]> git.proxmox.com Git - ceph.git/blob - ceph/src/msg/async/AsyncConnection.cc
update sources to 12.2.7
[ceph.git] / ceph / src / msg / async / AsyncConnection.cc
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3 /*
4 * Ceph - scalable distributed file system
5 *
6 * Copyright (C) 2014 UnitedStack <haomai@unitedstack.com>
7 *
8 * Author: Haomai Wang <haomaiwang@gmail.com>
9 *
10 * This is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License version 2.1, as published by the Free Software
13 * Foundation. See file COPYING.
14 *
15 */
16
17 #include <unistd.h>
18
19 #include "include/Context.h"
20 #include "common/errno.h"
21 #include "AsyncMessenger.h"
22 #include "AsyncConnection.h"
23
24 #include "messages/MOSDOp.h"
25 #include "messages/MOSDOpReply.h"
26 #include "common/EventTrace.h"
27
28 // Constant to limit starting sequence number to 2^31. Nothing special about it, just a big number. PLR
29 #define SEQ_MASK 0x7fffffff
30
31 #define dout_subsys ceph_subsys_ms
32 #undef dout_prefix
33 #define dout_prefix _conn_prefix(_dout)
34 ostream& AsyncConnection::_conn_prefix(std::ostream *_dout) {
35 return *_dout << "-- " << async_msgr->get_myinst().addr << " >> " << peer_addr << " conn(" << this
36 << " :" << port
37 << " s=" << get_state_name(state)
38 << " pgs=" << peer_global_seq
39 << " cs=" << connect_seq
40 << " l=" << policy.lossy
41 << ").";
42 }
43
44 // Notes:
45 // 1. Don't dispatch any event when closed! It may cause AsyncConnection alive even if AsyncMessenger dead
46
47 const int AsyncConnection::TCP_PREFETCH_MIN_SIZE = 512;
48 const int ASYNC_COALESCE_THRESHOLD = 256;
49
50 class C_time_wakeup : public EventCallback {
51 AsyncConnectionRef conn;
52
53 public:
54 explicit C_time_wakeup(AsyncConnectionRef c): conn(c) {}
55 void do_request(int fd_or_id) override {
56 conn->wakeup_from(fd_or_id);
57 }
58 };
59
60 class C_handle_read : public EventCallback {
61 AsyncConnectionRef conn;
62
63 public:
64 explicit C_handle_read(AsyncConnectionRef c): conn(c) {}
65 void do_request(int fd_or_id) override {
66 conn->process();
67 }
68 };
69
70 class C_handle_write : public EventCallback {
71 AsyncConnectionRef conn;
72
73 public:
74 explicit C_handle_write(AsyncConnectionRef c): conn(c) {}
75 void do_request(int fd) override {
76 conn->handle_write();
77 }
78 };
79
80 class C_clean_handler : public EventCallback {
81 AsyncConnectionRef conn;
82 public:
83 explicit C_clean_handler(AsyncConnectionRef c): conn(c) {}
84 void do_request(int id) override {
85 conn->cleanup();
86 delete this;
87 }
88 };
89
90 class C_tick_wakeup : public EventCallback {
91 AsyncConnectionRef conn;
92
93 public:
94 explicit C_tick_wakeup(AsyncConnectionRef c): conn(c) {}
95 void do_request(int fd_or_id) override {
96 conn->tick(fd_or_id);
97 }
98 };
99
100 static void alloc_aligned_buffer(bufferlist& data, unsigned len, unsigned off)
101 {
102 // create a buffer to read into that matches the data alignment
103 unsigned left = len;
104 if (off & ~CEPH_PAGE_MASK) {
105 // head
106 unsigned head = 0;
107 head = MIN(CEPH_PAGE_SIZE - (off & ~CEPH_PAGE_MASK), left);
108 data.push_back(buffer::create(head));
109 left -= head;
110 }
111 unsigned middle = left & CEPH_PAGE_MASK;
112 if (middle > 0) {
113 data.push_back(buffer::create_page_aligned(middle));
114 left -= middle;
115 }
116 if (left) {
117 data.push_back(buffer::create(left));
118 }
119 }
120
121 AsyncConnection::AsyncConnection(CephContext *cct, AsyncMessenger *m, DispatchQueue *q,
122 Worker *w)
123 : Connection(cct, m), delay_state(NULL), async_msgr(m), conn_id(q->get_id()),
124 logger(w->get_perf_counter()), global_seq(0), connect_seq(0), peer_global_seq(0),
125 state(STATE_NONE), state_after_send(STATE_NONE), port(-1),
126 dispatch_queue(q), can_write(WriteStatus::NOWRITE),
127 keepalive(false), recv_buf(NULL),
128 recv_max_prefetch(MAX(msgr->cct->_conf->ms_tcp_prefetch_max_size, TCP_PREFETCH_MIN_SIZE)),
129 recv_start(0), recv_end(0),
130 last_active(ceph::coarse_mono_clock::now()),
131 inactive_timeout_us(cct->_conf->ms_tcp_read_timeout*1000*1000),
132 got_bad_auth(false), authorizer(NULL), replacing(false),
133 is_reset_from_peer(false), once_ready(false), state_buffer(NULL), state_offset(0),
134 worker(w), center(&w->center)
135 {
136 read_handler = new C_handle_read(this);
137 write_handler = new C_handle_write(this);
138 wakeup_handler = new C_time_wakeup(this);
139 tick_handler = new C_tick_wakeup(this);
140 memset(msgvec, 0, sizeof(msgvec));
141 // double recv_max_prefetch see "read_until"
142 recv_buf = new char[2*recv_max_prefetch];
143 state_buffer = new char[4096];
144 logger->inc(l_msgr_created_connections);
145 }
146
147 AsyncConnection::~AsyncConnection()
148 {
149 assert(out_q.empty());
150 assert(sent.empty());
151 delete authorizer;
152 if (recv_buf)
153 delete[] recv_buf;
154 if (state_buffer)
155 delete[] state_buffer;
156 assert(!delay_state);
157 }
158
159 void AsyncConnection::maybe_start_delay_thread()
160 {
161 if (!delay_state) {
162 auto pos = async_msgr->cct->_conf->get_val<std::string>("ms_inject_delay_type").find(ceph_entity_type_name(peer_type));
163 if (pos != string::npos) {
164 ldout(msgr->cct, 1) << __func__ << " setting up a delay queue" << dendl;
165 delay_state = new DelayedDelivery(async_msgr, center, dispatch_queue, conn_id);
166 }
167 }
168 }
169
170 /* return -1 means `fd` occurs error or closed, it should be closed
171 * return 0 means EAGAIN or EINTR */
172 ssize_t AsyncConnection::read_bulk(char *buf, unsigned len)
173 {
174 ssize_t nread;
175 again:
176 nread = cs.read(buf, len);
177 if (nread < 0) {
178 if (nread == -EAGAIN) {
179 nread = 0;
180 } else if (nread == -EINTR) {
181 goto again;
182 } else {
183 ldout(async_msgr->cct, 1) << __func__ << " reading from fd=" << cs.fd()
184 << " : "<< strerror(nread) << dendl;
185 return -1;
186 }
187 } else if (nread == 0) {
188 ldout(async_msgr->cct, 1) << __func__ << " peer close file descriptor "
189 << cs.fd() << dendl;
190 return -1;
191 }
192 return nread;
193 }
194
195 // return the remaining bytes, it may larger than the length of ptr
196 // else return < 0 means error
197 ssize_t AsyncConnection::_try_send(bool more)
198 {
199 if (async_msgr->cct->_conf->ms_inject_socket_failures && cs) {
200 if (rand() % async_msgr->cct->_conf->ms_inject_socket_failures == 0) {
201 ldout(async_msgr->cct, 0) << __func__ << " injecting socket failure" << dendl;
202 cs.shutdown();
203 }
204 }
205
206 assert(center->in_thread());
207 ssize_t r = cs.send(outcoming_bl, more);
208 if (r < 0) {
209 ldout(async_msgr->cct, 1) << __func__ << " send error: " << cpp_strerror(r) << dendl;
210 return r;
211 }
212
213 ldout(async_msgr->cct, 10) << __func__ << " sent bytes " << r
214 << " remaining bytes " << outcoming_bl.length() << dendl;
215
216 if (!open_write && is_queued()) {
217 center->create_file_event(cs.fd(), EVENT_WRITABLE, write_handler);
218 open_write = true;
219 }
220
221 if (open_write && !is_queued()) {
222 center->delete_file_event(cs.fd(), EVENT_WRITABLE);
223 open_write = false;
224 if (state_after_send != STATE_NONE)
225 center->dispatch_event_external(read_handler);
226 }
227
228 return outcoming_bl.length();
229 }
230
231 // Because this func will be called multi times to populate
232 // the needed buffer, so the passed in bufferptr must be the same.
233 // Normally, only "read_message" will pass existing bufferptr in
234 //
235 // And it will uses readahead method to reduce small read overhead,
236 // "recv_buf" is used to store read buffer
237 //
238 // return the remaining bytes, 0 means this buffer is finished
239 // else return < 0 means error
240 ssize_t AsyncConnection::read_until(unsigned len, char *p)
241 {
242 ldout(async_msgr->cct, 25) << __func__ << " len is " << len << " state_offset is "
243 << state_offset << dendl;
244
245 if (async_msgr->cct->_conf->ms_inject_socket_failures && cs) {
246 if (rand() % async_msgr->cct->_conf->ms_inject_socket_failures == 0) {
247 ldout(async_msgr->cct, 0) << __func__ << " injecting socket failure" << dendl;
248 cs.shutdown();
249 }
250 }
251
252 ssize_t r = 0;
253 uint64_t left = len - state_offset;
254 if (recv_end > recv_start) {
255 uint64_t to_read = MIN(recv_end - recv_start, left);
256 memcpy(p, recv_buf+recv_start, to_read);
257 recv_start += to_read;
258 left -= to_read;
259 ldout(async_msgr->cct, 25) << __func__ << " got " << to_read << " in buffer "
260 << " left is " << left << " buffer still has "
261 << recv_end - recv_start << dendl;
262 if (left == 0) {
263 return 0;
264 }
265 state_offset += to_read;
266 }
267
268 recv_end = recv_start = 0;
269 /* nothing left in the prefetch buffer */
270 if (len > recv_max_prefetch) {
271 /* this was a large read, we don't prefetch for these */
272 do {
273 r = read_bulk(p+state_offset, left);
274 ldout(async_msgr->cct, 25) << __func__ << " read_bulk left is " << left << " got " << r << dendl;
275 if (r < 0) {
276 ldout(async_msgr->cct, 1) << __func__ << " read failed" << dendl;
277 return -1;
278 } else if (r == static_cast<int>(left)) {
279 state_offset = 0;
280 return 0;
281 }
282 state_offset += r;
283 left -= r;
284 } while (r > 0);
285 } else {
286 do {
287 r = read_bulk(recv_buf+recv_end, recv_max_prefetch);
288 ldout(async_msgr->cct, 25) << __func__ << " read_bulk recv_end is " << recv_end
289 << " left is " << left << " got " << r << dendl;
290 if (r < 0) {
291 ldout(async_msgr->cct, 1) << __func__ << " read failed" << dendl;
292 return -1;
293 }
294 recv_end += r;
295 if (r >= static_cast<int>(left)) {
296 recv_start = len - state_offset;
297 memcpy(p+state_offset, recv_buf, recv_start);
298 state_offset = 0;
299 return 0;
300 }
301 left -= r;
302 } while (r > 0);
303 memcpy(p+state_offset, recv_buf, recv_end-recv_start);
304 state_offset += (recv_end - recv_start);
305 recv_end = recv_start = 0;
306 }
307 ldout(async_msgr->cct, 25) << __func__ << " need len " << len << " remaining "
308 << len - state_offset << " bytes" << dendl;
309 return len - state_offset;
310 }
311
312 void AsyncConnection::inject_delay() {
313 if (async_msgr->cct->_conf->ms_inject_internal_delays) {
314 ldout(async_msgr->cct, 10) << __func__ << " sleep for " <<
315 async_msgr->cct->_conf->ms_inject_internal_delays << dendl;
316 utime_t t;
317 t.set_from_double(async_msgr->cct->_conf->ms_inject_internal_delays);
318 t.sleep();
319 }
320 }
321
322 void AsyncConnection::process()
323 {
324 ssize_t r = 0;
325 int prev_state = state;
326 #if defined(WITH_LTTNG) && defined(WITH_EVENTTRACE)
327 utime_t ltt_recv_stamp = ceph_clock_now();
328 #endif
329 bool need_dispatch_writer = false;
330 std::lock_guard<std::mutex> l(lock);
331 last_active = ceph::coarse_mono_clock::now();
332 auto recv_start_time = ceph::mono_clock::now();
333 do {
334 ldout(async_msgr->cct, 20) << __func__ << " prev state is " << get_state_name(prev_state) << dendl;
335 prev_state = state;
336 switch (state) {
337 case STATE_OPEN:
338 {
339 char tag = -1;
340 r = read_until(sizeof(tag), &tag);
341 if (r < 0) {
342 ldout(async_msgr->cct, 1) << __func__ << " read tag failed" << dendl;
343 goto fail;
344 } else if (r > 0) {
345 break;
346 }
347
348 if (tag == CEPH_MSGR_TAG_KEEPALIVE) {
349 ldout(async_msgr->cct, 20) << __func__ << " got KEEPALIVE" << dendl;
350 set_last_keepalive(ceph_clock_now());
351 } else if (tag == CEPH_MSGR_TAG_KEEPALIVE2) {
352 state = STATE_OPEN_KEEPALIVE2;
353 } else if (tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
354 state = STATE_OPEN_KEEPALIVE2_ACK;
355 } else if (tag == CEPH_MSGR_TAG_ACK) {
356 state = STATE_OPEN_TAG_ACK;
357 } else if (tag == CEPH_MSGR_TAG_MSG) {
358 state = STATE_OPEN_MESSAGE_HEADER;
359 } else if (tag == CEPH_MSGR_TAG_CLOSE) {
