]> git.proxmox.com Git - ceph.git/blob - ceph/src/os/bluestore/BlueStore.cc
update sources to v12.2.3
[ceph.git] / ceph / src / os / bluestore / BlueStore.cc
1 // vim: ts=8 sw=2 smarttab
2 /*
3 * Ceph - scalable distributed file system
4 *
5 * Copyright (C) 2014 Red Hat
6 *
7 * This is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License version 2.1, as published by the Free Software
10 * Foundation. See file COPYING.
11 *
12 */
13
14 #include <unistd.h>
15 #include <stdlib.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <fcntl.h>
19
20 #include "include/cpp-btree/btree_set.h"
21
22 #include "BlueStore.h"
23 #include "os/kv.h"
24 #include "include/compat.h"
25 #include "include/intarith.h"
26 #include "include/stringify.h"
27 #include "common/errno.h"
28 #include "common/safe_io.h"
29 #include "Allocator.h"
30 #include "FreelistManager.h"
31 #include "BlueFS.h"
32 #include "BlueRocksEnv.h"
33 #include "auth/Crypto.h"
34 #include "common/EventTrace.h"
35
36 #define dout_context cct
37 #define dout_subsys ceph_subsys_bluestore
38
39 using bid_t = decltype(BlueStore::Blob::id);
40
41 // bluestore_cache_onode
42 MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::Onode, bluestore_onode,
43 bluestore_cache_onode);
44
45 // bluestore_cache_other
46 MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::Buffer, bluestore_buffer,
47 bluestore_cache_other);
48 MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::Extent, bluestore_extent,
49 bluestore_cache_other);
50 MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::Blob, bluestore_blob,
51 bluestore_cache_other);
52 MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::SharedBlob, bluestore_shared_blob,
53 bluestore_cache_other);
54
55 // bluestore_txc
56 MEMPOOL_DEFINE_OBJECT_FACTORY(BlueStore::TransContext, bluestore_transcontext,
57 bluestore_txc);
58
59
60 // kv store prefixes
61 const string PREFIX_SUPER = "S"; // field -> value
62 const string PREFIX_STAT = "T"; // field -> value(int64 array)
63 const string PREFIX_COLL = "C"; // collection name -> cnode_t
64 const string PREFIX_OBJ = "O"; // object name -> onode_t
65 const string PREFIX_OMAP = "M"; // u64 + keyname -> value
66 const string PREFIX_DEFERRED = "L"; // id -> deferred_transaction_t
67 const string PREFIX_ALLOC = "B"; // u64 offset -> u64 length (freelist)
68 const string PREFIX_SHARED_BLOB = "X"; // u64 offset -> shared_blob_t
69
70 // write a label in the first block. always use this size. note that
71 // bluefs makes a matching assumption about the location of its
72 // superblock (always the second block of the device).
73 #define BDEV_LABEL_BLOCK_SIZE 4096
74
75 // reserve: label (4k) + bluefs super (4k), which means we start at 8k.
76 #define SUPER_RESERVED 8192
77
78 #define OBJECT_MAX_SIZE 0xffffffff // 32 bits
79
80
81 /*
82 * extent map blob encoding
83 *
84 * we use the low bits of the blobid field to indicate some common scenarios
85 * and spanning vs local ids. See ExtentMap::{encode,decode}_some().
86 */
87 #define BLOBID_FLAG_CONTIGUOUS 0x1 // this extent starts at end of previous
88 #define BLOBID_FLAG_ZEROOFFSET 0x2 // blob_offset is 0
89 #define BLOBID_FLAG_SAMELENGTH 0x4 // length matches previous extent
90 #define BLOBID_FLAG_SPANNING 0x8 // has spanning blob id
91 #define BLOBID_SHIFT_BITS 4
92
93 /*
94 * object name key structure
95 *
96 * encoded u8: shard + 2^7 (so that it sorts properly)
97 * encoded u64: poolid + 2^63 (so that it sorts properly)
98 * encoded u32: hash (bit reversed)
99 *
100 * escaped string: namespace
101 *
102 * escaped string: key or object name
103 * 1 char: '<', '=', or '>'. if =, then object key == object name, and
104 * we are done. otherwise, we are followed by the object name.
105 * escaped string: object name (unless '=' above)
106 *
107 * encoded u64: snap
108 * encoded u64: generation
109 * 'o'
110 */
111 #define ONODE_KEY_SUFFIX 'o'
112
113 /*
114 * extent shard key
115 *
116 * object prefix key
117 * u32
118 * 'x'
119 */
120 #define EXTENT_SHARD_KEY_SUFFIX 'x'
121
122 /*
123 * string encoding in the key
124 *
125 * The key string needs to lexicographically sort the same way that
126 * ghobject_t does. We do this by escaping anything <= to '#' with #
127 * plus a 2 digit hex string, and anything >= '~' with ~ plus the two
128 * hex digits.
129 *
130 * We use ! as a terminator for strings; this works because it is < #
131 * and will get escaped if it is present in the string.
132 *
133 */
134 template<typename S>
135 static void append_escaped(const string &in, S *out)
136 {
137 char hexbyte[in.length() * 3 + 1];
138 char* ptr = &hexbyte[0];
139 for (string::const_iterator i = in.begin(); i != in.end(); ++i) {
140 if (*i <= '#') {
141 *ptr++ = '#';
142 *ptr++ = "0123456789abcdef"[(*i >> 4) & 0x0f];
143 *ptr++ = "0123456789abcdef"[*i & 0x0f];
144 } else if (*i >= '~') {
145 *ptr++ = '~';
146 *ptr++ = "0123456789abcdef"[(*i >> 4) & 0x0f];
147 *ptr++ = "0123456789abcdef"[*i & 0x0f];
148 } else {
149 *ptr++ = *i;
150 }
151 }
152 *ptr++ = '!';
153 out->append(hexbyte, ptr - &hexbyte[0]);
154 }
155
156 inline unsigned h2i(char c)
157 {
158 if ((c >= '0') && (c <= '9')) {
159 return c - 0x30;
160 } else if ((c >= 'a') && (c <= 'f')) {
161 return c - 'a' + 10;
162 } else if ((c >= 'A') && (c <= 'F')) {
163 return c - 'A' + 10;
164 } else {
165 return 256; // make it always larger than 255
166 }
167 }
168
169 static int decode_escaped(const char *p, string *out)
170 {
171 char buff[256];
172 char* ptr = &buff[0];
173 char* max = &buff[252];
174 const char *orig_p = p;
175 while (*p && *p != '!') {
176 if (*p == '#' || *p == '~') {
177 unsigned hex = 0;
178 p++;
179 hex = h2i(*p++) << 4;
180 if (hex > 255) {
181 return -EINVAL;
182 }
183 hex |= h2i(*p++);
184 if (hex > 255) {
185 return -EINVAL;
186 }
187 *ptr++ = hex;
188 } else {
189 *ptr++ = *p++;
190 }
191 if (ptr > max) {
192 out->append(buff, ptr-buff);
193 ptr = &buff[0];
194 }
195 }
196 if (ptr != buff) {
197 out->append(buff, ptr-buff);
198 }
199 return p - orig_p;
200 }
201
202 // some things we encode in binary (as le32 or le64); print the
203 // resulting key strings nicely
204 template<typename S>
205 static string pretty_binary_string(const S& in)
206 {
207 char buf[10];
208 string out;
209 out.reserve(in.length() * 3);
210 enum { NONE, HEX, STRING } mode = NONE;
211 unsigned from = 0, i;
212 for (i=0; i < in.length(); ++i) {
213 if ((in[i] < 32 || (unsigned char)in[i] > 126) ||
214 (mode == HEX && in.length() - i >= 4 &&
215 ((in[i] < 32 || (unsigned char)in[i] > 126) ||
216 (in[i+1] < 32 || (unsigned char)in[i+1] > 126) ||
217 (in[i+2] < 32 || (unsigned char)in[i+2] > 126) ||
218 (in[i+3] < 32 || (unsigned char)in[i+3] > 126)))) {
219 if (mode == STRING) {
220 out.append(in.c_str() + from, i - from);
221 out.push_back('\'');
222 }
223 if (mode != HEX) {
224 out.append("0x");
225 mode = HEX;
226 }
227 if (in.length() - i >= 4) {
228 // print a whole u32 at once
229 snprintf(buf, sizeof(buf), "%08x",
230 (uint32_t)(((unsigned char)in[i] << 24) |
231 ((unsigned char)in[i+1] << 16) |
232 ((unsigned char)in[i+2] << 8) |
233 ((unsigned char)in[i+3] << 0)));
234 i += 3;
235 } else {
236 snprintf(buf, sizeof(buf), "%02x", (int)(unsigned char)in[i]);
237 }
238 out.append(buf);
239 } else {
240 if (mode != STRING) {
241 out.push_back('\'');
242 mode = STRING;
243 from = i;
244 }
245 }
246 }
247 if (mode == STRING) {
248 out.append(in.c_str() + from, i - from);
249 out.push_back('\'');
250 }
251 return out;
252 }
253
254 template<typename T>
255 static void _key_encode_shard(shard_id_t shard, T *key)
256 {
257 key->push_back((char)((uint8_t)shard.id + (uint8_t)0x80));
258 }
259
260 static const char *_key_decode_shard(const char *key, shard_id_t *pshard)
261 {
262 pshard->id = (uint8_t)*key - (uint8_t)0x80;
263 return key + 1;
264 }
265
266 static void get_coll_key_range(const coll_t& cid, int bits,
267 string *temp_start, string *temp_end,
268 string *start, string *end)
269 {
270 temp_start->clear();
271 temp_end->clear();
272 start->clear();
273 end->clear();
274
275 spg_t pgid;
276 if (cid.is_pg(&pgid)) {
277 _key_encode_shard(pgid.shard, start);
278 *temp_start = *start;
279
280 _key_encode_u64(pgid.pool() + 0x8000000000000000ull, start);
281 _key_encode_u64((-2ll - pgid.pool()) + 0x8000000000000000ull, temp_start);
282
283 *end = *start;
284 *temp_end = *temp_start;
285
286 uint32_t reverse_hash = hobject_t::_reverse_bits(pgid.ps());
287 _key_encode_u32(reverse_hash, start);
288 _key_encode_u32(reverse_hash, temp_start);
289
290 uint64_t end_hash = reverse_hash + (1ull << (32 - bits));
291 if (end_hash > 0xffffffffull)
292 end_hash = 0xffffffffull;
293
294 _key_encode_u32(end_hash, end);
295 _key_encode_u32(end_hash, temp_end);
296 } else {
297 _key_encode_shard(shard_id_t::NO_SHARD, start);
298 _key_encode_u64(-1ull + 0x8000000000000000ull, start);
299 *end = *start;
300 _key_encode_u32(0, start);
301 _key_encode_u32(0xffffffff, end);
302
303 // no separate temp section
304 *temp_start = *end;
305 *temp_end = *end;
306 }
307 }
308
309 static void get_shared_blob_key(uint64_t sbid, string *key)
310 {
311 key->clear();
312 _key_encode_u64(sbid, key);
313 }
314
315 static int get_key_shared_blob(const string& key, uint64_t *sbid)
316 {
317 const char *p = key.c_str();
318 if (key.length() < sizeof(uint64_t))
319 return -1;
320 _key_decode_u64(p, sbid);
321 return 0;
322 }
323
324 template<typename S>
325 static int get_key_object(const S& key, ghobject_t *oid)
326 {
327 int r;
328 const char *p = key.c_str();
329
330 if (key.length() < 1 + 8 + 4)
331 return -1;
332 p = _key_decode_shard(p, &oid->shard_id);
333
334 uint64_t pool;
335 p = _key_decode_u64(p, &pool);
336 oid->hobj.pool = pool - 0x8000000000000000ull;
337
338 unsigned hash;
339 p = _key_decode_u32(p, &hash);
340
341 oid->hobj.set_bitwise_key_u32(hash);
342
343 r = decode_escaped(p, &oid->hobj.nspace);
344 if (r < 0)
345 return -2;
346 p += r + 1;
347
348 string k;
349 r = decode_escaped(p, &k);
350 if (r < 0)
351 return -3;
352 p += r + 1;
353 if (*p == '=') {
354 // no key
355 ++p;
356 oid->hobj.oid.name = k;
357 } else if (*p == '<' || *p == '>') {
358 // key + name
359 ++p;
360 r = decode_escaped(p, &oid->hobj.oid.name);
361 if (r < 0)
362 return -5;
363 p += r + 1;
364 oid->hobj.set_key(k);
365 } else {
366 // malformed
367 return -6;
368 }
369
370 p = _key_decode_u64(p, &oid->hobj.snap.val);
371 p = _key_decode_u64(p, &oid->generation);
372
373 if (*p != ONODE_KEY_SUFFIX) {
374 return -7;
375 }
376 p++;
377 if (*p) {
378 // if we get something other than a null terminator here,
379 // something goes wrong.
380 return -8;
381 }
382
383 return 0;
384 }
385
386 template<typename S>
387 static void get_object_key(CephContext *cct, const ghobject_t& oid, S *key)
388 {
389 key->clear();
390
391 size_t max_len = 1 + 8 + 4 +
392 (oid.hobj.nspace.length() * 3 + 1) +
393 (oid.hobj.get_key().length() * 3 + 1) +
394 1 + // for '<', '=', or '>'
395 (oid.hobj.oid.name.length() * 3 + 1) +
396 8 + 8 + 1;
397 key->reserve(max_len);
398
399 _key_encode_shard(oid.shard_id, key);
400 _key_encode_u64(oid.hobj.pool + 0x8000000000000000ull, key);
401 _key_encode_u32(oid.hobj.get_bitwise_key_u32(), key);
402
403 append_escaped(oid.hobj.nspace, key);
404
405 if (oid.hobj.get_key().length()) {
406 // is a key... could be < = or >.
407 append_escaped(oid.hobj.get_key(), key);
408 // (ASCII chars < = and > sort in that order, yay)
409 int r = oid.hobj.get_key().compare(oid.hobj.oid.name);
410 if (r) {
411 key->append(r > 0 ? ">" : "<");
412 append_escaped(oid.hobj.oid.name, key);
413 } else {
414 // same as no key
415 key->append("=");
416 }
417 } else {
418 // no key
419 append_escaped(oid.hobj.oid.name, key);
420 key->append("=");
421 }
422
423 _key_encode_u64(oid.hobj.snap, key);
424 _key_encode_u64(oid.generation, key);
425
426 key->push_back(ONODE_KEY_SUFFIX);
427
428 // sanity check
429 if (true) {
430 ghobject_t t;
431 int r = get_key_object(*key, &t);
432 if (r || t != oid) {
433 derr << " r " << r << dendl;
434 derr << "key " << pretty_binary_string(*key) << dendl;
435 derr << "oid " << oid << dendl;
436 derr << " t " << t << dendl;
437 assert(r == 0 && t == oid);
438 }
439 }
440 }
441
442
443 // extent shard keys are the onode key, plus a u32, plus 'x'. the trailing
444 // char lets us quickly test whether it is a shard key without decoding any
445 // of the prefix bytes.
446 template<typename S>
447 static void get_extent_shard_key(const S& onode_key, uint32_t offset,
448 string *key)
449 {
450 key->clear();
451 key->reserve(onode_key.length() + 4 + 1);
452 key->append(onode_key.c_str(), onode_key.size());
453 _key_encode_u32(offset, key);
454 key->push_back(EXTENT_SHARD_KEY_SUFFIX);
455 }
456
457 static void rewrite_extent_shard_key(uint32_t offset, string *key)
458 {
459 assert(key->size() > sizeof(uint32_t) + 1);
460 assert(*key->rbegin() == EXTENT_SHARD_KEY_SUFFIX);
461 _key_encode_u32(offset, key->size() - sizeof(uint32_t) - 1, key);
462 }
463
464 template<typename S>
465 static void generate_extent_shard_key_and_apply(
466 const S& onode_key,
467 uint32_t offset,
468 string *key,
469 std::function<void(const string& final_key)> apply)
470 {
471 if (key->empty()) { // make full key
472 assert(!onode_key.empty());
473 get_extent_shard_key(onode_key, offset, key);
474 } else {
475 rewrite_extent_shard_key(offset, key);
476 }
477 apply(*key);
478 }
479
480 int get_key_extent_shard(const string& key, string *onode_key, uint32_t *offset)
481 {
482 assert(key.size() > sizeof(uint32_t) + 1);
483 assert(*key.rbegin() == EXTENT_SHARD_KEY_SUFFIX);
484 int okey_len = key.size() - sizeof(uint32_t) - 1;
485 *onode_key = key.substr(0, okey_len);
486 const char *p = key.data() + okey_len;
487 _key_decode_u32(p, offset);
488 return 0;
489 }
490
491 static bool is_extent_shard_key(const string& key)
492 {
493 return *key.rbegin() == EXTENT_SHARD_KEY_SUFFIX;
494 }
495
496 // '-' < '.' < '~'
497 static void get_omap_header(uint64_t id, string *out)
498 {
499 _key_encode_u64(id, out);
500 out->push_back('-');
501 }
502
503 // hmm, I don't think there's any need to escape the user key since we
504 // have a clean prefix.
505 static void get_omap_key(uint64_t id, const string& key, string *out)
506 {
507 _key_encode_u64(id, out);
508 out->push_back('.');
509 out->append(key);
510 }
511
512 static void rewrite_omap_key(uint64_t id, string old, string *out)
513 {
514 _key_encode_u64(id, out);
515 out->append(old.c_str() + out->length(), old.size() - out->length());
516 }
517
518 static void decode_omap_key(const string& key, string *user_key)
519 {
520 *user_key = key.substr(sizeof(uint64_t) + 1);
521 }
522
523 static void get_omap_tail(uint64_t id, string *out)
524 {
525 _key_encode_u64(id, out);
526 out->push_back('~');
527 }
528
529 static void get_deferred_key(uint64_t seq, string *out)
530 {
531 _key_encode_u64(seq, out);
532 }
533
534
535 // merge operators
536
537 struct Int64ArrayMergeOperator : public KeyValueDB::MergeOperator {
538 void merge_nonexistent(
539 const char *rdata, size_t rlen, std::string *new_value) override {
540 *new_value = std::string(rdata, rlen);
541 }
542 void merge(
543 const char *ldata, size_t llen,
544 const char *rdata, size_t rlen,
545 std::string *new_value) override {
546 assert(llen == rlen);
547 assert((rlen % 8) == 0);
548 new_value->resize(rlen);
549 const __le64* lv = (const __le64*)ldata;
550 const __le64* rv = (const __le64*)rdata;
551 __le64* nv = &(__le64&)new_value->at(0);
552 for (size_t i = 0; i < rlen >> 3; ++i) {
553 nv[i] = lv[i] + rv[i];
554 }
555 }
556 // We use each operator name and each prefix to construct the
557 // overall RocksDB operator name for consistency check at open time.
558 string name() const override {
559 return "int64_array";
560 }
561 };
562
563
564 // Buffer
565
566 ostream& operator<<(ostream& out, const BlueStore::Buffer& b)
567 {
568 out << "buffer(" << &b << " space " << b.space << " 0x" << std::hex
569 << b.offset << "~" << b.length << std::dec
570 << " " << BlueStore::Buffer::get_state_name(b.state);
571 if (b.flags)
572 out << " " << BlueStore::Buffer::get_flag_name(b.flags);
573 return out << ")";
574 }
575
576 // Garbage Collector
577
578 void BlueStore::GarbageCollector::process_protrusive_extents(
579 const BlueStore::ExtentMap& extent_map,
580 uint64_t start_offset,
581 uint64_t end_offset,
582 uint64_t start_touch_offset,
583 uint64_t end_touch_offset,
584 uint64_t min_alloc_size)
585 {
586 assert(start_offset <= start_touch_offset && end_offset>= end_touch_offset);
587
588 uint64_t lookup_start_offset = P2ALIGN(start_offset, min_alloc_size);
589 uint64_t lookup_end_offset = ROUND_UP_TO(end_offset, min_alloc_size);
590
591 dout(30) << __func__ << " (hex): [" << std::hex
592 << lookup_start_offset << ", " << lookup_end_offset
593 << ")" << std::dec << dendl;
594
595 for (auto it = extent_map.seek_lextent(lookup_start_offset);
596 it != extent_map.extent_map.end() &&
597 it->logical_offset < lookup_end_offset;
598 ++it) {
599 uint64_t alloc_unit_start = it->logical_offset / min_alloc_size;
600 uint64_t alloc_unit_end = (it->logical_end() - 1) / min_alloc_size;
601
602 dout(30) << __func__ << " " << *it
603 << "alloc_units: " << alloc_unit_start << ".." << alloc_unit_end
604 << dendl;
605
606 Blob* b = it->blob.get();
607
608 if (it->logical_offset >=start_touch_offset &&
609 it->logical_end() <= end_touch_offset) {
610 // Process extents within the range affected by
611 // the current write request.
612 // Need to take into account if existing extents
613 // can be merged with them (uncompressed case)
614 if (!b->get_blob().is_compressed()) {
615 if (blob_info_counted && used_alloc_unit == alloc_unit_start) {
616 --blob_info_counted->expected_allocations; // don't need to allocate
617 // new AU for compressed
618 // data since another
619 // collocated uncompressed
620 // blob already exists
621 dout(30) << __func__ << " --expected:"
622 << alloc_unit_start << dendl;
623 }
624 used_alloc_unit = alloc_unit_end;
625 blob_info_counted = nullptr;
626 }
627 } else if (b->get_blob().is_compressed()) {
628
629 // additionally we take compressed blobs that were not impacted
630 // by the write into account too
631 BlobInfo& bi =
632 affected_blobs.emplace(
633 b, BlobInfo(b->get_referenced_bytes())).first->second;
634
635 int adjust =
636 (used_alloc_unit && used_alloc_unit == alloc_unit_start) ? 0 : 1;
637 bi.expected_allocations += alloc_unit_end - alloc_unit_start + adjust;
638 dout(30) << __func__ << " expected_allocations="
639 << bi.expected_allocations << " end_au:"
640 << alloc_unit_end << dendl;
641
642 blob_info_counted = &bi;
643 used_alloc_unit = alloc_unit_end;
644
645 assert(it->length <= bi.referenced_bytes);
646 bi.referenced_bytes -= it->length;
647 dout(30) << __func__ << " affected_blob:" << *b
648 << " unref 0x" << std::hex << it->length
649 << " referenced = 0x" << bi.referenced_bytes
650 << std::dec << dendl;
651 // NOTE: we can't move specific blob to resulting GC list here
652 // when reference counter == 0 since subsequent extents might
653 // decrement its expected_allocation.
654 // Hence need to enumerate all the extents first.
655 if (!bi.collect_candidate) {
656 bi.first_lextent = it;
657 bi.collect_candidate = true;
658 }
659 bi.last_lextent = it;
660 } else {
661 if (blob_info_counted && used_alloc_unit == alloc_unit_start) {
662 // don't need to allocate new AU for compressed data since another
663 // collocated uncompressed blob already exists
664 --blob_info_counted->expected_allocations;
665 dout(30) << __func__ << " --expected_allocations:"
666 << alloc_unit_start << dendl;
667 }
668 used_alloc_unit = alloc_unit_end;
669 blob_info_counted = nullptr;
670 }
671 }
672
673 for (auto b_it = affected_blobs.begin();
674 b_it != affected_blobs.end();
675 ++b_it) {
676 Blob* b = b_it->first;
677 BlobInfo& bi = b_it->second;
678 if (bi.referenced_bytes == 0) {
679 uint64_t len_on_disk = b_it->first->get_blob().get_ondisk_length();
680 int64_t blob_expected_for_release =
681 ROUND_UP_TO(len_on_disk, min_alloc_size) / min_alloc_size;
682
683 dout(30) << __func__ << " " << *(b_it->first)
684 << " expected4release=" << blob_expected_for_release
685 << " expected_allocations=" << bi.expected_allocations
686 << dendl;
687 int64_t benefit = blob_expected_for_release - bi.expected_allocations;
688 if (benefit >= g_conf->bluestore_gc_enable_blob_threshold) {
689 if (bi.collect_candidate) {
690 auto it = bi.first_lextent;
691 bool bExit = false;
692 do {
693 if (it->blob.get() == b) {
694 extents_to_collect.emplace_back(it->logical_offset, it->length);
695 }
696 bExit = it == bi.last_lextent;
697 ++it;
698 } while (!bExit);
699 }
700 expected_for_release += blob_expected_for_release;
701 expected_allocations += bi.expected_allocations;
702 }
703 }
704 }
705 }
706
707 int64_t BlueStore::GarbageCollector::estimate(
708 uint64_t start_offset,
709 uint64_t length,
710 const BlueStore::ExtentMap& extent_map,
711 const BlueStore::old_extent_map_t& old_extents,
712 uint64_t min_alloc_size)
713 {
714
715 affected_blobs.clear();
716 extents_to_collect.clear();
717 used_alloc_unit = boost::optional<uint64_t >();
718 blob_info_counted = nullptr;
719
720 gc_start_offset = start_offset;
721 gc_end_offset = start_offset + length;
722
723 uint64_t end_offset = start_offset + length;
724
725 for (auto it = old_extents.begin(); it != old_extents.end(); ++it) {
726 Blob* b = it->e.blob.get();
727 if (b->get_blob().is_compressed()) {
728
729 // update gc_start_offset/gc_end_offset if needed
730 gc_start_offset = min(gc_start_offset, (uint64_t)it->e.blob_start());
731 gc_end_offset = max(gc_end_offset, (uint64_t)it->e.blob_end());
732
733 auto o = it->e.logical_offset;
734 auto l = it->e.length;
735
736 uint64_t ref_bytes = b->get_referenced_bytes();
737 // micro optimization to bypass blobs that have no more references
738 if (ref_bytes != 0) {
739 dout(30) << __func__ << " affected_blob:" << *b
740 << " unref 0x" << std::hex << o << "~" << l
741 << std::dec << dendl;
742 affected_blobs.emplace(b, BlobInfo(ref_bytes));
743 }
744 }
745 }
746 dout(30) << __func__ << " gc range(hex): [" << std::hex
747 << gc_start_offset << ", " << gc_end_offset
748 << ")" << std::dec << dendl;
749
750 // enumerate preceeding extents to check if they reference affected blobs
751 if (gc_start_offset < start_offset || gc_end_offset > end_offset) {
752 process_protrusive_extents(extent_map,
753 gc_start_offset,
754 gc_end_offset,
755 start_offset,
756 end_offset,
757 min_alloc_size);
758 }
759 return expected_for_release - expected_allocations;
760 }
761
762 // Cache
763
764 BlueStore::Cache *BlueStore::Cache::create(CephContext* cct, string type,
765 PerfCounters *logger)
766 {
767 Cache *c = nullptr;
768
769 if (type == "lru")
770 c = new LRUCache(cct);
771 else if (type == "2q")
772 c = new TwoQCache(cct);
773 else
774 assert(0 == "unrecognized cache type");
775
776 c->logger = logger;
777 return c;
778 }
779
780 void BlueStore::Cache::trim_all()
781 {
782 std::lock_guard<std::recursive_mutex> l(lock);
783 _trim(0, 0);
784 }
785
786 void BlueStore::Cache::trim(
787 uint64_t target_bytes,
788 float target_meta_ratio,
789 float target_data_ratio,
790 float bytes_per_onode)
791 {
792 std::lock_guard<std::recursive_mutex> l(lock);
793 uint64_t current_meta = _get_num_onodes() * bytes_per_onode;
794 uint64_t current_buffer = _get_buffer_bytes();
795 uint64_t current = current_meta + current_buffer;
796
797 uint64_t target_meta = target_bytes * target_meta_ratio;
798 uint64_t target_buffer = target_bytes * target_data_ratio;
799
800 // correct for overflow or float imprecision
801 target_meta = min(target_bytes, target_meta);
802 target_buffer = min(target_bytes - target_meta, target_buffer);
803
804 if (current <= target_bytes) {
805 dout(10) << __func__
806 << " shard target " << pretty_si_t(target_bytes)
807 << " meta/data ratios " << target_meta_ratio
808 << " + " << target_data_ratio << " ("
809 << pretty_si_t(target_meta) << " + "
810 << pretty_si_t(target_buffer) << "), "
811 << " current " << pretty_si_t(current) << " ("
812 << pretty_si_t(current_meta) << " + "
813 << pretty_si_t(current_buffer) << ")"
814 << dendl;
815 return;
816 }
817
818 uint64_t need_to_free = current - target_bytes;
819 uint64_t free_buffer = 0;
820 uint64_t free_meta = 0;
821 if (current_buffer > target_buffer) {
822 free_buffer = current_buffer - target_buffer;
823 if (free_buffer > need_to_free) {
824 free_buffer = need_to_free;
825 }
826 }
827 free_meta = need_to_free - free_buffer;
828
829 // start bounds at what we have now
830 uint64_t max_buffer = current_buffer - free_buffer;
831 uint64_t max_meta = current_meta - free_meta;
832 uint64_t max_onodes = max_meta / bytes_per_onode;
833
834 dout(10) << __func__
835 << " shard target " << pretty_si_t(target_bytes)
836 << " ratio " << target_meta_ratio << " ("
837 << pretty_si_t(target_meta) << " + "
838 << pretty_si_t(target_buffer) << "), "
839 << " current " << pretty_si_t(current) << " ("
840 << pretty_si_t(current_meta) << " + "
841 << pretty_si_t(current_buffer) << "),"
842 << " need_to_free " << pretty_si_t(need_to_free) << " ("
843 << pretty_si_t(free_meta) << " + "
844 << pretty_si_t(free_buffer) << ")"
845 << " -> max " << max_onodes << " onodes + "
846 << max_buffer << " buffer"
847 << dendl;
848 _trim(max_onodes, max_buffer);
849 }
850
851
852 // LRUCache
853 #undef dout_prefix
854 #define dout_prefix *_dout << "bluestore.LRUCache(" << this << ") "
855
856 void BlueStore::LRUCache::_touch_onode(OnodeRef& o)
857 {
858 auto p = onode_lru.iterator_to(*o);
859 onode_lru.erase(p);
860 onode_lru.push_front(*o);
861 }
862
863 void BlueStore::LRUCache::_trim(uint64_t onode_max, uint64_t buffer_max)
864 {
865 dout(20) << __func__ << " onodes " << onode_lru.size() << " / " << onode_max
866 << " buffers " << buffer_size << " / " << buffer_max
867 << dendl;
868
869 _audit("trim start");
870
871 // buffers
872 while (buffer_size > buffer_max) {
873 auto i = buffer_lru.rbegin();
874 if (i == buffer_lru.rend()) {
875 // stop if buffer_lru is now empty
876 break;
877 }
878
879 Buffer *b = &*i;
880 assert(b->is_clean());
881 dout(20) << __func__ << " rm " << *b << dendl;
882 b->space->_rm_buffer(this, b);
883 }
884
885 // onodes
886 int num = onode_lru.size() - onode_max;
887 if (num <= 0)
888 return; // don't even try
889
890 auto p = onode_lru.end();
891 assert(p != onode_lru.begin());
892 --p;
893 int skipped = 0;
894 int max_skipped = g_conf->bluestore_cache_trim_max_skip_pinned;
895 while (num > 0) {
896 Onode *o = &*p;
897 int refs = o->nref.load();
898 if (refs > 1) {
899 dout(20) << __func__ << " " << o->oid << " has " << refs
900 << " refs, skipping" << dendl;
901 if (++skipped >= max_skipped) {
902 dout(20) << __func__ << " maximum skip pinned reached; stopping with "
903 << num << " left to trim" << dendl;
904 break;
905 }
906
907 if (p == onode_lru.begin()) {
908 break;
909 } else {
910 p--;
911 num--;
912 continue;
913 }
914 }
915 dout(30) << __func__ << " rm " << o->oid << dendl;
916 if (p != onode_lru.begin()) {
917 onode_lru.erase(p--);
918 } else {
919 onode_lru.erase(p);
920 assert(num == 1);
921 }
922 o->get(); // paranoia
923 o->c->onode_map.remove(o->oid);
924 o->put();
925 --num;
926 }
927 }
928
929 #ifdef DEBUG_CACHE
930 void BlueStore::LRUCache::_audit(const char *when)
931 {
932 dout(10) << __func__ << " " << when << " start" << dendl;
933 uint64_t s = 0;
934 for (auto i = buffer_lru.begin(); i != buffer_lru.end(); ++i) {
935 s += i->length;
936 }
937 if (s != buffer_size) {
938 derr << __func__ << " buffer_size " << buffer_size << " actual " << s
939 << dendl;
940 for (auto i = buffer_lru.begin(); i != buffer_lru.end(); ++i) {
941 derr << __func__ << " " << *i << dendl;
942 }
943 assert(s == buffer_size);
944 }
945 dout(20) << __func__ << " " << when << " buffer_size " << buffer_size
946 << " ok" << dendl;
947 }
948 #endif
949
950 // TwoQCache
951 #undef dout_prefix
952 #define dout_prefix *_dout << "bluestore.2QCache(" << this << ") "
953
954
955 void BlueStore::TwoQCache::_touch_onode(OnodeRef& o)
956 {
957 auto p = onode_lru.iterator_to(*o);
958 onode_lru.erase(p);
959 onode_lru.push_front(*o);
960 }
961
962 void BlueStore::TwoQCache::_add_buffer(Buffer *b, int level, Buffer *near)
963 {
964 dout(20) << __func__ << " level " << level << " near " << near
965 << " on " << *b
966 << " which has cache_private " << b->cache_private << dendl;
967 if (near) {
968 b->cache_private = near->cache_private;
969 switch (b->cache_private) {
970 case BUFFER_WARM_IN:
971 buffer_warm_in.insert(buffer_warm_in.iterator_to(*near), *b);
972 break;
973 case BUFFER_WARM_OUT:
974 assert(b->is_empty());
975 buffer_warm_out.insert(buffer_warm_out.iterator_to(*near), *b);
976 break;
977 case BUFFER_HOT:
978 buffer_hot.insert(buffer_hot.iterator_to(*near), *b);
979 break;
980 default:
981 assert(0 == "bad cache_private");
982 }
983 } else if (b->cache_private == BUFFER_NEW) {
984 b->cache_private = BUFFER_WARM_IN;
985 if (level > 0) {
986 buffer_warm_in.push_front(*b);
987 } else {
988 // take caller hint to start at the back of the warm queue
989 buffer_warm_in.push_back(*b);
990 }
991 } else {
992 // we got a hint from discard
993 switch (b->cache_private) {
994 case BUFFER_WARM_IN:
995 // stay in warm_in. move to front, even though 2Q doesn't actually
996 // do this.
