(state >= STATE_CONNECTING && state < STATE_CONNECTING_READY) &&
2086 state != STATE_WAIT) { // STATE_WAIT is coming from STATE_CONNECTING_*
2087 // policy maybe empty when state is in accept
2088 if (policy.server) {
2089 ldout(async_msgr->cct, 0) << __func__ << " server, going to standby" << dendl;
2090 state = STATE_STANDBY;
2091 } else {
2092 ldout(async_msgr->cct, 0) << __func__ << " initiating reconnect" << dendl;
2093 connect_seq++;
2094 state = STATE_CONNECTING;
2095 }
2096 backoff = utime_t();
2097 center->dispatch_event_external(read_handler);
2098 } else {
2099 if (state == STATE_WAIT) {
2100 backoff.set_from_double(async_msgr->cct->_conf->ms_max_backoff);
2101 } else if (backoff == utime_t()) {
2102 backoff.set_from_double(async_msgr->cct->_conf->ms_initial_backoff);
2103 } else {
2104 backoff += backoff;
2105 if (backoff > async_msgr->cct->_conf->ms_max_backoff)
2106 backoff.set_from_double(async_msgr->cct->_conf->ms_max_backoff);
2107 }
2108
2109 state = STATE_CONNECTING;
2110 ldout(async_msgr->cct, 10) << __func__ << " waiting " << backoff << dendl;
2111 // woke up again;
2112 register_time_events.insert(center->create_time_event(
2113 backoff.to_nsec()/1000, wakeup_handler));
2114 }
2115 }
2116
2117 void AsyncConnection::was_session_reset()
2118 {
2119 ldout(async_msgr->cct,10) << __func__ << " started" << dendl;
2120 std::lock_guard<std::mutex> l(write_lock);
2121 if (delay_state)
2122 delay_state->discard();
2123 dispatch_queue->discard_queue(conn_id);
2124 discard_out_queue();
2125 // note: we need to clear outcoming_bl here, but was_session_reset may be
2126 // called by other thread, so let caller clear this itself!
2127 // outcoming_bl.clear();
2128
2129 dispatch_queue->queue_remote_reset(this);
2130
2131 if (randomize_out_seq()) {
2132 ldout(async_msgr->cct, 15) << __func__ << " could not get random bytes to set seq number for session reset; set seq number to " << out_seq << dendl;
2133 }
2134
2135 in_seq = 0;
2136 connect_seq = 0;
2137 // it's safe to directly set 0, double locked
2138 ack_left = 0;
2139 once_ready = false;
2140 can_write = WriteStatus::NOWRITE;
2141 }
2142
2143 void AsyncConnection::_stop()
2144 {
2145 if (state == STATE_CLOSED)
2146 return ;
2147
2148 if (delay_state)
2149 delay_state->flush();
2150
2151 ldout(async_msgr->cct, 2) << __func__ << dendl;
2152 std::lock_guard<std::mutex> l(write_lock);
2153
2154 reset_recv_state();
2155 dispatch_queue->discard_queue(conn_id);
2156 discard_out_queue();
2157 async_msgr->unregister_conn(this);
2158 worker->release_worker();
2159
2160 state = STATE_CLOSED;
2161 open_write = false;
2162 can_write = WriteStatus::CLOSED;
2163 state_offset = 0;
2164 // Make sure in-queue events will been processed
2165 center->dispatch_event_external(EventCallbackRef(new C_clean_handler(this)));
2166 }
2167
2168 void AsyncConnection::prepare_send_message(uint64_t features, Message *m, bufferlist &bl)
2169 {
2170 ldout(async_msgr->cct, 20) << __func__ << " m" << " " << *m << dendl;
2171
2172 // associate message with Connection (for benefit of encode_payload)
2173 if (m->empty_payload())
2174 ldout(async_msgr->cct, 20) << __func__ << " encoding features "
2175 << features << " " << m << " " << *m << dendl;
2176 else
2177 ldout(async_msgr->cct, 20) << __func__ << " half-reencoding features "
2178 << features << " " << m << " " << *m << dendl;
2179
2180 // encode and copy out of *m
2181 m->encode(features, msgr->crcflags);
2182
2183 bl.append(m->get_payload());
2184 bl.append(m->get_middle());
2185 bl.append(m->get_data());
2186 }
2187
2188 ssize_t AsyncConnection::write_message(Message *m, bufferlist& bl, bool more)
2189 {
2190 FUNCTRACE();
2191 assert(center->in_thread());
2192 m->set_seq(++out_seq);
2193
2194 if (msgr->crcflags & MSG_CRC_HEADER)
2195 m->calc_header_crc();
2196
2197 ceph_msg_header& header = m->get_header();
2198 ceph_msg_footer& footer = m->get_footer();
2199
2200 // TODO: let sign_message could be reentry?