360 state = STATE_OPEN_TAG_CLOSE;
361 } else {
362 ldout(async_msgr->cct, 0) << __func__ << " bad tag " << (int)tag << dendl;
363 goto fail;
364 }
365
366 break;
367 }
368
369 case STATE_OPEN_KEEPALIVE2:
370 {
371 ceph_timespec *t;
372 r = read_until(sizeof(*t), state_buffer);
373 if (r < 0) {
374 ldout(async_msgr->cct, 1) << __func__ << " read keeplive timespec failed" << dendl;
375 goto fail;
376 } else if (r > 0) {
377 break;
378 }
379
380 ldout(async_msgr->cct, 30) << __func__ << " got KEEPALIVE2 tag ..." << dendl;
381 t = (ceph_timespec*)state_buffer;
382 utime_t kp_t = utime_t(*t);
383 write_lock.lock();
384 _append_keepalive_or_ack(true, &kp_t);
385 write_lock.unlock();
386 ldout(async_msgr->cct, 20) << __func__ << " got KEEPALIVE2 " << kp_t << dendl;
387 set_last_keepalive(ceph_clock_now());
388 need_dispatch_writer = true;
389 state = STATE_OPEN;
390 break;
391 }
392
393 case STATE_OPEN_KEEPALIVE2_ACK:
394 {
395 ceph_timespec *t;
396 r = read_until(sizeof(*t), state_buffer);
397 if (r < 0) {
398 ldout(async_msgr->cct, 1) << __func__ << " read keeplive timespec failed" << dendl;
399 goto fail;
400 } else if (r > 0) {
401 break;
402 }
403
404 t = (ceph_timespec*)state_buffer;
405 set_last_keepalive_ack(utime_t(*t));
406 ldout(async_msgr->cct, 20) << __func__ << " got KEEPALIVE_ACK" << dendl;
407 state = STATE_OPEN;
408 break;
409 }
410
411 case STATE_OPEN_TAG_ACK:
412 {
413 ceph_le64 *seq;
414 r = read_until(sizeof(*seq), state_buffer);
415 if (r < 0) {
416 ldout(async_msgr->cct, 1) << __func__ << " read ack seq failed" << dendl;
417 goto fail;
418 } else if (r > 0) {
419 break;
420 }
421
422 seq = (ceph_le64*)state_buffer;
423 ldout(async_msgr->cct, 20) << __func__ << " got ACK" << dendl;
424 handle_ack(*seq);
425 state = STATE_OPEN;
426 break;
427 }
428
429 case STATE_OPEN_MESSAGE_HEADER:
430 {
431 #if defined(WITH_LTTNG) && defined(WITH_EVENTTRACE)
432 ltt_recv_stamp = ceph_clock_now();
433 #endif
434 recv_stamp = ceph_clock_now();
435 ldout(async_msgr->cct, 20) << __func__ << " begin MSG" << dendl;
436 ceph_msg_header header;
437 ceph_msg_header_old oldheader;
438 __u32 header_crc = 0;
439 unsigned len;
440 if (has_feature(CEPH_FEATURE_NOSRCADDR))
441 len = sizeof(header);
442 else
443 len = sizeof(oldheader);
444
445 r = read_until(len, state_buffer);
446 if (r < 0) {
447 ldout(async_msgr->cct, 1) << __func__ << " read message header failed" << dendl;
448 goto fail;
449 } else if (r > 0) {
450 break;
451 }
452
453 ldout(async_msgr->cct, 20) << __func__ << " got MSG header" << dendl;
454
455 if (has_feature(CEPH_FEATURE_NOSRCADDR)) {
456 header = *((ceph_msg_header*)state_buffer);
457 if (msgr->crcflags & MSG_CRC_HEADER)
458 header_crc = ceph_crc32c(0, (unsigned char *)&header,
459 sizeof(header) - sizeof(header.crc));
460 } else {
461 oldheader = *((ceph_msg_header_old*)state_buffer);
462 // this is fugly
463 memcpy(&header, &oldheader, sizeof(header));
464 header.src = oldheader.src.name;
465 header.reserved = oldheader.reserved;
466 if (msgr->crcflags & MSG_CRC_HEADER) {
467 header.crc = oldheader.crc;
468 header_crc = ceph_crc32c(0, (unsigned char *)&oldheader, sizeof(oldheader) - sizeof(oldheader.crc));
469 }
470 }
471
472 ldout(async_msgr->cct, 20) << __func__ << " got envelope type=" << header.type
473 << " src " << entity_name_t(header.src)
474 << " front=" << header.front_len
475 << " data=" << header.data_len
476 << " off " << header.data_off << dendl;
477
478 // verify header crc
479 if (msgr->crcflags & MSG_CRC_HEADER && header_crc != header.crc) {
480 ldout(async_msgr->cct,0) << __func__ << " got bad header crc "
481 << header_crc << " != " << header.crc << dendl;
482 goto fail;
483 }
484
485 // Reset state
486 data_buf.clear();
487 front.clear();
488 middle.clear();
489 data.clear();
490 current_header = header;
491 state = STATE_OPEN_MESSAGE_THROTTLE_MESSAGE;
492 break;
493 }
494
495 case STATE_OPEN_MESSAGE_THROTTLE_MESSAGE:
496 {
497 if (policy.throttler_messages) {
498 ldout(async_msgr->cct, 10) << __func__ << " wants " << 1 << " message from policy throttler "
499 << policy.throttler_messages->get_current() << "/"
500 << policy.throttler_messages->get_max() << dendl;
501 if (!policy.throttler_messages->get_or_fail()) {
502 ldout(async_msgr->cct, 10) << __func__ << " wants 1 message from policy throttle "
503 << policy.throttler_messages->get_current() << "/"
504 << policy.throttler_messages->get_max() << " failed, just wait." << dendl;
505 // following thread pool deal with th full message queue isn't a
506 // short time, so we can wait a ms.
507 if (register_time_events.empty())
508 register_time_events.insert(center->create_time_event(1000, wakeup_handler));
509 break;
510 }
511 }
512
513 state = STATE_OPEN_MESSAGE_THROTTLE_BYTES;
514 break;
515 }
516
517 case STATE_OPEN_MESSAGE_THROTTLE_BYTES:
518 {
519 cur_msg_size = current_header.front_len + current_header.middle_len + current_header.data_len;
520 if (cur_msg_size) {
521 if (policy.throttler_bytes) {
522 ldout(async_msgr->cct, 10) << __func__ << " wants " << cur_msg_size << " bytes from policy throttler "
523 << policy.throttler_bytes->get_current() << "/"
524 << policy.throttler_bytes->get_max() << dendl;
525 if (!policy.throttler_bytes->get_or_fail(cur_msg_size)) {
526 ldout(async_msgr->cct, 10) << __func__ << " wants " << cur_msg_size << " bytes from policy throttler "
527 << policy.throttler_bytes->get_current() << "/"
528 << policy.throttler_bytes->get_max() << " failed, just wait." << dendl;
529 // following thread pool deal with th full message queue isn't a
530 // short time, so we can wait a ms.
531 if (register_time_events.empty())
532 register_time_events.insert(center->create_time_event(1000, wakeup_handler));
533 break;
534 }
535 }
536 }
537
538 state = STATE_OPEN_MESSAGE_THROTTLE_DISPATCH_QUEUE;
539 break;
540 }
541
542 case STATE_OPEN_MESSAGE_THROTTLE_DISPATCH_QUEUE:
543 {
544 if (cur_msg_size) {
545 if (!dispatch_queue->dispatch_throttler.get_or_fail(cur_msg_size)) {
546 ldout(async_msgr->cct, 10) << __func__ << " wants " << cur_msg_size << " bytes from dispatch throttle "
547 << dispatch_queue->dispatch_throttler.get_current() << "/"
548 << dispatch_queue->dispatch_throttler.get_max() << " failed, just wait." << dendl;
549 // following thread pool deal with th full message queue isn't a
550 // short time, so we can wait a ms.
551 if (register_time_events.empty())
552 register_time_events.insert(center->create_time_event(1000, wakeup_handler));
553 break;
554 }
555 }
556
557 throttle_stamp = ceph_clock_now();
558 state = STATE_OPEN_MESSAGE_READ_FRONT;
559 break;
560 }
561
562 case STATE_OPEN_MESSAGE_READ_FRONT:
563 {
564 // read front
565 unsigned front_len = current_header.front_len;
566 if (front_len) {
567 if (!front.length())
568 front.push_back(buffer::create(front_len));
569
570 r = read_until(front_len, front.c_str());
571 if (r < 0) {
572 ldout(async_msgr->cct, 1) << __func__ << " read message front failed" << dendl;
573 goto fail;
574 } else if (r > 0) {
575 break;
576 }
577
578 ldout(async_msgr->cct, 20) << __func__ << " got front " << front.length() << dendl;
579 }
580 state = STATE_OPEN_MESSAGE_READ_MIDDLE;
581 }
582
583 case STATE_OPEN_MESSAGE_READ_MIDDLE:
584 {
585 // read middle
586 unsigned middle_len = current_header.middle_len;
587 if (middle_len) {
588 if (!middle.length())
589 middle.push_back(buffer::create(middle_len));
590
591 r = read_until(middle_len, middle.c_str());
592 if (r < 0) {
593 ldout(async_msgr->cct, 1) << __func__ << " read message middle failed" << dendl;
594 goto fail;
595 } else if (r > 0) {
596 break;
597 }
598 ldout(async_msgr->cct, 20) << __func__ << " got middle " << middle.length() << dendl;
599 }
600
601 state = STATE_OPEN_MESSAGE_READ_DATA_PREPARE;
602 }
603
604 case STATE_OPEN_MESSAGE_READ_DATA_PREPARE:
605 {
606 // read data
607 unsigned data_len = le32_to_cpu(current_header.data_len);
608 unsigned data_off = le32_to_cpu(current_header.data_off);
609 if (data_len) {
610 // get a buffer
611 map<ceph_tid_t,pair<bufferlist,int> >::iterator p = rx_buffers.find(current_header.tid);
612 if (p != rx_buffers.end()) {
613 ldout(async_msgr->cct,10) << __func__ << " seleting rx buffer v " << p->second.second
614 << " at offset " << data_off
615 << " len " << p->second.first.length() << dendl;
616 data_buf = p->second.first;
617 // make sure it's big enough
618 if (data_buf.length() < data_len)
619 data_buf.push_back(buffer::create(data_len - data_buf.length()));
620 data_blp = data_buf.begin();
621 } else {
622 ldout(async_msgr->cct,20) << __func__ << " allocating new rx buffer at offset " << data_off << dendl;
623 alloc_aligned_buffer(data_buf, data_len, data_off);
624 data_blp = data_buf.begin();
625 }
626 }
627
628 msg_left = data_len;
629 state = STATE_OPEN_MESSAGE_READ_DATA;
630 }
631
632 case STATE_OPEN_MESSAGE_READ_DATA:
633 {
634 while (msg_left > 0) {
635 bufferptr bp = data_blp.get_current_ptr();
636 unsigned read = MIN(bp.length(), msg_left);
637 r = read_until(read, bp.c_str());
638 if (r < 0) {
639 ldout(async_msgr->cct, 1) << __func__ << " read data error " << dendl;
640 goto fail;
641 } else if (r > 0) {
642 break;
643 }
644
645 data_blp.advance(read);
646 data.append(bp, 0, read);
647 msg_left -= read;
648 }
649
650 if (msg_left > 0)
651 break;
652
653 state = STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH;
654 }
655
656 case STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH:
657 {
658 ceph_msg_footer footer;
659 ceph_msg_footer_old old_footer;
660 unsigned len;
661 // footer
662 if (has_feature(CEPH_FEATURE_MSG_AUTH))
663 len = sizeof(footer);
664 else
665 len = sizeof(old_footer);
666
667 r = read_until(len, state_buffer);
668 if (r < 0) {
669 ldout(async_msgr->cct, 1) << __func__ << " read footer data error " << dendl;
670 goto fail;
671 } else if (r > 0) {
672 break;
673 }
674
675 if (has_feature(CEPH_FEATURE_MSG_AUTH)) {
676 footer = *((ceph_msg_footer*)state_buffer);
677 } else {
678 old_footer = *((ceph_msg_footer_old*)state_buffer);
679 footer.front_crc = old_footer.front_crc;
680 footer.middle_crc = old_footer.middle_crc;
681 footer.data_crc = old_footer.data_crc;
682 footer.sig = 0;
683 footer.flags = old_footer.flags;
684 }
685 int aborted = (footer.flags & CEPH_MSG_FOOTER_COMPLETE) == 0;
686 ldout(async_msgr->cct, 10) << __func__ << " aborted = " << aborted << dendl;
687 if (aborted) {
688 ldout(async_msgr->cct, 0) << __func__ << " got " << front.length() << " + " << middle.length() << " + " << data.length()
689 << " byte message.. ABORTED" << dendl;
690 goto fail;
691 }
692
693 ldout(async_msgr->cct, 20) << __func__ << " got " << front.length() << " + " << middle.length()
694 << " + " << data.length() << " byte message" << dendl;
695 Message *message = decode_message(async_msgr->cct, async_msgr->crcflags, current_header, footer,
696 front, middle, data, this);
697 if (!message) {
698 ldout(async_msgr->cct, 1) << __func__ << " decode message failed " << dendl;
699 goto fail;
700 }
701
702 //
703 // Check the signature if one should be present. A zero return indicates success. PLR
704 //
705
706 if (session_security.get() == NULL) {
707 ldout(async_msgr->cct, 10) << __func__ << " no session security set" << dendl;
708 } else {
709 if (session_security->check_message_signature(message)) {
710 ldout(async_msgr->cct, 0) << __func__ << " Signature check failed" << dendl;
711 message->put();
712 goto fail;
713 }
714 }
715 message->set_byte_throttler(policy.throttler_bytes);
716 message->set_message_throttler(policy.throttler_messages);
717
718 // store reservation size in message, so we don't get confused
719 // by messages entering the dispatch queue through other paths.