997 dout(20) << __func__ << " move to front of warm " << *b << dendl;
998 buffer_warm_in.push_front(*b);
999 break;
1000 case BUFFER_WARM_OUT:
1001 b->cache_private = BUFFER_HOT;
1002 // move to hot. fall-thru
1003 case BUFFER_HOT:
1004 dout(20) << __func__ << " move to front of hot " << *b << dendl;
1005 buffer_hot.push_front(*b);
1006 break;
1007 default:
1008 assert(0 == "bad cache_private");
1009 }
1010 }
1011 if (!b->is_empty()) {
1012 buffer_bytes += b->length;
1013 buffer_list_bytes[b->cache_private] += b->length;
1014 }
1015 }
1016
1017 void BlueStore::TwoQCache::_rm_buffer(Buffer *b)
1018 {
1019 dout(20) << __func__ << " " << *b << dendl;
1020 if (!b->is_empty()) {
1021 assert(buffer_bytes >= b->length);
1022 buffer_bytes -= b->length;
1023 assert(buffer_list_bytes[b->cache_private] >= b->length);
1024 buffer_list_bytes[b->cache_private] -= b->length;
1025 }
1026 switch (b->cache_private) {
1027 case BUFFER_WARM_IN:
1028 buffer_warm_in.erase(buffer_warm_in.iterator_to(*b));
1029 break;
1030 case BUFFER_WARM_OUT:
1031 buffer_warm_out.erase(buffer_warm_out.iterator_to(*b));
1032 break;
1033 case BUFFER_HOT:
1034 buffer_hot.erase(buffer_hot.iterator_to(*b));
1035 break;
1036 default:
1037 assert(0 == "bad cache_private");
1038 }
1039 }
1040
1041 void BlueStore::TwoQCache::_move_buffer(Cache *srcc, Buffer *b)
1042 {
1043 TwoQCache *src = static_cast<TwoQCache*>(srcc);
1044 src->_rm_buffer(b);
1045
1046 // preserve which list we're on (even if we can't preserve the order!)
1047 switch (b->cache_private) {
1048 case BUFFER_WARM_IN:
1049 assert(!b->is_empty());
1050 buffer_warm_in.push_back(*b);
1051 break;
1052 case BUFFER_WARM_OUT:
1053 assert(b->is_empty());
1054 buffer_warm_out.push_back(*b);
1055 break;
1056 case BUFFER_HOT:
1057 assert(!b->is_empty());
1058 buffer_hot.push_back(*b);
1059 break;
1060 default:
1061 assert(0 == "bad cache_private");
1062 }
1063 if (!b->is_empty()) {
1064 buffer_bytes += b->length;
1065 buffer_list_bytes[b->cache_private] += b->length;
1066 }
1067 }
1068
1069 void BlueStore::TwoQCache::_adjust_buffer_size(Buffer *b, int64_t delta)
1070 {
1071 dout(20) << __func__ << " delta " << delta << " on " << *b << dendl;
1072 if (!b->is_empty()) {
1073 assert((int64_t)buffer_bytes + delta >= 0);
1074 buffer_bytes += delta;
1075 assert((int64_t)buffer_list_bytes[b->cache_private] + delta >= 0);
1076 buffer_list_bytes[b->cache_private] += delta;
1077 }
1078 }
1079
1080 void BlueStore::TwoQCache::_trim(uint64_t onode_max, uint64_t buffer_max)
1081 {
1082 dout(20) << __func__ << " onodes " << onode_lru.size() << " / " << onode_max
1083 << " buffers " << buffer_bytes << " / " << buffer_max
1084 << dendl;
1085
1086 _audit("trim start");
1087
1088 // buffers
1089 if (buffer_bytes > buffer_max) {
1090 uint64_t kin = buffer_max * cct->_conf->bluestore_2q_cache_kin_ratio;
1091 uint64_t khot = buffer_max - kin;
1092
1093 // pre-calculate kout based on average buffer size too,
1094 // which is typical(the warm_in and hot lists may change later)
1095 uint64_t kout = 0;
1096 uint64_t buffer_num = buffer_hot.size() + buffer_warm_in.size();
1097 if (buffer_num) {
1098 uint64_t buffer_avg_size = buffer_bytes / buffer_num;
1099 assert(buffer_avg_size);
1100 uint64_t calculated_buffer_num = buffer_max / buffer_avg_size;
1101 kout = calculated_buffer_num * cct->_conf->bluestore_2q_cache_kout_ratio;
1102 }
1103
1104 if (buffer_list_bytes[BUFFER_HOT] < khot) {
1105 // hot is small, give slack to warm_in
1106 kin += khot - buffer_list_bytes[BUFFER_HOT];
1107 } else if (buffer_list_bytes[BUFFER_WARM_IN] < kin) {
1108 // warm_in is small, give slack to hot
1109 khot += kin - buffer_list_bytes[BUFFER_WARM_IN];
1110 }
1111
1112 // adjust warm_in list
1113 int64_t to_evict_bytes = buffer_list_bytes[BUFFER_WARM_IN] - kin;
1114 uint64_t evicted = 0;
1115
1116 while (to_evict_bytes > 0) {
1117 auto p = buffer_warm_in.rbegin();
1118 if (p == buffer_warm_in.rend()) {
1119 // stop if warm_in list is now empty
1120 break;
1121 }
1122
1123 Buffer *b = &*p;
1124 assert(b->is_clean());
1125 dout(20) << __func__ << " buffer_warm_in -> out " << *b << dendl;
1126 assert(buffer_bytes >= b->length);
1127 buffer_bytes -= b->length;
1128 assert(buffer_list_bytes[BUFFER_WARM_IN] >= b->length);
1129 buffer_list_bytes[BUFFER_WARM_IN] -= b->length;
1130 to_evict_bytes -= b->length;
1131 evicted += b->length;
1132 b->state = Buffer::STATE_EMPTY;
1133 b->data.clear();
1134 buffer_warm_in.erase(buffer_warm_in.iterator_to(*b));
1135 buffer_warm_out.push_front(*b);
1136 b->cache_private = BUFFER_WARM_OUT;
1137 }
1138
1139 if (evicted > 0) {
1140 dout(20) << __func__ << " evicted " << prettybyte_t(evicted)
1141 << " from warm_in list, done evicting warm_in buffers"
1142 << dendl;
1143 }
1144
1145 // adjust hot list
1146 to_evict_bytes = buffer_list_bytes[BUFFER_HOT] - khot;
1147 evicted = 0;
1148
1149 while (to_evict_bytes > 0) {
1150 auto p = buffer_hot.rbegin();
1151 if (p == buffer_hot.rend()) {
1152 // stop if hot list is now empty
1153 break;
1154 }
1155
1156 Buffer *b = &*p;
1157 dout(20) << __func__ << " buffer_hot rm " << *b << dendl;
1158 assert(b->is_clean());
1159 // adjust evict size before buffer goes invalid
1160 to_evict_bytes -= b->length;
1161 evicted += b->length;
1162 b->space->_rm_buffer(this, b);
1163 }
1164
1165 if (evicted > 0) {
1166 dout(20) << __func__ << " evicted " << prettybyte_t(evicted)
1167 << " from hot list, done evicting hot buffers"
1168 << dendl;
1169 }
1170
1171 // adjust warm out list too, if necessary
1172 int64_t num = buffer_warm_out.size() - kout;
1173 while (num-- > 0) {
1174 Buffer *b = &*buffer_warm_out.rbegin();
1175 assert(b->is_empty());
1176 dout(20) << __func__ << " buffer_warm_out rm " << *b << dendl;
1177 b->space->_rm_buffer(this, b);
1178 }
1179 }
1180
1181 // onodes
1182 int num = onode_lru.size() - onode_max;
1183 if (num <= 0)
1184 return; // don't even try
1185
1186 auto p = onode_lru.end();
1187 assert(p != onode_lru.begin());
1188 --p;
1189 int skipped = 0;
1190 int max_skipped = g_conf->bluestore_cache_trim_max_skip_pinned;
1191 while (num > 0) {
1192 Onode *o = &*p;
1193 dout(20) << __func__ << " considering " << o << dendl;
1194 int refs = o->nref.load();
1195 if (refs > 1) {
1196 dout(20) << __func__ << " " << o->oid << " has " << refs
1197 << " refs; skipping" << dendl;
1198 if (++skipped >= max_skipped) {
1199 dout(20) << __func__ << " maximum skip pinned reached; stopping with "
1200 << num << " left to trim" << dendl;
1201 break;
1202 }
1203
1204 if (p == onode_lru.begin()) {
1205 break;
1206 } else {
1207 p--;
1208 num--;
1209 continue;
1210 }
1211 }
1212 dout(30) << __func__ << " " << o->oid << " num=" << num <<" lru size="<<onode_lru.size()<< dendl;
1213 if (p != onode_lru.begin()) {
1214 onode_lru.erase(p--);
1215 } else {
1216 onode_lru.erase(p);
1217 assert(num == 1);
1218 }
1219 o->get(); // paranoia
1220 o->c->onode_map.remove(o->oid);
1221 o->put();
1222 --num;
1223 }
1224 }
1225
1226 #ifdef DEBUG_CACHE
1227 void BlueStore::TwoQCache::_audit(const char *when)
1228 {
1229 dout(10) << __func__ << " " << when << " start" << dendl;
1230 uint64_t s = 0;
1231 for (auto i = buffer_hot.begin(); i != buffer_hot.end(); ++i) {
1232 s += i->length;
1233 }
1234
1235 uint64_t hot_bytes = s;
1236 if (hot_bytes != buffer_list_bytes[BUFFER_HOT]) {
1237 derr << __func__ << " hot_list_bytes "
1238 << buffer_list_bytes[BUFFER_HOT]
1239 << " != actual " << hot_bytes
1240 << dendl;
1241 assert(hot_bytes == buffer_list_bytes[BUFFER_HOT]);
1242 }
1243
1244 for (auto i = buffer_warm_in.begin(); i != buffer_warm_in.end(); ++i) {
1245 s += i->length;
1246 }
1247
1248 uint64_t warm_in_bytes = s - hot_bytes;
1249 if (warm_in_bytes != buffer_list_bytes[BUFFER_WARM_IN]) {
1250 derr << __func__ << " warm_in_list_bytes "
1251 << buffer_list_bytes[BUFFER_WARM_IN]
1252 << " != actual " << warm_in_bytes
1253 << dendl;
1254 assert(warm_in_bytes == buffer_list_bytes[BUFFER_WARM_IN]);
1255 }
1256
1257 if (s != buffer_bytes) {
1258 derr << __func__ << " buffer_bytes " << buffer_bytes << " actual " << s
1259 << dendl;
1260 assert(s == buffer_bytes);
1261 }
1262
1263 dout(20) << __func__ << " " << when << " buffer_bytes " << buffer_bytes
1264 << " ok" << dendl;
1265 }
1266 #endif
1267
1268
1269 // BufferSpace
1270
1271 #undef dout_prefix
1272 #define dout_prefix *_dout << "bluestore.BufferSpace(" << this << " in " << cache << ") "
1273
1274 void BlueStore::BufferSpace::_clear(Cache* cache)
1275 {
1276 // note: we already hold cache->lock
1277 ldout(cache->cct, 20) << __func__ << dendl;
1278 while (!buffer_map.empty()) {
1279 _rm_buffer(cache, buffer_map.begin());
1280 }
1281 }
1282
1283 int BlueStore::BufferSpace::_discard(Cache* cache, uint32_t offset, uint32_t length)
1284 {
1285 // note: we already hold cache->lock
1286 ldout(cache->cct, 20) << __func__ << std::hex << " 0x" << offset << "~" << length
1287 << std::dec << dendl;
1288 int cache_private = 0;
1289 cache->_audit("discard start");
1290 auto i = _data_lower_bound(offset);
1291 uint32_t end = offset + length;
1292 while (i != buffer_map.end()) {
1293 Buffer *b = i->second.get();
1294 if (b->offset >= end) {
1295 break;
1296 }
1297 if (b->cache_private > cache_private) {
1298 cache_private = b->cache_private;
1299 }
1300 if (b->offset < offset) {
1301 int64_t front = offset - b->offset;
1302 if (b->end() > end) {
1303 // drop middle (split)
1304 uint32_t tail = b->end() - end;
1305 if (b->data.length()) {
1306 bufferlist bl;
1307 bl.substr_of(b->data, b->length - tail, tail);
1308 Buffer *nb = new Buffer(this, b->state, b->seq, end, bl);
1309 nb->maybe_rebuild();
1310 _add_buffer(cache, nb, 0, b);
1311 } else {
1312 _add_buffer(cache, new Buffer(this, b->state, b->seq, end, tail),
1313 0, b);
1314 }
1315 if (!b->is_writing()) {
1316 cache->_adjust_buffer_size(b, front - (int64_t)b->length);
1317 }
1318 b->truncate(front);
1319 b->maybe_rebuild();
1320 cache->_audit("discard end 1");
1321 break;
1322 } else {
1323 // drop tail
1324 if (!b->is_writing()) {
1325 cache->_adjust_buffer_size(b, front - (int64_t)b->length);
1326 }
1327 b->truncate(front);
1328 b->maybe_rebuild();
1329 ++i;
1330 continue;
1331 }
1332 }
1333 if (b->end() <= end) {
1334 // drop entire buffer
1335 _rm_buffer(cache, i++);
1336 continue;
1337 }
1338 // drop front
1339 uint32_t keep = b->end() - end;
1340 if (b->data.length()) {
1341 bufferlist bl;
1342 bl.substr_of(b->data, b->length - keep, keep);
1343 Buffer *nb = new Buffer(this, b->state, b->seq, end, bl);
1344 nb->maybe_rebuild();
1345 _add_buffer(cache, nb, 0, b);
1346 } else {
1347 _add_buffer(cache, new Buffer(this, b->state, b->seq, end, keep), 0, b);
1348 }
1349 _rm_buffer(cache, i);
1350 cache->_audit("discard end 2");
1351 break;
1352 }
1353 return cache_private;
1354 }
1355
1356 void BlueStore::BufferSpace::read(
1357 Cache* cache,
1358 uint32_t offset,
1359 uint32_t length,
1360 BlueStore::ready_regions_t& res,
1361 interval_set<uint32_t>& res_intervals)
1362 {
1363 res.clear();
1364 res_intervals.clear();
1365 uint32_t want_bytes = length;
1366 uint32_t end = offset + length;
1367
1368 {
1369 std::lock_guard<std::recursive_mutex> l(cache->lock);
1370 for (auto i = _data_lower_bound(offset);
1371 i != buffer_map.end() && offset < end && i->first < end;
1372 ++i) {
1373 Buffer *b = i->second.get();
1374 assert(b->end() > offset);
1375 if (b->is_writing() || b->is_clean()) {
1376 if (b->offset < offset) {
1377 uint32_t skip = offset - b->offset;
1378 uint32_t l = MIN(length, b->length - skip);
1379 res[offset].substr_of(b->data, skip, l);
1380 res_intervals.insert(offset, l);
1381 offset += l;
1382 length -= l;
1383 if (!b->is_writing()) {
1384 cache->_touch_buffer(b);
1385 }
1386 continue;
1387 }
1388 if (b->offset > offset) {
1389 uint32_t gap = b->offset - offset;
1390 if (length <= gap) {
1391 break;
1392 }
1393 offset += gap;
1394 length -= gap;
1395 }
1396 if (!b->is_writing()) {
1397 cache->_touch_buffer(b);
1398 }
1399 if (b->length > length) {
1400 res[offset].substr_of(b->data, 0, length);
1401 res_intervals.insert(offset, length);
1402 break;
1403 } else {
1404 res[offset].append(b->data);
1405 res_intervals.insert(offset, b->length);
1406 if (b->length == length)
1407 break;
1408 offset += b->length;
1409 length -= b->length;
1410 }
1411 }
1412 }
1413 }
1414
1415 uint64_t hit_bytes = res_intervals.size();
1416 assert(hit_bytes <= want_bytes);
1417 uint64_t miss_bytes = want_bytes - hit_bytes;
1418 cache->logger->inc(l_bluestore_buffer_hit_bytes, hit_bytes);
1419 cache->logger->inc(l_bluestore_buffer_miss_bytes, miss_bytes);
1420 }
1421
1422 void BlueStore::BufferSpace::finish_write(Cache* cache, uint64_t seq)
1423 {
1424 std::lock_guard<std::recursive_mutex> l(cache->lock);
1425
1426 auto i = writing.begin();
1427 while (i != writing.end()) {
1428 if (i->seq > seq) {
1429 break;
1430 }
1431 if (i->seq < seq) {
1432 ++i;
1433 continue;
1434 }
1435
1436 Buffer *b = &*i;
1437 assert(b->is_writing());
1438
1439 if (b->flags & Buffer::FLAG_NOCACHE) {
1440 writing.erase(i++);
1441 ldout(cache->cct, 20) << __func__ << " discard " << *b << dendl;
1442 buffer_map.erase(b->offset);
1443 } else {
1444 b->state = Buffer::STATE_CLEAN;
1445 writing.erase(i++);
1446 b->maybe_rebuild();
1447 b->data.reassign_to_mempool(mempool::mempool_bluestore_cache_data);
1448 cache->_add_buffer(b, 1, nullptr);
1449 ldout(cache->cct, 20) << __func__ << " added " << *b << dendl;
1450 }
1451 }
1452
1453 cache->_audit("finish_write end");
1454 }
1455
1456 void BlueStore::BufferSpace::split(Cache* cache, size_t pos, BlueStore::BufferSpace &r)
1457 {
1458 std::lock_guard<std::recursive_mutex> lk(cache->lock);
1459 if (buffer_map.empty())
1460 return;
1461
1462 auto p = --buffer_map.end();
1463 while (true) {
1464 if (p->second->end() <= pos)
1465 break;
1466
1467 if (p->second->offset < pos) {
1468 ldout(cache->cct, 30) << __func__ << " cut " << *p->second << dendl;
1469 size_t left = pos - p->second->offset;
1470 size_t right = p->second->length - left;
1471 if (p->second->data.length()) {
1472 bufferlist bl;
1473 bl.substr_of(p->second->data, left, right);
1474 r._add_buffer(cache, new Buffer(&r, p->second->state, p->second->seq, 0, bl),
1475 0, p->second.get());
1476 } else {
1477 r._add_buffer(cache, new Buffer(&r, p->second->state, p->second->seq, 0, right),
1478 0, p->second.get());
1479 }
1480 cache->_adjust_buffer_size(p->second.get(), -right);
1481 p->second->truncate(left);
1482 break;
1483 }
1484
1485 assert(p->second->end() > pos);
1486 ldout(cache->cct, 30) << __func__ << " move " << *p->second << dendl;
1487 if (p->second->data.length()) {
1488 r._add_buffer(cache, new Buffer(&r, p->second->state, p->second->seq,
1489 p->second->offset - pos, p->second->data),
1490 0, p->second.get());
1491 } else {
1492 r._add_buffer(cache, new Buffer(&r, p->second->state, p->second->seq,
1493 p->second->offset - pos, p->second->length),
1494 0, p->second.get());
1495 }
1496 if (p == buffer_map.begin()) {
1497 _rm_buffer(cache, p);
1498 break;
1499 } else {
1500 _rm_buffer(cache, p--);
1501 }
1502 }
1503 assert(writing.empty());
1504 }
1505
1506 // OnodeSpace
1507
1508 #undef dout_prefix
1509 #define dout_prefix *_dout << "bluestore.OnodeSpace(" << this << " in " << cache << ") "
1510
1511 BlueStore::OnodeRef BlueStore::OnodeSpace::add(const ghobject_t& oid, OnodeRef o)
1512 {
1513 std::lock_guard<std::recursive_mutex> l(cache->lock);
1514 auto p = onode_map.find(oid);
1515 if (p != onode_map.end()) {
1516 ldout(cache->cct, 30) << __func__ << " " << oid << " " << o
1517 << " raced, returning existing " << p->second
1518 << dendl;
1519 return p->second;
1520 }
1521 ldout(cache->cct, 30) << __func__ << " " << oid << " " << o << dendl;
1522 onode_map[oid] = o;
1523 cache->_add_onode(o, 1);
1524 return o;
1525 }
1526
1527 BlueStore::OnodeRef BlueStore::OnodeSpace::lookup(const ghobject_t& oid)
1528 {
1529 ldout(cache->cct, 30) << __func__ << dendl;
1530 OnodeRef o;
1531 bool hit = false;
1532
1533 {
1534 std::lock_guard<std::recursive_mutex> l(cache->lock);
1535 ceph::unordered_map<ghobject_t,OnodeRef>::iterator p = onode_map.find(oid);
1536 if (p == onode_map.end()) {
1537 ldout(cache->cct, 30) << __func__ << " " << oid << " miss" << dendl;
1538 } else {
1539 ldout(cache->cct, 30) << __func__ << " " << oid << " hit " << p->second
1540 << dendl;
1541 cache->_touch_onode(p->second);
1542 hit = true;
1543 o = p->second;
1544 }
1545 }
1546
1547 if (hit) {
1548 cache->logger->inc(l_bluestore_onode_hits);
1549 } else {
1550 cache->logger->inc(l_bluestore_onode_misses);
1551 }
1552 return o;
1553 }
1554
1555 void BlueStore::OnodeSpace::clear()
1556 {
1557 std::lock_guard<std::recursive_mutex> l(cache->lock);
1558 ldout(cache->cct, 10) << __func__ << dendl;
1559 for (auto &p : onode_map) {
1560 cache->_rm_onode(p.second);
1561 }
1562 onode_map.clear();
1563 }
1564
1565 bool BlueStore::OnodeSpace::empty()
1566 {
1567 std::lock_guard<std::recursive_mutex> l(cache->lock);
1568 return onode_map.empty();
1569 }
1570
1571 void BlueStore::OnodeSpace::rename(
1572 OnodeRef& oldo,
1573 const ghobject_t& old_oid,
1574 const ghobject_t& new_oid,
1575 const mempool::bluestore_cache_other::string& new_okey)
1576 {
1577 std::lock_guard<std::recursive_mutex> l(cache->lock);
1578 ldout(cache->cct, 30) << __func__ << " " << old_oid << " -> " << new_oid
1579 << dendl;
1580 ceph::unordered_map<ghobject_t,OnodeRef>::iterator po, pn;
1581 po = onode_map.find(old_oid);
1582 pn = onode_map.find(new_oid);
1583 assert(po != pn);
1584
1585 assert(po != onode_map.end());
1586 if (pn != onode_map.end()) {
1587 ldout(cache->cct, 30) << __func__ << " removing target " << pn->second
1588 << dendl;
1589 cache->_rm_onode(pn->second);
1590 onode_map.erase(pn);
1591 }
1592 OnodeRef o = po->second;
1593
1594 // install a non-existent onode at old location
1595 oldo.reset(new Onode(o->c, old_oid, o->key));
1596 po->second = oldo;
1597 cache->_add_onode(po->second, 1);
1598
1599 // add at new position and fix oid, key
1600 onode_map.insert(make_pair(new_oid, o));
1601 cache->_touch_onode(o);
1602 o->oid = new_oid;
1603 o->key = new_okey;
1604 }
1605
1606 bool BlueStore::OnodeSpace::map_any(std::function<bool(OnodeRef)> f)
1607 {
1608 std::lock_guard<std::recursive_mutex> l(cache->lock);
1609 ldout(cache->cct, 20) << __func__ << dendl;
1610 for (auto& i : onode_map) {
1611 if (f(i.second)) {
1612 return true;
1613 }
1614 }
1615 return false;
1616 }
1617
1618 void BlueStore::OnodeSpace::dump(CephContext *cct, int lvl)
1619 {
1620 for (auto& i : onode_map) {
1621 ldout(cct, lvl) << i.first << " : " << i.second << dendl;
1622 }
1623 }
1624
1625 // SharedBlob
1626
1627 #undef dout_prefix
1628 #define dout_prefix *_dout << "bluestore.sharedblob(" << this << ") "
1629
1630 ostream& operator<<(ostream& out, const BlueStore::SharedBlob& sb)
1631 {
1632 out << "SharedBlob(" << &sb;
1633
1634 if (sb.loaded) {
1635 out << " loaded " << *sb.persistent;
1636 } else {
1637 out << " sbid 0x" << std::hex << sb.sbid_unloaded << std::dec;
1638 }
1639 return out << ")";
1640 }
1641
1642 BlueStore::SharedBlob::SharedBlob(uint64_t i, Collection *_coll)
1643 : coll(_coll), sbid_unloaded(i)
1644 {
1645 assert(sbid_unloaded > 0);
1646 if (get_cache()) {
1647 get_cache()->add_blob();
1648 }
1649 }
1650
1651 BlueStore::SharedBlob::~SharedBlob()
1652 {
1653 if (get_cache()) { // the dummy instances have a nullptr
1654 std::lock_guard<std::recursive_mutex> l(get_cache()->lock);
1655 bc._clear(get_cache());
1656 get_cache()->rm_blob();
1657 }
1658 if (loaded && persistent) {
1659 delete persistent;
1660 }
1661 }
1662
1663 void BlueStore::SharedBlob::put()
1664 {
1665 if (--nref == 0) {
1666 ldout(coll->store->cct, 20) << __func__ << " " << this
1667 << " removing self from set " << get_parent()
1668 << dendl;
1669 if (get_parent()) {
1670 if (get_parent()->try_remove(this)) {
1671 delete this;
1672 } else {
1673 ldout(coll->store->cct, 20)
1674 << __func__ << " " << this << " lost race to remove myself from set"
1675 << dendl;
1676 }
1677 } else {
1678 delete this;
1679 }
1680 }
1681 }
1682
1683 void BlueStore::SharedBlob::get_ref(uint64_t offset, uint32_t length)
1684 {
1685 assert(persistent);
1686 persistent->ref_map.get(offset, length);
1687 }
1688
1689 void BlueStore::SharedBlob::put_ref(uint64_t offset, uint32_t length,
1690 PExtentVector *r,
1691 set<SharedBlob*> *maybe_unshared)
1692 {
1693 assert(persistent);
1694 bool maybe = false;
1695 persistent->ref_map.put(offset, length, r, maybe_unshared ? &maybe : nullptr);
1696 if (maybe_unshared && maybe) {
1697 maybe_unshared->insert(this);
1698 }
1699 }
1700
1701 // SharedBlobSet
1702
1703 #undef dout_prefix
1704 #define dout_prefix *_dout << "bluestore.sharedblobset(" << this << ") "
1705
1706 void BlueStore::SharedBlobSet::dump(CephContext *cct, int lvl)
1707 {
1708 std::lock_guard<std::mutex> l(lock);
1709 for (auto& i : sb_map) {
1710 ldout(cct, lvl) << i.first << " : " << *i.second << dendl;
1711 }
1712 }
1713
1714 // Blob
1715
1716 #undef dout_prefix
1717 #define dout_prefix *_dout << "bluestore.blob(" << this << ") "
1718
1719 ostream& operator<<(ostream& out, const BlueStore::Blob& b)
1720 {
1721 out << "Blob(" << &b;
1722 if (b.is_spanning()) {
1723 out << " spanning " << b.id;
1724 }
1725 out << " " << b.get_blob() << " " << b.get_blob_use_tracker();
1726 if (b.shared_blob) {
1727 out << " " << *b.shared_blob;
1728 } else {
1729 out << " (shared_blob=NULL)";
1730 }
1731 out << ")";
1732 return out;
1733 }
1734
1735 void BlueStore::Blob::discard_unallocated(Collection *coll)
1736 {
1737 if (get_blob().is_shared()) {
1738 return;
1739 }
1740 if (get_blob().is_compressed()) {
1741 bool discard = false;
1742 bool all_invalid = true;
1743 for (auto e : get_blob().get_extents()) {
1744 if (!e.is_valid()) {
1745 discard = true;
1746 } else {
1747 all_invalid = false;
1748 }
1749 }
1750 assert(discard == all_invalid); // in case of compressed blob all
1751 // or none pextents are invalid.