2201 // Now that we have all the crcs calculated, handle the
2202 // digital signature for the message, if the AsyncConnection has session
2203 // security set up. Some session security options do not
2204 // actually calculate and check the signature, but they should
2205 // handle the calls to sign_message and check_signature. PLR
2206 if (session_security.get() == NULL) {
2207 ldout(async_msgr->cct, 20) << __func__ << " no session security" << dendl;
2208 } else {
2209 if (session_security->sign_message(m)) {
2210 ldout(async_msgr->cct, 20) << __func__ << " failed to sign m="
2211 << m << "): sig = " << footer.sig << dendl;
2212 } else {
2213 ldout(async_msgr->cct, 20) << __func__ << " signed m=" << m
2214 << "): sig = " << footer.sig << dendl;
2215 }
2216 }
2217
2218 unsigned original_bl_len = outcoming_bl.length();
2219
2220 outcoming_bl.append(CEPH_MSGR_TAG_MSG);
2221
2222 if (has_feature(CEPH_FEATURE_NOSRCADDR)) {
2223 outcoming_bl.append((char*)&header, sizeof(header));
2224 } else {
2225 ceph_msg_header_old oldheader;
2226 memcpy(&oldheader, &header, sizeof(header));
2227 oldheader.src.name = header.src;
2228 oldheader.src.addr = get_peer_addr();
2229 oldheader.orig_src = oldheader.src;
2230 oldheader.reserved = header.reserved;
2231 oldheader.crc = ceph_crc32c(0, (unsigned char*)&oldheader,
2232 sizeof(oldheader) - sizeof(oldheader.crc));
2233 outcoming_bl.append((char*)&oldheader, sizeof(oldheader));
2234 }
2235
2236 ldout(async_msgr->cct, 20) << __func__ << " sending message type=" << header.type
2237 << " src " << entity_name_t(header.src)
2238 << " front=" << header.front_len
2239 << " data=" << header.data_len
2240 << " off " << header.data_off << dendl;
2241
2242 if ((bl.length() <= ASYNC_COALESCE_THRESHOLD) && (bl.buffers().size() > 1)) {
2243 std::list<buffer::ptr>::const_iterator pb;
2244 for (pb = bl.buffers().begin(); pb != bl.buffers().end(); ++pb) {
2245 outcoming_bl.append((char*)pb->c_str(), pb->length());
2246 }
2247 } else {
2248 outcoming_bl.claim_append(bl);
2249 }
2250
2251 // send footer; if receiver doesn't support signatures, use the old footer format
2252 ceph_msg_footer_old old_footer;
2253 if (has_feature(CEPH_FEATURE_MSG_AUTH)) {
2254 outcoming_bl.append((char*)&footer, sizeof(footer));
2255 } else {
2256 if (msgr->crcflags & MSG_CRC_HEADER) {
2257 old_footer.front_crc = footer.front_crc;
2258 old_footer.middle_crc = footer.middle_crc;
2259 old_footer.data_crc = footer.data_crc;
2260 } else {
2261 old_footer.front_crc = old_footer.middle_crc = 0;
2262 }
2263 old_footer.data_crc = msgr->crcflags & MSG_CRC_DATA ? footer.data_crc : 0;
2264 old_footer.flags = footer.flags;
2265 outcoming_bl.append((char*)&old_footer, sizeof(old_footer));
2266 }
2267
2268 m->trace.event("async writing message");
2269 logger->inc(l_msgr_send_bytes, outcoming_bl.length() - original_bl_len);
2270 ldout(async_msgr->cct, 20) << __func__ << " sending " << m->get_seq()