720 message->set_dispatch_throttle_size(cur_msg_size);
721
722 message->set_recv_stamp(recv_stamp);
723 message->set_throttle_stamp(throttle_stamp);
724 message->set_recv_complete_stamp(ceph_clock_now());
725
726 // check received seq#. if it is old, drop the message.
727 // note that incoming messages may skip ahead. this is convenient for the client
728 // side queueing because messages can't be renumbered, but the (kernel) client will
729 // occasionally pull a message out of the sent queue to send elsewhere. in that case
730 // it doesn't matter if we "got" it or not.
731 uint64_t cur_seq = in_seq;
732 if (message->get_seq() <= cur_seq) {
733 ldout(async_msgr->cct,0) << __func__ << " got old message "
734 << message->get_seq() << " <= " << cur_seq << " " << message << " " << *message
735 << ", discarding" << dendl;
736 message->put();
737 if (has_feature(CEPH_FEATURE_RECONNECT_SEQ) && async_msgr->cct->_conf->ms_die_on_old_message)
738 assert(0 == "old msgs despite reconnect_seq feature");
739 break;
740 }
741 if (message->get_seq() > cur_seq + 1) {
742 ldout(async_msgr->cct, 0) << __func__ << " missed message? skipped from seq "
743 << cur_seq << " to " << message->get_seq() << dendl;
744 if (async_msgr->cct->_conf->ms_die_on_skipped_message)
745 assert(0 == "skipped incoming seq");
746 }
747
748 message->set_connection(this);
749
750 #if defined(WITH_LTTNG) && defined(WITH_EVENTTRACE)
751 if (message->get_type() == CEPH_MSG_OSD_OP || message->get_type() == CEPH_MSG_OSD_OPREPLY) {
752 utime_t ltt_processed_stamp = ceph_clock_now();
753 double usecs_elapsed = (ltt_processed_stamp.to_nsec()-ltt_recv_stamp.to_nsec())/1000;
754 ostringstream buf;
755 if (message->get_type() == CEPH_MSG_OSD_OP)
756 OID_ELAPSED_WITH_MSG(message, usecs_elapsed, "TIME_TO_DECODE_OSD_OP", false);
757 else
758 OID_ELAPSED_WITH_MSG(message, usecs_elapsed, "TIME_TO_DECODE_OSD_OPREPLY", false);
759 }
760 #endif
761
762 // note last received message.
763 in_seq = message->get_seq();
764 ldout(async_msgr->cct, 5) << " rx " << message->get_source() << " seq "
765 << message->get_seq() << " " << message
766 << " " << *message << dendl;
767
768 if (!policy.lossy) {
769 ack_left++;
770 need_dispatch_writer = true;
771 }
772 state = STATE_OPEN;
773
774 logger->inc(l_msgr_recv_messages);
775 logger->inc(l_msgr_recv_bytes, cur_msg_size + sizeof(ceph_msg_header) + sizeof(ceph_msg_footer));
776
777 async_msgr->ms_fast_preprocess(message);
778 auto fast_dispatch_time = ceph::mono_clock::now();
779 logger->tinc(l_msgr_running_recv_time, fast_dispatch_time - recv_start_time);
780 if (delay_state) {
781 utime_t release = message->get_recv_stamp();
782 double delay_period = 0;
783 if (rand() % 10000 < async_msgr->cct->_conf->ms_inject_delay_probability * 10000.0) {
784 delay_period = async_msgr->cct->_conf->ms_inject_delay_max * (double)(rand() % 10000) / 10000.0;
785 release += delay_period;
786 ldout(async_msgr->cct, 1) << "queue_received will delay until " << release << " on "
787 << message << " " << *message << dendl;
788 }
789 delay_state->queue(delay_period, release, message);
790 } else if (async_msgr->ms_can_fast_dispatch(message)) {
791 lock.unlock();
792 dispatch_queue->fast_dispatch(message);
793 recv_start_time = ceph::mono_clock::now();
794 logger->tinc(l_msgr_running_fast_dispatch_time,
795 recv_start_time - fast_dispatch_time);
796 lock.lock();
797 } else {
798 dispatch_queue->enqueue(message, message->get_priority(), conn_id);
799 }
800
801 break;
802 }
803
804 case STATE_OPEN_TAG_CLOSE:
805 {
806 ldout(async_msgr->cct, 20) << __func__ << " got CLOSE" << dendl;
807 _stop();
808 return ;
809 }
810
811 case STATE_STANDBY:
812 {
813 ldout(async_msgr->cct, 20) << __func__ << " enter STANDY" << dendl;
814
815 break;
816 }
817
818 case STATE_NONE:
819 {
820 ldout(async_msgr->cct, 20) << __func__ << " enter none state" << dendl;
821 break;
822 }
823
824 case STATE_CLOSED:
825 {
826 ldout(async_msgr->cct, 20) << __func__ << " socket closed" << dendl;
827 break;
828 }
829
830 case STATE_WAIT:
831 {
832 ldout(async_msgr->cct, 1) << __func__ << " enter wait state, failing" << dendl;
833 goto fail;
834 }
835
836 default:
837 {
838 if (_process_connection() < 0)
839 goto fail;
840 break;
841 }
842 }
843 } while (prev_state != state);
844
845 if (need_dispatch_writer && is_connected())
846 center->dispatch_event_external(write_handler);
847
848 logger->tinc(l_msgr_running_recv_time, ceph::mono_clock::now() - recv_start_time);
849 return;
850
851 fail:
852 fault();
853 }
854
855 ssize_t AsyncConnection::_process_connection()
856 {
857 ssize_t r = 0;
858
859 switch(state) {
860 case STATE_WAIT_SEND:
861 {
862 std::lock_guard<std::mutex> l(write_lock);
863 if (!outcoming_bl.length()) {
864 assert(state_after_send);
865 state = state_after_send;
866 state_after_send = STATE_NONE;
867 }
868 break;
869 }
870
871 case STATE_CONNECTING:
872 {
873 assert(!policy.server);
874
875 // reset connect state variables
876 got_bad_auth = false;
877 delete authorizer;
878 authorizer = NULL;
879 authorizer_buf.clear();
880 memset(&connect_msg, 0, sizeof(connect_msg));
881 memset(&connect_reply, 0, sizeof(connect_reply));
882
883 global_seq = async_msgr->get_global_seq();
884 // close old socket. this is safe because we stopped the reader thread above.
885 if (cs) {
886 center->delete_file_event(cs.fd(), EVENT_READABLE|EVENT_WRITABLE);
887 cs.close();
888 }
889
890 SocketOptions opts;
891 opts.priority = async_msgr->get_socket_priority();
892 opts.connect_bind_addr = msgr->get_myaddr();
893 r = worker->connect(get_peer_addr(), opts, &cs);
894 if (r < 0)
895 goto fail;
896
897 center->create_file_event(cs.fd(), EVENT_READABLE, read_handler);
898 state = STATE_CONNECTING_RE;
899 break;
900 }
901
902 case STATE_CONNECTING_RE:
903 {
904 r = cs.is_connected();
905 if (r < 0) {
906 ldout(async_msgr->cct, 1) << __func__ << " reconnect failed " << dendl;
907 if (r == -ECONNREFUSED) {
908 ldout(async_msgr->cct, 2) << __func__ << " connection refused!" << dendl;
909 dispatch_queue->queue_refused(this);
910 }
911 goto fail;
912 } else if (r == 0) {
913 ldout(async_msgr->cct, 10) << __func__ << " nonblock connect inprogress" << dendl;
914 if (async_msgr->get_stack()->nonblock_connect_need_writable_event())
915 center->create_file_event(cs.fd(), EVENT_WRITABLE, read_handler);
916 break;
917 }
918
919 center->delete_file_event(cs.fd(), EVENT_WRITABLE);
920 ldout(async_msgr->cct, 10) << __func__ << " connect successfully, ready to send banner" << dendl;
921
922 bufferlist bl;
923 bl.append(CEPH_BANNER, strlen(CEPH_BANNER));
924 r = try_send(bl);
925 if (r == 0) {
926 state = STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY;
927 ldout(async_msgr->cct, 10) << __func__ << " connect write banner done: "
928 << get_peer_addr() << dendl;
929 } else if (r > 0) {
930 state = STATE_WAIT_SEND;
931 state_after_send = STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY;
932 ldout(async_msgr->cct, 10) << __func__ << " connect wait for write banner: "
933 << get_peer_addr() << dendl;
934 } else {
935 goto fail;
936 }
937
938 break;
939 }
940
941 case STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY:
942 {
943 entity_addr_t paddr, peer_addr_for_me;
944 bufferlist myaddrbl;
945 unsigned banner_len = strlen(CEPH_BANNER);
946 unsigned need_len = banner_len + sizeof(ceph_entity_addr)*2;
947 r = read_until(need_len, state_buffer);
948 if (r < 0) {
949 ldout(async_msgr->cct, 1) << __func__ << " read banner and identify addresses failed" << dendl;
950 goto fail;
951 } else if (r > 0) {
952 break;
953 }
954
955 if (memcmp(state_buffer, CEPH_BANNER, banner_len)) {
956 ldout(async_msgr->cct, 0) << __func__ << " connect protocol error (bad banner) on peer "
957 << get_peer_addr() << dendl;
958 goto fail;
959 }
960
961 bufferlist bl;
962 bl.append(state_buffer+banner_len, sizeof(ceph_entity_addr)*2);
963 bufferlist::iterator p = bl.begin();
964 try {
965 ::decode(paddr, p);
966 ::decode(peer_addr_for_me, p);
967 } catch (const buffer::error& e) {
968 lderr(async_msgr->cct) << __func__ << " decode peer addr failed " << dendl;
969 goto fail;
970 }
971 ldout(async_msgr->cct, 20) << __func__ << " connect read peer addr "
972 << paddr << " on socket " << cs.fd() << dendl;
973 if (peer_addr != paddr) {
974 if (paddr.is_blank_ip() && peer_addr.get_port() == paddr.get_port() &&
975 peer_addr.get_nonce() == paddr.get_nonce()) {
976 ldout(async_msgr->cct, 0) << __func__ << " connect claims to be " << paddr
977 << " not " << peer_addr
978 << " - presumably this is the same node!" << dendl;
979 } else {
980 ldout(async_msgr->cct, 10) << __func__ << " connect claims to be "
981 << paddr << " not " << peer_addr << dendl;
982 goto fail;
983 }
984 }
985
986 ldout(async_msgr->cct, 20) << __func__ << " connect peer addr for me is " << peer_addr_for_me << dendl;
987 lock.unlock();
988 async_msgr->learned_addr(peer_addr_for_me);
989 if (async_msgr->cct->_conf->ms_inject_internal_delays
990 && async_msgr->cct->_conf->ms_inject_socket_failures) {
991 if (rand() % async_msgr->cct->_conf->ms_inject_socket_failures == 0) {
992 ldout(msgr->cct, 10) << __func__ << " sleep for "
993 << async_msgr->cct->_conf->ms_inject_internal_delays << dendl;
994 utime_t t;
995 t.set_from_double(async_msgr->cct->_conf->ms_inject_internal_delays);
996 t.sleep();
997 }
998 }
999
1000 lock.lock();
1001 if (state != STATE_CONNECTING_WAIT_BANNER_AND_IDENTIFY) {
1002 ldout(async_msgr->cct, 1) << __func__ << " state changed while learned_addr, mark_down or "
1003 << " replacing must be happened just now" << dendl;
1004 return 0;
1005 }
1006
1007 ::encode(async_msgr->get_myaddr(), myaddrbl, 0); // legacy
1008 r = try_send(myaddrbl);
1009 if (r == 0) {
1010 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1011 ldout(async_msgr->cct, 10) << __func__ << " connect sent my addr "
1012 << async_msgr->get_myaddr() << dendl;
1013 } else if (r > 0) {
1014 state = STATE_WAIT_SEND;
1015 state_after_send = STATE_CONNECTING_SEND_CONNECT_MSG;
1016 ldout(async_msgr->cct, 10) << __func__ << " connect send my addr done: "
1017 << async_msgr->get_myaddr() << dendl;
1018 } else {
1019 ldout(async_msgr->cct, 2) << __func__ << " connect couldn't write my addr, "
1020 << cpp_strerror(r) << dendl;
1021 goto fail;
1022 }
1023
1024 break;
1025 }
1026
1027 case STATE_CONNECTING_SEND_CONNECT_MSG:
1028 {
1029 if (!authorizer) {
1030 authorizer = async_msgr->get_authorizer(peer_type, false);
1031 }
1032 bufferlist bl;
1033
1034 connect_msg.features = policy.features_supported;
1035 connect_msg.host_type = async_msgr->get_myinst().name.type();
1036 connect_msg.global_seq = global_seq;
1037 connect_msg.connect_seq = connect_seq;
1038 connect_msg.protocol_version = async_msgr->get_proto_version(peer_type, true);
1039 connect_msg.authorizer_protocol = authorizer ? authorizer->protocol : 0;
1040 connect_msg.authorizer_len = authorizer ? authorizer->bl.length() : 0;
1041 if (authorizer)
1042 ldout(async_msgr->cct, 10) << __func__ << " connect_msg.authorizer_len="
1043 << connect_msg.authorizer_len << " protocol="
1044 << connect_msg.authorizer_protocol << dendl;
1045 connect_msg.flags = 0;
1046 if (policy.lossy)
1047 connect_msg.flags |= CEPH_MSG_CONNECT_LOSSY; // this is fyi, actually, server decides!