1752 if (discard) {
1753 shared_blob->bc.discard(shared_blob->get_cache(), 0,
1754 get_blob().get_logical_length());
1755 }
1756 } else {
1757 size_t pos = 0;
1758 for (auto e : get_blob().get_extents()) {
1759 if (!e.is_valid()) {
1760 ldout(coll->store->cct, 20) << __func__ << " 0x" << std::hex << pos
1761 << "~" << e.length
1762 << std::dec << dendl;
1763 shared_blob->bc.discard(shared_blob->get_cache(), pos, e.length);
1764 }
1765 pos += e.length;
1766 }
1767 if (get_blob().can_prune_tail()) {
1768 dirty_blob().prune_tail();
1769 used_in_blob.prune_tail(get_blob().get_ondisk_length());
1770 auto cct = coll->store->cct; //used by dout
1771 dout(20) << __func__ << " pruned tail, now " << get_blob() << dendl;
1772 }
1773 }
1774 }
1775
1776 void BlueStore::Blob::get_ref(
1777 Collection *coll,
1778 uint32_t offset,
1779 uint32_t length)
1780 {
1781 // Caller has to initialize Blob's logical length prior to increment
1782 // references. Otherwise one is neither unable to determine required
1783 // amount of counters in case of per-au tracking nor obtain min_release_size
1784 // for single counter mode.
1785 assert(get_blob().get_logical_length() != 0);
1786 auto cct = coll->store->cct;
1787 dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
1788 << std::dec << " " << *this << dendl;
1789
1790 if (used_in_blob.is_empty()) {
1791 uint32_t min_release_size =
1792 get_blob().get_release_size(coll->store->min_alloc_size);
1793 uint64_t l = get_blob().get_logical_length();
1794 dout(20) << __func__ << " init 0x" << std::hex << l << ", "
1795 << min_release_size << std::dec << dendl;
1796 used_in_blob.init(l, min_release_size);
1797 }
1798 used_in_blob.get(
1799 offset,
1800 length);
1801 }
1802
1803 bool BlueStore::Blob::put_ref(
1804 Collection *coll,
1805 uint32_t offset,
1806 uint32_t length,
1807 PExtentVector *r)
1808 {
1809 PExtentVector logical;
1810
1811 auto cct = coll->store->cct;
1812 dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
1813 << std::dec << " " << *this << dendl;
1814
1815 bool empty = used_in_blob.put(
1816 offset,
1817 length,
1818 &logical);
1819 r->clear();
1820 // nothing to release
1821 if (!empty && logical.empty()) {
1822 return false;
1823 }
1824
1825 bluestore_blob_t& b = dirty_blob();
1826 return b.release_extents(empty, logical, r);
1827 }
1828
1829 bool BlueStore::Blob::can_reuse_blob(uint32_t min_alloc_size,
1830 uint32_t target_blob_size,
1831 uint32_t b_offset,
1832 uint32_t *length0) {
1833 assert(min_alloc_size);
1834 assert(target_blob_size);
1835 if (!get_blob().is_mutable()) {
1836 return false;
1837 }
1838
1839 uint32_t length = *length0;
1840 uint32_t end = b_offset + length;
1841
1842 // Currently for the sake of simplicity we omit blob reuse if data is
1843 // unaligned with csum chunk. Later we can perform padding if needed.
1844 if (get_blob().has_csum() &&
1845 ((b_offset % get_blob().get_csum_chunk_size()) != 0 ||
1846 (end % get_blob().get_csum_chunk_size()) != 0)) {
1847 return false;
1848 }
1849
1850 auto blen = get_blob().get_logical_length();
1851 uint32_t new_blen = blen;
1852
1853 // make sure target_blob_size isn't less than current blob len
1854 target_blob_size = MAX(blen, target_blob_size);
1855
1856 if (b_offset >= blen) {
1857 // new data totally stands out of the existing blob
1858 new_blen = end;
1859 } else {
1860 // new data overlaps with the existing blob
1861 new_blen = MAX(blen, end);
1862
1863 uint32_t overlap = 0;
1864 if (new_blen > blen) {
1865 overlap = blen - b_offset;
1866 } else {
1867 overlap = length;
1868 }
1869
1870 if (!get_blob().is_unallocated(b_offset, overlap)) {
1871 // abort if any piece of the overlap has already been allocated
1872 return false;
1873 }
1874 }
1875
1876 if (new_blen > blen) {
1877 int64_t overflow = int64_t(new_blen) - target_blob_size;
1878 // Unable to decrease the provided length to fit into max_blob_size
1879 if (overflow >= length) {
1880 return false;
1881 }
1882
1883 // FIXME: in some cases we could reduce unused resolution
1884 if (get_blob().has_unused()) {
1885 return false;
1886 }
1887
1888 if (overflow > 0) {
1889 new_blen -= overflow;
1890 length -= overflow;
1891 *length0 = length;
1892 }
1893
1894 if (new_blen > blen) {
1895 dirty_blob().add_tail(new_blen);
1896 used_in_blob.add_tail(new_blen,
1897 get_blob().get_release_size(min_alloc_size));
1898 }
1899 }
1900 return true;
1901 }
1902
1903 void BlueStore::Blob::split(Collection *coll, uint32_t blob_offset, Blob *r)
1904 {
1905 auto cct = coll->store->cct; //used by dout
1906 dout(10) << __func__ << " 0x" << std::hex << blob_offset << std::dec
1907 << " start " << *this << dendl;
1908 assert(blob.can_split());
1909 assert(used_in_blob.can_split());
1910 bluestore_blob_t &lb = dirty_blob();
1911 bluestore_blob_t &rb = r->dirty_blob();
1912
1913 used_in_blob.split(
1914 blob_offset,
1915 &(r->used_in_blob));
1916
1917 lb.split(blob_offset, rb);
1918 shared_blob->bc.split(shared_blob->get_cache(), blob_offset, r->shared_blob->bc);
1919
1920 dout(10) << __func__ << " 0x" << std::hex << blob_offset << std::dec
1921 << " finish " << *this << dendl;
1922 dout(10) << __func__ << " 0x" << std::hex << blob_offset << std::dec
1923 << " and " << *r << dendl;
1924 }
1925
1926 #ifndef CACHE_BLOB_BL
1927 void BlueStore::Blob::decode(
1928 Collection *coll,
1929 bufferptr::iterator& p,
1930 uint64_t struct_v,
1931 uint64_t* sbid,
1932 bool include_ref_map)
1933 {
1934 denc(blob, p, struct_v);
1935 if (blob.is_shared()) {
1936 denc(*sbid, p);
1937 }
1938 if (include_ref_map) {
1939 if (struct_v > 1) {
1940 used_in_blob.decode(p);
1941 } else {
1942 used_in_blob.clear();
1943 bluestore_extent_ref_map_t legacy_ref_map;
1944 legacy_ref_map.decode(p);
1945 for (auto r : legacy_ref_map.ref_map) {
1946 get_ref(
1947 coll,
1948 r.first,
1949 r.second.refs * r.second.length);
1950 }
1951 }
1952 }
1953 }
1954 #endif
1955
1956 // Extent
1957
1958 ostream& operator<<(ostream& out, const BlueStore::Extent& e)
1959 {
1960 return out << std::hex << "0x" << e.logical_offset << "~" << e.length
1961 << ": 0x" << e.blob_offset << "~" << e.length << std::dec
1962 << " " << *e.blob;
1963 }
1964
1965 // OldExtent
1966 BlueStore::OldExtent* BlueStore::OldExtent::create(CollectionRef c,
1967 uint32_t lo,
1968 uint32_t o,
1969 uint32_t l,
1970 BlobRef& b) {
1971 OldExtent* oe = new OldExtent(lo, o, l, b);
1972 b->put_ref(c.get(), o, l, &(oe->r));
1973 oe->blob_empty = b->get_referenced_bytes() == 0;
1974 return oe;
1975 }
1976
1977 // ExtentMap
1978
1979 #undef dout_prefix
1980 #define dout_prefix *_dout << "bluestore.extentmap(" << this << ") "
1981
1982 BlueStore::ExtentMap::ExtentMap(Onode *o)
1983 : onode(o),
1984 inline_bl(
1985 o->c->store->cct->_conf->bluestore_extent_map_inline_shard_prealloc_size) {
1986 }
1987
1988 void BlueStore::ExtentMap::update(KeyValueDB::Transaction t,
1989 bool force)
1990 {
1991 auto cct = onode->c->store->cct; //used by dout
1992 dout(20) << __func__ << " " << onode->oid << (force ? " force" : "") << dendl;
1993 if (onode->onode.extent_map_shards.empty()) {
1994 if (inline_bl.length() == 0) {
1995 unsigned n;
1996 // we need to encode inline_bl to measure encoded length
1997 bool never_happen = encode_some(0, OBJECT_MAX_SIZE, inline_bl, &n);
1998 inline_bl.reassign_to_mempool(mempool::mempool_bluestore_cache_other);
1999 assert(!never_happen);
2000 size_t len = inline_bl.length();
2001 dout(20) << __func__ << " inline shard " << len << " bytes from " << n
2002 << " extents" << dendl;
2003 if (!force && len > cct->_conf->bluestore_extent_map_shard_max_size) {
2004 request_reshard(0, OBJECT_MAX_SIZE);
2005 return;
2006 }
2007 }
2008 // will persist in the onode key.
2009 } else {
2010 // pending shard update
2011 struct dirty_shard_t {
2012 Shard *shard;
2013 bufferlist bl;
2014 dirty_shard_t(Shard *s) : shard(s) {}
2015 };
2016 vector<dirty_shard_t> encoded_shards;
2017 // allocate slots for all shards in a single call instead of
2018 // doing multiple allocations - one per each dirty shard
2019 encoded_shards.reserve(shards.size());
2020
2021 auto p = shards.begin();
2022 auto prev_p = p;
2023 while (p != shards.end()) {
2024 assert(p->shard_info->offset >= prev_p->shard_info->offset);
2025 auto n = p;
2026 ++n;
2027 if (p->dirty) {
2028 uint32_t endoff;
2029 if (n == shards.end()) {
2030 endoff = OBJECT_MAX_SIZE;
2031 } else {
2032 endoff = n->shard_info->offset;
2033 }
2034 encoded_shards.emplace_back(dirty_shard_t(&(*p)));
2035 bufferlist& bl = encoded_shards.back().bl;
2036 if (encode_some(p->shard_info->offset, endoff - p->shard_info->offset,
2037 bl, &p->extents)) {
2038 if (force) {
2039 derr << __func__ << " encode_some needs reshard" << dendl;
2040 assert(!force);
2041 }
2042 }
2043 size_t len = bl.length();
2044
2045 dout(20) << __func__ << " shard 0x" << std::hex
2046 << p->shard_info->offset << std::dec << " is " << len
2047 << " bytes (was " << p->shard_info->bytes << ") from "
2048 << p->extents << " extents" << dendl;
2049
2050 if (!force) {
2051 if (len > cct->_conf->bluestore_extent_map_shard_max_size) {
2052 // we are big; reshard ourselves
2053 request_reshard(p->shard_info->offset, endoff);
2054 }
2055 // avoid resharding the trailing shard, even if it is small
2056 else if (n != shards.end() &&
2057 len < g_conf->bluestore_extent_map_shard_min_size) {
2058 assert(endoff != OBJECT_MAX_SIZE);
2059 if (p == shards.begin()) {
2060 // we are the first shard, combine with next shard
2061 request_reshard(p->shard_info->offset, endoff + 1);
2062 } else {
2063 // combine either with the previous shard or the next,
2064 // whichever is smaller
2065 if (prev_p->shard_info->bytes > n->shard_info->bytes) {
2066 request_reshard(p->shard_info->offset, endoff + 1);
2067 } else {
2068 request_reshard(prev_p->shard_info->offset, endoff);
2069 }
2070 }
2071 }
2072 }
2073 }
2074 prev_p = p;
2075 p = n;
2076 }
2077 if (needs_reshard()) {
2078 return;
2079 }
2080
2081 // schedule DB update for dirty shards
2082 string key;
2083 for (auto& it : encoded_shards) {
2084 it.shard->dirty = false;
2085 it.shard->shard_info->bytes = it.bl.length();
2086 generate_extent_shard_key_and_apply(
2087 onode->key,
2088 it.shard->shard_info->offset,
2089 &key,
2090 [&](const string& final_key) {
2091 t->set(PREFIX_OBJ, final_key, it.bl);
2092 }
2093 );
2094 }
2095 }
2096 }
2097
2098 bid_t BlueStore::ExtentMap::allocate_spanning_blob_id()
2099 {
2100 if (spanning_blob_map.empty())
2101 return 0;
2102 bid_t bid = spanning_blob_map.rbegin()->first + 1;
2103 // bid is valid and available.
2104 if (bid >= 0)
2105 return bid;
2106 // Find next unused bid;
2107 bid = rand() % (numeric_limits<bid_t>::max() + 1);
2108 const auto begin_bid = bid;
2109 do {
2110 if (!spanning_blob_map.count(bid))
2111 return bid;
2112 else {
2113 bid++;
2114 if (bid < 0) bid = 0;
2115 }
2116 } while (bid != begin_bid);
2117 assert(0 == "no available blob id");
2118 }
2119
2120 void BlueStore::ExtentMap::reshard(
2121 KeyValueDB *db,
2122 KeyValueDB::Transaction t)
2123 {
2124 auto cct = onode->c->store->cct; // used by dout
2125
2126 dout(10) << __func__ << " 0x[" << std::hex << needs_reshard_begin << ","
2127 << needs_reshard_end << ")" << std::dec
2128 << " of " << onode->onode.extent_map_shards.size()
2129 << " shards on " << onode->oid << dendl;
2130 for (auto& p : spanning_blob_map) {
2131 dout(20) << __func__ << " spanning blob " << p.first << " " << *p.second
2132 << dendl;
2133 }
2134 // determine shard index range
2135 unsigned si_begin = 0, si_end = 0;
2136 if (!shards.empty()) {
2137 while (si_begin + 1 < shards.size() &&
2138 shards[si_begin + 1].shard_info->offset <= needs_reshard_begin) {
2139 ++si_begin;
2140 }
2141 needs_reshard_begin = shards[si_begin].shard_info->offset;
2142 for (si_end = si_begin; si_end < shards.size(); ++si_end) {
2143 if (shards[si_end].shard_info->offset >= needs_reshard_end) {
2144 needs_reshard_end = shards[si_end].shard_info->offset;
2145 break;
2146 }
2147 }
2148 if (si_end == shards.size()) {
2149 needs_reshard_end = OBJECT_MAX_SIZE;
2150 }
2151 dout(20) << __func__ << " shards [" << si_begin << "," << si_end << ")"
2152 << " over 0x[" << std::hex << needs_reshard_begin << ","
2153 << needs_reshard_end << ")" << std::dec << dendl;
2154 }
2155
2156 fault_range(db, needs_reshard_begin, (needs_reshard_end - needs_reshard_begin));
2157
2158 // we may need to fault in a larger interval later must have all
2159 // referring extents for spanning blobs loaded in order to have
2160 // accurate use_tracker values.
2161 uint32_t spanning_scan_begin = needs_reshard_begin;
2162 uint32_t spanning_scan_end = needs_reshard_end;
2163
2164 // remove old keys
2165 string key;
2166 for (unsigned i = si_begin; i < si_end; ++i) {
2167 generate_extent_shard_key_and_apply(
2168 onode->key, shards[i].shard_info->offset, &key,
2169 [&](const string& final_key) {
2170 t->rmkey(PREFIX_OBJ, final_key);
2171 }
2172 );
2173 }
2174
2175 // calculate average extent size
2176 unsigned bytes = 0;
2177 unsigned extents = 0;
2178 if (onode->onode.extent_map_shards.empty()) {
2179 bytes = inline_bl.length();
2180 extents = extent_map.size();
2181 } else {
2182 for (unsigned i = si_begin; i < si_end; ++i) {
2183 bytes += shards[i].shard_info->bytes;
2184 extents += shards[i].extents;
2185 }
2186 }
2187 unsigned target = cct->_conf->bluestore_extent_map_shard_target_size;
2188 unsigned slop = target *
2189 cct->_conf->bluestore_extent_map_shard_target_size_slop;
2190 unsigned extent_avg = bytes / MAX(1, extents);
2191 dout(20) << __func__ << " extent_avg " << extent_avg << ", target " << target
2192 << ", slop " << slop << dendl;
2193
2194 // reshard
2195 unsigned estimate = 0;
2196 unsigned offset = needs_reshard_begin;
2197 vector<bluestore_onode_t::shard_info> new_shard_info;
2198 unsigned max_blob_end = 0;
2199 Extent dummy(needs_reshard_begin);
2200 for (auto e = extent_map.lower_bound(dummy);
2201 e != extent_map.end();
2202 ++e) {
2203 if (e->logical_offset >= needs_reshard_end) {
2204 break;
2205 }
2206 dout(30) << " extent " << *e << dendl;
2207
2208 // disfavor shard boundaries that span a blob
2209 bool would_span = (e->logical_offset < max_blob_end) || e->blob_offset;
2210 if (estimate &&
2211 estimate + extent_avg > target + (would_span ? slop : 0)) {
2212 // new shard
2213 if (offset == needs_reshard_begin) {
2214 new_shard_info.emplace_back(bluestore_onode_t::shard_info());
2215 new_shard_info.back().offset = offset;
2216 dout(20) << __func__ << " new shard 0x" << std::hex << offset
2217 << std::dec << dendl;
2218 }
2219 offset = e->logical_offset;
2220 new_shard_info.emplace_back(bluestore_onode_t::shard_info());
2221 new_shard_info.back().offset = offset;
2222 dout(20) << __func__ << " new shard 0x" << std::hex << offset
2223 << std::dec << dendl;
2224 estimate = 0;
2225 }
2226 estimate += extent_avg;
2227 unsigned bs = e->blob_start();
2228 if (bs < spanning_scan_begin) {
2229 spanning_scan_begin = bs;
2230 }
2231 uint32_t be = e->blob_end();
2232 if (be > max_blob_end) {
2233 max_blob_end = be;
2234 }
2235 if (be > spanning_scan_end) {
2236 spanning_scan_end = be;
2237 }
2238 }
2239 if (new_shard_info.empty() && (si_begin > 0 ||
2240 si_end < shards.size())) {
2241 // we resharded a partial range; we must produce at least one output
2242 // shard
2243 new_shard_info.emplace_back(bluestore_onode_t::shard_info());
2244 new_shard_info.back().offset = needs_reshard_begin;
2245 dout(20) << __func__ << " new shard 0x" << std::hex << needs_reshard_begin
2246 << std::dec << " (singleton degenerate case)" << dendl;
2247 }
2248
2249 auto& sv = onode->onode.extent_map_shards;
2250 dout(20) << __func__ << " new " << new_shard_info << dendl;
2251 dout(20) << __func__ << " old " << sv << dendl;
2252 if (sv.empty()) {
2253 // no old shards to keep
2254 sv.swap(new_shard_info);
2255 init_shards(true, true);
2256 } else {
2257 // splice in new shards
2258 sv.erase(sv.begin() + si_begin, sv.begin() + si_end);
2259 shards.erase(shards.begin() + si_begin, shards.begin() + si_end);
2260 sv.insert(
2261 sv.begin() + si_begin,
2262 new_shard_info.begin(),
2263 new_shard_info.end());
2264 shards.insert(shards.begin() + si_begin, new_shard_info.size(), Shard());
2265 si_end = si_begin + new_shard_info.size();
2266
2267 assert(sv.size() == shards.size());
2268
2269 // note that we need to update every shard_info of shards here,
2270 // as sv might have been totally re-allocated above
2271 for (unsigned i = 0; i < shards.size(); i++) {
2272 shards[i].shard_info = &sv[i];
2273 }
2274
2275 // mark newly added shards as dirty
2276 for (unsigned i = si_begin; i < si_end; ++i) {
2277 shards[i].loaded = true;
2278 shards[i].dirty = true;
2279 }
2280 }
2281 dout(20) << __func__ << " fin " << sv << dendl;
2282 inline_bl.clear();
2283
2284 if (sv.empty()) {
2285 // no more shards; unspan all previously spanning blobs
2286 auto p = spanning_blob_map.begin();
2287 while (p != spanning_blob_map.end()) {
2288 p->second->id = -1;
2289 dout(30) << __func__ << " un-spanning " << *p->second << dendl;
2290 p = spanning_blob_map.erase(p);
2291 }
2292 } else {
2293 // identify new spanning blobs
2294 dout(20) << __func__ << " checking spanning blobs 0x[" << std::hex
2295 << spanning_scan_begin << "," << spanning_scan_end << ")" << dendl;
2296 if (spanning_scan_begin < needs_reshard_begin) {
2297 fault_range(db, spanning_scan_begin,
2298 needs_reshard_begin - spanning_scan_begin);
2299 }
2300 if (spanning_scan_end > needs_reshard_end) {
2301 fault_range(db, needs_reshard_end,
2302 spanning_scan_end - needs_reshard_end);
2303 }
2304 auto sp = sv.begin() + si_begin;
2305 auto esp = sv.end();
2306 unsigned shard_start = sp->offset;
2307 unsigned shard_end;
2308 ++sp;
2309 if (sp == esp) {
2310 shard_end = OBJECT_MAX_SIZE;
2311 } else {
2312 shard_end = sp->offset;
2313 }
2314 Extent dummy(needs_reshard_begin);
2315 for (auto e = extent_map.lower_bound(dummy); e != extent_map.end(); ++e) {
2316 if (e->logical_offset >= needs_reshard_end) {
2317 break;
2318 }
2319 dout(30) << " extent " << *e << dendl;
2320 while (e->logical_offset >= shard_end) {
2321 shard_start = shard_end;
2322 assert(sp != esp);
2323 ++sp;
2324 if (sp == esp) {
2325 shard_end = OBJECT_MAX_SIZE;
2326 } else {
2327 shard_end = sp->offset;
2328 }
2329 dout(30) << __func__ << " shard 0x" << std::hex << shard_start
2330 << " to 0x" << shard_end << std::dec << dendl;
2331 }
2332 if (e->blob_escapes_range(shard_start, shard_end - shard_start)) {
2333 if (!e->blob->is_spanning()) {
2334 // We have two options: (1) split the blob into pieces at the
2335 // shard boundaries (and adjust extents accordingly), or (2)
2336 // mark it spanning. We prefer to cut the blob if we can. Note that
2337 // we may have to split it multiple times--potentially at every
2338 // shard boundary.
2339 bool must_span = false;
2340 BlobRef b = e->blob;
2341 if (b->can_split()) {
2342 uint32_t bstart = e->blob_start();
2343 uint32_t bend = e->blob_end();
2344 for (const auto& sh : shards) {
2345 if (bstart < sh.shard_info->offset &&
2346 bend > sh.shard_info->offset) {
2347 uint32_t blob_offset = sh.shard_info->offset - bstart;
2348 if (b->can_split_at(blob_offset)) {
2349 dout(20) << __func__ << " splitting blob, bstart 0x"
2350 << std::hex << bstart << " blob_offset 0x"
2351 << blob_offset << std::dec << " " << *b << dendl;
2352 b = split_blob(b, blob_offset, sh.shard_info->offset);
2353 // switch b to the new right-hand side, in case it
2354 // *also* has to get split.
2355 bstart += blob_offset;
2356 onode->c->store->logger->inc(l_bluestore_blob_split);
2357 } else {
2358 must_span = true;
2359 break;
2360 }
2361 }
2362 }
2363 } else {
2364 must_span = true;
2365 }
2366 if (must_span) {
2367 auto bid = allocate_spanning_blob_id();
2368 b->id = bid;
2369 spanning_blob_map[b->id] = b;
2370 dout(20) << __func__ << " adding spanning " << *b << dendl;
2371 }
2372 }
2373 } else {
2374 if (e->blob->is_spanning()) {
2375 spanning_blob_map.erase(e->blob->id);
2376 e->blob->id = -1;
2377 dout(30) << __func__ << " un-spanning " << *e->blob << dendl;
2378 }
2379 }
2380 }
2381 }
2382
2383 clear_needs_reshard();
2384 }
2385
2386 bool BlueStore::ExtentMap::encode_some(
2387 uint32_t offset,
2388 uint32_t length,
2389 bufferlist& bl,
2390 unsigned *pn)
2391 {
2392 auto cct = onode->c->store->cct; //used by dout
2393 Extent dummy(offset);
2394 auto start = extent_map.lower_bound(dummy);
2395 uint32_t end = offset + length;
2396
2397 __u8 struct_v = 2; // Version 2 differs from v1 in blob's ref_map
2398 // serialization only. Hence there is no specific
2399 // handling at ExtentMap level.
2400
2401 unsigned n = 0;
2402 size_t bound = 0;
2403 bool must_reshard = false;
2404 for (auto p = start;
2405 p != extent_map.end() && p->logical_offset < end;
2406 ++p, ++n) {
2407 assert(p->logical_offset >= offset);
2408 p->blob->last_encoded_id = -1;
2409 if (!p->blob->is_spanning() && p->blob_escapes_range(offset, length)) {
2410 dout(30) << __func__ << " 0x" << std::hex << offset << "~" << length
2411 << std::dec << " hit new spanning blob " << *p << dendl;
2412 request_reshard(p->blob_start(), p->blob_end());
2413 must_reshard = true;
2414 }
2415 if (!must_reshard) {
2416 denc_varint(0, bound); // blobid
2417 denc_varint(0, bound); // logical_offset
2418 denc_varint(0, bound); // len
2419 denc_varint(0, bound); // blob_offset
2420
2421 p->blob->bound_encode(
2422 bound,
2423 struct_v,
2424 p->blob->shared_blob->get_sbid(),
2425 false);
2426 }
2427 }
2428 if (must_reshard) {
2429 return true;
2430 }
2431
2432 denc(struct_v, bound);
2433 denc_varint(0, bound); // number of extents
2434
2435 {
2436 auto app = bl.get_contiguous_appender(bound);
2437 denc(struct_v, app);
2438 denc_varint(n, app);
2439 if (pn) {
2440 *pn = n;
2441 }
2442
2443 n = 0;
2444 uint64_t pos = 0;
2445 uint64_t prev_len = 0;
2446 for (auto p = start;
2447 p != extent_map.end() && p->logical_offset < end;
2448 ++p, ++n) {
2449 unsigned blobid;
2450 bool include_blob = false;
2451 if (p->blob->is_spanning()) {
2452 blobid = p->blob->id << BLOBID_SHIFT_BITS;
2453 blobid |= BLOBID_FLAG_SPANNING;
2454 } else if (p->blob->last_encoded_id < 0) {
2455 p->blob->last_encoded_id = n + 1; // so it is always non-zero
2456 include_blob = true;
2457 blobid = 0; // the decoder will infer the id from n
2458 } else {
2459 blobid = p->blob->last_encoded_id << BLOBID_SHIFT_BITS;
2460 }
2461 if (p->logical_offset == pos) {
2462 blobid |= BLOBID_FLAG_CONTIGUOUS;
2463 }
2464 if (p->blob_offset == 0) {
2465 blobid |= BLOBID_FLAG_ZEROOFFSET;
2466 }
2467 if (p->length == prev_len) {
2468 blobid |= BLOBID_FLAG_SAMELENGTH;
2469 } else {
2470 prev_len = p->length;
2471 }
2472 denc_varint(blobid, app);
2473 if ((blobid & BLOBID_FLAG_CONTIGUOUS) == 0) {
2474 denc_varint_lowz(p->logical_offset - pos, app);
2475 }
2476 if ((blobid & BLOBID_FLAG_ZEROOFFSET) == 0) {
2477 denc_varint_lowz(p->blob_offset, app);
2478 }
2479 if ((blobid & BLOBID_FLAG_SAMELENGTH) == 0) {
2480 denc_varint_lowz(p->length, app);
2481 }
2482 pos = p->logical_end();
2483 if (include_blob) {
2484 p->blob->encode(app, struct_v, p->blob->shared_blob->get_sbid(), false);
2485 }
2486 }
2487 }
2488 /*derr << __func__ << bl << dendl;
2489 derr << __func__ << ":";
2490 bl.hexdump(*_dout);
2491 *_dout << dendl;
2492 */
2493 return false;
2494 }
2495
2496 unsigned BlueStore::ExtentMap::decode_some(bufferlist& bl)
2497 {
2498 auto cct = onode->c->store->cct; //used by dout
2499 /*
2500 derr << __func__ << ":";
2501 bl.hexdump(*_dout);
2502 *_dout << dendl;
2503 */
2504
2505 assert(bl.get_num_buffers() <= 1);
2506 auto p = bl.front().begin_deep();
2507 __u8 struct_v;
2508 denc(struct_v, p);
2509 // Version 2 differs from v1 in blob's ref_map
2510 // serialization only. Hence there is no specific
2511 // handling at ExtentMap level below.