2271 << " " << m << dendl;
2272 ssize_t rc = _try_send(more);
2273 if (rc < 0) {
2274 ldout(async_msgr->cct, 1) << __func__ << " error sending " << m << ", "
2275 << cpp_strerror(rc) << dendl;
2276 } else if (rc == 0) {
2277 ldout(async_msgr->cct, 10) << __func__ << " sending " << m << " done." << dendl;
2278 } else {
2279 ldout(async_msgr->cct, 10) << __func__ << " sending " << m << " continuely." << dendl;
2280 }
2281 if (m->get_type() == CEPH_MSG_OSD_OP)
2282 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OP_END", false);
2283 else if (m->get_type() == CEPH_MSG_OSD_OPREPLY)
2284 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OPREPLY_END", false);
2285 m->put();
2286
2287 return rc;
2288 }
2289
2290 void AsyncConnection::reset_recv_state()
2291 {
2292 // clean up state internal variables and states
2293 if (state >= STATE_CONNECTING_SEND_CONNECT_MSG &&
2294 state <= STATE_CONNECTING_READY) {
2295 delete authorizer;
2296 authorizer = NULL;
2297 got_bad_auth = false;
2298 }
2299
2300 if (state > STATE_OPEN_MESSAGE_THROTTLE_MESSAGE &&
2301 state <= STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH
2302 && policy.throttler_messages) {
2303 ldout(async_msgr->cct, 10) << __func__ << " releasing " << 1
2304 << " message to policy throttler "
2305 << policy.throttler_messages->get_current() << "/"
2306 << policy.throttler_messages->get_max() << dendl;
2307 policy.throttler_messages->put();
2308 }
2309 if (state > STATE_OPEN_MESSAGE_THROTTLE_BYTES &&
2310 state <= STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH) {
2311 if (policy.throttler_bytes) {
2312 ldout(async_msgr->cct, 10) << __func__ << " releasing " << cur_msg_size
2313 << " bytes to policy throttler "
2314 << policy.throttler_bytes->get_current() << "/"
2315 << policy.throttler_bytes->get_max() << dendl;
2316 policy.throttler_bytes->put(cur_msg_size);
2317 }
2318 }
2319 if (state > STATE_OPEN_MESSAGE_THROTTLE_DISPATCH_QUEUE &&
2320 state <= STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH) {
2321 ldout(async_msgr->cct, 10) << __func__ << " releasing " << cur_msg_size
2322 << " bytes to dispatch_queue throttler "
2323 << dispatch_queue->dispatch_throttler.get_current() << "/"
2324 << dispatch_queue->dispatch_throttler.get_max() << dendl;
2325 dispatch_queue->dispatch_throttle_release(cur_msg_size);
2326 }
2327 }
2328
2329 void AsyncConnection::handle_ack(uint64_t seq)
2330 {
2331 ldout(async_msgr->cct, 15) << __func__ << " got ack seq " << seq << dendl;
2332 // trim sent list
2333 std::lock_guard<std::mutex> l(write_lock);
2334 while (!sent.empty() && sent.front()->get_seq() <= seq) {
2335 Message* m = sent.front();
2336 sent.pop_front();
2337 ldout(async_msgr->cct, 10) << __func__ << " got ack seq "
2338 << seq << " >= " << m->get_seq() << " on "
2339 << m << " " << *m << dendl;
2340 m->put();
2341 }
2342 }
2343
2344 void AsyncConnection::DelayedDelivery::do_request(int id)
2345 {