1048 bl.append((char*)&connect_msg, sizeof(connect_msg));
1049 if (authorizer) {
1050 bl.append(authorizer->bl.c_str(), authorizer->bl.length());
1051 }
1052 ldout(async_msgr->cct, 10) << __func__ << " connect sending gseq=" << global_seq << " cseq="
1053 << connect_seq << " proto=" << connect_msg.protocol_version << dendl;
1054
1055 r = try_send(bl);
1056 if (r == 0) {
1057 state = STATE_CONNECTING_WAIT_CONNECT_REPLY;
1058 ldout(async_msgr->cct,20) << __func__ << " connect wrote (self +) cseq, waiting for reply" << dendl;
1059 } else if (r > 0) {
1060 state = STATE_WAIT_SEND;
1061 state_after_send = STATE_CONNECTING_WAIT_CONNECT_REPLY;
1062 ldout(async_msgr->cct, 10) << __func__ << " continue send reply " << dendl;
1063 } else {
1064 ldout(async_msgr->cct, 2) << __func__ << " connect couldn't send reply "
1065 << cpp_strerror(r) << dendl;
1066 goto fail;
1067 }
1068
1069 break;
1070 }
1071
1072 case STATE_CONNECTING_WAIT_CONNECT_REPLY:
1073 {
1074 r = read_until(sizeof(connect_reply), state_buffer);
1075 if (r < 0) {
1076 ldout(async_msgr->cct, 1) << __func__ << " read connect reply failed" << dendl;
1077 goto fail;
1078 } else if (r > 0) {
1079 break;
1080 }
1081
1082 connect_reply = *((ceph_msg_connect_reply*)state_buffer);
1083
1084 ldout(async_msgr->cct, 20) << __func__ << " connect got reply tag " << (int)connect_reply.tag
1085 << " connect_seq " << connect_reply.connect_seq << " global_seq "
1086 << connect_reply.global_seq << " proto " << connect_reply.protocol_version
1087 << " flags " << (int)connect_reply.flags << " features "
1088 << connect_reply.features << dendl;
1089 state = STATE_CONNECTING_WAIT_CONNECT_REPLY_AUTH;
1090
1091 break;
1092 }
1093
1094 case STATE_CONNECTING_WAIT_CONNECT_REPLY_AUTH:
1095 {
1096 bufferlist authorizer_reply;
1097 if (connect_reply.authorizer_len) {
1098 ldout(async_msgr->cct, 10) << __func__ << " reply.authorizer_len=" << connect_reply.authorizer_len << dendl;
1099 assert(connect_reply.authorizer_len < 4096);
1100 r = read_until(connect_reply.authorizer_len, state_buffer);
1101 if (r < 0) {
1102 ldout(async_msgr->cct, 1) << __func__ << " read connect reply authorizer failed" << dendl;
1103 goto fail;
1104 } else if (r > 0) {
1105 break;
1106 }
1107
1108 authorizer_reply.append(state_buffer, connect_reply.authorizer_len);
1109
1110 if (connect_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
1111 ldout(async_msgr->cct,10) << __func__ << " connect got auth challenge" << dendl;
1112 authorizer->add_challenge(async_msgr->cct, authorizer_reply);
1113 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1114 break;
1115 }
1116
1117 auto iter = authorizer_reply.begin();
1118 if (authorizer && !authorizer->verify_reply(iter)) {
1119 ldout(async_msgr->cct, 0) << __func__ << " failed verifying authorize reply" << dendl;
1120 goto fail;
1121 }
1122 }
1123 r = handle_connect_reply(connect_msg, connect_reply);
1124 if (r < 0)
1125 goto fail;
1126
1127 // state must be changed!
1128 assert(state != STATE_CONNECTING_WAIT_CONNECT_REPLY_AUTH);
1129 break;
1130 }
1131
1132 case STATE_CONNECTING_WAIT_ACK_SEQ:
1133 {
1134 uint64_t newly_acked_seq = 0;
1135
1136 r = read_until(sizeof(newly_acked_seq), state_buffer);
1137 if (r < 0) {
1138 ldout(async_msgr->cct, 1) << __func__ << " read connect ack seq failed" << dendl;
1139 goto fail;
1140 } else if (r > 0) {
1141 break;
1142 }
1143
1144 newly_acked_seq = *((uint64_t*)state_buffer);
1145 ldout(async_msgr->cct, 2) << __func__ << " got newly_acked_seq " << newly_acked_seq
1146 << " vs out_seq " << out_seq << dendl;
1147 discard_requeued_up_to(newly_acked_seq);
1148 //while (newly_acked_seq > out_seq.read()) {
1149 // Message *m = _get_next_outgoing(NULL);
1150 // assert(m);
1151 // ldout(async_msgr->cct, 2) << __func__ << " discarding previously sent " << m->get_seq()
1152 // << " " << *m << dendl;
1153 // assert(m->get_seq() <= newly_acked_seq);
1154 // m->put();
1155 // out_seq.inc();
1156 //}
1157
1158 bufferlist bl;
1159 uint64_t s = in_seq;
1160 bl.append((char*)&s, sizeof(s));
1161 r = try_send(bl);
1162 if (r == 0) {
1163 state = STATE_CONNECTING_READY;
1164 ldout(async_msgr->cct, 10) << __func__ << " send in_seq done " << dendl;
1165 } else if (r > 0) {
1166 state_after_send = STATE_CONNECTING_READY;
1167 state = STATE_WAIT_SEND;
1168 ldout(async_msgr->cct, 10) << __func__ << " continue send in_seq " << dendl;
1169 } else {
1170 goto fail;
1171 }
1172 break;
1173 }
1174
1175 case STATE_CONNECTING_READY:
1176 {
1177 // hooray!
1178 peer_global_seq = connect_reply.global_seq;
1179 policy.lossy = connect_reply.flags & CEPH_MSG_CONNECT_LOSSY;
1180 state = STATE_OPEN;
1181 once_ready = true;
1182 connect_seq += 1;
1183 assert(connect_seq == connect_reply.connect_seq);
1184 backoff = utime_t();
1185 set_features((uint64_t)connect_reply.features & (uint64_t)connect_msg.features);
1186 ldout(async_msgr->cct, 10) << __func__ << " connect success " << connect_seq
1187 << ", lossy = " << policy.lossy << ", features "
1188 << get_features() << dendl;
1189
1190 // If we have an authorizer, get a new AuthSessionHandler to deal with ongoing security of the
1191 // connection. PLR
1192 if (authorizer != NULL) {
1193 session_security.reset(
1194 get_auth_session_handler(async_msgr->cct,
1195 authorizer->protocol,
1196 authorizer->session_key,
1197 get_features()));
1198 } else {
1199 // We have no authorizer, so we shouldn't be applying security to messages in this AsyncConnection. PLR
1200 session_security.reset();
1201 }
1202
1203 if (delay_state)
1204 assert(delay_state->ready());
1205 dispatch_queue->queue_connect(this);
1206 async_msgr->ms_deliver_handle_fast_connect(this);
1207
1208 // make sure no pending tick timer
1209 if (last_tick_id)
1210 center->delete_time_event(last_tick_id);
1211 last_tick_id = center->create_time_event(inactive_timeout_us, tick_handler);
1212
1213 // message may in queue between last _try_send and connection ready
1214 // write event may already notify and we need to force scheduler again
1215 write_lock.lock();
1216 can_write = WriteStatus::CANWRITE;
1217 if (is_queued())
1218 center->dispatch_event_external(write_handler);
1219 write_lock.unlock();
1220 maybe_start_delay_thread();
1221 break;
1222 }
1223
1224 case STATE_ACCEPTING:
1225 {
1226 bufferlist bl;
1227 center->create_file_event(cs.fd(), EVENT_READABLE, read_handler);
1228
1229 bl.append(CEPH_BANNER, strlen(CEPH_BANNER));
1230
1231 ::encode(async_msgr->get_myaddr(), bl, 0); // legacy
1232 port = async_msgr->get_myaddr().get_port();
1233 ::encode(socket_addr, bl, 0); // legacy
1234 ldout(async_msgr->cct, 1) << __func__ << " sd=" << cs.fd() << " " << socket_addr << dendl;
1235
1236 r = try_send(bl);
1237 if (r == 0) {
1238 state = STATE_ACCEPTING_WAIT_BANNER_ADDR;
1239 ldout(async_msgr->cct, 10) << __func__ << " write banner and addr done: "
1240 << get_peer_addr() << dendl;
1241 } else if (r > 0) {
1242 state = STATE_WAIT_SEND;
1243 state_after_send = STATE_ACCEPTING_WAIT_BANNER_ADDR;
1244 ldout(async_msgr->cct, 10) << __func__ << " wait for write banner and addr: "
1245 << get_peer_addr() << dendl;
1246 } else {
1247 goto fail;
1248 }
1249
1250 break;
1251 }
1252 case STATE_ACCEPTING_WAIT_BANNER_ADDR:
1253 {
1254 bufferlist addr_bl;
1255 entity_addr_t peer_addr;
1256
1257 r = read_until(strlen(CEPH_BANNER) + sizeof(ceph_entity_addr), state_buffer);
1258 if (r < 0) {
1259 ldout(async_msgr->cct, 1) << __func__ << " read peer banner and addr failed" << dendl;
1260 goto fail;
1261 } else if (r > 0) {
1262 break;
1263 }
1264
1265 if (memcmp(state_buffer, CEPH_BANNER, strlen(CEPH_BANNER))) {
1266 ldout(async_msgr->cct, 1) << __func__ << " accept peer sent bad banner '" << state_buffer
1267 << "' (should be '" << CEPH_BANNER << "')" << dendl;
1268 goto fail;
1269 }
1270
1271 addr_bl.append(state_buffer+strlen(CEPH_BANNER), sizeof(ceph_entity_addr));
1272 {
1273 bufferlist::iterator ti = addr_bl.begin();
1274 ::decode(peer_addr, ti);
1275 }
1276
1277 ldout(async_msgr->cct, 10) << __func__ << " accept peer addr is " << peer_addr << dendl;
1278 if (peer_addr.is_blank_ip()) {
1279 // peer apparently doesn't know what ip they have; figure it out for them.