2512 assert(struct_v == 1 || struct_v == 2);
2513
2514 uint32_t num;
2515 denc_varint(num, p);
2516 vector<BlobRef> blobs(num);
2517 uint64_t pos = 0;
2518 uint64_t prev_len = 0;
2519 unsigned n = 0;
2520
2521 while (!p.end()) {
2522 Extent *le = new Extent();
2523 uint64_t blobid;
2524 denc_varint(blobid, p);
2525 if ((blobid & BLOBID_FLAG_CONTIGUOUS) == 0) {
2526 uint64_t gap;
2527 denc_varint_lowz(gap, p);
2528 pos += gap;
2529 }
2530 le->logical_offset = pos;
2531 if ((blobid & BLOBID_FLAG_ZEROOFFSET) == 0) {
2532 denc_varint_lowz(le->blob_offset, p);
2533 } else {
2534 le->blob_offset = 0;
2535 }
2536 if ((blobid & BLOBID_FLAG_SAMELENGTH) == 0) {
2537 denc_varint_lowz(prev_len, p);
2538 }
2539 le->length = prev_len;
2540
2541 if (blobid & BLOBID_FLAG_SPANNING) {
2542 dout(30) << __func__ << " getting spanning blob "
2543 << (blobid >> BLOBID_SHIFT_BITS) << dendl;
2544 le->assign_blob(get_spanning_blob(blobid >> BLOBID_SHIFT_BITS));
2545 } else {
2546 blobid >>= BLOBID_SHIFT_BITS;
2547 if (blobid) {
2548 le->assign_blob(blobs[blobid - 1]);
2549 assert(le->blob);
2550 } else {
2551 Blob *b = new Blob();
2552 uint64_t sbid = 0;
2553 b->decode(onode->c, p, struct_v, &sbid, false);
2554 blobs[n] = b;
2555 onode->c->open_shared_blob(sbid, b);
2556 le->assign_blob(b);
2557 }
2558 // we build ref_map dynamically for non-spanning blobs
2559 le->blob->get_ref(
2560 onode->c,
2561 le->blob_offset,
2562 le->length);
2563 }
2564 pos += prev_len;
2565 ++n;
2566 extent_map.insert(*le);
2567 }
2568
2569 assert(n == num);
2570 return num;
2571 }
2572
2573 void BlueStore::ExtentMap::bound_encode_spanning_blobs(size_t& p)
2574 {
2575 // Version 2 differs from v1 in blob's ref_map
2576 // serialization only. Hence there is no specific
2577 // handling at ExtentMap level.
2578 __u8 struct_v = 2;
2579
2580 denc(struct_v, p);
2581 denc_varint((uint32_t)0, p);
2582 size_t key_size = 0;
2583 denc_varint((uint32_t)0, key_size);
2584 p += spanning_blob_map.size() * key_size;
2585 for (const auto& i : spanning_blob_map) {
2586 i.second->bound_encode(p, struct_v, i.second->shared_blob->get_sbid(), true);
2587 }
2588 }
2589
2590 void BlueStore::ExtentMap::encode_spanning_blobs(
2591 bufferlist::contiguous_appender& p)
2592 {
2593 // Version 2 differs from v1 in blob's ref_map
2594 // serialization only. Hence there is no specific
2595 // handling at ExtentMap level.
2596 __u8 struct_v = 2;
2597
2598 denc(struct_v, p);
2599 denc_varint(spanning_blob_map.size(), p);
2600 for (auto& i : spanning_blob_map) {
2601 denc_varint(i.second->id, p);
2602 i.second->encode(p, struct_v, i.second->shared_blob->get_sbid(), true);
2603 }
2604 }
2605
2606 void BlueStore::ExtentMap::decode_spanning_blobs(
2607 bufferptr::iterator& p)
2608 {
2609 __u8 struct_v;
2610 denc(struct_v, p);
2611 // Version 2 differs from v1 in blob's ref_map
2612 // serialization only. Hence there is no specific
2613 // handling at ExtentMap level.
2614 assert(struct_v == 1 || struct_v == 2);
2615
2616 unsigned n;
2617 denc_varint(n, p);
2618 while (n--) {
2619 BlobRef b(new Blob());
2620 denc_varint(b->id, p);
2621 spanning_blob_map[b->id] = b;
2622 uint64_t sbid = 0;
2623 b->decode(onode->c, p, struct_v, &sbid, true);
2624 onode->c->open_shared_blob(sbid, b);
2625 }
2626 }
2627
2628 void BlueStore::ExtentMap::init_shards(bool loaded, bool dirty)
2629 {
2630 shards.resize(onode->onode.extent_map_shards.size());
2631 unsigned i = 0;
2632 for (auto &s : onode->onode.extent_map_shards) {
2633 shards[i].shard_info = &s;
2634 shards[i].loaded = loaded;
2635 shards[i].dirty = dirty;
2636 ++i;
2637 }
2638 }
2639
2640 void BlueStore::ExtentMap::fault_range(
2641 KeyValueDB *db,
2642 uint32_t offset,
2643 uint32_t length)
2644 {
2645 auto cct = onode->c->store->cct; //used by dout
2646 dout(30) << __func__ << " 0x" << std::hex << offset << "~" << length
2647 << std::dec << dendl;
2648 auto start = seek_shard(offset);
2649 auto last = seek_shard(offset + length);
2650
2651 if (start < 0)
2652 return;
2653
2654 assert(last >= start);
2655 string key;
2656 while (start <= last) {
2657 assert((size_t)start < shards.size());
2658 auto p = &shards[start];
2659 if (!p->loaded) {
2660 dout(30) << __func__ << " opening shard 0x" << std::hex
2661 << p->shard_info->offset << std::dec << dendl;
2662 bufferlist v;
2663 generate_extent_shard_key_and_apply(
2664 onode->key, p->shard_info->offset, &key,
2665 [&](const string& final_key) {
2666 int r = db->get(PREFIX_OBJ, final_key, &v);
2667 if (r < 0) {
2668 derr << __func__ << " missing shard 0x" << std::hex
2669 << p->shard_info->offset << std::dec << " for " << onode->oid
2670 << dendl;
2671 assert(r >= 0);
2672 }
2673 }
2674 );
2675 p->extents = decode_some(v);
2676 p->loaded = true;
2677 dout(20) << __func__ << " open shard 0x" << std::hex
2678 << p->shard_info->offset << std::dec
2679 << " (" << v.length() << " bytes)" << dendl;
2680 assert(p->dirty == false);
2681 assert(v.length() == p->shard_info->bytes);
2682 onode->c->store->logger->inc(l_bluestore_onode_shard_misses);
2683 } else {
2684 onode->c->store->logger->inc(l_bluestore_onode_shard_hits);
2685 }
2686 ++start;
2687 }
2688 }
2689
2690 void BlueStore::ExtentMap::dirty_range(
2691 uint32_t offset,
2692 uint32_t length)
2693 {
2694 auto cct = onode->c->store->cct; //used by dout
2695 dout(30) << __func__ << " 0x" << std::hex << offset << "~" << length
2696 << std::dec << dendl;
2697 if (shards.empty()) {
2698 dout(20) << __func__ << " mark inline shard dirty" << dendl;
2699 inline_bl.clear();
2700 return;
2701 }
2702 auto start = seek_shard(offset);
2703 auto last = seek_shard(offset + length);
2704 if (start < 0)
2705 return;
2706
2707 assert(last >= start);
2708 while (start <= last) {
2709 assert((size_t)start < shards.size());
2710 auto p = &shards[start];
2711 if (!p->loaded) {
2712 dout(20) << __func__ << " shard 0x" << std::hex << p->shard_info->offset
2713 << std::dec << " is not loaded, can't mark dirty" << dendl;
2714 assert(0 == "can't mark unloaded shard dirty");
2715 }
2716 if (!p->dirty) {
2717 dout(20) << __func__ << " mark shard 0x" << std::hex
2718 << p->shard_info->offset << std::dec << " dirty" << dendl;
2719 p->dirty = true;
2720 }
2721 ++start;
2722 }
2723 }
2724
2725 BlueStore::extent_map_t::iterator BlueStore::ExtentMap::find(
2726 uint64_t offset)
2727 {
2728 Extent dummy(offset);
2729 return extent_map.find(dummy);
2730 }
2731
2732 BlueStore::extent_map_t::iterator BlueStore::ExtentMap::seek_lextent(
2733 uint64_t offset)
2734 {
2735 Extent dummy(offset);
2736 auto fp = extent_map.lower_bound(dummy);
2737 if (fp != extent_map.begin()) {
2738 --fp;
2739 if (fp->logical_end() <= offset) {
2740 ++fp;
2741 }
2742 }
2743 return fp;
2744 }
2745
2746 BlueStore::extent_map_t::const_iterator BlueStore::ExtentMap::seek_lextent(
2747 uint64_t offset) const
2748 {
2749 Extent dummy(offset);
2750 auto fp = extent_map.lower_bound(dummy);
2751 if (fp != extent_map.begin()) {
2752 --fp;
2753 if (fp->logical_end() <= offset) {
2754 ++fp;
2755 }
2756 }
2757 return fp;
2758 }
2759
2760 bool BlueStore::ExtentMap::has_any_lextents(uint64_t offset, uint64_t length)
2761 {
2762 auto fp = seek_lextent(offset);
2763 if (fp == extent_map.end() || fp->logical_offset >= offset + length) {
2764 return false;
2765 }
2766 return true;
2767 }
2768
2769 int BlueStore::ExtentMap::compress_extent_map(
2770 uint64_t offset,
2771 uint64_t length)
2772 {
2773 auto cct = onode->c->store->cct; //used by dout
2774 if (extent_map.empty())
2775 return 0;
2776 int removed = 0;
2777 auto p = seek_lextent(offset);
2778 if (p != extent_map.begin()) {
2779 --p; // start to the left of offset
2780 }
2781 // the caller should have just written to this region
2782 assert(p != extent_map.end());
2783
2784 // identify the *next* shard
2785 auto pshard = shards.begin();
2786 while (pshard != shards.end() &&
2787 p->logical_offset >= pshard->shard_info->offset) {
2788 ++pshard;
2789 }
2790 uint64_t shard_end;
2791 if (pshard != shards.end()) {
2792 shard_end = pshard->shard_info->offset;
2793 } else {
2794 shard_end = OBJECT_MAX_SIZE;
2795 }
2796
2797 auto n = p;
2798 for (++n; n != extent_map.end(); p = n++) {
2799 if (n->logical_offset > offset + length) {
2800 break; // stop after end
2801 }
2802 while (n != extent_map.end() &&
2803 p->logical_end() == n->logical_offset &&
2804 p->blob == n->blob &&
2805 p->blob_offset + p->length == n->blob_offset &&
2806 n->logical_offset < shard_end) {
2807 dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
2808 << " next shard 0x" << shard_end << std::dec
2809 << " merging " << *p << " and " << *n << dendl;
2810 p->length += n->length;
2811 rm(n++);
2812 ++removed;
2813 }
2814 if (n == extent_map.end()) {
2815 break;
2816 }
2817 if (n->logical_offset >= shard_end) {
2818 assert(pshard != shards.end());
2819 ++pshard;
2820 if (pshard != shards.end()) {
2821 shard_end = pshard->shard_info->offset;
2822 } else {
2823 shard_end = OBJECT_MAX_SIZE;
2824 }
2825 }
2826 }
2827 if (removed && onode) {
2828 onode->c->store->logger->inc(l_bluestore_extent_compress, removed);
2829 }
2830 return removed;
2831 }
2832
2833 void BlueStore::ExtentMap::punch_hole(
2834 CollectionRef &c,
2835 uint64_t offset,
2836 uint64_t length,
2837 old_extent_map_t *old_extents)
2838 {
2839 auto p = seek_lextent(offset);
2840 uint64_t end = offset + length;
2841 while (p != extent_map.end()) {
2842 if (p->logical_offset >= end) {
2843 break;
2844 }
2845 if (p->logical_offset < offset) {
2846 if (p->logical_end() > end) {
2847 // split and deref middle
2848 uint64_t front = offset - p->logical_offset;
2849 OldExtent* oe = OldExtent::create(c, offset, p->blob_offset + front,
2850 length, p->blob);
2851 old_extents->push_back(*oe);
2852 add(end,
2853 p->blob_offset + front + length,
2854 p->length - front - length,
2855 p->blob);
2856 p->length = front;
2857 break;
2858 } else {
2859 // deref tail
2860 assert(p->logical_end() > offset); // else seek_lextent bug
2861 uint64_t keep = offset - p->logical_offset;
2862 OldExtent* oe = OldExtent::create(c, offset, p->blob_offset + keep,
2863 p->length - keep, p->blob);
2864 old_extents->push_back(*oe);
2865 p->length = keep;
2866 ++p;
2867 continue;
2868 }
2869 }
2870 if (p->logical_offset + p->length <= end) {
2871 // deref whole lextent
2872 OldExtent* oe = OldExtent::create(c, p->logical_offset, p->blob_offset,
2873 p->length, p->blob);
2874 old_extents->push_back(*oe);
2875 rm(p++);
2876 continue;
2877 }
2878 // deref head
2879 uint64_t keep = p->logical_end() - end;
2880 OldExtent* oe = OldExtent::create(c, p->logical_offset, p->blob_offset,
2881 p->length - keep, p->blob);
2882 old_extents->push_back(*oe);
2883
2884 add(end, p->blob_offset + p->length - keep, keep, p->blob);
2885 rm(p);
2886 break;
2887 }
2888 }
2889
2890 BlueStore::Extent *BlueStore::ExtentMap::set_lextent(
2891 CollectionRef &c,
2892 uint64_t logical_offset,
2893 uint64_t blob_offset, uint64_t length, BlobRef b,
2894 old_extent_map_t *old_extents)
2895 {
2896 // We need to have completely initialized Blob to increment its ref counters.
2897 assert(b->get_blob().get_logical_length() != 0);
2898
2899 // Do get_ref prior to punch_hole to prevent from putting reused blob into
2900 // old_extents list if we overwre the blob totally
2901 // This might happen during WAL overwrite.
2902 b->get_ref(onode->c, blob_offset, length);
2903
2904 if (old_extents) {
2905 punch_hole(c, logical_offset, length, old_extents);
2906 }
2907
2908 Extent *le = new Extent(logical_offset, blob_offset, length, b);
2909 extent_map.insert(*le);
2910 if (spans_shard(logical_offset, length)) {
2911 request_reshard(logical_offset, logical_offset + length);
2912 }
2913 return le;
2914 }
2915
2916 BlueStore::BlobRef BlueStore::ExtentMap::split_blob(
2917 BlobRef lb,
2918 uint32_t blob_offset,
2919 uint32_t pos)
2920 {
2921 auto cct = onode->c->store->cct; //used by dout
2922
2923 uint32_t end_pos = pos + lb->get_blob().get_logical_length() - blob_offset;
2924 dout(20) << __func__ << " 0x" << std::hex << pos << " end 0x" << end_pos
2925 << " blob_offset 0x" << blob_offset << std::dec << " " << *lb
2926 << dendl;
2927 BlobRef rb = onode->c->new_blob();
2928 lb->split(onode->c, blob_offset, rb.get());
2929
2930 for (auto ep = seek_lextent(pos);
2931 ep != extent_map.end() && ep->logical_offset < end_pos;
2932 ++ep) {
2933 if (ep->blob != lb) {
2934 continue;
2935 }
2936 if (ep->logical_offset < pos) {
2937 // split extent
2938 size_t left = pos - ep->logical_offset;
2939 Extent *ne = new Extent(pos, 0, ep->length - left, rb);
2940 extent_map.insert(*ne);
2941 ep->length = left;
2942 dout(30) << __func__ << " split " << *ep << dendl;
2943 dout(30) << __func__ << " to " << *ne << dendl;
2944 } else {
2945 // switch blob
2946 assert(ep->blob_offset >= blob_offset);
2947
2948 ep->blob = rb;
2949 ep->blob_offset -= blob_offset;
2950 dout(30) << __func__ << " adjusted " << *ep << dendl;
2951 }
2952 }
2953 return rb;
2954 }
2955
2956 // Onode
2957
2958 #undef dout_prefix
2959 #define dout_prefix *_dout << "bluestore.onode(" << this << ")." << __func__ << " "
2960
2961 void BlueStore::Onode::flush()
2962 {
2963 if (flushing_count.load()) {
2964 ldout(c->store->cct, 20) << __func__ << " cnt:" << flushing_count << dendl;
2965 std::unique_lock<std::mutex> l(flush_lock);
2966 while (flushing_count.load()) {
2967 flush_cond.wait(l);
2968 }
2969 }
2970 ldout(c->store->cct, 20) << __func__ << " done" << dendl;
2971 }
2972
2973 // =======================================================
2974 // WriteContext
2975
2976 /// Checks for writes to the same pextent within a blob
2977 bool BlueStore::WriteContext::has_conflict(
2978 BlobRef b,
2979 uint64_t loffs,
2980 uint64_t loffs_end,
2981 uint64_t min_alloc_size)
2982 {
2983 assert((loffs % min_alloc_size) == 0);
2984 assert((loffs_end % min_alloc_size) == 0);
2985 for (auto w : writes) {
2986 if (b == w.b) {
2987 auto loffs2 = P2ALIGN(w.logical_offset, min_alloc_size);
2988 auto loffs2_end = P2ROUNDUP(w.logical_offset + w.length0, min_alloc_size);
2989 if ((loffs <= loffs2 && loffs_end > loffs2) ||
2990 (loffs >= loffs2 && loffs < loffs2_end)) {
2991 return true;
2992 }
2993 }
2994 }
2995 return false;
2996 }
2997
2998 // =======================================================
2999
3000 // DeferredBatch
3001 #undef dout_prefix
3002 #define dout_prefix *_dout << "bluestore.DeferredBatch(" << this << ") "
3003
3004 void BlueStore::DeferredBatch::prepare_write(
3005 CephContext *cct,
3006 uint64_t seq, uint64_t offset, uint64_t length,
3007 bufferlist::const_iterator& blp)
3008 {
3009 _discard(cct, offset, length);
3010 auto i = iomap.insert(make_pair(offset, deferred_io()));
3011 assert(i.second); // this should be a new insertion
3012 i.first->second.seq = seq;
3013 blp.copy(length, i.first->second.bl);
3014 i.first->second.bl.reassign_to_mempool(
3015 mempool::mempool_bluestore_writing_deferred);
3016 dout(20) << __func__ << " seq " << seq
3017 << " 0x" << std::hex << offset << "~" << length
3018 << " crc " << i.first->second.bl.crc32c(-1)
3019 << std::dec << dendl;
3020 seq_bytes[seq] += length;
3021 #ifdef DEBUG_DEFERRED
3022 _audit(cct);
3023 #endif
3024 }
3025
3026 void BlueStore::DeferredBatch::_discard(
3027 CephContext *cct, uint64_t offset, uint64_t length)
3028 {
3029 generic_dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
3030 << std::dec << dendl;
3031 auto p = iomap.lower_bound(offset);
3032 if (p != iomap.begin()) {
3033 --p;
3034 auto end = p->first + p->second.bl.length();
3035 if (end > offset) {
3036 bufferlist head;
3037 head.substr_of(p->second.bl, 0, offset - p->first);
3038 dout(20) << __func__ << " keep head " << p->second.seq
3039 << " 0x" << std::hex << p->first << "~" << p->second.bl.length()
3040 << " -> 0x" << head.length() << std::dec << dendl;
3041 auto i = seq_bytes.find(p->second.seq);
3042 assert(i != seq_bytes.end());
3043 if (end > offset + length) {
3044 bufferlist tail;
3045 tail.substr_of(p->second.bl, offset + length - p->first,
3046 end - (offset + length));
3047 dout(20) << __func__ << " keep tail " << p->second.seq
3048 << " 0x" << std::hex << p->first << "~" << p->second.bl.length()
3049 << " -> 0x" << tail.length() << std::dec << dendl;
3050 auto &n = iomap[offset + length];
3051 n.bl.swap(tail);
3052 n.seq = p->second.seq;
3053 i->second -= length;
3054 } else {
3055 i->second -= end - offset;
3056 }
3057 assert(i->second >= 0);
3058 p->second.bl.swap(head);
3059 }
3060 ++p;
3061 }
3062 while (p != iomap.end()) {
3063 if (p->first >= offset + length) {
3064 break;
3065 }
3066 auto i = seq_bytes.find(p->second.seq);
3067 assert(i != seq_bytes.end());
3068 auto end = p->first + p->second.bl.length();
3069 if (end > offset + length) {
3070 unsigned drop_front = offset + length - p->first;
3071 unsigned keep_tail = end - (offset + length);
3072 dout(20) << __func__ << " truncate front " << p->second.seq
3073 << " 0x" << std::hex << p->first << "~" << p->second.bl.length()
3074 << " drop_front 0x" << drop_front << " keep_tail 0x" << keep_tail
3075 << " to 0x" << (offset + length) << "~" << keep_tail
3076 << std::dec << dendl;
3077 auto &s = iomap[offset + length];
3078 s.seq = p->second.seq;
3079 s.bl.substr_of(p->second.bl, drop_front, keep_tail);
3080 i->second -= drop_front;
3081 } else {
3082 dout(20) << __func__ << " drop " << p->second.seq
3083 << " 0x" << std::hex << p->first << "~" << p->second.bl.length()
3084 << std::dec << dendl;
3085 i->second -= p->second.bl.length();
3086 }
3087 assert(i->second >= 0);
3088 p = iomap.erase(p);
3089 }
3090 }
3091
3092 void BlueStore::DeferredBatch::_audit(CephContext *cct)
3093 {
3094 map<uint64_t,int> sb;
3095 for (auto p : seq_bytes) {
3096 sb[p.first] = 0; // make sure we have the same set of keys
3097 }
3098 uint64_t pos = 0;
3099 for (auto& p : iomap) {
3100 assert(p.first >= pos);
3101 sb[p.second.seq] += p.second.bl.length();
3102 pos = p.first + p.second.bl.length();
3103 }
3104 assert(sb == seq_bytes);
3105 }
3106
3107
3108 // Collection
3109
3110 #undef dout_prefix
3111 #define dout_prefix *_dout << "bluestore(" << store->path << ").collection(" << cid << " " << this << ") "
3112
3113 BlueStore::Collection::Collection(BlueStore *ns, Cache *c, coll_t cid)
3114 : store(ns),
3115 cache(c),
3116 cid(cid),
3117 lock("BlueStore::Collection::lock", true, false),
3118 exists(true),
3119 onode_map(c)
3120 {
3121 }
3122
3123 void BlueStore::Collection::open_shared_blob(uint64_t sbid, BlobRef b)
3124 {
3125 assert(!b->shared_blob);
3126 const bluestore_blob_t& blob = b->get_blob();
3127 if (!blob.is_shared()) {
3128 b->shared_blob = new SharedBlob(this);
3129 return;
3130 }
3131
3132 b->shared_blob = shared_blob_set.lookup(sbid);
3133 if (b->shared_blob) {
3134 ldout(store->cct, 10) << __func__ << " sbid 0x" << std::hex << sbid
3135 << std::dec << " had " << *b->shared_blob << dendl;
3136 } else {
3137 b->shared_blob = new SharedBlob(sbid, this);
3138 shared_blob_set.add(this, b->shared_blob.get());
3139 ldout(store->cct, 10) << __func__ << " sbid 0x" << std::hex << sbid
3140 << std::dec << " opened " << *b->shared_blob
3141 << dendl;
3142 }
3143 }
3144
3145 void BlueStore::Collection::load_shared_blob(SharedBlobRef sb)
3146 {
3147 if (!sb->is_loaded()) {
3148
3149 bufferlist v;
3150 string key;
3151 auto sbid = sb->get_sbid();
3152 get_shared_blob_key(sbid, &key);
3153 int r = store->db->get(PREFIX_SHARED_BLOB, key, &v);
3154 if (r < 0) {
3155 lderr(store->cct) << __func__ << " sbid 0x" << std::hex << sbid
3156 << std::dec << " not found at key "
3157 << pretty_binary_string(key) << dendl;
3158 assert(0 == "uh oh, missing shared_blob");
3159 }
3160
3161 sb->loaded = true;
3162 sb->persistent = new bluestore_shared_blob_t(sbid);
3163 bufferlist::iterator p = v.begin();
3164 ::decode(*(sb->persistent), p);
3165 ldout(store->cct, 10) << __func__ << " sbid 0x" << std::hex << sbid
3166 << std::dec << " loaded shared_blob " << *sb << dendl;
3167 }
3168 }
3169
3170 void BlueStore::Collection::make_blob_shared(uint64_t sbid, BlobRef b)
3171 {
3172 ldout(store->cct, 10) << __func__ << " " << *b << dendl;
3173 assert(!b->shared_blob->is_loaded());
3174
3175 // update blob
3176 bluestore_blob_t& blob = b->dirty_blob();
3177 blob.set_flag(bluestore_blob_t::FLAG_SHARED);
3178
3179 // update shared blob
3180 b->shared_blob->loaded = true;
3181 b->shared_blob->persistent = new bluestore_shared_blob_t(sbid);
3182 shared_blob_set.add(this, b->shared_blob.get());
3183 for (auto p : blob.get_extents()) {
3184 if (p.is_valid()) {
3185 b->shared_blob->get_ref(
3186 p.offset,
3187 p.length);
3188 }
3189 }
3190 ldout(store->cct, 20) << __func__ << " now " << *b << dendl;
3191 }
3192
3193 uint64_t BlueStore::Collection::make_blob_unshared(SharedBlob *sb)
3194 {
3195 ldout(store->cct, 10) << __func__ << " " << *sb << dendl;
3196 assert(sb->is_loaded());
3197
3198 uint64_t sbid = sb->get_sbid();
3199 shared_blob_set.remove(sb);
3200 sb->loaded = false;
3201 delete sb->persistent;
3202 sb->sbid_unloaded = 0;
3203 ldout(store->cct, 20) << __func__ << " now " << *sb << dendl;
3204 return sbid;
3205 }
3206
3207 BlueStore::OnodeRef BlueStore::Collection::get_onode(
3208 const ghobject_t& oid,
3209 bool create)
3210 {
3211 assert(create ? lock.is_wlocked() : lock.is_locked());
3212
3213 spg_t pgid;
3214 if (cid.is_pg(&pgid)) {
3215 if (!oid.match(cnode.bits, pgid.ps())) {
3216 lderr(store->cct) << __func__ << " oid " << oid << " not part of "
3217 << pgid << " bits " << cnode.bits << dendl;
3218 ceph_abort();
3219 }
3220 }
3221
3222 OnodeRef o = onode_map.lookup(oid);
3223 if (o)
3224 return o;
3225
3226 mempool::bluestore_cache_other::string key;
3227 get_object_key(store->cct, oid, &key);
3228
3229 ldout(store->cct, 20) << __func__ << " oid " << oid << " key "
3230 << pretty_binary_string(key) << dendl;
3231
3232 bufferlist v;
3233 int r = store->db->get(PREFIX_OBJ, key.c_str(), key.size(), &v);
3234 ldout(store->cct, 20) << " r " << r << " v.len " << v.length() << dendl;
3235 Onode *on;
3236 if (v.length() == 0) {
3237 assert(r == -ENOENT);
3238 if (!store->cct->_conf->bluestore_debug_misc &&
3239 !create)
3240 return OnodeRef();
3241
3242 // new object, new onode
3243 on = new Onode(this, oid, key);
3244 } else {
3245 // loaded
3246 assert(r >= 0);
3247 on = new Onode(this, oid, key);
3248 on->exists = true;
3249 bufferptr::iterator p = v.front().begin_deep();
3250 on->onode.decode(p);
3251 for (auto& i : on->onode.attrs) {
3252 i.second.reassign_to_mempool(mempool::mempool_bluestore_cache_other);
3253 }
3254
3255 // initialize extent_map
3256 on->extent_map.decode_spanning_blobs(p);
3257 if (on->onode.extent_map_shards.empty()) {
3258 denc(on->extent_map.inline_bl, p);
3259 on->extent_map.decode_some(on->extent_map.inline_bl);
3260 on->extent_map.inline_bl.reassign_to_mempool(
3261 mempool::mempool_bluestore_cache_other);
3262 } else {
3263 on->extent_map.init_shards(false, false);
3264 }
3265 }
3266 o.reset(on);
3267 return onode_map.add(oid, o);
3268 }
3269
3270 void BlueStore::Collection::split_cache(
3271 Collection *dest)
3272 {
3273 ldout(store->cct, 10) << __func__ << " to " << dest << dendl;
3274
3275 // lock (one or both) cache shards
3276 std::lock(cache->lock, dest->cache->lock);
3277 std::lock_guard<std::recursive_mutex> l(cache->lock, std::adopt_lock);
3278 std::lock_guard<std::recursive_mutex> l2(dest->cache->lock, std::adopt_lock);
3279
3280 int destbits = dest->cnode.bits;
3281 spg_t destpg;
3282 bool is_pg = dest->cid.is_pg(&destpg);
3283 assert(is_pg);
3284
3285 auto p = onode_map.onode_map.begin();
3286 while (p != onode_map.onode_map.end()) {
3287 if (!p->second->oid.match(destbits, destpg.pgid.ps())) {
3288 // onode does not belong to this child
3289 ++p;
3290 } else {
3291 OnodeRef o = p->second;
3292 ldout(store->cct, 20) << __func__ << " moving " << o << " " << o->oid
3293 << dendl;
3294
3295 cache->_rm_onode(p->second);
3296 p = onode_map.onode_map.erase(p);
3297
3298 o->c = dest;
3299 dest->cache->_add_onode(o, 1);
3300 dest->onode_map.onode_map[o->oid] = o;
3301 dest->onode_map.cache = dest->cache;
3302
3303 // move over shared blobs and buffers. cover shared blobs from
3304 // both extent map and spanning blob map (the full extent map
3305 // may not be faulted in)
3306 vector<SharedBlob*> sbvec;
3307 for (auto& e : o->extent_map.extent_map) {
3308 sbvec.push_back(e.blob->shared_blob.get());
3309 }
3310 for (auto& b : o->extent_map.spanning_blob_map) {
3311 sbvec.push_back(b.second->shared_blob.get());
3312 }
3313 for (auto sb : sbvec) {
3314 if (sb->coll == dest) {
3315 ldout(store->cct, 20) << __func__ << " already moved " << *sb
3316 << dendl;
3317 continue;
3318 }
3319 ldout(store->cct, 20) << __func__ << " moving " << *sb << dendl;
3320 if (sb->get_sbid()) {
3321 ldout(store->cct, 20) << __func__
3322 << " moving registration " << *sb << dendl;
3323 shared_blob_set.remove(sb);
3324 dest->shared_blob_set.add(dest, sb);
3325 }
3326 sb->coll = dest;
3327 if (dest->cache != cache) {
3328 for (auto& i : sb->bc.buffer_map) {
3329 if (!i.second->is_writing()) {
3330 ldout(store->cct, 20) << __func__ << " moving " << *i.second
3331 << dendl;
3332 dest->cache->_move_buffer(cache, i.second.get());
3333 }
3334 }
3335 }
3336 }
3337 }
3338 }
3339 }
3340
3341 // =======================================================
3342
3343 void *BlueStore::MempoolThread::entry()
3344 {
3345 Mutex::Locker l(lock);
3346 while (!stop) {
3347 uint64_t meta_bytes =
3348 mempool::bluestore_cache_other::allocated_bytes() +
3349 mempool::bluestore_cache_onode::allocated_bytes();
3350 uint64_t onode_num =
3351 mempool::bluestore_cache_onode::allocated_items();
3352
3353 if (onode_num < 2) {
3354 onode_num = 2;
3355 }
3356
3357 float bytes_per_onode = (float)meta_bytes / (float)onode_num;
3358 size_t num_shards = store->cache_shards.size();
3359 float target_ratio = store->cache_meta_ratio + store->cache_data_ratio;
3360 // A little sloppy but should be close enough
3361 uint64_t shard_target = target_ratio * (store->cache_size / num_shards);
3362
3363 for (auto i : store->cache_shards) {
3364 i->trim(shard_target,
3365 store->cache_meta_ratio,
3366 store->cache_data_ratio,
3367 bytes_per_onode);
3368 }
3369
3370 store->_update_cache_logger();
3371
3372 utime_t wait;
3373 wait += store->cct->_conf->bluestore_cache_trim_interval;
3374 cond.WaitInterval(lock, wait);
3375 }
3376 stop = false;
3377 return NULL;
3378 }
3379
3380 // =======================================================
3381
3382 // OmapIteratorImpl
3383
3384 #undef dout_prefix
3385 #define dout_prefix *_dout << "bluestore.OmapIteratorImpl(" << this << ") "
3386
3387 BlueStore::OmapIteratorImpl::OmapIteratorImpl(
3388 CollectionRef c, OnodeRef o, KeyValueDB::Iterator it)
3389 : c(c), o(o), it(it)
3390 {
3391 RWLock::RLocker l(c->lock);
3392 if (o->onode.has_omap()) {
3393 get_omap_key(o->onode.nid, string(), &head);
3394 get_omap_tail(o->onode.nid, &tail);
3395 it->lower_bound(head);
3396 }
3397 }
3398
3399 int BlueStore::OmapIteratorImpl::seek_to_first()
3400 {
3401 RWLock::RLocker l(c->lock);
3402 if (o->onode.has_omap()) {
3403 it->lower_bound(head);
3404 } else {
3405 it = KeyValueDB::Iterator();
3406 }
3407 return 0;
3408 }
3409
3410 int BlueStore::OmapIteratorImpl::upper_bound(const string& after)
3411 {
3412 RWLock::RLocker l(c->lock);
3413 if (o->onode.has_omap()) {
3414 string key;
3415 get_omap_key(o->onode.nid, after, &key);
3416 ldout(c->store->cct,20) << __func__ << " after " << after << " key "
3417 << pretty_binary_string(key) << dendl;
3418 it->upper_bound(key);
3419 } else {
3420 it = KeyValueDB::Iterator();
3421 }
3422 return 0;
3423 }
3424
3425 int BlueStore::OmapIteratorImpl::lower_bound(const string& to)
3426 {
3427 RWLock::RLocker l(c->lock);
3428 if (o->onode.has_omap()) {
3429 string key;
3430 get_omap_key(o->onode.nid, to, &key);
3431 ldout(c->store->cct,20) << __func__ << " to " << to << " key "
3432 << pretty_binary_string(key) << dendl;