2346 Message *m = nullptr;
2347 {
2348 std::lock_guard<std::mutex> l(delay_lock);
2349 register_time_events.erase(id);
2350 if (stop_dispatch)
2351 return ;
2352 if (delay_queue.empty())
2353 return ;
2354 utime_t release = delay_queue.front().first;
2355 m = delay_queue.front().second;
2356 string delay_msg_type = msgr->cct->_conf->ms_inject_delay_msg_type;
2357 utime_t now = ceph_clock_now();
2358 if ((release > now &&
2359 (delay_msg_type.empty() || m->get_type_name() == delay_msg_type))) {
2360 utime_t t = release - now;
2361 t.sleep();
2362 }
2363 delay_queue.pop_front();
2364 }
2365 if (msgr->ms_can_fast_dispatch(m)) {
2366 dispatch_queue->fast_dispatch(m);
2367 } else {
2368 dispatch_queue->enqueue(m, m->get_priority(), conn_id);
2369 }
2370 }
2371
2372 void AsyncConnection::DelayedDelivery::flush() {
2373 stop_dispatch = true;
2374 center->submit_to(
2375 center->get_id(), [this] () mutable {
2376 std::lock_guard<std::mutex> l(delay_lock);
2377 while (!delay_queue.empty()) {
2378 Message *m = delay_queue.front().second;
2379 if (msgr->ms_can_fast_dispatch(m)) {
2380 dispatch_queue->fast_dispatch(m);
2381 } else {
2382 dispatch_queue->enqueue(m, m->get_priority(), conn_id);
2383 }
2384 delay_queue.pop_front();
2385 }
2386 for (auto i : register_time_events)
2387 center->delete_time_event(i);
2388 register_time_events.clear();
2389 stop_dispatch = false;
2390 }, true);
2391 }
2392
2393 void AsyncConnection::send_keepalive()
2394 {
2395 ldout(async_msgr->cct, 10) << __func__ << dendl;
2396 std::lock_guard<std::mutex> l(write_lock);
2397 if (can_write != WriteStatus::CLOSED) {
2398 keepalive = true;
2399 center->dispatch_event_external(write_handler);
2400 }
2401 }
2402
2403 void AsyncConnection::mark_down()
2404 {
2405 ldout(async_msgr->cct, 1) << __func__ << dendl;
2406 std::lock_guard<std::mutex> l(lock);
2407 _stop();
2408 }
2409
2410 void AsyncConnection::_append_keepalive_or_ack(bool ack, utime_t *tp)
2411 {
2412 ldout(async_msgr->cct, 10) << __func__ << dendl;
2413 if (ack) {
2414 assert(tp);
2415 struct ceph_timespec ts;
2416 tp->encode_timeval(&ts);
2417 outcoming_bl.append(CEPH_MSGR_TAG_KEEPALIVE2_ACK);
2418 outcoming_bl.append((char*)&ts, sizeof(ts));
2419 } else if (has_feature(CEPH_FEATURE_MSGR_KEEPALIVE2)) {
2420 struct ceph_timespec ts;
2421 utime_t t = ceph_clock_now();
2422 t.encode_timeval(&ts);
2423 outcoming_bl.append(CEPH_MSGR_TAG_KEEPALIVE2);
2424 outcoming_bl.append((char*)&ts, sizeof(ts));
2425 } else {
2426 outcoming_bl.append(CEPH_MSGR_TAG_KEEPALIVE);
2427 }
2428 }
2429
2430 void AsyncConnection::handle_write()
2431 {
2432 ldout(async_msgr->cct, 10) << __func__ << dendl;
2433 ssize_t r = 0;
2434
2435 write_lock.lock();
2436 if (can_write == WriteStatus::CANWRITE) {
2437 if (keepalive) {
2438 _append_keepalive_or_ack();
2439 keepalive = false;
2440 }
2441
2442 auto start = ceph::mono_clock::now();
2443 bool more;
2444 do {
2445 bufferlist data;