1280 int port = peer_addr.get_port();
1281 peer_addr.u = socket_addr.u;
1282 peer_addr.set_port(port);
1283 ldout(async_msgr->cct, 0) << __func__ << " accept peer addr is really " << peer_addr
1284 << " (socket is " << socket_addr << ")" << dendl;
1285 }
1286 set_peer_addr(peer_addr); // so that connection_state gets set up
1287 state = STATE_ACCEPTING_WAIT_CONNECT_MSG;
1288 break;
1289 }
1290
1291 case STATE_ACCEPTING_WAIT_CONNECT_MSG:
1292 {
1293 r = read_until(sizeof(connect_msg), state_buffer);
1294 if (r < 0) {
1295 ldout(async_msgr->cct, 1) << __func__ << " read connect msg failed" << dendl;
1296 goto fail;
1297 } else if (r > 0) {
1298 break;
1299 }
1300
1301 connect_msg = *((ceph_msg_connect*)state_buffer);
1302 state = STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH;
1303 break;
1304 }
1305
1306 case STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH:
1307 {
1308 bufferlist authorizer_reply;
1309
1310 if (connect_msg.authorizer_len) {
1311 if (!authorizer_buf.length())
1312 authorizer_buf.push_back(buffer::create(connect_msg.authorizer_len));
1313
1314 r = read_until(connect_msg.authorizer_len, authorizer_buf.c_str());
1315 if (r < 0) {
1316 ldout(async_msgr->cct, 1) << __func__ << " read connect authorizer failed" << dendl;
1317 goto fail;
1318 } else if (r > 0) {
1319 break;
1320 }
1321 }
1322
1323 ldout(async_msgr->cct, 20) << __func__ << " accept got peer connect_seq "
1324 << connect_msg.connect_seq << " global_seq "
1325 << connect_msg.global_seq << dendl;
1326 set_peer_type(connect_msg.host_type);
1327 policy = async_msgr->get_policy(connect_msg.host_type);
1328 ldout(async_msgr->cct, 10) << __func__ << " accept of host_type " << connect_msg.host_type
1329 << ", policy.lossy=" << policy.lossy << " policy.server="
1330 << policy.server << " policy.standby=" << policy.standby
1331 << " policy.resetcheck=" << policy.resetcheck << dendl;
1332
1333 r = handle_connect_msg(connect_msg, authorizer_buf, authorizer_reply);
1334 if (r < 0)
1335 goto fail;
1336
1337 // state is changed by "handle_connect_msg"
1338 assert(state != STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH);
1339 break;
1340 }
1341
1342 case STATE_ACCEPTING_WAIT_SEQ:
1343 {
1344 uint64_t newly_acked_seq;
1345 r = read_until(sizeof(newly_acked_seq), state_buffer);
1346 if (r < 0) {
1347 ldout(async_msgr->cct, 1) << __func__ << " read ack seq failed" << dendl;
1348 goto fail_registered;
1349 } else if (r > 0) {
1350 break;
1351 }
1352
1353 newly_acked_seq = *((uint64_t*)state_buffer);
1354 ldout(async_msgr->cct, 2) << __func__ << " accept get newly_acked_seq " << newly_acked_seq << dendl;
1355 discard_requeued_up_to(newly_acked_seq);
1356 state = STATE_ACCEPTING_READY;
1357 break;
1358 }
1359
1360 case STATE_ACCEPTING_READY:
1361 {
1362 ldout(async_msgr->cct, 20) << __func__ << " accept done" << dendl;
1363 state = STATE_OPEN;
1364 memset(&connect_msg, 0, sizeof(connect_msg));
1365
1366 if (delay_state)
1367 assert(delay_state->ready());
1368 // make sure no pending tick timer
1369 if (last_tick_id)
1370 center->delete_time_event(last_tick_id);
1371 last_tick_id = center->create_time_event(inactive_timeout_us, tick_handler);
1372
1373 write_lock.lock();
1374 can_write = WriteStatus::CANWRITE;
1375 if (is_queued())
1376 center->dispatch_event_external(write_handler);
1377 write_lock.unlock();
1378 maybe_start_delay_thread();
1379 break;
1380 }
1381
1382 default:
1383 {
1384 lderr(async_msgr->cct) << __func__ << " bad state: " << state << dendl;
1385 ceph_abort();
1386 }
1387 }
1388
1389 return 0;
1390
1391 fail_registered:
1392 ldout(async_msgr->cct, 10) << "accept fault after register" << dendl;
1393 inject_delay();
1394
1395 fail:
1396 return -1;
1397 }
1398
1399 int AsyncConnection::handle_connect_reply(ceph_msg_connect &connect, ceph_msg_connect_reply &reply)
1400 {
1401 uint64_t feat_missing;
1402 if (reply.tag == CEPH_MSGR_TAG_FEATURES) {
1403 ldout(async_msgr->cct, 0) << __func__ << " connect protocol feature mismatch, my "
1404 << std::hex << connect.features << " < peer "
1405 << reply.features << " missing "
1406 << (reply.features & ~policy.features_supported)
1407 << std::dec << dendl;
1408 goto fail;
1409 }
1410
1411 if (reply.tag == CEPH_MSGR_TAG_BADPROTOVER) {
1412 ldout(async_msgr->cct, 0) << __func__ << " connect protocol version mismatch, my "
1413 << connect.protocol_version << " != " << reply.protocol_version
1414 << dendl;
1415 goto fail;
1416 }
1417
1418 if (reply.tag == CEPH_MSGR_TAG_BADAUTHORIZER) {
1419 ldout(async_msgr->cct,0) << __func__ << " connect got BADAUTHORIZER" << dendl;
1420 if (got_bad_auth)
1421 goto fail;
1422 got_bad_auth = true;
1423 delete authorizer;
1424 authorizer = async_msgr->get_authorizer(peer_type, true); // try harder
1425 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1426 }
1427 if (reply.tag == CEPH_MSGR_TAG_RESETSESSION) {
1428 ldout(async_msgr->cct, 0) << __func__ << " connect got RESETSESSION" << dendl;
1429 was_session_reset();
1430 // see was_session_reset
1431 outcoming_bl.clear();
1432 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1433 }
1434 if (reply.tag == CEPH_MSGR_TAG_RETRY_GLOBAL) {
1435 global_seq = async_msgr->get_global_seq(reply.global_seq);
1436 ldout(async_msgr->cct, 5) << __func__ << " connect got RETRY_GLOBAL "
1437 << reply.global_seq << " chose new "
1438 << global_seq << dendl;
1439 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1440 }
1441 if (reply.tag == CEPH_MSGR_TAG_RETRY_SESSION) {
1442 assert(reply.connect_seq > connect_seq);
1443 ldout(async_msgr->cct, 5) << __func__ << " connect got RETRY_SESSION "
1444 << connect_seq << " -> "
1445 << reply.connect_seq << dendl;
1446 connect_seq = reply.connect_seq;
1447 state = STATE_CONNECTING_SEND_CONNECT_MSG;
1448 }
1449 if (reply.tag == CEPH_MSGR_TAG_WAIT) {
1450 ldout(async_msgr->cct, 1) << __func__ << " connect got WAIT (connection race)" << dendl;
1451 state = STATE_WAIT;
1452 }
1453
1454 feat_missing = policy.features_required & ~(uint64_t)connect_reply.features;
1455 if (feat_missing) {
1456 ldout(async_msgr->cct, 1) << __func__ << " missing required features " << std::hex
1457 << feat_missing << std::dec << dendl;
1458 goto fail;
1459 }
1460
1461 if (reply.tag == CEPH_MSGR_TAG_SEQ) {
1462 ldout(async_msgr->cct, 10) << __func__ << " got CEPH_MSGR_TAG_SEQ, reading acked_seq and writing in_seq" << dendl;
1463 state = STATE_CONNECTING_WAIT_ACK_SEQ;
1464 }
1465 if (reply.tag == CEPH_MSGR_TAG_READY) {
1466 ldout(async_msgr->cct, 10) << __func__ << " got CEPH_MSGR_TAG_READY " << dendl;
1467 state = STATE_CONNECTING_READY;
1468 }
1469
1470 return 0;
1471
1472 fail:
1473 return -1;
1474 }
1475
1476 ssize_t AsyncConnection::handle_connect_msg(ceph_msg_connect &connect, bufferlist &authorizer_bl,
1477 bufferlist &authorizer_reply)
1478 {
1479 ssize_t r = 0;
1480 ceph_msg_connect_reply reply;
1481 bufferlist reply_bl;
1482
1483 memset(&reply, 0, sizeof(reply));
1484 reply.protocol_version = async_msgr->get_proto_version(peer_type, false);
1485
1486 // mismatch?
1487 ldout(async_msgr->cct, 10) << __func__ << " accept my proto " << reply.protocol_version
1488 << ", their proto " << connect.protocol_version << dendl;
1489 if (connect.protocol_version != reply.protocol_version) {
1490 return _reply_accept(CEPH_MSGR_TAG_BADPROTOVER, connect, reply, authorizer_reply);
1491 }
1492 // require signatures for cephx?
1493 if (connect.authorizer_protocol == CEPH_AUTH_CEPHX) {
1494 if (peer_type == CEPH_ENTITY_TYPE_OSD ||
1495 peer_type == CEPH_ENTITY_TYPE_MDS ||
1496 peer_type == CEPH_ENTITY_TYPE_MGR) {
1497 if (async_msgr->cct->_conf->cephx_require_signatures ||
1498 async_msgr->cct->_conf->cephx_cluster_require_signatures) {
1499 ldout(async_msgr->cct, 10) << __func__ << " using cephx, requiring MSG_AUTH feature bit for cluster" << dendl;
1500 policy.features_required |= CEPH_FEATURE_MSG_AUTH;
1501 }
1502 if (async_msgr->cct->_conf->cephx_require_version >= 2 ||
1503 async_msgr->cct->_conf->cephx_cluster_require_version >= 2) {
1504 ldout(async_msgr->cct, 10) << __func__ << " using cephx, requiring cephx v2 feature bit for cluster" << dendl;
1505 policy.features_required |= CEPH_FEATUREMASK_CEPHX_V2;
1506 }
1507 } else {
1508 if (async_msgr->cct->_conf->cephx_require_signatures ||
1509 async_msgr->cct->_conf->cephx_service_require_signatures) {
1510 ldout(async_msgr->cct, 10) << __func__ << " using cephx, requiring MSG_AUTH feature bit for service" << dendl;
1511 policy.features_required |= CEPH_FEATURE_MSG_AUTH;
1512 }
1513 if (async_msgr->cct->_conf->cephx_require_version >= 2 ||
1514 async_msgr->cct->_conf->cephx_service_require_version >= 2) {
1515 ldout(async_msgr->cct, 10) << __func__ << " using cephx, requiring cephx v2 feature bit for service" << dendl;
1516 policy.features_required |= CEPH_FEATUREMASK_CEPHX_V2;
1517 }
1518 }
1519 }
1520
1521 uint64_t feat_missing = policy.features_required & ~(uint64_t)connect.features;
1522 if (feat_missing) {
1523 ldout(async_msgr->cct, 1) << __func__ << " peer missing required features "
1524 << std::hex << feat_missing << std::dec << dendl;
1525 return _reply_accept(CEPH_MSGR_TAG_FEATURES, connect, reply, authorizer_reply);
1526 }
1527
1528 lock.unlock();
1529
1530 bool authorizer_valid;
1531 bool need_challenge = HAVE_FEATURE(connect.features, CEPHX_V2);
1532 bool had_challenge = (bool)authorizer_challenge;
1533 if (!async_msgr->verify_authorizer(
1534 this, peer_type, connect.authorizer_protocol, authorizer_bl,
1535 authorizer_reply, authorizer_valid, session_key,
1536 need_challenge ? &authorizer_challenge : nullptr) ||
1537 !authorizer_valid) {
1538 lock.lock();
1539 char tag;
1540 if (need_challenge && !had_challenge && authorizer_challenge) {
1541 ldout(async_msgr->cct,0) << __func__ << ": challenging authorizer"
1542 << dendl;
1543 assert(authorizer_reply.length());
1544 tag = CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER;
1545 } else {
1546 ldout(async_msgr->cct,0) << __func__ << ": got bad authorizer" << dendl;
1547 tag = CEPH_MSGR_TAG_BADAUTHORIZER;
1548 }
1549 session_security.reset();
1550 return _reply_accept(tag, connect, reply, authorizer_reply);
1551 }
1552
1553 // We've verified the authorizer for this AsyncConnection, so set up the session security structure. PLR
1554 ldout(async_msgr->cct, 10) << __func__ << " accept setting up session_security." << dendl;
1555
1556 // existing?
1557 AsyncConnectionRef existing = async_msgr->lookup_conn(peer_addr);
1558
1559 inject_delay();
1560
1561 lock.lock();
1562 if (state != STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH) {
1563 ldout(async_msgr->cct, 1) << __func__ << " state changed while accept, it must be mark_down" << dendl;
1564 assert(state == STATE_CLOSED);
1565 goto fail;
1566 }
1567
1568 if (existing == this)
1569 existing = NULL;
1570 if (existing) {
1571 // There is no possible that existing connection will acquire this
1572 // connection's lock
1573 existing->lock.lock(); // skip lockdep check (we are locking a second AsyncConnection here)
1574
1575 if (existing->state == STATE_CLOSED) {
1576 ldout(async_msgr->cct, 1) << __func__ << " existing already closed." << dendl;
1577 existing->lock.unlock();
1578 existing = NULL;
1579 goto open;
1580 }
1581
1582 if (existing->replacing) {
1583 ldout(async_msgr->cct, 1) << __func__ << " existing racing replace happened while replacing."
1584 << " existing_state=" << get_state_name(existing->state) << dendl;
1585 reply.global_seq = existing->peer_global_seq;
1586 r = _reply_accept(CEPH_MSGR_TAG_RETRY_GLOBAL, connect, reply, authorizer_reply);
1587 existing->lock.unlock();
1588 if (r < 0)
1589 goto fail;
1590 return 0;
1591 }
1592
1593 if (connect.global_seq < existing->peer_global_seq) {
1594 ldout(async_msgr->cct, 10) << __func__ << " accept existing " << existing
1595 << ".gseq " << existing->peer_global_seq << " > "
1596 << connect.global_seq << ", RETRY_GLOBAL" << dendl;
1597 reply.global_seq = existing->peer_global_seq; // so we can send it below..
1598 existing->lock.unlock();
1599 return _reply_accept(CEPH_MSGR_TAG_RETRY_GLOBAL, connect, reply, authorizer_reply);
1600 } else {
1601 ldout(async_msgr->cct, 10) << __func__ << " accept existing " << existing
1602 << ".gseq " << existing->peer_global_seq
1603 << " <= " << connect.global_seq << ", looks ok" << dendl;
1604 }
1605
1606 if (existing->policy.lossy) {
1607 ldout(async_msgr->cct, 0) << __func__ << " accept replacing existing (lossy) channel (new one lossy="
1608 << policy.lossy << ")" << dendl;
1609 existing->was_session_reset();
1610 goto replace;
1611 }
1612
1613 ldout(async_msgr->cct, 0) << __func__ << " accept connect_seq " << connect.connect_seq
1614 << " vs existing csq=" << existing->connect_seq << " existing_state="
1615 << get_state_name(existing->state) << dendl;
1616
1617 if (connect.connect_seq == 0 && existing->connect_seq > 0) {
1618 ldout(async_msgr->cct,0) << __func__ << " accept peer reset, then tried to connect to us, replacing" << dendl;
1619 // this is a hard reset from peer
1620 is_reset_from_peer = true;
1621 if (policy.resetcheck)
1622 existing->was_session_reset(); // this resets out_queue, msg_ and connect_seq #'s
1623 goto replace;
1624 }
1625
1626 if (connect.connect_seq < existing->connect_seq) {
1627 // old attempt, or we sent READY but they didn't get it.