3433 it->lower_bound(key);
3434 } else {
3435 it = KeyValueDB::Iterator();
3436 }
3437 return 0;
3438 }
3439
3440 bool BlueStore::OmapIteratorImpl::valid()
3441 {
3442 RWLock::RLocker l(c->lock);
3443 bool r = o->onode.has_omap() && it && it->valid() &&
3444 it->raw_key().second <= tail;
3445 if (it && it->valid()) {
3446 ldout(c->store->cct,20) << __func__ << " is at "
3447 << pretty_binary_string(it->raw_key().second)
3448 << dendl;
3449 }
3450 return r;
3451 }
3452
3453 int BlueStore::OmapIteratorImpl::next(bool validate)
3454 {
3455 RWLock::RLocker l(c->lock);
3456 if (o->onode.has_omap()) {
3457 it->next();
3458 return 0;
3459 } else {
3460 return -1;
3461 }
3462 }
3463
3464 string BlueStore::OmapIteratorImpl::key()
3465 {
3466 RWLock::RLocker l(c->lock);
3467 assert(it->valid());
3468 string db_key = it->raw_key().second;
3469 string user_key;
3470 decode_omap_key(db_key, &user_key);
3471 return user_key;
3472 }
3473
3474 bufferlist BlueStore::OmapIteratorImpl::value()
3475 {
3476 RWLock::RLocker l(c->lock);
3477 assert(it->valid());
3478 return it->value();
3479 }
3480
3481
3482 // =====================================
3483
3484 #undef dout_prefix
3485 #define dout_prefix *_dout << "bluestore(" << path << ") "
3486
3487
3488 static void aio_cb(void *priv, void *priv2)
3489 {
3490 BlueStore *store = static_cast<BlueStore*>(priv);
3491 BlueStore::AioContext *c = static_cast<BlueStore::AioContext*>(priv2);
3492 c->aio_finish(store);
3493 }
3494
3495 BlueStore::BlueStore(CephContext *cct, const string& path)
3496 : ObjectStore(cct, path),
3497 throttle_bytes(cct, "bluestore_throttle_bytes",
3498 cct->_conf->bluestore_throttle_bytes),
3499 throttle_deferred_bytes(cct, "bluestore_throttle_deferred_bytes",
3500 cct->_conf->bluestore_throttle_bytes +
3501 cct->_conf->bluestore_throttle_deferred_bytes),
3502 deferred_finisher(cct, "defered_finisher", "dfin"),
3503 kv_sync_thread(this),
3504 kv_finalize_thread(this),
3505 mempool_thread(this)
3506 {
3507 _init_logger();
3508 cct->_conf->add_observer(this);
3509 set_cache_shards(1);
3510 }
3511
3512 BlueStore::BlueStore(CephContext *cct,
3513 const string& path,
3514 uint64_t _min_alloc_size)
3515 : ObjectStore(cct, path),
3516 throttle_bytes(cct, "bluestore_throttle_bytes",
3517 cct->_conf->bluestore_throttle_bytes),
3518 throttle_deferred_bytes(cct, "bluestore_throttle_deferred_bytes",
3519 cct->_conf->bluestore_throttle_bytes +
3520 cct->_conf->bluestore_throttle_deferred_bytes),
3521 deferred_finisher(cct, "defered_finisher", "dfin"),
3522 kv_sync_thread(this),
3523 kv_finalize_thread(this),
3524 min_alloc_size(_min_alloc_size),
3525 min_alloc_size_order(ctz(_min_alloc_size)),
3526 mempool_thread(this)
3527 {
3528 _init_logger();
3529 cct->_conf->add_observer(this);
3530 set_cache_shards(1);
3531 }
3532
3533 BlueStore::~BlueStore()
3534 {
3535 for (auto f : finishers) {
3536 delete f;
3537 }
3538 finishers.clear();
3539
3540 cct->_conf->remove_observer(this);
3541 _shutdown_logger();
3542 assert(!mounted);
3543 assert(db == NULL);
3544 assert(bluefs == NULL);
3545 assert(fsid_fd < 0);
3546 assert(path_fd < 0);
3547 for (auto i : cache_shards) {
3548 delete i;
3549 }
3550 cache_shards.clear();
3551 }
3552
3553 const char **BlueStore::get_tracked_conf_keys() const
3554 {
3555 static const char* KEYS[] = {
3556 "bluestore_csum_type",
3557 "bluestore_compression_mode",
3558 "bluestore_compression_algorithm",
3559 "bluestore_compression_min_blob_size",
3560 "bluestore_compression_min_blob_size_ssd",
3561 "bluestore_compression_min_blob_size_hdd",
3562 "bluestore_compression_max_blob_size",
3563 "bluestore_compression_max_blob_size_ssd",
3564 "bluestore_compression_max_blob_size_hdd",
3565 "bluestore_compression_required_ratio",
3566 "bluestore_max_alloc_size",
3567 "bluestore_prefer_deferred_size",
3568 "bluestore_prefer_deferred_size_hdd",
3569 "bluestore_prefer_deferred_size_ssd",
3570 "bluestore_deferred_batch_ops",
3571 "bluestore_deferred_batch_ops_hdd",
3572 "bluestore_deferred_batch_ops_ssd",
3573 "bluestore_throttle_bytes",
3574 "bluestore_throttle_deferred_bytes",
3575 "bluestore_throttle_cost_per_io_hdd",
3576 "bluestore_throttle_cost_per_io_ssd",
3577 "bluestore_throttle_cost_per_io",
3578 "bluestore_max_blob_size",
3579 "bluestore_max_blob_size_ssd",
3580 "bluestore_max_blob_size_hdd",
3581 NULL
3582 };
3583 return KEYS;
3584 }
3585
3586 void BlueStore::handle_conf_change(const struct md_config_t *conf,
3587 const std::set<std::string> &changed)
3588 {
3589 if (changed.count("bluestore_csum_type")) {
3590 _set_csum();
3591 }
3592 if (changed.count("bluestore_compression_mode") ||
3593 changed.count("bluestore_compression_algorithm") ||
3594 changed.count("bluestore_compression_min_blob_size") ||
3595 changed.count("bluestore_compression_max_blob_size")) {
3596 if (bdev) {
3597 _set_compression();
3598 }
3599 }
3600 if (changed.count("bluestore_max_blob_size") ||
3601 changed.count("bluestore_max_blob_size_ssd") ||
3602 changed.count("bluestore_max_blob_size_hdd")) {
3603 if (bdev) {
3604 // only after startup
3605 _set_blob_size();
3606 }
3607 }
3608 if (changed.count("bluestore_prefer_deferred_size") ||
3609 changed.count("bluestore_prefer_deferred_size_hdd") ||
3610 changed.count("bluestore_prefer_deferred_size_ssd") ||
3611 changed.count("bluestore_max_alloc_size") ||
3612 changed.count("bluestore_deferred_batch_ops") ||
3613 changed.count("bluestore_deferred_batch_ops_hdd") ||
3614 changed.count("bluestore_deferred_batch_ops_ssd")) {
3615 if (bdev) {
3616 // only after startup
3617 _set_alloc_sizes();
3618 }
3619 }
3620 if (changed.count("bluestore_throttle_cost_per_io") ||
3621 changed.count("bluestore_throttle_cost_per_io_hdd") ||
3622 changed.count("bluestore_throttle_cost_per_io_ssd")) {
3623 if (bdev) {
3624 _set_throttle_params();
3625 }
3626 }
3627 if (changed.count("bluestore_throttle_bytes")) {
3628 throttle_bytes.reset_max(conf->bluestore_throttle_bytes);
3629 throttle_deferred_bytes.reset_max(
3630 conf->bluestore_throttle_bytes + conf->bluestore_throttle_deferred_bytes);
3631 }
3632 if (changed.count("bluestore_throttle_deferred_bytes")) {
3633 throttle_deferred_bytes.reset_max(
3634 conf->bluestore_throttle_bytes + conf->bluestore_throttle_deferred_bytes);
3635 }
3636 }
3637
3638 void BlueStore::_set_compression()
3639 {
3640 auto m = Compressor::get_comp_mode_type(cct->_conf->bluestore_compression_mode);
3641 if (m) {
3642 comp_mode = *m;
3643 } else {
3644 derr << __func__ << " unrecognized value '"
3645 << cct->_conf->bluestore_compression_mode
3646 << "' for bluestore_compression_mode, reverting to 'none'"
3647 << dendl;
3648 comp_mode = Compressor::COMP_NONE;
3649 }
3650
3651 compressor = nullptr;
3652
3653 if (comp_mode == Compressor::COMP_NONE) {
3654 dout(10) << __func__ << " compression mode set to 'none', "
3655 << "ignore other compression setttings" << dendl;
3656 return;
3657 }
3658
3659 if (cct->_conf->bluestore_compression_min_blob_size) {
3660 comp_min_blob_size = cct->_conf->bluestore_compression_min_blob_size;
3661 } else {
3662 assert(bdev);
3663 if (bdev->is_rotational()) {
3664 comp_min_blob_size = cct->_conf->bluestore_compression_min_blob_size_hdd;
3665 } else {
3666 comp_min_blob_size = cct->_conf->bluestore_compression_min_blob_size_ssd;
3667 }
3668 }
3669
3670 if (cct->_conf->bluestore_compression_max_blob_size) {
3671 comp_max_blob_size = cct->_conf->bluestore_compression_max_blob_size;
3672 } else {
3673 assert(bdev);
3674 if (bdev->is_rotational()) {
3675 comp_max_blob_size = cct->_conf->bluestore_compression_max_blob_size_hdd;
3676 } else {
3677 comp_max_blob_size = cct->_conf->bluestore_compression_max_blob_size_ssd;
3678 }
3679 }
3680
3681 auto& alg_name = cct->_conf->bluestore_compression_algorithm;
3682 if (!alg_name.empty()) {
3683 compressor = Compressor::create(cct, alg_name);
3684 if (!compressor) {
3685 derr << __func__ << " unable to initialize " << alg_name.c_str() << " compressor"
3686 << dendl;
3687 }
3688 }
3689
3690 dout(10) << __func__ << " mode " << Compressor::get_comp_mode_name(comp_mode)
3691 << " alg " << (compressor ? compressor->get_type_name() : "(none)")
3692 << dendl;
3693 }
3694
3695 void BlueStore::_set_csum()
3696 {
3697 csum_type = Checksummer::CSUM_NONE;
3698 int t = Checksummer::get_csum_string_type(cct->_conf->bluestore_csum_type);
3699 if (t > Checksummer::CSUM_NONE)
3700 csum_type = t;
3701
3702 dout(10) << __func__ << " csum_type "
3703 << Checksummer::get_csum_type_string(csum_type)
3704 << dendl;
3705 }
3706
3707 void BlueStore::_set_throttle_params()
3708 {
3709 if (cct->_conf->bluestore_throttle_cost_per_io) {
3710 throttle_cost_per_io = cct->_conf->bluestore_throttle_cost_per_io;
3711 } else {
3712 assert(bdev);
3713 if (bdev->is_rotational()) {
3714 throttle_cost_per_io = cct->_conf->bluestore_throttle_cost_per_io_hdd;
3715 } else {
3716 throttle_cost_per_io = cct->_conf->bluestore_throttle_cost_per_io_ssd;
3717 }
3718 }
3719
3720 dout(10) << __func__ << " throttle_cost_per_io " << throttle_cost_per_io
3721 << dendl;
3722 }
3723 void BlueStore::_set_blob_size()
3724 {
3725 if (cct->_conf->bluestore_max_blob_size) {
3726 max_blob_size = cct->_conf->bluestore_max_blob_size;
3727 } else {
3728 assert(bdev);
3729 if (bdev->is_rotational()) {
3730 max_blob_size = cct->_conf->bluestore_max_blob_size_hdd;
3731 } else {
3732 max_blob_size = cct->_conf->bluestore_max_blob_size_ssd;
3733 }
3734 }
3735 dout(10) << __func__ << " max_blob_size 0x" << std::hex << max_blob_size
3736 << std::dec << dendl;
3737 }
3738
3739 int BlueStore::_set_cache_sizes()
3740 {
3741 assert(bdev);
3742 if (cct->_conf->bluestore_cache_size) {
3743 cache_size = cct->_conf->bluestore_cache_size;
3744 } else {
3745 // choose global cache size based on backend type
3746 if (bdev->is_rotational()) {
3747 cache_size = cct->_conf->bluestore_cache_size_hdd;
3748 } else {
3749 cache_size = cct->_conf->bluestore_cache_size_ssd;
3750 }
3751 }
3752 cache_meta_ratio = cct->_conf->bluestore_cache_meta_ratio;
3753 cache_kv_ratio = cct->_conf->bluestore_cache_kv_ratio;
3754
3755 double cache_kv_max = cct->_conf->bluestore_cache_kv_max;
3756 double cache_kv_max_ratio = 0;
3757
3758 // if cache_kv_max is negative, disable it
3759 if (cache_size > 0 && cache_kv_max >= 0) {
3760 cache_kv_max_ratio = (double) cache_kv_max / (double) cache_size;
3761 if (cache_kv_max_ratio < 1.0 && cache_kv_max_ratio < cache_kv_ratio) {
3762 dout(1) << __func__ << " max " << cache_kv_max_ratio
3763 << " < ratio " << cache_kv_ratio
3764 << dendl;
3765 cache_meta_ratio = cache_meta_ratio + cache_kv_ratio - cache_kv_max_ratio;
3766 cache_kv_ratio = cache_kv_max_ratio;
3767 }
3768 }
3769
3770 cache_data_ratio =
3771 (double)1.0 - (double)cache_meta_ratio - (double)cache_kv_ratio;
3772
3773 if (cache_meta_ratio < 0 || cache_meta_ratio > 1.0) {
3774 derr << __func__ << " bluestore_cache_meta_ratio (" << cache_meta_ratio
3775 << ") must be in range [0,1.0]" << dendl;
3776 return -EINVAL;
3777 }
3778 if (cache_kv_ratio < 0 || cache_kv_ratio > 1.0) {
3779 derr << __func__ << " bluestore_cache_kv_ratio (" << cache_kv_ratio
3780 << ") must be in range [0,1.0]" << dendl;
3781 return -EINVAL;
3782 }
3783 if (cache_meta_ratio + cache_kv_ratio > 1.0) {
3784 derr << __func__ << " bluestore_cache_meta_ratio (" << cache_meta_ratio
3785 << ") + bluestore_cache_kv_ratio (" << cache_kv_ratio
3786 << ") = " << cache_meta_ratio + cache_kv_ratio << "; must be <= 1.0"
3787 << dendl;
3788 return -EINVAL;
3789 }
3790 if (cache_data_ratio < 0) {
3791 // deal with floating point imprecision
3792 cache_data_ratio = 0;
3793 }
3794 dout(1) << __func__ << " cache_size " << cache_size
3795 << " meta " << cache_meta_ratio
3796 << " kv " << cache_kv_ratio
3797 << " data " << cache_data_ratio
3798 << dendl;
3799 return 0;
3800 }
3801
3802 int BlueStore::write_meta(const std::string& key, const std::string& value)
3803 {
3804 bluestore_bdev_label_t label;
3805 string p = path + "/block";
3806 int r = _read_bdev_label(cct, p, &label);
3807 if (r < 0) {
3808 return ObjectStore::write_meta(key, value);
3809 }
3810 label.meta[key] = value;
3811 r = _write_bdev_label(cct, p, label);
3812 assert(r == 0);
3813 return ObjectStore::write_meta(key, value);
3814 }
3815
3816 int BlueStore::read_meta(const std::string& key, std::string *value)
3817 {
3818 bluestore_bdev_label_t label;
3819 string p = path + "/block";
3820 int r = _read_bdev_label(cct, p, &label);
3821 if (r < 0) {
3822 return ObjectStore::read_meta(key, value);
3823 }
3824 auto i = label.meta.find(key);
3825 if (i == label.meta.end()) {
3826 return ObjectStore::read_meta(key, value);
3827 }
3828 *value = i->second;
3829 return 0;
3830 }
3831
3832 void BlueStore::_init_logger()
3833 {
3834 PerfCountersBuilder b(cct, "bluestore",
3835 l_bluestore_first, l_bluestore_last);
3836 b.add_time_avg(l_bluestore_kv_flush_lat, "kv_flush_lat",
3837 "Average kv_thread flush latency",
3838 "fl_l", PerfCountersBuilder::PRIO_INTERESTING);
3839 b.add_time_avg(l_bluestore_kv_commit_lat, "kv_commit_lat",
3840 "Average kv_thread commit latency");
3841 b.add_time_avg(l_bluestore_kv_lat, "kv_lat",
3842 "Average kv_thread sync latency",
3843 "k_l", PerfCountersBuilder::PRIO_INTERESTING);
3844 b.add_time_avg(l_bluestore_state_prepare_lat, "state_prepare_lat",
3845 "Average prepare state latency");
3846 b.add_time_avg(l_bluestore_state_aio_wait_lat, "state_aio_wait_lat",
3847 "Average aio_wait state latency",
3848 "io_l", PerfCountersBuilder::PRIO_INTERESTING);
3849 b.add_time_avg(l_bluestore_state_io_done_lat, "state_io_done_lat",
3850 "Average io_done state latency");
3851 b.add_time_avg(l_bluestore_state_kv_queued_lat, "state_kv_queued_lat",
3852 "Average kv_queued state latency");
3853 b.add_time_avg(l_bluestore_state_kv_committing_lat, "state_kv_commiting_lat",
3854 "Average kv_commiting state latency");
3855 b.add_time_avg(l_bluestore_state_kv_done_lat, "state_kv_done_lat",
3856 "Average kv_done state latency");
3857 b.add_time_avg(l_bluestore_state_deferred_queued_lat, "state_deferred_queued_lat",
3858 "Average deferred_queued state latency");
3859 b.add_time_avg(l_bluestore_state_deferred_aio_wait_lat, "state_deferred_aio_wait_lat",
3860 "Average aio_wait state latency");
3861 b.add_time_avg(l_bluestore_state_deferred_cleanup_lat, "state_deferred_cleanup_lat",
3862 "Average cleanup state latency");
3863 b.add_time_avg(l_bluestore_state_finishing_lat, "state_finishing_lat",
3864 "Average finishing state latency");
3865 b.add_time_avg(l_bluestore_state_done_lat, "state_done_lat",
3866 "Average done state latency");
3867 b.add_time_avg(l_bluestore_throttle_lat, "throttle_lat",
3868 "Average submit throttle latency",
3869 "th_l", PerfCountersBuilder::PRIO_CRITICAL);
3870 b.add_time_avg(l_bluestore_submit_lat, "submit_lat",
3871 "Average submit latency",
3872 "s_l", PerfCountersBuilder::PRIO_CRITICAL);
3873 b.add_time_avg(l_bluestore_commit_lat, "commit_lat",
3874 "Average commit latency",
3875 "c_l", PerfCountersBuilder::PRIO_CRITICAL);
3876 b.add_time_avg(l_bluestore_read_lat, "read_lat",
3877 "Average read latency",
3878 "r_l", PerfCountersBuilder::PRIO_CRITICAL);
3879 b.add_time_avg(l_bluestore_read_onode_meta_lat, "read_onode_meta_lat",
3880 "Average read onode metadata latency");
3881 b.add_time_avg(l_bluestore_read_wait_aio_lat, "read_wait_aio_lat",
3882 "Average read latency");
3883 b.add_time_avg(l_bluestore_compress_lat, "compress_lat",
3884 "Average compress latency");
3885 b.add_time_avg(l_bluestore_decompress_lat, "decompress_lat",
3886 "Average decompress latency");
3887 b.add_time_avg(l_bluestore_csum_lat, "csum_lat",
3888 "Average checksum latency");
3889 b.add_u64_counter(l_bluestore_compress_success_count, "compress_success_count",
3890 "Sum for beneficial compress ops");
3891 b.add_u64_counter(l_bluestore_compress_rejected_count, "compress_rejected_count",
3892 "Sum for compress ops rejected due to low net gain of space");
3893 b.add_u64_counter(l_bluestore_write_pad_bytes, "write_pad_bytes",
3894 "Sum for write-op padded bytes");
3895 b.add_u64_counter(l_bluestore_deferred_write_ops, "deferred_write_ops",
3896 "Sum for deferred write op");
3897 b.add_u64_counter(l_bluestore_deferred_write_bytes, "deferred_write_bytes",
3898 "Sum for deferred write bytes", "def");
3899 b.add_u64_counter(l_bluestore_write_penalty_read_ops, "write_penalty_read_ops",
3900 "Sum for write penalty read ops");
3901 b.add_u64(l_bluestore_allocated, "bluestore_allocated",
3902 "Sum for allocated bytes");
3903 b.add_u64(l_bluestore_stored, "bluestore_stored",
3904 "Sum for stored bytes");
3905 b.add_u64(l_bluestore_compressed, "bluestore_compressed",
3906 "Sum for stored compressed bytes");
3907 b.add_u64(l_bluestore_compressed_allocated, "bluestore_compressed_allocated",
3908 "Sum for bytes allocated for compressed data");
3909 b.add_u64(l_bluestore_compressed_original, "bluestore_compressed_original",
3910 "Sum for original bytes that were compressed");
3911
3912 b.add_u64(l_bluestore_onodes, "bluestore_onodes",
3913 "Number of onodes in cache");
3914 b.add_u64_counter(l_bluestore_onode_hits, "bluestore_onode_hits",
3915 "Sum for onode-lookups hit in the cache");
3916 b.add_u64_counter(l_bluestore_onode_misses, "bluestore_onode_misses",
3917 "Sum for onode-lookups missed in the cache");
3918 b.add_u64_counter(l_bluestore_onode_shard_hits, "bluestore_onode_shard_hits",
3919 "Sum for onode-shard lookups hit in the cache");
3920 b.add_u64_counter(l_bluestore_onode_shard_misses,
3921 "bluestore_onode_shard_misses",
3922 "Sum for onode-shard lookups missed in the cache");
3923 b.add_u64(l_bluestore_extents, "bluestore_extents",
3924 "Number of extents in cache");
3925 b.add_u64(l_bluestore_blobs, "bluestore_blobs",
3926 "Number of blobs in cache");
3927 b.add_u64(l_bluestore_buffers, "bluestore_buffers",
3928 "Number of buffers in cache");
3929 b.add_u64(l_bluestore_buffer_bytes, "bluestore_buffer_bytes",
3930 "Number of buffer bytes in cache");
3931 b.add_u64(l_bluestore_buffer_hit_bytes, "bluestore_buffer_hit_bytes",
3932 "Sum for bytes of read hit in the cache");
3933 b.add_u64(l_bluestore_buffer_miss_bytes, "bluestore_buffer_miss_bytes",
3934 "Sum for bytes of read missed in the cache");
3935
3936 b.add_u64_counter(l_bluestore_write_big, "bluestore_write_big",
3937 "Large aligned writes into fresh blobs");
3938 b.add_u64_counter(l_bluestore_write_big_bytes, "bluestore_write_big_bytes",
3939 "Large aligned writes into fresh blobs (bytes)");
3940 b.add_u64_counter(l_bluestore_write_big_blobs, "bluestore_write_big_blobs",
3941 "Large aligned writes into fresh blobs (blobs)");
3942 b.add_u64_counter(l_bluestore_write_small, "bluestore_write_small",
3943 "Small writes into existing or sparse small blobs");
3944 b.add_u64_counter(l_bluestore_write_small_bytes, "bluestore_write_small_bytes",
3945 "Small writes into existing or sparse small blobs (bytes)");
3946 b.add_u64_counter(l_bluestore_write_small_unused,
3947 "bluestore_write_small_unused",
3948 "Small writes into unused portion of existing blob");
3949 b.add_u64_counter(l_bluestore_write_small_deferred,
3950 "bluestore_write_small_deferred",
3951 "Small overwrites using deferred");
3952 b.add_u64_counter(l_bluestore_write_small_pre_read,
3953 "bluestore_write_small_pre_read",
3954 "Small writes that required we read some data (possibly "
3955 "cached) to fill out the block");
3956 b.add_u64_counter(l_bluestore_write_small_new, "bluestore_write_small_new",
3957 "Small write into new (sparse) blob");
3958
3959 b.add_u64_counter(l_bluestore_txc, "bluestore_txc", "Transactions committed");
3960 b.add_u64_counter(l_bluestore_onode_reshard, "bluestore_onode_reshard",
3961 "Onode extent map reshard events");
3962 b.add_u64_counter(l_bluestore_blob_split, "bluestore_blob_split",
3963 "Sum for blob splitting due to resharding");
3964 b.add_u64_counter(l_bluestore_extent_compress, "bluestore_extent_compress",
3965 "Sum for extents that have been removed due to compression");
3966 b.add_u64_counter(l_bluestore_gc_merged, "bluestore_gc_merged",
3967 "Sum for extents that have been merged due to garbage "
3968 "collection");
3969 b.add_u64_counter(l_bluestore_read_eio, "bluestore_read_eio",
3970 "Read EIO errors propagated to high level callers");
3971 logger = b.create_perf_counters();
3972 cct->get_perfcounters_collection()->add(logger);
3973 }
3974
3975 int BlueStore::_reload_logger()
3976 {
3977 struct store_statfs_t store_statfs;
3978
3979 int r = statfs(&store_statfs);
3980 if(r >= 0) {
3981 logger->set(l_bluestore_allocated, store_statfs.allocated);
3982 logger->set(l_bluestore_stored, store_statfs.stored);
3983 logger->set(l_bluestore_compressed, store_statfs.compressed);
3984 logger->set(l_bluestore_compressed_allocated, store_statfs.compressed_allocated);
3985 logger->set(l_bluestore_compressed_original, store_statfs.compressed_original);
3986 }
3987 return r;
3988 }
3989
3990 void BlueStore::_shutdown_logger()
3991 {
3992 cct->get_perfcounters_collection()->remove(logger);
3993 delete logger;
3994 }
3995
3996 int BlueStore::get_block_device_fsid(CephContext* cct, const string& path,
3997 uuid_d *fsid)
3998 {
3999 bluestore_bdev_label_t label;
4000 int r = _read_bdev_label(cct, path, &label);
4001 if (r < 0)
4002 return r;
4003 *fsid = label.osd_uuid;
4004 return 0;
4005 }
4006
4007 int BlueStore::_open_path()
4008 {
4009 // sanity check(s)
4010 if (cct->_conf->get_val<uint64_t>("osd_max_object_size") >=
4011 4*1024*1024*1024ull) {
4012 derr << __func__ << " osd_max_object_size >= 4GB; BlueStore has hard limit of 4GB." << dendl;
4013 return -EINVAL;
4014 }
4015 assert(path_fd < 0);
4016 path_fd = TEMP_FAILURE_RETRY(::open(path.c_str(), O_DIRECTORY));
4017 if (path_fd < 0) {
4018 int r = -errno;
4019 derr << __func__ << " unable to open " << path << ": " << cpp_strerror(r)
4020 << dendl;
4021 return r;
4022 }
4023 return 0;
4024 }
4025
4026 void BlueStore::_close_path()
4027 {
4028 VOID_TEMP_FAILURE_RETRY(::close(path_fd));
4029 path_fd = -1;
4030 }
4031
4032 int BlueStore::_write_bdev_label(CephContext *cct,
4033 string path, bluestore_bdev_label_t label)
4034 {
4035 dout(10) << __func__ << " path " << path << " label " << label << dendl;
4036 bufferlist bl;
4037 ::encode(label, bl);
4038 uint32_t crc = bl.crc32c(-1);
4039 ::encode(crc, bl);
4040 assert(bl.length() <= BDEV_LABEL_BLOCK_SIZE);
4041 bufferptr z(BDEV_LABEL_BLOCK_SIZE - bl.length());
4042 z.zero();
4043 bl.append(std::move(z));
4044
4045 int fd = TEMP_FAILURE_RETRY(::open(path.c_str(), O_WRONLY));
4046 if (fd < 0) {
4047 fd = -errno;
4048 derr << __func__ << " failed to open " << path << ": " << cpp_strerror(fd)
4049 << dendl;
4050 return fd;
4051 }
4052 int r = bl.write_fd(fd);
4053 if (r < 0) {
4054 derr << __func__ << " failed to write to " << path
4055 << ": " << cpp_strerror(r) << dendl;
4056 }
4057 r = ::fsync(fd);
4058 if (r < 0) {
4059 derr << __func__ << " failed to fsync " << path
4060 << ": " << cpp_strerror(r) << dendl;
4061 }
4062 VOID_TEMP_FAILURE_RETRY(::close(fd));
4063 return r;
4064 }
4065
4066 int BlueStore::_read_bdev_label(CephContext* cct, string path,
4067 bluestore_bdev_label_t *label)
4068 {
4069 dout(10) << __func__ << dendl;
4070 int fd = TEMP_FAILURE_RETRY(::open(path.c_str(), O_RDONLY));
4071 if (fd < 0) {
4072 fd = -errno;
4073 derr << __func__ << " failed to open " << path << ": " << cpp_strerror(fd)
4074 << dendl;
4075 return fd;
4076 }
4077 bufferlist bl;
4078 int r = bl.read_fd(fd, BDEV_LABEL_BLOCK_SIZE);
4079 VOID_TEMP_FAILURE_RETRY(::close(fd));
4080 if (r < 0) {
4081 derr << __func__ << " failed to read from " << path
4082 << ": " << cpp_strerror(r) << dendl;
4083 return r;
4084 }
4085
4086 uint32_t crc, expected_crc;
4087 bufferlist::iterator p = bl.begin();
4088 try {
4089 ::decode(*label, p);
4090 bufferlist t;
4091 t.substr_of(bl, 0, p.get_off());
4092 crc = t.crc32c(-1);
4093 ::decode(expected_crc, p);
4094 }
4095 catch (buffer::error& e) {
4096 dout(2) << __func__ << " unable to decode label at offset " << p.get_off()
4097 << ": " << e.what()
4098 << dendl;
4099 return -ENOENT;
4100 }
4101 if (crc != expected_crc) {
4102 derr << __func__ << " bad crc on label, expected " << expected_crc
4103 << " != actual " << crc << dendl;
4104 return -EIO;
4105 }
4106 dout(10) << __func__ << " got " << *label << dendl;
4107 return 0;
4108 }
4109
4110 int BlueStore::_check_or_set_bdev_label(
4111 string path, uint64_t size, string desc, bool create)
4112 {
4113 bluestore_bdev_label_t label;
4114 if (create) {
4115 label.osd_uuid = fsid;
4116 label.size = size;
4117 label.btime = ceph_clock_now();
4118 label.description = desc;
4119 int r = _write_bdev_label(cct, path, label);
4120 if (r < 0)
4121 return r;
4122 } else {
4123 int r = _read_bdev_label(cct, path, &label);
4124 if (r < 0)
4125 return r;
4126 if (cct->_conf->bluestore_debug_permit_any_bdev_label) {
4127 dout(20) << __func__ << " bdev " << path << " fsid " << label.osd_uuid
4128 << " and fsid " << fsid << " check bypassed" << dendl;
4129 }
4130 else if (label.osd_uuid != fsid) {
4131 derr << __func__ << " bdev " << path << " fsid " << label.osd_uuid
4132 << " does not match our fsid " << fsid << dendl;
4133 return -EIO;
4134 }
4135 }
4136 return 0;
4137 }
4138
4139 void BlueStore::_set_alloc_sizes(void)
4140 {
4141 max_alloc_size = cct->_conf->bluestore_max_alloc_size;
4142
4143 if (cct->_conf->bluestore_prefer_deferred_size) {
4144 prefer_deferred_size = cct->_conf->bluestore_prefer_deferred_size;
4145 } else {
4146 assert(bdev);
4147 if (bdev->is_rotational()) {
4148 prefer_deferred_size = cct->_conf->bluestore_prefer_deferred_size_hdd;
4149 } else {
4150 prefer_deferred_size = cct->_conf->bluestore_prefer_deferred_size_ssd;
4151 }
4152 }
4153
4154 if (cct->_conf->bluestore_deferred_batch_ops) {
4155 deferred_batch_ops = cct->_conf->bluestore_deferred_batch_ops;
4156 } else {
4157 assert(bdev);
4158 if (bdev->is_rotational()) {
4159 deferred_batch_ops = cct->_conf->bluestore_deferred_batch_ops_hdd;
4160 } else {
4161 deferred_batch_ops = cct->_conf->bluestore_deferred_batch_ops_ssd;
4162 }
4163 }
4164
4165 dout(10) << __func__ << " min_alloc_size 0x" << std::hex << min_alloc_size
4166 << std::dec << " order " << min_alloc_size_order
4167 << " max_alloc_size 0x" << std::hex << max_alloc_size
4168 << " prefer_deferred_size 0x" << prefer_deferred_size
4169 << std::dec
4170 << " deferred_batch_ops " << deferred_batch_ops
4171 << dendl;
4172 }
4173
4174 int BlueStore::_open_bdev(bool create)
4175 {
4176 assert(bdev == NULL);
4177 string p = path + "/block";
4178 bdev = BlockDevice::create(cct, p, aio_cb, static_cast<void*>(this));
4179 int r = bdev->open(p);
4180 if (r < 0)
4181 goto fail;
4182
4183 if (bdev->supported_bdev_label()) {
4184 r = _check_or_set_bdev_label(p, bdev->get_size(), "main", create);
4185 if (r < 0)
4186 goto fail_close;
4187 }
4188
4189 // initialize global block parameters
4190 block_size = bdev->get_block_size();
4191 block_mask = ~(block_size - 1);
4192 block_size_order = ctz(block_size);
4193 assert(block_size == 1u << block_size_order);
4194 // and set cache_size based on device type
4195 r = _set_cache_sizes();
4196 if (r < 0) {
4197 goto fail_close;
4198 }
4199 return 0;
4200
4201 fail_close:
4202 bdev->close();
4203 fail:
4204 delete bdev;
4205 bdev = NULL;
4206 return r;
4207 }
4208
4209 void BlueStore::_close_bdev()
4210 {
4211 assert(bdev);
4212 bdev->close();
4213 delete bdev;
4214 bdev = NULL;
4215 }
4216
4217 int BlueStore::_open_fm(bool create)
4218 {
4219 assert(fm == NULL);
4220 fm = FreelistManager::create(cct, freelist_type, db, PREFIX_ALLOC);
4221
4222 if (create) {
4223 // initialize freespace
4224 dout(20) << __func__ << " initializing freespace" << dendl;
4225 KeyValueDB::Transaction t = db->get_transaction();
4226 {
4227 bufferlist bl;
4228 bl.append(freelist_type);
4229 t->set(PREFIX_SUPER, "freelist_type", bl);
4230 }
4231 // being able to allocate in units less than bdev block size
4232 // seems to be a bad idea.