2446 Message *m = _get_next_outgoing(&data);
2447 if (!m)
2448 break;
2449
2450 if (!policy.lossy) {
2451 // put on sent list
2452 sent.push_back(m);
2453 m->get();
2454 }
2455 more = _has_next_outgoing();
2456 write_lock.unlock();
2457
2458 // send_message or requeue messages may not encode message
2459 if (!data.length())
2460 prepare_send_message(get_features(), m, data);
2461
2462 r = write_message(m, data, more);
2463 if (r < 0) {
2464 ldout(async_msgr->cct, 1) << __func__ << " send msg failed" << dendl;
2465 goto fail;
2466 }
2467 write_lock.lock();
2468 if (r > 0)
2469 break;
2470 } while (can_write == WriteStatus::CANWRITE);
2471 write_lock.unlock();
2472
2473 uint64_t left = ack_left;
2474 if (left) {
2475 ceph_le64 s;
2476 s = in_seq;
2477 outcoming_bl.append(CEPH_MSGR_TAG_ACK);
2478 outcoming_bl.append((char*)&s, sizeof(s));
2479 ldout(async_msgr->cct, 10) << __func__ << " try send msg ack, acked " << left << " messages" << dendl;
2480 ack_left -= left;
2481 left = ack_left;
2482 r = _try_send(left);
2483 } else if (is_queued()) {
2484 r = _try_send();
2485 }
2486
2487 logger->tinc(l_msgr_running_send_time, ceph::mono_clock::now() - start);
2488 if (r < 0) {
2489 ldout(async_msgr->cct, 1) << __func__ << " send msg failed" << dendl;
2490 goto fail;
2491 }
2492 } else {
2493 write_lock.unlock();
2494 lock.lock();
2495 write_lock.lock();
2496 if (state == STATE_STANDBY && !policy.server && is_queued()) {
2497 ldout(async_msgr->cct, 10) << __func__ << " policy.server is false" << dendl;
2498 _connect();
2499 } else if (cs && state != STATE_NONE && state != STATE_CONNECTING && state != STATE_CONNECTING_RE && state != STATE_CLOSED) {
2500 r = _try_send();
2501 if (r < 0) {
2502 ldout(async_msgr->cct, 1) << __func__ << " send outcoming bl failed" << dendl;
2503 write_lock.unlock();
2504 fault();
2505 lock.unlock();
2506 return ;
2507 }
2508 }
2509 write_lock.unlock();
2510 lock.unlock();
2511 }
2512
2513 return ;
2514
2515 fail:
2516 lock.lock();
2517 fault();
2518 lock.unlock();
2519 }
2520
2521 void AsyncConnection::wakeup_from(uint64_t id)
2522 {
2523 lock.lock();
2524 register_time_events.erase(id);
2525 lock.unlock();
2526 process();
2527 }
2528
2529 void AsyncConnection::tick(uint64_t id)
2530 {
2531 auto now = ceph::coarse_mono_clock::now();
2532 ldout(async_msgr->cct, 20) << __func__ << " last_id=" << last_tick_id
2533 << " last_active" << last_active << dendl;
2534 std::lock_guard<std::mutex> l(lock);
2535 last_tick_id = 0;
2536 auto idle_period = std::chrono::duration_cast<std::chrono::microseconds>(now - last_active).count();
2537 if (inactive_timeout_us < (uint64_t)idle_period) {
2538 ldout(async_msgr->cct, 1) << __func__ << " idle(" << idle_period << ") more than "
2539 << inactive_timeout_us
2540 << " us, mark self fault." << dendl;
2541 fault();
2542 } else if (is_connected()) {
2543 last_tick_id = center->create_time_event(inactive_timeout_us, tick_handler);
2544 }
2545 }