1628 ldout(async_msgr->cct, 10) << __func__ << " accept existing " << existing << ".cseq "
1629 << existing->connect_seq << " > " << connect.connect_seq
1630 << ", RETRY_SESSION" << dendl;
1631 reply.connect_seq = existing->connect_seq + 1;
1632 existing->lock.unlock();
1633 return _reply_accept(CEPH_MSGR_TAG_RETRY_SESSION, connect, reply, authorizer_reply);
1634 }
1635
1636 if (connect.connect_seq == existing->connect_seq) {
1637 // if the existing connection successfully opened, and/or
1638 // subsequently went to standby, then the peer should bump
1639 // their connect_seq and retry: this is not a connection race
1640 // we need to resolve here.
1641 if (existing->state == STATE_OPEN ||
1642 existing->state == STATE_STANDBY) {
1643 ldout(async_msgr->cct, 10) << __func__ << " accept connection race, existing " << existing
1644 << ".cseq " << existing->connect_seq << " == "
1645 << connect.connect_seq << ", OPEN|STANDBY, RETRY_SESSION" << dendl;
1646 reply.connect_seq = existing->connect_seq + 1;
1647 existing->lock.unlock();
1648 return _reply_accept(CEPH_MSGR_TAG_RETRY_SESSION, connect, reply, authorizer_reply);
1649 }
1650
1651 // connection race?
1652 if (peer_addr < async_msgr->get_myaddr() || existing->policy.server) {
1653 // incoming wins
1654 ldout(async_msgr->cct, 10) << __func__ << " accept connection race, existing " << existing
1655 << ".cseq " << existing->connect_seq << " == " << connect.connect_seq
1656 << ", or we are server, replacing my attempt" << dendl;
1657 goto replace;
1658 } else {
1659 // our existing outgoing wins
1660 ldout(async_msgr->cct,10) << __func__ << " accept connection race, existing "
1661 << existing << ".cseq " << existing->connect_seq
1662 << " == " << connect.connect_seq << ", sending WAIT" << dendl;
1663 assert(peer_addr > async_msgr->get_myaddr());
1664 existing->lock.unlock();
1665 return _reply_accept(CEPH_MSGR_TAG_WAIT, connect, reply, authorizer_reply);
1666 }
1667 }
1668
1669 assert(connect.connect_seq > existing->connect_seq);
1670 assert(connect.global_seq >= existing->peer_global_seq);
1671 if (policy.resetcheck && // RESETSESSION only used by servers; peers do not reset each other
1672 existing->connect_seq == 0) {
1673 ldout(async_msgr->cct, 0) << __func__ << " accept we reset (peer sent cseq "
1674 << connect.connect_seq << ", " << existing << ".cseq = "
1675 << existing->connect_seq << "), sending RESETSESSION" << dendl;
1676 existing->lock.unlock();
1677 return _reply_accept(CEPH_MSGR_TAG_RESETSESSION, connect, reply, authorizer_reply);
1678 }
1679
1680 // reconnect
1681 ldout(async_msgr->cct, 10) << __func__ << " accept peer sent cseq " << connect.connect_seq
1682 << " > " << existing->connect_seq << dendl;
1683 goto replace;
1684 } // existing
1685 else if (!replacing && connect.connect_seq > 0) {
1686 // we reset, and they are opening a new session
1687 ldout(async_msgr->cct, 0) << __func__ << " accept we reset (peer sent cseq "
1688 << connect.connect_seq << "), sending RESETSESSION" << dendl;
1689 return _reply_accept(CEPH_MSGR_TAG_RESETSESSION, connect, reply, authorizer_reply);
1690 } else {
1691 // new session
1692 ldout(async_msgr->cct, 10) << __func__ << " accept new session" << dendl;
1693 existing = NULL;
1694 goto open;
1695 }
1696 ceph_abort();
1697
1698 replace:
1699 ldout(async_msgr->cct, 10) << __func__ << " accept replacing " << existing << dendl;
1700
1701 inject_delay();
1702 if (existing->policy.lossy) {
1703 // disconnect from the Connection
1704 ldout(async_msgr->cct, 1) << __func__ << " replacing on lossy channel, failing existing" << dendl;
1705 existing->_stop();
1706 existing->dispatch_queue->queue_reset(existing.get());
1707 } else {
1708 assert(can_write == WriteStatus::NOWRITE);
1709 existing->write_lock.lock();
1710
1711 // reset the in_seq if this is a hard reset from peer,
1712 // otherwise we respect our original connection's value
1713 if (is_reset_from_peer) {
1714 existing->is_reset_from_peer = true;
1715 }
1716
1717 center->delete_file_event(cs.fd(), EVENT_READABLE|EVENT_WRITABLE);
1718
1719 if (existing->delay_state) {
1720 existing->delay_state->flush();
1721 assert(!delay_state);
1722 }
1723 existing->reset_recv_state();
1724
1725 auto temp_cs = std::move(cs);
1726 EventCenter *new_center = center;
1727 Worker *new_worker = worker;
1728 // avoid _stop shutdown replacing socket
1729 // queue a reset on the new connection, which we're dumping for the old
1730 _stop();
1731
1732 dispatch_queue->queue_reset(this);
1733 ldout(async_msgr->cct, 1) << __func__ << " stop myself to swap existing" << dendl;
1734 existing->can_write = WriteStatus::REPLACING;
1735 existing->replacing = true;
1736 existing->state_offset = 0;
1737 // avoid previous thread modify event
1738 existing->state = STATE_NONE;
1739 // Discard existing prefetch buffer in `recv_buf`
1740 existing->recv_start = existing->recv_end = 0;
1741 // there shouldn't exist any buffer
1742 assert(recv_start == recv_end);
1743
1744 existing->authorizer_challenge.reset();
1745
1746 auto deactivate_existing = std::bind(
1747 [existing, new_worker, new_center, connect, reply, authorizer_reply](ConnectedSocket &cs) mutable {
1748 // we need to delete time event in original thread
1749 {
1750 std::lock_guard<std::mutex> l(existing->lock);
1751 existing->write_lock.lock();
1752 existing->requeue_sent();
1753 existing->outcoming_bl.clear();
1754 existing->open_write = false;
1755 existing->write_lock.unlock();
1756 if (existing->state == STATE_NONE) {
1757 existing->shutdown_socket();
1758 existing->cs = std::move(cs);
1759 existing->worker->references--;
1760 new_worker->references++;
1761 existing->logger = new_worker->get_perf_counter();
1762 existing->worker = new_worker;
1763 existing->center = new_center;
1764 if (existing->delay_state)
1765 existing->delay_state->set_center(new_center);
1766 } else if (existing->state == STATE_CLOSED) {
1767 auto back_to_close = std::bind(
1768 [](ConnectedSocket &cs) mutable { cs.close(); }, std::move(cs));
1769 new_center->submit_to(
1770 new_center->get_id(), std::move(back_to_close), true);
1771 return ;
1772 } else {
1773 ceph_abort();
1774 }
1775 }
1776
1777 // Before changing existing->center, it may already exists some events in existing->center's queue.
1778 // Then if we mark down `existing`, it will execute in another thread and clean up connection.
1779 // Previous event will result in segment fault
1780 auto transfer_existing = [existing, connect, reply, authorizer_reply]() mutable {
1781 std::lock_guard<std::mutex> l(existing->lock);
1782 if (existing->state == STATE_CLOSED)
1783 return ;
1784 assert(existing->state == STATE_NONE);
1785
1786 existing->state = STATE_ACCEPTING_WAIT_CONNECT_MSG;
1787 existing->center->create_file_event(existing->cs.fd(), EVENT_READABLE, existing->read_handler);
1788 reply.global_seq = existing->peer_global_seq;
1789 if (existing->_reply_accept(CEPH_MSGR_TAG_RETRY_GLOBAL, connect, reply, authorizer_reply) < 0) {
1790 // handle error
1791 existing->fault();
1792 }
1793 };
1794 if (existing->center->in_thread())
1795 transfer_existing();
1796 else
1797 existing->center->submit_to(
1798 existing->center->get_id(), std::move(transfer_existing), true);
1799 }, std::move(temp_cs));
1800
1801 existing->center->submit_to(
1802 existing->center->get_id(), std::move(deactivate_existing), true);
1803 existing->write_lock.unlock();
1804 existing->lock.unlock();
1805 return 0;
1806 }
1807 existing->lock.unlock();
1808
1809 open:
1810 connect_seq = connect.connect_seq + 1;
1811 peer_global_seq = connect.global_seq;
1812 ldout(async_msgr->cct, 10) << __func__ << " accept success, connect_seq = "
1813 << connect_seq << " in_seq=" << in_seq << ", sending READY" << dendl;
1814
1815 int next_state;
1816
1817 // if it is a hard reset from peer, we don't need a round-trip to negotiate in/out sequence
1818 if ((connect.features & CEPH_FEATURE_RECONNECT_SEQ) && !is_reset_from_peer) {
1819 reply.tag = CEPH_MSGR_TAG_SEQ;
1820 next_state = STATE_ACCEPTING_WAIT_SEQ;
1821 } else {
1822 reply.tag = CEPH_MSGR_TAG_READY;
1823 next_state = STATE_ACCEPTING_READY;
1824 discard_requeued_up_to(0);
1825 is_reset_from_peer = false;
1826 in_seq = 0;
1827 }
1828
1829 // send READY reply
1830 reply.features = policy.features_supported;
1831 reply.global_seq = async_msgr->get_global_seq();
1832 reply.connect_seq = connect_seq;
1833 reply.flags = 0;
1834 reply.authorizer_len = authorizer_reply.length();
1835 if (policy.lossy)
1836 reply.flags = reply.flags | CEPH_MSG_CONNECT_LOSSY;
1837
1838 set_features((uint64_t)reply.features & (uint64_t)connect.features);
1839 ldout(async_msgr->cct, 10) << __func__ << " accept features " << get_features() << dendl;
1840
1841 session_security.reset(
1842 get_auth_session_handler(async_msgr->cct, connect.authorizer_protocol,
1843 session_key, get_features()));
1844
1845 reply_bl.append((char*)&reply, sizeof(reply));
1846
1847 if (reply.authorizer_len)
1848 reply_bl.append(authorizer_reply.c_str(), authorizer_reply.length());
1849
1850 if (reply.tag == CEPH_MSGR_TAG_SEQ) {
1851 uint64_t s = in_seq;
1852 reply_bl.append((char*)&s, sizeof(s));
1853 }
1854
1855 lock.unlock();
1856 // Because "replacing" will prevent other connections preempt this addr,
1857 // it's safe that here we don't acquire Connection's lock
1858 r = async_msgr->accept_conn(this);
1859
1860 inject_delay();
1861
1862 lock.lock();
1863 replacing = false;
1864 if (r < 0) {
1865 ldout(async_msgr->cct, 1) << __func__ << " existing race replacing process for addr=" << peer_addr
1866 << " just fail later one(this)" << dendl;
1867 goto fail_registered;
1868 }
1869 if (state != STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH) {
1870 ldout(async_msgr->cct, 1) << __func__ << " state changed while accept_conn, it must be mark_down" << dendl;
1871 assert(state == STATE_CLOSED || state == STATE_NONE);
1872 goto fail_registered;
1873 }
1874
1875 r = try_send(reply_bl);
1876 if (r < 0)
1877 goto fail_registered;
1878
1879 // notify
1880 dispatch_queue->queue_accept(this);
1881 async_msgr->ms_deliver_handle_fast_accept(this);
1882 once_ready = true;
1883
1884 if (r == 0) {
1885 state = next_state;
1886 ldout(async_msgr->cct, 2) << __func__ << " accept write reply msg done" << dendl;
1887 } else {
1888 state = STATE_WAIT_SEND;
1889 state_after_send = next_state;
1890 }
1891
1892 return 0;
1893
1894 fail_registered:
1895 ldout(async_msgr->cct, 10) << __func__ << " accept fault after register" << dendl;
1896 inject_delay();
1897
1898 fail:
1899 ldout(async_msgr->cct, 10) << __func__ << " failed to accept." << dendl;
1900 return -1;
1901 }
1902
1903 void AsyncConnection::_connect()
1904 {
1905 ldout(async_msgr->cct, 10) << __func__ << " csq=" << connect_seq << dendl;
1906
1907 state = STATE_CONNECTING;
1908 // rescheduler connection in order to avoid lock dep
1909 // may called by external thread(send_message)
1910 center->dispatch_event_external(read_handler);
1911 }
1912
1913 void AsyncConnection::accept(ConnectedSocket socket, entity_addr_t &addr)
1914 {
1915 ldout(async_msgr->cct, 10) << __func__ << " sd=" << socket.fd() << dendl;
1916 assert(socket.fd() >= 0);
1917
1918 std::lock_guard<std::mutex> l(lock);
1919 cs = std::move(socket);
1920 socket_addr = addr;
1921 state = STATE_ACCEPTING;
1922 // rescheduler connection in order to avoid lock dep
1923 center->dispatch_event_external(read_handler);
1924 }
1925
1926 int AsyncConnection::send_message(Message *m)
1927 {
1928 FUNCTRACE();
1929 lgeneric_subdout(async_msgr->cct, ms,
1930 1) << "-- " << async_msgr->get_myaddr() << " --> "
1931 << get_peer_addr() << " -- "
1932 << *m << " -- " << m << " con "
1933 << m->get_connection().get()
1934 << dendl;
1935
1936 // optimistic think it's ok to encode(actually may broken now)
1937 if (!m->get_priority())
1938 m->set_priority(async_msgr->get_default_send_priority());
1939
1940 m->get_header().src = async_msgr->get_myname();
1941 m->set_connection(this);
1942
1943 if (m->get_type() == CEPH_MSG_OSD_OP)
1944 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OP_BEGIN", true);
1945 else if (m->get_type() == CEPH_MSG_OSD_OPREPLY)
1946 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OPREPLY_BEGIN", true);
1947
1948 if (async_msgr->get_myaddr() == get_peer_addr()) { //loopback connection
1949 ldout(async_msgr->cct, 20) << __func__ << " " << *m << " local" << dendl;
1950 std::lock_guard<std::mutex> l(write_lock);
1951 if (can_write != WriteStatus::CLOSED) {
1952 dispatch_queue->local_delivery(m, m->get_priority());
1953 } else {
1954 ldout(async_msgr->cct, 10) << __func__ << " loopback connection closed."