4233 assert( cct->_conf->bdev_block_size <= (int64_t)min_alloc_size);
4234 fm->create(bdev->get_size(), (int64_t)min_alloc_size, t);
4235
4236 // allocate superblock reserved space. note that we do not mark
4237 // bluefs space as allocated in the freelist; we instead rely on
4238 // bluefs_extents.
4239 uint64_t reserved = ROUND_UP_TO(MAX(SUPER_RESERVED, min_alloc_size),
4240 min_alloc_size);
4241 fm->allocate(0, reserved, t);
4242
4243 if (cct->_conf->bluestore_bluefs) {
4244 assert(bluefs_extents.num_intervals() == 1);
4245 interval_set<uint64_t>::iterator p = bluefs_extents.begin();
4246 reserved = ROUND_UP_TO(p.get_start() + p.get_len(), min_alloc_size);
4247 dout(20) << __func__ << " reserved 0x" << std::hex << reserved << std::dec
4248 << " for bluefs" << dendl;
4249 bufferlist bl;
4250 ::encode(bluefs_extents, bl);
4251 t->set(PREFIX_SUPER, "bluefs_extents", bl);
4252 dout(20) << __func__ << " bluefs_extents 0x" << std::hex << bluefs_extents
4253 << std::dec << dendl;
4254 }
4255
4256 if (cct->_conf->bluestore_debug_prefill > 0) {
4257 uint64_t end = bdev->get_size() - reserved;
4258 dout(1) << __func__ << " pre-fragmenting freespace, using "
4259 << cct->_conf->bluestore_debug_prefill << " with max free extent "
4260 << cct->_conf->bluestore_debug_prefragment_max << dendl;
4261 uint64_t start = P2ROUNDUP(reserved, min_alloc_size);
4262 uint64_t max_b = cct->_conf->bluestore_debug_prefragment_max / min_alloc_size;
4263 float r = cct->_conf->bluestore_debug_prefill;
4264 r /= 1.0 - r;
4265 bool stop = false;
4266
4267 while (!stop && start < end) {
4268 uint64_t l = (rand() % max_b + 1) * min_alloc_size;
4269 if (start + l > end) {
4270 l = end - start;
4271 l = P2ALIGN(l, min_alloc_size);
4272 }
4273 assert(start + l <= end);
4274
4275 uint64_t u = 1 + (uint64_t)(r * (double)l);
4276 u = P2ROUNDUP(u, min_alloc_size);
4277 if (start + l + u > end) {
4278 u = end - (start + l);
4279 // trim to align so we don't overflow again
4280 u = P2ALIGN(u, min_alloc_size);
4281 stop = true;
4282 }
4283 assert(start + l + u <= end);
4284
4285 dout(20) << " free 0x" << std::hex << start << "~" << l
4286 << " use 0x" << u << std::dec << dendl;
4287
4288 if (u == 0) {
4289 // break if u has been trimmed to nothing
4290 break;
4291 }
4292
4293 fm->allocate(start + l, u, t);
4294 start += l + u;
4295 }
4296 }
4297 db->submit_transaction_sync(t);
4298 }
4299
4300 int r = fm->init(bdev->get_size());
4301 if (r < 0) {
4302 derr << __func__ << " freelist init failed: " << cpp_strerror(r) << dendl;
4303 delete fm;
4304 fm = NULL;
4305 return r;
4306 }
4307 return 0;
4308 }
4309
4310 void BlueStore::_close_fm()
4311 {
4312 dout(10) << __func__ << dendl;
4313 assert(fm);
4314 fm->shutdown();
4315 delete fm;
4316 fm = NULL;
4317 }
4318
4319 int BlueStore::_open_alloc()
4320 {
4321 assert(alloc == NULL);
4322 assert(bdev->get_size());
4323 alloc = Allocator::create(cct, cct->_conf->bluestore_allocator,
4324 bdev->get_size(),
4325 min_alloc_size);
4326 if (!alloc) {
4327 lderr(cct) << __func__ << " Allocator::unknown alloc type "
4328 << cct->_conf->bluestore_allocator
4329 << dendl;
4330 return -EINVAL;
4331 }
4332
4333 uint64_t num = 0, bytes = 0;
4334
4335 dout(1) << __func__ << " opening allocation metadata" << dendl;
4336 // initialize from freelist
4337 fm->enumerate_reset();
4338 uint64_t offset, length;
4339 while (fm->enumerate_next(&offset, &length)) {
4340 alloc->init_add_free(offset, length);
4341 ++num;
4342 bytes += length;
4343 }
4344 fm->enumerate_reset();
4345 dout(1) << __func__ << " loaded " << pretty_si_t(bytes)
4346 << " in " << num << " extents"
4347 << dendl;
4348
4349 // also mark bluefs space as allocated
4350 for (auto e = bluefs_extents.begin(); e != bluefs_extents.end(); ++e) {
4351 alloc->init_rm_free(e.get_start(), e.get_len());
4352 }
4353 dout(10) << __func__ << " marked bluefs_extents 0x" << std::hex
4354 << bluefs_extents << std::dec << " as allocated" << dendl;
4355
4356 return 0;
4357 }
4358
4359 void BlueStore::_close_alloc()
4360 {
4361 assert(alloc);
4362 alloc->shutdown();
4363 delete alloc;
4364 alloc = NULL;
4365 }
4366
4367 int BlueStore::_open_fsid(bool create)
4368 {
4369 assert(fsid_fd < 0);
4370 int flags = O_RDWR;
4371 if (create)
4372 flags |= O_CREAT;
4373 fsid_fd = ::openat(path_fd, "fsid", flags, 0644);
4374 if (fsid_fd < 0) {
4375 int err = -errno;
4376 derr << __func__ << " " << cpp_strerror(err) << dendl;
4377 return err;
4378 }
4379 return 0;
4380 }
4381
4382 int BlueStore::_read_fsid(uuid_d *uuid)
4383 {
4384 char fsid_str[40];
4385 memset(fsid_str, 0, sizeof(fsid_str));
4386 int ret = safe_read(fsid_fd, fsid_str, sizeof(fsid_str));
4387 if (ret < 0) {
4388 derr << __func__ << " failed: " << cpp_strerror(ret) << dendl;
4389 return ret;
4390 }
4391 if (ret > 36)
4392 fsid_str[36] = 0;
4393 else
4394 fsid_str[ret] = 0;
4395 if (!uuid->parse(fsid_str)) {
4396 derr << __func__ << " unparsable uuid " << fsid_str << dendl;
4397 return -EINVAL;
4398 }
4399 return 0;
4400 }
4401
4402 int BlueStore::_write_fsid()
4403 {
4404 int r = ::ftruncate(fsid_fd, 0);
4405 if (r < 0) {
4406 r = -errno;
4407 derr << __func__ << " fsid truncate failed: " << cpp_strerror(r) << dendl;
4408 return r;
4409 }
4410 string str = stringify(fsid) + "\n";
4411 r = safe_write(fsid_fd, str.c_str(), str.length());
4412 if (r < 0) {
4413 derr << __func__ << " fsid write failed: " << cpp_strerror(r) << dendl;
4414 return r;
4415 }
4416 r = ::fsync(fsid_fd);
4417 if (r < 0) {
4418 r = -errno;
4419 derr << __func__ << " fsid fsync failed: " << cpp_strerror(r) << dendl;
4420 return r;
4421 }
4422 return 0;
4423 }
4424
4425 void BlueStore::_close_fsid()
4426 {
4427 VOID_TEMP_FAILURE_RETRY(::close(fsid_fd));
4428 fsid_fd = -1;
4429 }
4430
4431 int BlueStore::_lock_fsid()
4432 {
4433 struct flock l;
4434 memset(&l, 0, sizeof(l));
4435 l.l_type = F_WRLCK;
4436 l.l_whence = SEEK_SET;
4437 int r = ::fcntl(fsid_fd, F_SETLK, &l);
4438 if (r < 0) {
4439 int err = errno;
4440 derr << __func__ << " failed to lock " << path << "/fsid"
4441 << " (is another ceph-osd still running?)"
4442 << cpp_strerror(err) << dendl;
4443 return -err;
4444 }
4445 return 0;
4446 }
4447
4448 bool BlueStore::is_rotational()
4449 {
4450 if (bdev) {
4451 return bdev->is_rotational();
4452 }
4453
4454 bool rotational = true;
4455 int r = _open_path();
4456 if (r < 0)
4457 goto out;
4458 r = _open_fsid(false);
4459 if (r < 0)
4460 goto out_path;
4461 r = _read_fsid(&fsid);
4462 if (r < 0)
4463 goto out_fsid;
4464 r = _lock_fsid();
4465 if (r < 0)
4466 goto out_fsid;
4467 r = _open_bdev(false);
4468 if (r < 0)
4469 goto out_fsid;
4470 rotational = bdev->is_rotational();
4471 _close_bdev();
4472 out_fsid:
4473 _close_fsid();
4474 out_path:
4475 _close_path();
4476 out:
4477 return rotational;
4478 }
4479
4480 bool BlueStore::is_journal_rotational()
4481 {
4482 if (!bluefs) {
4483 dout(5) << __func__ << " bluefs disabled, default to store media type"
4484 << dendl;
4485 return is_rotational();
4486 }
4487 dout(10) << __func__ << " " << (int)bluefs->wal_is_rotational() << dendl;
4488 return bluefs->wal_is_rotational();
4489 }
4490
4491 bool BlueStore::test_mount_in_use()
4492 {
4493 // most error conditions mean the mount is not in use (e.g., because
4494 // it doesn't exist). only if we fail to lock do we conclude it is
4495 // in use.
4496 bool ret = false;
4497 int r = _open_path();
4498 if (r < 0)
4499 return false;
4500 r = _open_fsid(false);
4501 if (r < 0)
4502 goto out_path;
4503 r = _lock_fsid();
4504 if (r < 0)
4505 ret = true; // if we can't lock, it is in use
4506 _close_fsid();
4507 out_path:
4508 _close_path();
4509 return ret;
4510 }
4511
4512 int BlueStore::_open_db(bool create)
4513 {
4514 int r;
4515 assert(!db);
4516 string fn = path + "/db";
4517 string options;
4518 stringstream err;
4519 ceph::shared_ptr<Int64ArrayMergeOperator> merge_op(new Int64ArrayMergeOperator);
4520
4521 string kv_backend;
4522 if (create) {
4523 kv_backend = cct->_conf->bluestore_kvbackend;
4524 } else {
4525 r = read_meta("kv_backend", &kv_backend);
4526 if (r < 0) {
4527 derr << __func__ << " unable to read 'kv_backend' meta" << dendl;
4528 return -EIO;
4529 }
4530 }
4531 dout(10) << __func__ << " kv_backend = " << kv_backend << dendl;
4532
4533 bool do_bluefs;
4534 if (create) {
4535 do_bluefs = cct->_conf->bluestore_bluefs;
4536 } else {
4537 string s;
4538 r = read_meta("bluefs", &s);
4539 if (r < 0) {
4540 derr << __func__ << " unable to read 'bluefs' meta" << dendl;
4541 return -EIO;
4542 }
4543 if (s == "1") {
4544 do_bluefs = true;
4545 } else if (s == "0") {
4546 do_bluefs = false;
4547 } else {
4548 derr << __func__ << " bluefs = " << s << " : not 0 or 1, aborting"
4549 << dendl;
4550 return -EIO;
4551 }
4552 }
4553 dout(10) << __func__ << " do_bluefs = " << do_bluefs << dendl;
4554
4555 rocksdb::Env *env = NULL;
4556 if (do_bluefs) {
4557 dout(10) << __func__ << " initializing bluefs" << dendl;
4558 if (kv_backend != "rocksdb") {
4559 derr << " backend must be rocksdb to use bluefs" << dendl;
4560 return -EINVAL;
4561 }
4562 bluefs = new BlueFS(cct);
4563
4564 string bfn;
4565 struct stat st;
4566
4567 if (read_meta("path_block.db", &bfn) < 0) {
4568 bfn = path + "/block.db";
4569 }
4570 if (::stat(bfn.c_str(), &st) == 0) {
4571 r = bluefs->add_block_device(BlueFS::BDEV_DB, bfn);
4572 if (r < 0) {
4573 derr << __func__ << " add block device(" << bfn << ") returned: "
4574 << cpp_strerror(r) << dendl;
4575 goto free_bluefs;
4576 }
4577
4578 if (bluefs->bdev_support_label(BlueFS::BDEV_DB)) {
4579 r = _check_or_set_bdev_label(
4580 bfn,
4581 bluefs->get_block_device_size(BlueFS::BDEV_DB),
4582 "bluefs db", create);
4583 if (r < 0) {
4584 derr << __func__
4585 << " check block device(" << bfn << ") label returned: "
4586 << cpp_strerror(r) << dendl;
4587 goto free_bluefs;
4588 }
4589 }
4590 if (create) {
4591 bluefs->add_block_extent(
4592 BlueFS::BDEV_DB,
4593 SUPER_RESERVED,
4594 bluefs->get_block_device_size(BlueFS::BDEV_DB) - SUPER_RESERVED);
4595 }
4596 bluefs_shared_bdev = BlueFS::BDEV_SLOW;
4597 bluefs_single_shared_device = false;
4598 } else if (::lstat(bfn.c_str(), &st) == -1) {
4599 bluefs_shared_bdev = BlueFS::BDEV_DB;
4600 } else {
4601 //symlink exist is bug
4602 derr << __func__ << " " << bfn << " link target doesn't exist" << dendl;
4603 r = -errno;
4604 goto free_bluefs;
4605 }
4606
4607 // shared device
4608 if (read_meta("path_block", &bfn) < 0) {
4609 bfn = path + "/block";
4610 }
4611 r = bluefs->add_block_device(bluefs_shared_bdev, bfn);
4612 if (r < 0) {
4613 derr << __func__ << " add block device(" << bfn << ") returned: "
4614 << cpp_strerror(r) << dendl;
4615 goto free_bluefs;
4616 }
4617 if (create) {
4618 // note: we always leave the first SUPER_RESERVED (8k) of the device unused
4619 uint64_t initial =
4620 bdev->get_size() * (cct->_conf->bluestore_bluefs_min_ratio +
4621 cct->_conf->bluestore_bluefs_gift_ratio);
4622 initial = MAX(initial, cct->_conf->bluestore_bluefs_min);
4623 if (cct->_conf->bluefs_alloc_size % min_alloc_size) {
4624 derr << __func__ << " bluefs_alloc_size 0x" << std::hex
4625 << cct->_conf->bluefs_alloc_size << " is not a multiple of "
4626 << "min_alloc_size 0x" << min_alloc_size << std::dec << dendl;
4627 r = -EINVAL;
4628 goto free_bluefs;
4629 }
4630 // align to bluefs's alloc_size
4631 initial = P2ROUNDUP(initial, cct->_conf->bluefs_alloc_size);
4632 // put bluefs in the middle of the device in case it is an HDD
4633 uint64_t start = P2ALIGN((bdev->get_size() - initial) / 2,
4634 cct->_conf->bluefs_alloc_size);
4635 bluefs->add_block_extent(bluefs_shared_bdev, start, initial);
4636 bluefs_extents.insert(start, initial);
4637 }
4638
4639 if (read_meta("path_block.wal", &bfn) < 0) {
4640 bfn = path + "/block.wal";
4641 }
4642 if (::stat(bfn.c_str(), &st) == 0) {
4643 r = bluefs->add_block_device(BlueFS::BDEV_WAL, bfn);
4644 if (r < 0) {
4645 derr << __func__ << " add block device(" << bfn << ") returned: "
4646 << cpp_strerror(r) << dendl;
4647 goto free_bluefs;
4648 }
4649
4650 if (bluefs->bdev_support_label(BlueFS::BDEV_WAL)) {
4651 r = _check_or_set_bdev_label(
4652 bfn,
4653 bluefs->get_block_device_size(BlueFS::BDEV_WAL),
4654 "bluefs wal", create);
4655 if (r < 0) {
4656 derr << __func__ << " check block device(" << bfn
4657 << ") label returned: " << cpp_strerror(r) << dendl;
4658 goto free_bluefs;
4659 }
4660 }
4661
4662 if (create) {
4663 bluefs->add_block_extent(
4664 BlueFS::BDEV_WAL, BDEV_LABEL_BLOCK_SIZE,
4665 bluefs->get_block_device_size(BlueFS::BDEV_WAL) -
4666 BDEV_LABEL_BLOCK_SIZE);
4667 }
4668 cct->_conf->set_val("rocksdb_separate_wal_dir", "true");
4669 bluefs_single_shared_device = false;
4670 } else if (::lstat(bfn.c_str(), &st) == -1) {
4671 cct->_conf->set_val("rocksdb_separate_wal_dir", "false");
4672 } else {
4673 //symlink exist is bug
4674 derr << __func__ << " " << bfn << " link target doesn't exist" << dendl;
4675 r = -errno;
4676 goto free_bluefs;
4677 }
4678
4679 if (create) {
4680 bluefs->mkfs(fsid);
4681 }
4682 r = bluefs->mount();
4683 if (r < 0) {
4684 derr << __func__ << " failed bluefs mount: " << cpp_strerror(r) << dendl;
4685 goto free_bluefs;
4686 }
4687 if (cct->_conf->bluestore_bluefs_env_mirror) {
4688 rocksdb::Env *a = new BlueRocksEnv(bluefs);
4689 rocksdb::Env *b = rocksdb::Env::Default();
4690 if (create) {
4691 string cmd = "rm -rf " + path + "/db " +
4692 path + "/db.slow " +
4693 path + "/db.wal";
4694 int r = system(cmd.c_str());
4695 (void)r;
4696 }
4697 env = new rocksdb::EnvMirror(b, a, false, true);
4698 } else {
4699 env = new BlueRocksEnv(bluefs);
4700
4701 // simplify the dir names, too, as "seen" by rocksdb
4702 fn = "db";
4703 }
4704
4705 if (bluefs_shared_bdev == BlueFS::BDEV_SLOW) {
4706 // we have both block.db and block; tell rocksdb!
4707 // note: the second (last) size value doesn't really matter
4708 ostringstream db_paths;
4709 uint64_t db_size = bluefs->get_block_device_size(BlueFS::BDEV_DB);
4710 uint64_t slow_size = bluefs->get_block_device_size(BlueFS::BDEV_SLOW);
4711 db_paths << fn << ","
4712 << (uint64_t)(db_size * 95 / 100) << " "
4713 << fn + ".slow" << ","
4714 << (uint64_t)(slow_size * 95 / 100);
4715 cct->_conf->set_val("rocksdb_db_paths", db_paths.str(), false);
4716 dout(10) << __func__ << " set rocksdb_db_paths to "
4717 << cct->_conf->get_val<std::string>("rocksdb_db_paths") << dendl;
4718 }
4719
4720 if (create) {
4721 env->CreateDir(fn);
4722 if (cct->_conf->rocksdb_separate_wal_dir)
4723 env->CreateDir(fn + ".wal");
4724 if (cct->_conf->get_val<std::string>("rocksdb_db_paths").length())
4725 env->CreateDir(fn + ".slow");
4726 }
4727 } else if (create) {
4728 int r = ::mkdir(fn.c_str(), 0755);
4729 if (r < 0)
4730 r = -errno;
4731 if (r < 0 && r != -EEXIST) {
4732 derr << __func__ << " failed to create " << fn << ": " << cpp_strerror(r)
4733 << dendl;
4734 return r;
4735 }
4736
4737 // wal_dir, too!
4738 if (cct->_conf->rocksdb_separate_wal_dir) {
4739 string walfn = path + "/db.wal";
4740 r = ::mkdir(walfn.c_str(), 0755);
4741 if (r < 0)
4742 r = -errno;
4743 if (r < 0 && r != -EEXIST) {
4744 derr << __func__ << " failed to create " << walfn
4745 << ": " << cpp_strerror(r)
4746 << dendl;
4747 return r;
4748 }
4749 }
4750 }
4751
4752 db = KeyValueDB::create(cct,
4753 kv_backend,
4754 fn,
4755 static_cast<void*>(env));
4756 if (!db) {
4757 derr << __func__ << " error creating db" << dendl;
4758 if (bluefs) {
4759 bluefs->umount();
4760 delete bluefs;
4761 bluefs = NULL;
4762 }
4763 // delete env manually here since we can't depend on db to do this
4764 // under this case
4765 delete env;
4766 env = NULL;
4767 return -EIO;
4768 }
4769
4770 FreelistManager::setup_merge_operators(db);
4771 db->set_merge_operator(PREFIX_STAT, merge_op);
4772
4773 db->set_cache_size(cache_size * cache_kv_ratio);
4774
4775 if (kv_backend == "rocksdb")
4776 options = cct->_conf->bluestore_rocksdb_options;
4777 db->init(options);
4778 if (create)
4779 r = db->create_and_open(err);
4780 else
4781 r = db->open(err);
4782 if (r) {
4783 derr << __func__ << " erroring opening db: " << err.str() << dendl;
4784 if (bluefs) {
4785 bluefs->umount();
4786 delete bluefs;
4787 bluefs = NULL;
4788 }
4789 delete db;
4790 db = NULL;
4791 return -EIO;
4792 }
4793 dout(1) << __func__ << " opened " << kv_backend
4794 << " path " << fn << " options " << options << dendl;
4795 return 0;
4796
4797 free_bluefs:
4798 assert(bluefs);
4799 delete bluefs;
4800 bluefs = NULL;
4801 return r;
4802 }
4803
4804 void BlueStore::_close_db()
4805 {
4806 assert(db);
4807 delete db;
4808 db = NULL;
4809 if (bluefs) {
4810 bluefs->umount();
4811 delete bluefs;
4812 bluefs = NULL;
4813 }
4814 }
4815
4816 int BlueStore::_reconcile_bluefs_freespace()
4817 {
4818 dout(10) << __func__ << dendl;
4819 interval_set<uint64_t> bset;
4820 int r = bluefs->get_block_extents(bluefs_shared_bdev, &bset);
4821 assert(r == 0);
4822 if (bset == bluefs_extents) {
4823 dout(10) << __func__ << " we agree bluefs has 0x" << std::hex << bset
4824 << std::dec << dendl;
4825 return 0;
4826 }
4827 dout(10) << __func__ << " bluefs says 0x" << std::hex << bset << std::dec
4828 << dendl;
4829 dout(10) << __func__ << " super says 0x" << std::hex << bluefs_extents
4830 << std::dec << dendl;
4831
4832 interval_set<uint64_t> overlap;
4833 overlap.intersection_of(bset, bluefs_extents);
4834
4835 bset.subtract(overlap);
4836 if (!bset.empty()) {
4837 derr << __func__ << " bluefs extra 0x" << std::hex << bset << std::dec
4838 << dendl;
4839 return -EIO;
4840 }
4841
4842 interval_set<uint64_t> super_extra;
4843 super_extra = bluefs_extents;
4844 super_extra.subtract(overlap);
4845 if (!super_extra.empty()) {
4846 // This is normal: it can happen if we commit to give extents to
4847 // bluefs and we crash before bluefs commits that it owns them.