1955 << " Drop message " << m << dendl;
1956 m->put();
1957 }
1958 return 0;
1959 }
1960
1961 last_active = ceph::coarse_mono_clock::now();
1962 // we don't want to consider local message here, it's too lightweight which
1963 // may disturb users
1964 logger->inc(l_msgr_send_messages);
1965
1966 bufferlist bl;
1967 uint64_t f = get_features();
1968
1969 // TODO: Currently not all messages supports reencode like MOSDMap, so here
1970 // only let fast dispatch support messages prepare message
1971 bool can_fast_prepare = async_msgr->ms_can_fast_dispatch(m);
1972 if (can_fast_prepare)
1973 prepare_send_message(f, m, bl);
1974
1975 std::lock_guard<std::mutex> l(write_lock);
1976 // "features" changes will change the payload encoding
1977 if (can_fast_prepare && (can_write == WriteStatus::NOWRITE || get_features() != f)) {
1978 // ensure the correctness of message encoding
1979 bl.clear();
1980 m->get_payload().clear();
1981 ldout(async_msgr->cct, 5) << __func__ << " clear encoded buffer previous "
1982 << f << " != " << get_features() << dendl;
1983 }
1984 if (can_write == WriteStatus::CLOSED) {
1985 ldout(async_msgr->cct, 10) << __func__ << " connection closed."
1986 << " Drop message " << m << dendl;
1987 m->put();
1988 } else {
1989 m->trace.event("async enqueueing message");
1990 out_q[m->get_priority()].emplace_back(std::move(bl), m);
1991 ldout(async_msgr->cct, 15) << __func__ << " inline write is denied, reschedule m=" << m << dendl;
1992 if (can_write != WriteStatus::REPLACING)
1993 center->dispatch_event_external(write_handler);
1994 }
1995 return 0;
1996 }
1997
1998 void AsyncConnection::requeue_sent()
1999 {
2000 if (sent.empty())
2001 return;
2002
2003 list<pair<bufferlist, Message*> >& rq = out_q[CEPH_MSG_PRIO_HIGHEST];
2004 while (!sent.empty()) {
2005 Message* m = sent.back();
2006 sent.pop_back();
2007 ldout(async_msgr->cct, 10) << __func__ << " " << *m << " for resend "
2008 << " (" << m->get_seq() << ")" << dendl;
2009 rq.push_front(make_pair(bufferlist(), m));
2010 out_seq--;
2011 }
2012 }
2013
2014 void AsyncConnection::discard_requeued_up_to(uint64_t seq)
2015 {
2016 ldout(async_msgr->cct, 10) << __func__ << " " << seq << dendl;
2017 std::lock_guard<std::mutex> l(write_lock);
2018 if (out_q.count(CEPH_MSG_PRIO_HIGHEST) == 0)
2019 return;
2020 list<pair<bufferlist, Message*> >& rq = out_q[CEPH_MSG_PRIO_HIGHEST];
2021 while (!rq.empty()) {
2022 pair<bufferlist, Message*> p = rq.front();
2023 if (p.second->get_seq() == 0 || p.second->get_seq() > seq)
2024 break;
2025 ldout(async_msgr->cct, 10) << __func__ << " " << *(p.second) << " for resend seq " << p.second->get_seq()
2026 << " <= " << seq << ", discarding" << dendl;
2027 p.second->put();
2028 rq.pop_front();
2029 out_seq++;
2030 }
2031 if (rq.empty())
2032 out_q.erase(CEPH_MSG_PRIO_HIGHEST);
2033 }
2034
2035 /*
2036 * Tears down the AsyncConnection's message queues, and removes them from the DispatchQueue
2037 * Must hold write_lock prior to calling.
2038 */
2039 void AsyncConnection::discard_out_queue()
2040 {
2041 ldout(async_msgr->cct, 10) << __func__ << " started" << dendl;
2042
2043 for (list<Message*>::iterator p = sent.begin(); p != sent.end(); ++p) {
2044 ldout(async_msgr->cct, 20) << __func__ << " discard " << *p << dendl;
2045 (*p)->put();
2046 }
2047 sent.clear();
2048 for (map<int, list<pair<bufferlist, Message*> > >::iterator p = out_q.begin(); p != out_q.end(); ++p)
2049 for (list<pair<bufferlist, Message*> >::iterator r = p->second.begin(); r != p->second.end(); ++r) {
2050 ldout(async_msgr->cct, 20) << __func__ << " discard " << r->second << dendl;
2051 r->second->put();
2052 }
2053 out_q.clear();
2054 }
2055
2056 int AsyncConnection::randomize_out_seq()
2057 {
2058 if (get_features() & CEPH_FEATURE_MSG_AUTH) {
2059 // Set out_seq to a random value, so CRC won't be predictable. Don't bother checking seq_error
2060 // here. We'll check it on the call. PLR
2061 uint64_t rand_seq;
2062 int seq_error = get_random_bytes((char *)&rand_seq, sizeof(rand_seq));
2063 rand_seq &= SEQ_MASK;
2064 lsubdout(async_msgr->cct, ms, 10) << __func__ << " randomize_out_seq " << rand_seq << dendl;
2065 out_seq = rand_seq;
2066 return seq_error;
2067 } else {
2068 // previously, seq #'s always started at 0.
2069 out_seq = 0;
2070 return 0;
2071 }
2072 }
2073
2074 void AsyncConnection::fault()
2075 {
2076 if (state == STATE_CLOSED || state == STATE_NONE) {
2077 ldout(async_msgr->cct, 10) << __func__ << " connection is already closed" << dendl;
2078 return ;
2079 }
2080
2081 if (policy.lossy && !(state >= STATE_CONNECTING && state < STATE_CONNECTING_READY)) {
2082 ldout(async_msgr->cct, 1) << __func__ << " on lossy channel, failing" << dendl;
2083 _stop();
2084 dispatch_queue->queue_reset(this);
2085 return ;
2086 }
2087
2088 write_lock.lock();
2089 can_write = WriteStatus::NOWRITE;
2090 shutdown_socket();
2091 open_write = false;
2092
2093 // queue delayed items immediately
2094 if (delay_state)
2095 delay_state->flush();
2096 // requeue sent items
2097 requeue_sent();
2098 recv_start = recv_end = 0;
2099 state_offset = 0;
2100 replacing = false;
2101 is_reset_from_peer = false;
2102 outcoming_bl.clear();
2103 if (!once_ready && !is_queued() &&
2104 state >=STATE_ACCEPTING && state <= STATE_ACCEPTING_WAIT_CONNECT_MSG_AUTH) {
2105 ldout(async_msgr->cct, 10) << __func__ << " with nothing to send and in the half "
2106 << " accept state just closed" << dendl;
2107 write_lock.unlock();
2108 _stop();
2109 dispatch_queue->queue_reset(this);
2110 return ;
2111 }
2112 reset_recv_state();
2113 if (policy.standby && !is_queued() && state != STATE_WAIT) {
2114 ldout(async_msgr->cct, 10) << __func__ << " with nothing to send, going to standby" << dendl;
2115 state = STATE_STANDBY;
2116 write_lock.unlock();
2117 return;
2118 }
2119
2120 write_lock.unlock();
2121 if (!(state >= STATE_CONNECTING && state < STATE_CONNECTING_READY) &&
2122 state != STATE_WAIT) { // STATE_WAIT is coming from STATE_CONNECTING_*
2123 // policy maybe empty when state is in accept
2124 if (policy.server) {
2125 ldout(async_msgr->cct, 0) << __func__ << " server, going to standby" << dendl;
2126 state = STATE_STANDBY;
2127 } else {
2128 ldout(async_msgr->cct, 0) << __func__ << " initiating reconnect" << dendl;
2129 connect_seq++;
2130 state = STATE_CONNECTING;
2131 }
2132 backoff = utime_t();
2133 center->dispatch_event_external(read_handler);
2134 } else {
2135 if (state == STATE_WAIT) {
2136 backoff.set_from_double(async_msgr->cct->_conf->ms_max_backoff);
2137 } else if (backoff == utime_t()) {
2138 backoff.set_from_double(async_msgr->cct->_conf->ms_initial_backoff);
2139 } else {
2140 backoff += backoff;
2141 if (backoff > async_msgr->cct->_conf->ms_max_backoff)
2142 backoff.set_from_double(async_msgr->cct->_conf->ms_max_backoff);
2143 }
2144
2145 state = STATE_CONNECTING;
2146 ldout(async_msgr->cct, 10) << __func__ << " waiting " << backoff << dendl;
2147 // woke up again;
2148 register_time_events.insert(center->create_time_event(
2149 backoff.to_nsec()/1000, wakeup_handler));
2150 }
2151 }
2152
2153 void AsyncConnection::was_session_reset()
2154 {
2155 ldout(async_msgr->cct,10) << __func__ << " started" << dendl;
2156 std::lock_guard<std::mutex> l(write_lock);
2157 if (delay_state)
2158 delay_state->discard();
2159 dispatch_queue->discard_queue(conn_id);
2160 discard_out_queue();
2161 // note: we need to clear outcoming_bl here, but was_session_reset may be
2162 // called by other thread, so let caller clear this itself!
2163 // outcoming_bl.clear();
2164
2165 dispatch_queue->queue_remote_reset(this);
2166
2167 if (randomize_out_seq()) {
2168 ldout(async_msgr->cct, 15) << __func__ << " could not get random bytes to set seq number for session reset; set seq number to " << out_seq << dendl;
2169 }
2170
2171 in_seq = 0;
2172 connect_seq = 0;
2173 // it's safe to directly set 0, double locked
2174 ack_left = 0;
2175 once_ready = false;
2176 can_write = WriteStatus::NOWRITE;
2177 }
2178
2179 void AsyncConnection::_stop()
2180 {
2181 if (state == STATE_CLOSED)
2182 return ;
2183
2184 if (delay_state)
2185 delay_state->flush();
2186
2187 ldout(async_msgr->cct, 2) << __func__ << dendl;
2188 std::lock_guard<std::mutex> l(write_lock);
2189
2190 reset_recv_state();
2191 dispatch_queue->discard_queue(conn_id);
2192 discard_out_queue();
2193 async_msgr->unregister_conn(this);
2194 worker->release_worker();
2195
2196 state = STATE_CLOSED;
2197 open_write = false;
2198 can_write = WriteStatus::CLOSED;
2199 state_offset = 0;
2200 // Make sure in-queue events will been processed
2201 center->dispatch_event_external(EventCallbackRef(new C_clean_handler(this)));
2202 }
2203
2204 void AsyncConnection::prepare_send_message(uint64_t features, Message *m, bufferlist &bl)
2205 {
2206 ldout(async_msgr->cct, 20) << __func__ << " m" << " " << *m << dendl;
2207
2208 // associate message with Connection (for benefit of encode_payload)
2209 if (m->empty_payload())
2210 ldout(async_msgr->cct, 20) << __func__ << " encoding features "
2211 << features << " " << m << " " << *m << dendl;
2212 else
2213 ldout(async_msgr->cct, 20) << __func__ << " half-reencoding features "
2214 << features << " " << m << " " << *m << dendl;
2215
2216 // encode and copy out of *m
2217 m->encode(features, msgr->crcflags);
2218
2219 bl.append(m->get_payload());
2220 bl.append(m->get_middle());
2221 bl.append(m->get_data());
2222 }
2223
2224 ssize_t AsyncConnection::write_message(Message *m, bufferlist& bl, bool more)
2225 {
2226 FUNCTRACE();
2227 assert(center->in_thread());
2228 m->set_seq(++out_seq);
2229
2230 if (msgr->crcflags & MSG_CRC_HEADER)
2231 m->calc_header_crc();
2232
2233 ceph_msg_header& header = m->get_header();
2234 ceph_msg_footer& footer = m->get_footer();
2235
2236 // TODO: let sign_message could be reentry?
2237 // Now that we have all the crcs calculated, handle the
2238 // digital signature for the message, if the AsyncConnection has session
2239 // security set up. Some session security options do not
2240 // actually calculate and check the signature, but they should
2241 // handle the calls to sign_message and check_signature. PLR
2242 if (session_security.get() == NULL) {
2243 ldout(async_msgr->cct, 20) << __func__ << " no session security" << dendl;
2244 } else {
2245 if (session_security->sign_message(m)) {
2246 ldout(async_msgr->cct, 20) << __func__ << " failed to sign m="
2247 << m << "): sig = " << footer.sig << dendl;
2248 } else {
2249 ldout(async_msgr->cct, 20) << __func__ << " signed m=" << m
2250 << "): sig = " << footer.sig << dendl;
2251 }
2252 }
2253
2254 unsigned original_bl_len = outcoming_bl.length();
2255
2256 outcoming_bl.append(CEPH_MSGR_TAG_MSG);
2257
2258 if (has_feature(CEPH_FEATURE_NOSRCADDR)) {
2259 outcoming_bl.append((char*)&header, sizeof(header));
2260 } else {
2261 ceph_msg_header_old oldheader;
2262 memcpy(&oldheader, &header, sizeof(header));
2263 oldheader.src.name = header.src;
2264 oldheader.src.addr = get_peer_addr();
2265 oldheader.orig_src = oldheader.src;
2266 oldheader.reserved = header.reserved;
2267 oldheader.crc = ceph_crc32c(0, (unsigned char*)&oldheader,
2268 sizeof(oldheader) - sizeof(oldheader.crc));
2269 outcoming_bl.append((char*)&oldheader, sizeof(oldheader));
2270 }
2271
2272 ldout(async_msgr->cct, 20) << __func__ << " sending message type=" << header.type
2273 << " src " << entity_name_t(header.src)
2274 << " front=" << header.front_len
2275 << " data=" << header.data_len
2276 << " off " << header.data_off << dendl;
2277
2278 if ((bl.length() <= ASYNC_COALESCE_THRESHOLD) && (bl.buffers().size() > 1)) {
2279 for (const auto &pb : bl.buffers()) {
2280 outcoming_bl.append((char*)pb.c_str(), pb.length());
2281 }
2282 } else {
2283 outcoming_bl.claim_append(bl);
2284 }
2285
2286 // send footer; if receiver doesn't support signatures, use the old footer format
2287 ceph_msg_footer_old old_footer;
2288 if (has_feature(CEPH_FEATURE_MSG_AUTH)) {
2289 outcoming_bl.append((char*)&footer, sizeof(footer));
2290 } else {
2291 if (msgr->crcflags & MSG_CRC_HEADER) {
2292 old_footer.front_crc = footer.front_crc;
2293 old_footer.middle_crc = footer.middle_crc;
2294 old_footer.data_crc = footer.data_crc;
2295 } else {
2296 old_footer.front_crc = old_footer.middle_crc = 0;
2297 }
2298 old_footer.data_crc = msgr->crcflags & MSG_CRC_DATA ? footer.data_crc : 0;
2299 old_footer.flags = footer.flags;
2300 outcoming_bl.append((char*)&old_footer, sizeof(old_footer));
2301 }
2302
2303 m->trace.event("async writing message");
2304 ldout(async_msgr->cct, 20) << __func__ << " sending " << m->get_seq()
2305 << " " << m << dendl;
2306 ssize_t total_send_size = outcoming_bl.length();
2307 ssize_t rc = _try_send(more);
2308 if (rc < 0) {
2309 ldout(async_msgr->cct, 1) << __func__ << " error sending " << m << ", "
2310 << cpp_strerror(rc) << dendl;
2311 } else if (rc == 0) {
2312 logger->inc(l_msgr_send_bytes, total_send_size - original_bl_len);
2313 ldout(async_msgr->cct, 10) << __func__ << " sending " << m << " done." << dendl;
2314 } else {
2315 logger->inc(l_msgr_send_bytes, total_send_size - outcoming_bl.length());
2316 ldout(async_msgr->cct, 10) << __func__ << " sending " << m << " continuely." << dendl;
2317 }
2318 if (m->get_type() == CEPH_MSG_OSD_OP)
2319 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OP_END", false);
2320 else if (m->get_type() == CEPH_MSG_OSD_OPREPLY)
2321 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OPREPLY_END", false);
2322 m->put();
2323
2324 return rc;
2325 }
2326
2327 void AsyncConnection::reset_recv_state()
2328 {
2329 // clean up state internal variables and states
2330 if (state >= STATE_CONNECTING_SEND_CONNECT_MSG &&
2331 state <= STATE_CONNECTING_READY) {
2332 delete authorizer;
2333 authorizer = NULL;
2334 got_bad_auth = false;
2335 }
2336
2337 if (state > STATE_OPEN_MESSAGE_THROTTLE_MESSAGE &&
2338 state <= STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH
2339 && policy.throttler_messages) {
2340 ldout(async_msgr->cct, 10) << __func__ << " releasing " << 1
2341 << " message to policy throttler "
2342 << policy.throttler_messages->get_current() << "/"
2343 << policy.throttler_messages->get_max() << dendl;
2344 policy.throttler_messages->put();
2345 }
2346 if (state > STATE_OPEN_MESSAGE_THROTTLE_BYTES &&
2347 state <= STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH) {
2348 if (policy.throttler_bytes) {
2349 ldout(async_msgr->cct, 10) << __func__ << " releasing " << cur_msg_size
2350 << " bytes to policy throttler "
2351 << policy.throttler_bytes->get_current() << "/"
2352 << policy.throttler_bytes->get_max() << dendl;
2353 policy.throttler_bytes->put(cur_msg_size);
2354 }
2355 }
2356 if (state > STATE_OPEN_MESSAGE_THROTTLE_DISPATCH_QUEUE &&
2357 state <= STATE_OPEN_MESSAGE_READ_FOOTER_AND_DISPATCH) {
2358 ldout(async_msgr->cct, 10) << __func__ << " releasing " << cur_msg_size
2359 << " bytes to dispatch_queue throttler "
2360 << dispatch_queue->dispatch_throttler.get_current() << "/"
2361 << dispatch_queue->dispatch_throttler.get_max() << dendl;
2362 dispatch_queue->dispatch_throttle_release(cur_msg_size);
2363 }
2364 }
2365
2366 void AsyncConnection::handle_ack(uint64_t seq)
2367 {
2368 ldout(async_msgr->cct, 15) << __func__ << " got ack seq " << seq << dendl;
2369 // trim sent list
2370 std::lock_guard<std::mutex> l(write_lock);
2371 while (!sent.empty() && sent.front()->get_seq() <= seq) {
2372 Message* m = sent.front();
2373 sent.pop_front();
2374 ldout(async_msgr->cct, 10) << __func__ << " got ack seq "
2375 << seq << " >= " << m->get_seq() << " on "
2376 << m << " " << *m << dendl;
2377 m->put();
2378 }
2379 }
2380
2381 void AsyncConnection::DelayedDelivery::do_request(int id)
2382 {
2383 Message *m = nullptr;
2384 {
2385 std::lock_guard<std::mutex> l(delay_lock);
2386 register_time_events.erase(id);
2387 if (stop_dispatch)
2388 return ;
2389 if (delay_queue.empty())
2390 return ;
2391 utime_t release = delay_queue.front().first;
2392 m = delay_queue.front().second;
2393 string delay_msg_type = msgr->cct->_conf->ms_inject_delay_msg_type;
2394 utime_t now = ceph_clock_now();
2395 if ((release > now &&
2396 (delay_msg_type.empty() || m->get_type_name() == delay_msg_type))) {
2397 utime_t t = release - now;
2398 t.sleep();
2399 }
2400 delay_queue.pop_front();
2401 }
2402 if (msgr->ms_can_fast_dispatch(m)) {
2403 dispatch_queue->fast_dispatch(m);
2404 } else {
2405 dispatch_queue->enqueue(m, m->get_priority(), conn_id);
2406 }
2407 }
2408
2409 void AsyncConnection::DelayedDelivery::flush() {
2410 stop_dispatch = true;
2411 center->submit_to(
2412 center->get_id(), [this] () mutable {
2413 std::lock_guard<std::mutex> l(delay_lock);
2414 while (!delay_queue.empty()) {
2415 Message *m = delay_queue.front().second;
2416 if (msgr->ms_can_fast_dispatch(m)) {
2417 dispatch_queue->fast_dispatch(m);
2418 } else {
2419 dispatch_queue->enqueue(m, m->get_priority(), conn_id);
2420 }
2421 delay_queue.pop_front();
2422 }
2423 for (auto i : register_time_events)
2424 center->delete_time_event(i);
2425 register_time_events.clear();
2426 stop_dispatch = false;
2427 }, true);
2428 }
2429
2430 void AsyncConnection::send_keepalive()
2431 {
2432 ldout(async_msgr->cct, 10) << __func__ << dendl;
2433 std::lock_guard<std::mutex> l(write_lock);
2434 if (can_write != WriteStatus::CLOSED) {
2435 keepalive = true;
2436 center->dispatch_event_external(write_handler);
2437 }
2438 }
2439
2440 void AsyncConnection::mark_down()
2441 {
2442 ldout(async_msgr->cct, 1) << __func__ << dendl;
2443 std::lock_guard<std::mutex> l(lock);
2444 _stop();
2445 }
2446
2447 void AsyncConnection::_append_keepalive_or_ack(bool ack, utime_t *tp)
2448 {
2449 ldout(async_msgr->cct, 10) << __func__ << dendl;
2450 if (ack) {
2451 assert(tp);
2452 struct ceph_timespec ts;
2453 tp->encode_timeval(&ts);
2454 outcoming_bl.append(CEPH_MSGR_TAG_KEEPALIVE2_ACK);
2455 outcoming_bl.append((char*)&ts, sizeof(ts));
2456 } else if (has_feature(CEPH_FEATURE_MSGR_KEEPALIVE2)) {
2457 struct ceph_timespec ts;
2458 utime_t t = ceph_clock_now();
2459 t.encode_timeval(&ts);
2460 outcoming_bl.append(CEPH_MSGR_TAG_KEEPALIVE2);
2461 outcoming_bl.append((char*)&ts, sizeof(ts));
2462 } else {
2463 outcoming_bl.append(CEPH_MSGR_TAG_KEEPALIVE);
2464 }
2465 }
2466
2467 void AsyncConnection::handle_write()
2468 {
2469 ldout(async_msgr->cct, 10) << __func__ << dendl;
2470 ssize_t r = 0;
2471
2472 write_lock.lock();
2473 if (can_write == WriteStatus::CANWRITE) {
2474 if (keepalive) {
2475 _append_keepalive_or_ack();
2476 keepalive = false;
2477 }
2478
2479 auto start = ceph::mono_clock::now();
2480 bool more;
2481 do {
2482 bufferlist data;
2483 Message *m = _get_next_outgoing(&data);
2484 if (!m)
2485 break;
2486
2487 if (!policy.lossy) {
2488 // put on sent list
2489 sent.push_back(m);
2490 m->get();
2491 }
2492 more = _has_next_outgoing();
2493 write_lock.unlock();
2494
2495 // send_message or requeue messages may not encode message
2496 if (!data.length())
2497 prepare_send_message(get_features(), m, data);
2498
2499 r = write_message(m, data, more);
2500 if (r < 0) {
2501 ldout(async_msgr->cct, 1) << __func__ << " send msg failed" << dendl;
2502 goto fail;
2503 }
2504 write_lock.lock();
2505 if (r > 0)
2506 break;
2507 } while (can_write == WriteStatus::CANWRITE);
2508 write_lock.unlock();
2509
2510 uint64_t left = ack_left;
2511 if (left) {
2512 ceph_le64 s;
2513 s = in_seq;
2514 outcoming_bl.append(CEPH_MSGR_TAG_ACK);
2515 outcoming_bl.append((char*)&s, sizeof(s));
2516 ldout(async_msgr->cct, 10) << __func__ << " try send msg ack, acked " << left << " messages" << dendl;
2517 ack_left -= left;
2518 left = ack_left;
2519 r = _try_send(left);
2520 } else if (is_queued()) {
2521 r = _try_send();
2522 }
2523
2524 logger->tinc(l_msgr_running_send_time, ceph::mono_clock::now() - start);
2525 if (r < 0) {
2526 ldout(async_msgr->cct, 1) << __func__ << " send msg failed" << dendl;
2527 goto fail;
2528 }
2529 } else {
2530 write_lock.unlock();
2531 lock.lock();
2532 write_lock.lock();
2533 if (state == STATE_STANDBY && !policy.server && is_queued()) {
2534 ldout(async_msgr->cct, 10) << __func__ << " policy.server is false" << dendl;
2535 _connect();
2536 } else if (cs && state != STATE_NONE && state != STATE_CONNECTING && state != STATE_CONNECTING_RE && state != STATE_CLOSED) {
2537 r = _try_send();
2538 if (r < 0) {
2539 ldout(async_msgr->cct, 1) << __func__ << " send outcoming bl failed" << dendl;
2540 write_lock.unlock();
2541 fault();
2542 lock.unlock();
2543 return ;
2544 }
2545 }
2546 write_lock.unlock();
2547 lock.unlock();
2548 }
2549
2550 return ;
2551
2552 fail:
2553 lock.lock();
2554 fault();
2555 lock.unlock();
2556 }
2557
2558 void AsyncConnection::wakeup_from(uint64_t id)
2559 {
2560 lock.lock();
2561 register_time_events.erase(id);
2562 lock.unlock();
2563 process();
2564 }
2565
2566 void AsyncConnection::tick(uint64_t id)
2567 {
2568 auto now = ceph::coarse_mono_clock::now();
2569 ldout(async_msgr->cct, 20) << __func__ << " last_id=" << last_tick_id
2570 << " last_active" << last_active << dendl;
2571 std::lock_guard<std::mutex> l(lock);
2572 last_tick_id = 0;
2573 auto idle_period = std::chrono::duration_cast<std::chrono::microseconds>(now - last_active).count();
2574 if (inactive_timeout_us < (uint64_t)idle_period) {
2575 ldout(async_msgr->cct, 1) << __func__ << " idle(" << idle_period << ") more than "
2576 << inactive_timeout_us
2577 << " us, mark self fault." << dendl;
2578 fault();
2579 } else if (is_connected()) {
2580 last_tick_id = center->create_time_event(inactive_timeout_us, tick_handler);
2581 }
2582 }