4848 dout(10) << __func__ << " super extra " << super_extra << dendl;
4849 for (interval_set<uint64_t>::iterator p = super_extra.begin();
4850 p != super_extra.end();
4851 ++p) {
4852 bluefs->add_block_extent(bluefs_shared_bdev, p.get_start(), p.get_len());
4853 }
4854 }
4855
4856 return 0;
4857 }
4858
4859 int BlueStore::_balance_bluefs_freespace(PExtentVector *extents)
4860 {
4861 int ret = 0;
4862 assert(bluefs);
4863
4864 vector<pair<uint64_t,uint64_t>> bluefs_usage; // <free, total> ...
4865 bluefs->get_usage(&bluefs_usage);
4866 assert(bluefs_usage.size() > bluefs_shared_bdev);
4867
4868 // fixme: look at primary bdev only for now
4869 uint64_t bluefs_free = bluefs_usage[bluefs_shared_bdev].first;
4870 uint64_t bluefs_total = bluefs_usage[bluefs_shared_bdev].second;
4871 float bluefs_free_ratio = (float)bluefs_free / (float)bluefs_total;
4872
4873 uint64_t my_free = alloc->get_free();
4874 uint64_t total = bdev->get_size();
4875 float my_free_ratio = (float)my_free / (float)total;
4876
4877 uint64_t total_free = bluefs_free + my_free;
4878
4879 float bluefs_ratio = (float)bluefs_free / (float)total_free;
4880
4881 dout(10) << __func__
4882 << " bluefs " << pretty_si_t(bluefs_free)
4883 << " free (" << bluefs_free_ratio
4884 << ") bluestore " << pretty_si_t(my_free)
4885 << " free (" << my_free_ratio
4886 << "), bluefs_ratio " << bluefs_ratio
4887 << dendl;
4888
4889 uint64_t gift = 0;
4890 uint64_t reclaim = 0;
4891 if (bluefs_ratio < cct->_conf->bluestore_bluefs_min_ratio) {
4892 gift = cct->_conf->bluestore_bluefs_gift_ratio * total_free;
4893 dout(10) << __func__ << " bluefs_ratio " << bluefs_ratio
4894 << " < min_ratio " << cct->_conf->bluestore_bluefs_min_ratio
4895 << ", should gift " << pretty_si_t(gift) << dendl;
4896 } else if (bluefs_ratio > cct->_conf->bluestore_bluefs_max_ratio) {
4897 reclaim = cct->_conf->bluestore_bluefs_reclaim_ratio * total_free;
4898 if (bluefs_total - reclaim < cct->_conf->bluestore_bluefs_min)
4899 reclaim = bluefs_total - cct->_conf->bluestore_bluefs_min;
4900 dout(10) << __func__ << " bluefs_ratio " << bluefs_ratio
4901 << " > max_ratio " << cct->_conf->bluestore_bluefs_max_ratio
4902 << ", should reclaim " << pretty_si_t(reclaim) << dendl;
4903 }
4904
4905 // don't take over too much of the freespace
4906 uint64_t free_cap = cct->_conf->bluestore_bluefs_max_ratio * total_free;
4907 if (bluefs_total < cct->_conf->bluestore_bluefs_min &&
4908 cct->_conf->bluestore_bluefs_min < free_cap) {
4909 uint64_t g = cct->_conf->bluestore_bluefs_min - bluefs_total;
4910 dout(10) << __func__ << " bluefs_total " << bluefs_total
4911 << " < min " << cct->_conf->bluestore_bluefs_min
4912 << ", should gift " << pretty_si_t(g) << dendl;
4913 if (g > gift)
4914 gift = g;
4915 reclaim = 0;
4916 }
4917 uint64_t min_free = cct->_conf->get_val<uint64_t>("bluestore_bluefs_min_free");
4918 if (bluefs_free < min_free &&
4919 min_free < free_cap) {
4920 uint64_t g = min_free - bluefs_free;
4921 dout(10) << __func__ << " bluefs_free " << bluefs_total
4922 << " < min " << min_free
4923 << ", should gift " << pretty_si_t(g) << dendl;
4924 if (g > gift)
4925 gift = g;
4926 reclaim = 0;
4927 }
4928
4929 if (gift) {
4930 // round up to alloc size
4931 gift = P2ROUNDUP(gift, cct->_conf->bluefs_alloc_size);
4932
4933 // hard cap to fit into 32 bits
4934 gift = MIN(gift, 1ull<<31);
4935 dout(10) << __func__ << " gifting " << gift
4936 << " (" << pretty_si_t(gift) << ")" << dendl;
4937
4938 // fixme: just do one allocation to start...
4939 int r = alloc->reserve(gift);
4940 assert(r == 0);
4941
4942 AllocExtentVector exts;
4943 int64_t alloc_len = alloc->allocate(gift, cct->_conf->bluefs_alloc_size,
4944 0, 0, &exts);
4945
4946 if (alloc_len < (int64_t)gift) {
4947 derr << __func__ << " allocate failed on 0x" << std::hex << gift
4948 << " min_alloc_size 0x" << min_alloc_size << std::dec << dendl;
4949 alloc->dump();
4950 assert(0 == "allocate failed, wtf");
4951 return -ENOSPC;
4952 }
4953 for (auto& p : exts) {
4954 bluestore_pextent_t e = bluestore_pextent_t(p);
4955 dout(1) << __func__ << " gifting " << e << " to bluefs" << dendl;
4956 extents->push_back(e);
4957 }
4958 gift = 0;
4959
4960 ret = 1;
4961 }
4962
4963 // reclaim from bluefs?
4964 if (reclaim) {
4965 // round up to alloc size
4966 reclaim = P2ROUNDUP(reclaim, cct->_conf->bluefs_alloc_size);
4967
4968 // hard cap to fit into 32 bits
4969 reclaim = MIN(reclaim, 1ull<<31);
4970 dout(10) << __func__ << " reclaiming " << reclaim
4971 << " (" << pretty_si_t(reclaim) << ")" << dendl;
4972
4973 while (reclaim > 0) {
4974 // NOTE: this will block and do IO.
4975 AllocExtentVector extents;
4976 int r = bluefs->reclaim_blocks(bluefs_shared_bdev, reclaim,
4977 &extents);
4978 if (r < 0) {
4979 derr << __func__ << " failed to reclaim space from bluefs"
4980 << dendl;
4981 break;
4982 }
4983 for (auto e : extents) {
4984 bluefs_extents.erase(e.offset, e.length);
4985 bluefs_extents_reclaiming.insert(e.offset, e.length);
4986 reclaim -= e.length;
4987 }
4988 }
4989
4990 ret = 1;
4991 }
4992
4993 return ret;
4994 }
4995
4996 void BlueStore::_commit_bluefs_freespace(
4997 const PExtentVector& bluefs_gift_extents)
4998 {
4999 dout(10) << __func__ << dendl;
5000 for (auto& p : bluefs_gift_extents) {
5001 bluefs->add_block_extent(bluefs_shared_bdev, p.offset, p.length);
5002 }
5003 }
5004
5005 int BlueStore::_open_collections(int *errors)
5006 {
5007 assert(coll_map.empty());
5008 KeyValueDB::Iterator it = db->get_iterator(PREFIX_COLL);
5009 for (it->upper_bound(string());
5010 it->valid();
5011 it->next()) {
5012 coll_t cid;
5013 if (cid.parse(it->key())) {
5014 CollectionRef c(
5015 new Collection(
5016 this,
5017 cache_shards[cid.hash_to_shard(cache_shards.size())],
5018 cid));
5019 bufferlist bl = it->value();
5020 bufferlist::iterator p = bl.begin();
5021 try {
5022 ::decode(c->cnode, p);
5023 } catch (buffer::error& e) {
5024 derr << __func__ << " failed to decode cnode, key:"
5025 << pretty_binary_string(it->key()) << dendl;
5026 return -EIO;
5027 }
5028 dout(20) << __func__ << " opened " << cid << " " << c << dendl;
5029 coll_map[cid] = c;
5030 } else {
5031 derr << __func__ << " unrecognized collection " << it->key() << dendl;
5032 if (errors)
5033 (*errors)++;
5034 }
5035 }
5036 return 0;
5037 }
5038
5039 void BlueStore::_open_statfs()
5040 {
5041 bufferlist bl;
5042 int r = db->get(PREFIX_STAT, "bluestore_statfs", &bl);
5043 if (r >= 0) {
5044 if (size_t(bl.length()) >= sizeof(vstatfs.values)) {
5045 auto it = bl.begin();
5046 vstatfs.decode(it);
5047 } else {
5048 dout(10) << __func__ << " store_statfs is corrupt, using empty" << dendl;
5049 }
5050 }
5051 else {
5052 dout(10) << __func__ << " store_statfs missed, using empty" << dendl;
5053 }
5054 }
5055
5056 int BlueStore::_setup_block_symlink_or_file(
5057 string name,
5058 string epath,
5059 uint64_t size,
5060 bool create)
5061 {
5062 dout(20) << __func__ << " name " << name << " path " << epath
5063 << " size " << size << " create=" << (int)create << dendl;
5064 int r = 0;
5065 int flags = O_RDWR;
5066 if (create)
5067 flags |= O_CREAT;
5068 if (epath.length()) {
5069 r = ::symlinkat(epath.c_str(), path_fd, name.c_str());
5070 if (r < 0) {
5071 r = -errno;
5072 derr << __func__ << " failed to create " << name << " symlink to "
5073 << epath << ": " << cpp_strerror(r) << dendl;
5074 return r;
5075 }
5076
5077 if (!epath.compare(0, strlen(SPDK_PREFIX), SPDK_PREFIX)) {
5078 int fd = ::openat(path_fd, epath.c_str(), flags, 0644);
5079 if (fd < 0) {
5080 r = -errno;
5081 derr << __func__ << " failed to open " << epath << " file: "
5082 << cpp_strerror(r) << dendl;
5083 return r;
5084 }
5085 string serial_number = epath.substr(strlen(SPDK_PREFIX));
5086 r = ::write(fd, serial_number.c_str(), serial_number.size());
5087 assert(r == (int)serial_number.size());
5088 dout(1) << __func__ << " created " << name << " symlink to "
5089 << epath << dendl;
5090 VOID_TEMP_FAILURE_RETRY(::close(fd));
5091 }
5092 }
5093 if (size) {
5094 int fd = ::openat(path_fd, name.c_str(), flags, 0644);
5095 if (fd >= 0) {
5096 // block file is present
5097 struct stat st;
5098 int r = ::fstat(fd, &st);
5099 if (r == 0 &&
5100 S_ISREG(st.st_mode) && // if it is a regular file
5101 st.st_size == 0) { // and is 0 bytes
5102 r = ::ftruncate(fd, size);
5103 if (r < 0) {
5104 r = -errno;
5105 derr << __func__ << " failed to resize " << name << " file to "
5106 << size << ": " << cpp_strerror(r) << dendl;
5107 VOID_TEMP_FAILURE_RETRY(::close(fd));
5108 return r;
5109 }
5110
5111 if (cct->_conf->bluestore_block_preallocate_file) {
5112 #ifdef HAVE_POSIX_FALLOCATE
5113 r = ::posix_fallocate(fd, 0, size);
5114 if (r) {
5115 derr << __func__ << " failed to prefallocate " << name << " file to "
5116 << size << ": " << cpp_strerror(r) << dendl;
5117 VOID_TEMP_FAILURE_RETRY(::close(fd));
5118 return -r;
5119 }
5120 #else
5121 char data[1024*128];
5122 for (uint64_t off = 0; off < size; off += sizeof(data)) {
5123 if (off + sizeof(data) > size)
5124 r = ::write(fd, data, size - off);
5125 else
5126 r = ::write(fd, data, sizeof(data));
5127 if (r < 0) {
5128 r = -errno;
5129 derr << __func__ << " failed to prefallocate w/ write " << name << " file to "
5130 << size << ": " << cpp_strerror(r) << dendl;
5131 VOID_TEMP_FAILURE_RETRY(::close(fd));
5132 return r;
5133 }
5134 }
5135 #endif
5136 }
5137 dout(1) << __func__ << " resized " << name << " file to "
5138 << pretty_si_t(size) << "B" << dendl;
5139 }
5140 VOID_TEMP_FAILURE_RETRY(::close(fd));
5141 } else {
5142 int r = -errno;
5143 if (r != -ENOENT) {
5144 derr << __func__ << " failed to open " << name << " file: "
5145 << cpp_strerror(r) << dendl;
5146 return r;
5147 }
5148 }
5149 }
5150 return 0;
5151 }
5152
5153 int BlueStore::mkfs()
5154 {
5155 dout(1) << __func__ << " path " << path << dendl;
5156 int r;
5157 uuid_d old_fsid;
5158
5159 {
5160 string done;
5161 r = read_meta("mkfs_done", &done);
5162 if (r == 0) {
5163 dout(1) << __func__ << " already created" << dendl;
5164 if (cct->_conf->bluestore_fsck_on_mkfs) {
5165 r = fsck(cct->_conf->bluestore_fsck_on_mkfs_deep);
5166 if (r < 0) {
5167 derr << __func__ << " fsck found fatal error: " << cpp_strerror(r)
5168 << dendl;
5169 return r;
5170 }
5171 if (r > 0) {
5172 derr << __func__ << " fsck found " << r << " errors" << dendl;
5173 r = -EIO;
5174 }
5175 }
5176 return r; // idempotent
5177 }
5178 }
5179
5180 {
5181 string type;
5182 r = read_meta("type", &type);
5183 if (r == 0) {
5184 if (type != "bluestore") {
5185 derr << __func__ << " expected bluestore, but type is " << type << dendl;
5186 return -EIO;
5187 }
5188 } else {
5189 r = write_meta("type", "bluestore");
5190 if (r < 0)
5191 return r;
5192 }
5193 }
5194
5195 freelist_type = "bitmap";
5196
5197 r = _open_path();
5198 if (r < 0)
5199 return r;
5200
5201 r = _open_fsid(true);
5202 if (r < 0)
5203 goto out_path_fd;
5204
5205 r = _lock_fsid();
5206 if (r < 0)
5207 goto out_close_fsid;
5208
5209 r = _read_fsid(&old_fsid);
5210 if (r < 0 || old_fsid.is_zero()) {
5211 if (fsid.is_zero()) {
5212 fsid.generate_random();
5213 dout(1) << __func__ << " generated fsid " << fsid << dendl;
5214 } else {
5215 dout(1) << __func__ << " using provided fsid " << fsid << dendl;
5216 }
5217 // we'll write it later.
5218 } else {
5219 if (!fsid.is_zero() && fsid != old_fsid) {
5220 derr << __func__ << " on-disk fsid " << old_fsid
5221 << " != provided " << fsid << dendl;
5222 r = -EINVAL;
5223 goto out_close_fsid;
5224 }
5225 fsid = old_fsid;
5226 }
5227
5228 r = _setup_block_symlink_or_file("block", cct->_conf->bluestore_block_path,
5229 cct->_conf->bluestore_block_size,
5230 cct->_conf->bluestore_block_create);
5231 if (r < 0)
5232 goto out_close_fsid;
5233 if (cct->_conf->bluestore_bluefs) {
5234 r = _setup_block_symlink_or_file("block.wal", cct->_conf->bluestore_block_wal_path,
5235 cct->_conf->bluestore_block_wal_size,
5236 cct->_conf->bluestore_block_wal_create);
5237 if (r < 0)
5238 goto out_close_fsid;
5239 r = _setup_block_symlink_or_file("block.db", cct->_conf->bluestore_block_db_path,
5240 cct->_conf->bluestore_block_db_size,
5241 cct->_conf->bluestore_block_db_create);
5242 if (r < 0)
5243 goto out_close_fsid;
5244 }
5245
5246 r = _open_bdev(true);
5247 if (r < 0)
5248 goto out_close_fsid;
5249
5250 {
5251 string wal_path = cct->_conf->get_val<string>("bluestore_block_wal_path");
5252 if (wal_path.size()) {
5253 write_meta("path_block.wal", wal_path);
5254 }
5255 string db_path = cct->_conf->get_val<string>("bluestore_block_db_path");
5256 if (db_path.size()) {
5257 write_meta("path_block.db", db_path);
5258 }
5259 }
5260
5261 // choose min_alloc_size
5262 if (cct->_conf->bluestore_min_alloc_size) {
5263 min_alloc_size = cct->_conf->bluestore_min_alloc_size;
5264 } else {
5265 assert(bdev);
5266 if (bdev->is_rotational()) {
5267 min_alloc_size = cct->_conf->bluestore_min_alloc_size_hdd;
5268 } else {
5269 min_alloc_size = cct->_conf->bluestore_min_alloc_size_ssd;
5270 }
5271 }
5272
5273 // make sure min_alloc_size is power of 2 aligned.
5274 if (!ISP2(min_alloc_size)) {
5275 derr << __func__ << " min_alloc_size 0x"
5276 << std::hex << min_alloc_size << std::dec
5277 << " is not power of 2 aligned!"
5278 << dendl;
5279 r = -EINVAL;
5280 goto out_close_bdev;
5281 }
5282
5283 r = _open_db(true);
5284 if (r < 0)
5285 goto out_close_bdev;
5286
5287 r = _open_fm(true);
5288 if (r < 0)
5289 goto out_close_db;
5290
5291 {
5292 KeyValueDB::Transaction t = db->get_transaction();
5293 {
5294 bufferlist bl;
5295 ::encode((uint64_t)0, bl);
5296 t->set(PREFIX_SUPER, "nid_max", bl);
5297 t->set(PREFIX_SUPER, "blobid_max", bl);
5298 }
5299
5300 {
5301 bufferlist bl;
5302 ::encode((uint64_t)min_alloc_size, bl);
5303 t->set(PREFIX_SUPER, "min_alloc_size", bl);
5304 }
5305
5306 ondisk_format = latest_ondisk_format;
5307 _prepare_ondisk_format_super(t);
5308 db->submit_transaction_sync(t);
5309 }
5310
5311
5312 r = write_meta("kv_backend", cct->_conf->bluestore_kvbackend);
5313 if (r < 0)
5314 goto out_close_fm;
5315
5316 r = write_meta("bluefs", stringify(bluefs ? 1 : 0));
5317 if (r < 0)
5318 goto out_close_fm;
5319
5320 if (fsid != old_fsid) {
5321 r = _write_fsid();
5322 if (r < 0) {
5323 derr << __func__ << " error writing fsid: " << cpp_strerror(r) << dendl;
5324 goto out_close_fm;
5325 }
5326 }
5327
5328 out_close_fm:
5329 _close_fm();
5330 out_close_db:
5331 _close_db();
5332 out_close_bdev:
5333 _close_bdev();
5334 out_close_fsid:
5335 _close_fsid();
5336 out_path_fd:
5337 _close_path();
5338
5339 if (r == 0 &&
5340 cct->_conf->bluestore_fsck_on_mkfs) {
5341 int rc = fsck(cct->_conf->bluestore_fsck_on_mkfs_deep);
5342 if (rc < 0)
5343 return rc;
5344 if (rc > 0) {
5345 derr << __func__ << " fsck found " << rc << " errors" << dendl;
5346 r = -EIO;
5347 }
5348 }
5349
5350 if (r == 0) {
5351 // indicate success by writing the 'mkfs_done' file
5352 r = write_meta("mkfs_done", "yes");
5353 }
5354
5355 if (r < 0) {
5356 derr << __func__ << " failed, " << cpp_strerror(r) << dendl;
5357 } else {
5358 dout(0) << __func__ << " success" << dendl;
5359 }
5360 return r;
5361 }
5362
5363 void BlueStore::set_cache_shards(unsigned num)
5364 {
5365 dout(10) << __func__ << " " << num << dendl;
5366 size_t old = cache_shards.size();
5367 assert(num >= old);
5368 cache_shards.resize(num);
5369 for (unsigned i = old; i < num; ++i) {
5370 cache_shards[i] = Cache::create(cct, cct->_conf->bluestore_cache_type,
5371 logger);
5372 }
5373 }
5374
5375 int BlueStore::_mount(bool kv_only)
5376 {
5377 dout(1) << __func__ << " path " << path << dendl;
5378
5379 _kv_only = kv_only;
5380
5381 {
5382 string type;
5383 int r = read_meta("type", &type);
5384 if (r < 0) {
5385 derr << __func__ << " failed to load os-type: " << cpp_strerror(r)
5386 << dendl;
5387 return r;
5388 }
5389
5390 if (type != "bluestore") {
5391 derr << __func__ << " expected bluestore, but type is " << type << dendl;
5392 return -EIO;
5393 }
5394 }
5395
5396 if (cct->_conf->bluestore_fsck_on_mount) {
5397 int rc = fsck(cct->_conf->bluestore_fsck_on_mount_deep);
5398 if (rc < 0)
5399 return rc;
5400 if (rc > 0) {
5401 derr << __func__ << " fsck found " << rc << " errors" << dendl;
5402 return -EIO;
5403 }
5404 }
5405
5406 int r = _open_path();
5407 if (r < 0)
5408 return r;
5409 r = _open_fsid(false);
5410 if (r < 0)
5411 goto out_path;
5412
5413 r = _read_fsid(&fsid);
5414 if (r < 0)
5415 goto out_fsid;
5416
5417 r = _lock_fsid();
5418 if (r < 0)
5419 goto out_fsid;
5420
5421 r = _open_bdev(false);
5422 if (r < 0)
5423 goto out_fsid;
5424
5425 r = _open_db(false);
5426 if (r < 0)
5427 goto out_bdev;
5428
5429 if (kv_only)
5430 return 0;
5431
5432 r = _open_super_meta();
5433 if (r < 0)
5434 goto out_db;
5435
5436 r = _open_fm(false);
5437 if (r < 0)
5438 goto out_db;
5439
5440 r = _open_alloc();
5441 if (r < 0)
5442 goto out_fm;
5443
5444 r = _open_collections();
5445 if (r < 0)
5446 goto out_alloc;
5447
5448 r = _reload_logger();
5449 if (r < 0)
5450 goto out_coll;
5451
5452 if (bluefs) {
5453 r = _reconcile_bluefs_freespace();
5454 if (r < 0)
5455 goto out_coll;
5456 }
5457
5458 _kv_start();
5459
5460 r = _deferred_replay();
5461 if (r < 0)
5462 goto out_stop;
5463
5464 mempool_thread.init();
5465
5466
5467 mounted = true;
5468 return 0;
5469
5470 out_stop:
5471 _kv_stop();
5472 out_coll:
5473 _flush_cache();
5474 out_alloc:
5475 _close_alloc();
5476 out_fm:
5477 _close_fm();
5478 out_db:
5479 _close_db();
5480 out_bdev:
5481 _close_bdev();
5482 out_fsid:
5483 _close_fsid();
5484 out_path:
5485 _close_path();
5486 return r;
5487 }
5488
5489 int BlueStore::umount()
5490 {
5491 assert(_kv_only || mounted);
5492 dout(1) << __func__ << dendl;
5493
5494 _osr_drain_all();
5495 _osr_unregister_all();
5496
5497 mounted = false;
5498 if (!_kv_only) {
5499 mempool_thread.shutdown();
5500 dout(20) << __func__ << " stopping kv thread" << dendl;
5501 _kv_stop();
5502 _reap_collections();
5503 _flush_cache();
5504 dout(20) << __func__ << " closing" << dendl;
5505
5506 _close_alloc();
5507 _close_fm();
5508 }
5509 _close_db();
5510 _close_bdev();
5511 _close_fsid();
5512 _close_path();
5513
5514 if (cct->_conf->bluestore_fsck_on_umount) {
5515 int rc = fsck(cct->_conf->bluestore_fsck_on_umount_deep);
5516 if (rc < 0)
5517 return rc;
5518 if (rc > 0) {
5519 derr << __func__ << " fsck found " << rc << " errors" << dendl;
5520 return -EIO;
5521 }
5522 }
5523 return 0;
5524 }
5525
5526 static void apply(uint64_t off,
5527 uint64_t len,
5528 uint64_t granularity,
5529 BlueStore::mempool_dynamic_bitset &bitset,
5530 std::function<void(uint64_t,
5531 BlueStore::mempool_dynamic_bitset &)> f) {
5532 auto end = ROUND_UP_TO(off + len, granularity);
5533 while (off < end) {
5534 uint64_t pos = off / granularity;
5535 f(pos, bitset);
5536 off += granularity;
5537 }
5538 }
5539
5540 int BlueStore::_fsck_check_extents(
5541 const ghobject_t& oid,
5542 const PExtentVector& extents,
5543 bool compressed,
5544 mempool_dynamic_bitset &used_blocks,
5545 uint64_t granularity,
5546 store_statfs_t& expected_statfs)
5547 {
5548 dout(30) << __func__ << " oid " << oid << " extents " << extents << dendl;
5549 int errors = 0;
5550 for (auto e : extents) {
5551 if (!e.is_valid())
5552 continue;
5553 expected_statfs.allocated += e.length;
5554 if (compressed) {
5555 expected_statfs.compressed_allocated += e.length;
5556 }
5557 bool already = false;
5558 apply(
5559 e.offset, e.length, granularity, used_blocks,
5560 [&](uint64_t pos, mempool_dynamic_bitset &bs) {
5561 assert(pos < bs.size());
5562 if (bs.test(pos))
5563 already = true;
5564 else
5565 bs.set(pos);
5566 });
5567 if (already) {
5568 derr << " " << oid << " extent " << e
5569 << " or a subset is already allocated" << dendl;
5570 ++errors;
5571 }
5572 if (e.end() > bdev->get_size()) {
5573 derr << " " << oid << " extent " << e
5574 << " past end of block device" << dendl;
5575 ++errors;
5576 }
5577 }
5578 return errors;
5579 }
5580
5581 int BlueStore::_fsck(bool deep, bool repair)
5582 {
5583 dout(1) << __func__
5584 << (repair ? " fsck" : " repair")
5585 << (deep ? " (deep)" : " (shallow)") << " start" << dendl;
5586 int errors = 0;
5587 int repaired = 0;
5588
5589 typedef btree::btree_set<
5590 uint64_t,std::less<uint64_t>,
5591 mempool::bluestore_fsck::pool_allocator<uint64_t>> uint64_t_btree_t;
5592 uint64_t_btree_t used_nids;
5593 uint64_t_btree_t used_omap_head;
5594 uint64_t_btree_t used_sbids;
5595
5596 mempool_dynamic_bitset used_blocks;
5597 KeyValueDB::Iterator it;
5598 store_statfs_t expected_statfs, actual_statfs;
5599 struct sb_info_t {
5600 list<ghobject_t> oids;
5601 SharedBlobRef sb;
5602 bluestore_extent_ref_map_t ref_map;
5603 bool compressed;
5604 };
5605 mempool::bluestore_fsck::map<uint64_t,sb_info_t> sb_info;
5606
5607 uint64_t num_objects = 0;
5608 uint64_t num_extents = 0;
5609 uint64_t num_blobs = 0;
5610 uint64_t num_spanning_blobs = 0;
5611 uint64_t num_shared_blobs = 0;
5612 uint64_t num_sharded_objects = 0;
5613 uint64_t num_object_shards = 0;
5614
5615 utime_t start = ceph_clock_now();
5616
5617 int r = _open_path();
5618 if (r < 0)
5619 return r;
5620 r = _open_fsid(false);
5621 if (r < 0)
5622 goto out_path;
5623
5624 r = _read_fsid(&fsid);
5625 if (r < 0)
5626 goto out_fsid;
5627
5628 r = _lock_fsid();
5629 if (r < 0)
5630 goto out_fsid;
5631
5632 r = _open_bdev(false);
5633 if (r < 0)
5634 goto out_fsid;
5635
5636 r = _open_db(false);
5637 if (r < 0)
5638 goto out_bdev;
5639
5640 r = _open_super_meta();
5641 if (r < 0)
5642 goto out_db;
5643
5644 r = _open_fm(false);
5645 if (r < 0)
5646 goto out_db;
5647
5648 r = _open_alloc();
5649 if (r < 0)
5650 goto out_fm;
5651
5652 r = _open_collections(&errors);
5653 if (r < 0)
5654 goto out_alloc;
5655
5656 mempool_thread.init();
5657
5658 // we need finishers and kv_{sync,finalize}_thread *just* for replay
5659 _kv_start();
5660 r = _deferred_replay();
5661 _kv_stop();
5662 if (r < 0)
5663 goto out_scan;
5664
5665 used_blocks.resize(fm->get_alloc_units());
5666 apply(
5667 0, MAX(min_alloc_size, SUPER_RESERVED), fm->get_alloc_size(), used_blocks,
5668 [&](uint64_t pos, mempool_dynamic_bitset &bs) {
5669 assert(pos < bs.size());
5670 bs.set(pos);
5671 }
5672 );
5673
5674 if (bluefs) {
5675 for (auto e = bluefs_extents.begin(); e != bluefs_extents.end(); ++e) {
5676 apply(
5677 e.get_start(), e.get_len(), fm->get_alloc_size(), used_blocks,
5678 [&](uint64_t pos, mempool_dynamic_bitset &bs) {
5679 assert(pos < bs.size());
5680 bs.set(pos);
5681 }
5682 );
5683 }
5684 r = bluefs->fsck();
5685 if (r < 0) {
5686 goto out_scan;
5687 }
5688 if (r > 0)
5689 errors += r;
5690 }
5691
5692 // get expected statfs; fill unaffected fields to be able to compare
5693 // structs
5694 statfs(&actual_statfs);
5695 expected_statfs.total = actual_statfs.total;
5696 expected_statfs.available = actual_statfs.available;
5697
5698 // walk PREFIX_OBJ
5699 dout(1) << __func__ << " walking object keyspace" << dendl;
5700 it = db->get_iterator(PREFIX_OBJ);
5701 if (it) {
5702 CollectionRef c;
5703 spg_t pgid;
5704 mempool::bluestore_fsck::list<string> expecting_shards;
5705 for (it->lower_bound(string()); it->valid(); it->next()) {
5706 if (g_conf->bluestore_debug_fsck_abort) {
5707 goto out_scan;
5708 }
5709 dout(30) << " key " << pretty_binary_string(it->key()) << dendl;
5710 if (is_extent_shard_key(it->key())) {
5711 while (!expecting_shards.empty() &&
5712 expecting_shards.front() < it->key()) {
5713 derr << "fsck error: missing shard key "
5714 << pretty_binary_string(expecting_shards.front())
5715 << dendl;
5716 ++errors;
5717 expecting_shards.pop_front();
5718 }
5719 if (!expecting_shards.empty() &&
5720 expecting_shards.front() == it->key()) {
5721 // all good
5722 expecting_shards.pop_front();
5723 continue;
5724 }
5725
5726 uint32_t offset;
5727 string okey;
5728 get_key_extent_shard(it->key(), &okey, &offset);
5729 derr << "fsck error: stray shard 0x" << std::hex << offset
5730 << std::dec << dendl;
5731 if (expecting_shards.empty()) {
5732 derr << "fsck error: " << pretty_binary_string(it->key())
5733 << " is unexpected" << dendl;
5734 ++errors;
5735 continue;
5736 }
5737 while (expecting_shards.front() > it->key()) {
5738 derr << "fsck error: saw " << pretty_binary_string(it->key())
5739 << dendl;
5740 derr << "fsck error: exp "
5741 << pretty_binary_string(expecting_shards.front()) << dendl;
5742 ++errors;
5743 expecting_shards.pop_front();
5744 if (expecting_shards.empty()) {
5745 break;
5746 }
5747 }
5748 continue;
5749 }
5750
5751 ghobject_t oid;
5752 int r = get_key_object(it->key(), &oid);
5753 if (r < 0) {
5754 derr << "fsck error: bad object key "
5755 << pretty_binary_string(it->key()) << dendl;
5756 ++errors;
5757 continue;
5758 }
5759 if (!c ||
5760 oid.shard_id != pgid.shard ||
5761 oid.hobj.pool != (int64_t)pgid.pool() ||
5762 !c->contains(oid)) {
5763 c = nullptr;
5764 for (ceph::unordered_map<coll_t, CollectionRef>::iterator p =
5765 coll_map.begin();
5766 p != coll_map.end();
5767 ++p) {
5768 if (p->second->contains(oid)) {
5769 c = p->second;
5770 break;
5771 }
5772 }
5773 if (!c) {
5774 derr << "fsck error: stray object " << oid
5775 << " not owned by any collection" << dendl;
5776 ++errors;
5777 continue;
5778 }
5779 c->cid.is_pg(&pgid);
5780 dout(20) << __func__ << " collection " << c->cid << dendl;
5781 }
5782
5783 if (!expecting_shards.empty()) {
5784 for (auto &k : expecting_shards) {
5785 derr << "fsck error: missing shard key "
5786 << pretty_binary_string(k) << dendl;
5787 }
5788 ++errors;
5789 expecting_shards.clear();
5790 }
5791
5792 dout(10) << __func__ << " " << oid << dendl;
5793 RWLock::RLocker l(c->lock);
5794 OnodeRef o = c->get_onode(oid, false);
5795 if (o->onode.nid) {
5796 if (o->onode.nid > nid_max) {
5797 derr << "fsck error: " << oid << " nid " << o->onode.nid
5798 << " > nid_max " << nid_max << dendl;
5799 ++errors;
5800 }
5801 if (used_nids.count(o->onode.nid)) {
5802 derr << "fsck error: " << oid << " nid " << o->onode.nid
5803 << " already in use" << dendl;
5804 ++errors;
5805 continue; // go for next object
5806 }
5807 used_nids.insert(o->onode.nid);
5808 }
5809 ++num_objects;
5810 num_spanning_blobs += o->extent_map.spanning_blob_map.size();
5811 o->extent_map.fault_range(db, 0, OBJECT_MAX_SIZE);
5812 _dump_onode(o, 30);
5813 // shards
5814 if (!o->extent_map.shards.empty()) {
5815 ++num_sharded_objects;
5816 num_object_shards += o->extent_map.shards.size();
5817 }
5818 for (auto& s : o->extent_map.shards) {
5819 dout(20) << __func__ << " shard " << *s.shard_info << dendl;
5820 expecting_shards.push_back(string());
5821 get_extent_shard_key(o->key, s.shard_info->offset,
5822 &expecting_shards.back());
5823 if (s.shard_info->offset >= o->onode.size) {
5824 derr << "fsck error: " << oid << " shard 0x" << std::hex
5825 << s.shard_info->offset << " past EOF at 0x" << o->onode.size
5826 << std::dec << dendl;
5827 ++errors;
5828 }
5829 }
5830 // lextents
5831 map<BlobRef,bluestore_blob_t::unused_t> referenced;
5832 uint64_t pos = 0;
5833 mempool::bluestore_fsck::map<BlobRef,
5834 bluestore_blob_use_tracker_t> ref_map;
5835 for (auto& l : o->extent_map.extent_map) {
5836 dout(20) << __func__ << " " << l << dendl;
5837 if (l.logical_offset < pos) {
5838 derr << "fsck error: " << oid << " lextent at 0x"
5839 << std::hex << l.logical_offset
5840 << " overlaps with the previous, which ends at 0x" << pos
5841 << std::dec << dendl;
5842 ++errors;
5843 }
5844 if (o->extent_map.spans_shard(l.logical_offset, l.length)) {
5845 derr << "fsck error: " << oid << " lextent at 0x"
5846 << std::hex << l.logical_offset << "~" << l.length
5847 << " spans a shard boundary"
5848 << std::dec << dendl;
5849 ++errors;
5850 }
5851 pos = l.logical_offset + l.length;
5852 expected_statfs.stored += l.length;
5853 assert(l.blob);
5854 const bluestore_blob_t& blob = l.blob->get_blob();
5855
5856 auto& ref = ref_map[l.blob];
5857 if (ref.is_empty()) {
5858 uint32_t min_release_size = blob.get_release_size(min_alloc_size);
5859 uint32_t l = blob.get_logical_length();
5860 ref.init(l, min_release_size);
5861 }
5862 ref.get(
5863 l.blob_offset,
5864 l.length);
5865 ++num_extents;
5866 if (blob.has_unused()) {
5867 auto p = referenced.find(l.blob);
5868 bluestore_blob_t::unused_t *pu;
5869 if (p == referenced.end()) {
5870 pu = &referenced[l.blob];
5871 } else {
5872 pu = &p->second;
5873 }
5874 uint64_t blob_len = blob.get_logical_length();
5875 assert((blob_len % (sizeof(*pu)*8)) == 0);
5876 assert(l.blob_offset + l.length <= blob_len);
5877 uint64_t chunk_size = blob_len / (sizeof(*pu)*8);
5878 uint64_t start = l.blob_offset / chunk_size;
5879 uint64_t end =
5880 ROUND_UP_TO(l.blob_offset + l.length, chunk_size) / chunk_size;
5881 for (auto i = start; i < end; ++i) {
5882 (*pu) |= (1u << i);
5883 }
5884 }
5885 }
5886 for (auto &i : referenced) {
5887 dout(20) << __func__ << " referenced 0x" << std::hex << i.second
5888 << std::dec << " for " << *i.first << dendl;
5889 const bluestore_blob_t& blob = i.first->get_blob();
5890 if (i.second & blob.unused) {
5891 derr << "fsck error: " << oid << " blob claims unused 0x"
5892 << std::hex << blob.unused
5893 << " but extents reference 0x" << i.second
5894 << " on blob " << *i.first << dendl;
5895 ++errors;
5896 }
5897 if (blob.has_csum()) {
5898 uint64_t blob_len = blob.get_logical_length();
5899 uint64_t unused_chunk_size = blob_len / (sizeof(blob.unused)*8);
5900 unsigned csum_count = blob.get_csum_count();
5901 unsigned csum_chunk_size = blob.get_csum_chunk_size();
5902 for (unsigned p = 0; p < csum_count; ++p) {
5903 unsigned pos = p * csum_chunk_size;
5904 unsigned firstbit = pos / unused_chunk_size; // [firstbit,lastbit]
5905 unsigned lastbit = (pos + csum_chunk_size - 1) / unused_chunk_size;
5906 unsigned mask = 1u << firstbit;
5907 for (unsigned b = firstbit + 1; b <= lastbit; ++b) {
5908 mask |= 1u << b;
5909 }
5910 if ((blob.unused & mask) == mask) {
5911 // this csum chunk region is marked unused
5912 if (blob.get_csum_item(p) != 0) {
5913 derr << "fsck error: " << oid
5914 << " blob claims csum chunk 0x" << std::hex << pos
5915 << "~" << csum_chunk_size
5916 << " is unused (mask 0x" << mask << " of unused 0x"
5917 << blob.unused << ") but csum is non-zero 0x"
5918 << blob.get_csum_item(p) << std::dec << " on blob "
5919 << *i.first << dendl;
5920 ++errors;
5921 }
5922 }
5923 }
5924 }
5925 }
5926 for (auto &i : ref_map) {
5927 ++num_blobs;
5928 const bluestore_blob_t& blob = i.first->get_blob();
5929 bool equal = i.first->get_blob_use_tracker().equal(i.second);
5930 if (!equal) {
5931 derr << "fsck error: " << oid << " blob " << *i.first
5932 << " doesn't match expected ref_map " << i.second << dendl;
5933 ++errors;
5934 }
5935 if (blob.is_compressed()) {
5936 expected_statfs.compressed += blob.get_compressed_payload_length();
5937 expected_statfs.compressed_original +=
5938 i.first->get_referenced_bytes();
5939 }
5940 if (blob.is_shared()) {
5941 if (i.first->shared_blob->get_sbid() > blobid_max) {
5942 derr << "fsck error: " << oid << " blob " << blob
5943 << " sbid " << i.first->shared_blob->get_sbid() << " > blobid_max "
5944 << blobid_max << dendl;
5945 ++errors;
5946 } else if (i.first->shared_blob->get_sbid() == 0) {
5947 derr << "fsck error: " << oid << " blob " << blob
5948 << " marked as shared but has uninitialized sbid"
5949 << dendl;
5950 ++errors;
5951 }
5952 sb_info_t& sbi = sb_info[i.first->shared_blob->get_sbid()];
5953 sbi.sb = i.first->shared_blob;
5954 sbi.oids.push_back(oid);
5955 sbi.compressed = blob.is_compressed();
5956 for (auto e : blob.get_extents()) {
5957 if (e.is_valid()) {
5958 sbi.ref_map.get(e.offset, e.length);
5959 }
5960 }
5961 } else {
5962 errors += _fsck_check_extents(oid, blob.get_extents(),
5963 blob.is_compressed(),
5964 used_blocks,
5965 fm->get_alloc_size(),
5966 expected_statfs);
5967 }
5968 }
5969 if (deep) {
5970 bufferlist bl;
5971 int r = _do_read(c.get(), o, 0, o->onode.size, bl, 0);
5972 if (r < 0) {
5973 ++errors;
5974 derr << "fsck error: " << oid << " error during read: "
5975 << cpp_strerror(r) << dendl;
5976 }
5977 }
5978 // omap
5979 if (o->onode.has_omap()) {
5980 if (used_omap_head.count(o->onode.nid)) {
5981 derr << "fsck error: " << oid << " omap_head " << o->onode.nid
5982 << " already in use" << dendl;
5983 ++errors;
5984 } else {
5985 used_omap_head.insert(o->onode.nid);
5986 }
5987 }
5988 }
5989 }
5990 dout(1) << __func__ << " checking shared_blobs" << dendl;
5991 it = db->get_iterator(PREFIX_SHARED_BLOB);
5992 if (it) {
5993 for (it->lower_bound(string()); it->valid(); it->next()) {
5994 string key = it->key();
5995 uint64_t sbid;
5996 if (get_key_shared_blob(key, &sbid)) {
5997 derr << "fsck error: bad key '" << key
5998 << "' in shared blob namespace" << dendl;
5999 ++errors;
6000 continue;
6001 }
6002 auto p = sb_info.find(sbid);
6003 if (p == sb_info.end()) {
6004 derr << "fsck error: found stray shared blob data for sbid 0x"
6005 << std::hex << sbid << std::dec << dendl;
6006 ++errors;
6007 } else {
6008 ++num_shared_blobs;
6009 sb_info_t& sbi = p->second;
6010 bluestore_shared_blob_t shared_blob(sbid);
6011 bufferlist bl = it->value();
6012 bufferlist::iterator blp = bl.begin();
6013 ::decode(shared_blob, blp);
6014 dout(20) << __func__ << " " << *sbi.sb << " " << shared_blob << dendl;
6015 if (shared_blob.ref_map != sbi.ref_map) {
6016 derr << "fsck error: shared blob 0x" << std::hex << sbid
6017 << std::dec << " ref_map " << shared_blob.ref_map
6018 << " != expected " << sbi.ref_map << dendl;
6019 ++errors;
6020 }
6021 PExtentVector extents;
6022 for (auto &r : shared_blob.ref_map.ref_map) {
6023 extents.emplace_back(bluestore_pextent_t(r.first, r.second.length));
6024 }
6025 errors += _fsck_check_extents(p->second.oids.front(),
6026 extents,
6027 p->second.compressed,
6028 used_blocks,
6029 fm->get_alloc_size(),
6030 expected_statfs);
6031 sb_info.erase(p);
6032 }
6033 }
6034 }
6035 for (auto &p : sb_info) {
6036 derr << "fsck error: shared_blob 0x" << p.first
6037 << " key is missing (" << *p.second.sb << ")" << dendl;
6038 ++errors;
6039 }
6040 if (!(actual_statfs == expected_statfs)) {
6041 derr << "fsck error: actual " << actual_statfs
6042 << " != expected " << expected_statfs << dendl;
6043 ++errors;
6044 }
6045
6046 dout(1) << __func__ << " checking for stray omap data" << dendl;
6047 it = db->get_iterator(PREFIX_OMAP);
6048 if (it) {
6049 for (it->lower_bound(string()); it->valid(); it->next()) {
6050 uint64_t omap_head;
6051 _key_decode_u64(it->key().c_str(), &omap_head);
6052 if (used_omap_head.count(omap_head) == 0) {
6053 derr << "fsck error: found stray omap data on omap_head "
6054 << omap_head << dendl;
6055 ++errors;
6056 }
6057 }
6058 }
6059
6060 dout(1) << __func__ << " checking deferred events" << dendl;
6061 it = db->get_iterator(PREFIX_DEFERRED);
6062 if (it) {
6063 for (it->lower_bound(string()); it->valid(); it->next()) {
6064 bufferlist bl = it->value();
6065 bufferlist::iterator p = bl.begin();
6066 bluestore_deferred_transaction_t wt;
6067 try {
6068 ::decode(wt, p);
6069 } catch (buffer::error& e) {
6070 derr << "fsck error: failed to decode deferred txn "
6071 << pretty_binary_string(it->key()) << dendl;
6072 r = -EIO;
6073 goto out_scan;
6074 }
6075 dout(20) << __func__ << " deferred " << wt.seq
6076 << " ops " << wt.ops.size()
6077 << " released 0x" << std::hex << wt.released << std::dec << dendl;
6078 for (auto e = wt.released.begin(); e != wt.released.end(); ++e) {
6079 apply(
6080 e.get_start(), e.get_len(), fm->get_alloc_size(), used_blocks,
6081 [&](uint64_t pos, mempool_dynamic_bitset &bs) {
6082 assert(pos < bs.size());
6083 bs.set(pos);
6084 }
6085 );
6086 }
6087 }
6088 }
6089
6090 dout(1) << __func__ << " checking freelist vs allocated" << dendl;
6091 {
6092 // remove bluefs_extents from used set since the freelist doesn't
6093 // know they are allocated.
6094 for (auto e = bluefs_extents.begin(); e != bluefs_extents.end(); ++e) {
6095 apply(
6096 e.get_start(), e.get_len(), fm->get_alloc_size(), used_blocks,
6097 [&](uint64_t pos, mempool_dynamic_bitset &bs) {
6098 assert(pos < bs.size());
6099 bs.reset(pos);
6100 }
6101 );
6102 }
6103 fm->enumerate_reset();
6104 uint64_t offset, length;
6105 while (fm->enumerate_next(&offset, &length)) {
6106 bool intersects = false;
6107 apply(
6108 offset, length, fm->get_alloc_size(), used_blocks,
6109 [&](uint64_t pos, mempool_dynamic_bitset &bs) {
6110 assert(pos < bs.size());
6111 if (bs.test(pos)) {
6112 intersects = true;
6113 } else {
6114 bs.set(pos);
6115 }
6116 }
6117 );
6118 if (intersects) {
6119 if (offset == SUPER_RESERVED &&
6120 length == min_alloc_size - SUPER_RESERVED) {
6121 // this is due to the change just after luminous to min_alloc_size
6122 // granularity allocations, and our baked in assumption at the top
6123 // of _fsck that 0~ROUND_UP_TO(SUPER_RESERVED,min_alloc_size) is used
6124 // (vs luminous's ROUND_UP_TO(SUPER_RESERVED,block_size)). harmless,
6125 // since we will never allocate this region below min_alloc_size.
6126 dout(10) << __func__ << " ignoring free extent between SUPER_RESERVED"
6127 << " and min_alloc_size, 0x" << std::hex << offset << "~"
6128 << length << dendl;
6129 } else {
6130 derr << "fsck error: free extent 0x" << std::hex << offset
6131 << "~" << length << std::dec
6132 << " intersects allocated blocks" << dendl;
6133 ++errors;
6134 }
6135 }
6136 }
6137 fm->enumerate_reset();
6138 size_t count = used_blocks.count();
6139 if (used_blocks.size() != count) {
6140 assert(used_blocks.size() > count);
6141 ++errors;
6142 used_blocks.flip();
6143 size_t start = used_blocks.find_first();
6144 while (start != decltype(used_blocks)::npos) {
6145 size_t cur = start;
6146 while (true) {
6147 size_t next = used_blocks.find_next(cur);
6148 if (next != cur + 1) {
6149 derr << "fsck error: leaked extent 0x" << std::hex
6150 << ((uint64_t)start * fm->get_alloc_size()) << "~"
6151 << ((cur + 1 - start) * fm->get_alloc_size()) << std::dec
6152 << dendl;
6153 start = next;
6154 break;
6155 }
6156 cur = next;
6157 }
6158 }
6159 used_blocks.flip();
6160 }
6161 }
6162
6163 out_scan:
6164 mempool_thread.shutdown();
6165 _flush_cache();
6166 out_alloc:
6167 _close_alloc();
6168 out_fm:
6169 _close_fm();
6170 out_db:
6171 it.reset(); // before db is closed
6172 _close_db();
6173 out_bdev:
6174 _close_bdev();
6175 out_fsid:
6176 _close_fsid();
6177 out_path:
6178 _close_path();
6179
6180 // fatal errors take precedence
6181 if (r < 0)
6182 return r;
6183
6184 dout(2) << __func__ << " " << num_objects << " objects, "
6185 << num_sharded_objects << " of them sharded. "
6186 << dendl;
6187 dout(2) << __func__ << " " << num_extents << " extents to "
6188 << num_blobs << " blobs, "
6189 << num_spanning_blobs << " spanning, "
6190 << num_shared_blobs << " shared."
6191 << dendl;
6192
6193 utime_t duration = ceph_clock_now() - start;
6194 dout(1) << __func__ << " finish with " << errors << " errors, " << repaired
6195 << " repaired, " << (errors - repaired) << " remaining in "
6196 << duration << " seconds" << dendl;
6197 return errors - repaired;
6198 }
6199
6200 void BlueStore::collect_metadata(map<string,string> *pm)
6201 {
6202 dout(10) << __func__ << dendl;
6203 bdev->collect_metadata("bluestore_bdev_", pm);
6204 if (bluefs) {
6205 (*pm)["bluefs"] = "1";
6206 (*pm)["bluefs_single_shared_device"] = stringify((int)bluefs_single_shared_device);
6207 bluefs->collect_metadata(pm);
6208 } else {
6209 (*pm)["bluefs"] = "0";
6210 }
6211 }
6212
6213 int BlueStore::statfs(struct store_statfs_t *buf)
6214 {
6215 buf->reset();
6216 buf->total = bdev->get_size();
6217 buf->available = alloc->get_free();
6218
6219 if (bluefs) {
6220 // part of our shared device is "free" according to BlueFS
6221 // Don't include bluestore_bluefs_min because that space can't
6222 // be used for any other purpose.
6223 buf->available += bluefs->get_free(bluefs_shared_bdev) - cct->_conf->bluestore_bluefs_min;
6224
6225 // include dedicated db, too, if that isn't the shared device.
6226 if (bluefs_shared_bdev != BlueFS::BDEV_DB) {
6227 buf->total += bluefs->get_total(BlueFS::BDEV_DB);
6228 }
6229 }
6230
6231 {
6232 std::lock_guard<std::mutex> l(vstatfs_lock);
6233
6234 buf->allocated = vstatfs.allocated();
6235 buf->stored = vstatfs.stored();
6236 buf->compressed = vstatfs.compressed();
6237 buf->compressed_original = vstatfs.compressed_original();
6238 buf->compressed_allocated = vstatfs.compressed_allocated();
6239 }
6240
6241 dout(20) << __func__ << *buf << dendl;
6242 return 0;
6243 }
6244
6245 // ---------------
6246 // cache
6247
6248 BlueStore::CollectionRef BlueStore::_get_collection(const coll_t& cid)
6249 {
6250 RWLock::RLocker l(coll_lock);
6251 ceph::unordered_map<coll_t,CollectionRef>::iterator cp = coll_map.find(cid);
6252 if (cp == coll_map.end())
6253 return CollectionRef();
6254 return cp->second;
6255 }
6256
6257 void BlueStore::_queue_reap_collection(CollectionRef& c)
6258 {
6259 dout(10) << __func__ << " " << c << " " << c->cid << dendl;
6260 std::lock_guard<std::mutex> l(reap_lock);
6261 removed_collections.push_back(c);
6262 }
6263
6264 void BlueStore::_reap_collections()
6265 {
6266 list<CollectionRef> removed_colls;
6267 {
6268 std::lock_guard<std::mutex> l(reap_lock);
6269 removed_colls.swap(removed_collections);
6270 }
6271
6272 bool all_reaped = true;
6273
6274 for (list<CollectionRef>::iterator p = removed_colls.begin();
6275 p != removed_colls.end();
6276 ++p) {
6277 CollectionRef c = *p;
6278 dout(10) << __func__ << " " << c << " " << c->cid << dendl;
6279 if (c->onode_map.map_any([&](OnodeRef o) {
6280 assert(!o->exists);
6281 if (o->flushing_count.load()) {
6282 dout(10) << __func__ << " " << c << " " << c->cid << " " << o->oid
6283 << " flush_txns " << o->flushing_count << dendl;
6284 return false;
6285 }
6286 return true;
6287 })) {
6288 all_reaped = false;
6289 continue;
6290 }
6291 c->onode_map.clear();
6292 dout(10) << __func__ << " " << c << " " << c->cid << " done" << dendl;
6293 }
6294
6295 if (all_reaped) {
6296 dout(10) << __func__ << " all reaped" << dendl;
6297 }
6298 }
6299
6300 void BlueStore::_update_cache_logger()
6301 {
6302 uint64_t num_onodes = 0;
6303 uint64_t num_extents = 0;
6304 uint64_t num_blobs = 0;
6305 uint64_t num_buffers = 0;
6306 uint64_t num_buffer_bytes = 0;
6307 for (auto c : cache_shards) {
6308 c->add_stats(&num_onodes, &num_extents, &num_blobs,
6309 &num_buffers, &num_buffer_bytes);
6310 }
6311 logger->set(l_bluestore_onodes, num_onodes);
6312 logger->set(l_bluestore_extents, num_extents);
6313 logger->set(l_bluestore_blobs, num_blobs);
6314 logger->set(l_bluestore_buffers, num_buffers);
6315 logger->set(l_bluestore_buffer_bytes, num_buffer_bytes);
6316 }
6317
6318 // ---------------
6319 // read operations
6320
6321 ObjectStore::CollectionHandle BlueStore::open_collection(const coll_t& cid)
6322 {
6323 return _get_collection(cid);
6324 }
6325
6326 bool BlueStore::exists(const coll_t& cid, const ghobject_t& oid)
6327 {
6328 CollectionHandle c = _get_collection(cid);
6329 if (!c)
6330 return false;
6331 return exists(c, oid);
6332 }
6333
6334 bool BlueStore::exists(CollectionHandle &c_, const ghobject_t& oid)
6335 {
6336 Collection *c = static_cast<Collection *>(c_.get());
6337 dout(10) << __func__ << " " << c->cid << " " << oid << dendl;
6338 if (!c->exists)
6339 return false;
6340
6341 bool r = true;
6342
6343 {
6344 RWLock::RLocker l(c->lock);
6345 OnodeRef o = c->get_onode(oid, false);
6346 if (!o || !o->exists)
6347 r = false;
6348 }
6349
6350 return r;
6351 }
6352
6353 int BlueStore::stat(
6354 const coll_t& cid,
6355 const ghobject_t& oid,
6356 struct stat *st,
6357 bool allow_eio)
6358 {
6359 CollectionHandle c = _get_collection(cid);
6360 if (!c)
6361 return -ENOENT;
6362 return stat(c, oid, st, allow_eio);
6363 }
6364
6365 int BlueStore::stat(
6366 CollectionHandle &c_,
6367 const ghobject_t& oid,
6368 struct stat *st,
6369 bool allow_eio)
6370 {
6371 Collection *c = static_cast<Collection *>(c_.get());
6372 if (!c->exists)
6373 return -ENOENT;
6374 dout(10) << __func__ << " " << c->get_cid() << " " << oid << dendl;
6375
6376 {
6377 RWLock::RLocker l(c->lock);
6378 OnodeRef o = c->get_onode(oid, false);
6379 if (!o || !o->exists)
6380 return -ENOENT;
6381 st->st_size = o->onode.size;
6382 st->st_blksize = 4096;
6383 st->st_blocks = (st->st_size + st->st_blksize - 1) / st->st_blksize;
6384 st->st_nlink = 1;
6385 }
6386
6387 int r = 0;
6388 if (_debug_mdata_eio(oid)) {
6389 r = -EIO;
6390 derr << __func__ << " " << c->cid << " " << oid << " INJECT EIO" << dendl;
6391 }
6392 return r;
6393 }
6394 int BlueStore::set_collection_opts(
6395 const coll_t& cid,
6396 const pool_opts_t& opts)
6397 {
6398 CollectionHandle ch = _get_collection(cid);
6399 if (!ch)
6400 return -ENOENT;
6401 Collection *c = static_cast<Collection *>(ch.get());
6402 dout(15) << __func__ << " " << cid << " options " << opts << dendl;
6403 if (!c->exists)
6404 return -ENOENT;
6405 RWLock::WLocker l(c->lock);
6406 c->pool_opts = opts;
6407 return 0;
6408 }
6409
6410 int BlueStore::read(
6411 const coll_t& cid,
6412 const ghobject_t& oid,
6413 uint64_t offset,
6414 size_t length,
6415 bufferlist& bl,
6416 uint32_t op_flags)
6417 {
6418 CollectionHandle c = _get_collection(cid);
6419 if (!c)
6420 return -ENOENT;
6421 return read(c, oid, offset, length, bl, op_flags);
6422 }
6423
6424 int BlueStore::read(
6425 CollectionHandle &c_,
6426 const ghobject_t& oid,
6427 uint64_t offset,
6428 size_t length,
6429 bufferlist& bl,
6430 uint32_t op_flags)
6431 {
6432 utime_t start = ceph_clock_now();
6433 Collection *c = static_cast<Collection *>(c_.get());
6434 const coll_t &cid = c->get_cid();
6435 dout(15) << __func__ << " " << cid << " " << oid
6436 << " 0x" << std::hex << offset << "~" << length << std::dec
6437 << dendl;
6438 if (!c->exists)
6439 return -ENOENT;
6440
6441 bl.clear();
6442 int r;
6443 {
6444 RWLock::RLocker l(c->lock);
6445 utime_t start1 = ceph_clock_now();
6446 OnodeRef o = c->get_onode(oid, false);
6447 logger->tinc(l_bluestore_read_onode_meta_lat, ceph_clock_now() - start1);
6448 if (!o || !o->exists) {
6449 r = -ENOENT;
6450 goto out;
6451 }
6452
6453 if (offset == length && offset == 0)
6454 length = o->onode.size;
6455
6456 r = _do_read(c, o, offset, length, bl, op_flags);
6457 if (r == -EIO) {
6458 logger->inc(l_bluestore_read_eio);
6459 }
6460 }
6461
6462 out:
6463 if (r == 0 && _debug_data_eio(oid)) {
6464 r = -EIO;
6465 derr << __func__ << " " << c->cid << " " << oid << " INJECT EIO" << dendl;
6466 } else if (cct->_conf->bluestore_debug_random_read_err &&
6467 (rand() % (int)(cct->_conf->bluestore_debug_random_read_err * 100.0)) == 0) {
6468 dout(0) << __func__ << ": inject random EIO" << dendl;
6469 r = -EIO;
6470 }
6471 dout(10) << __func__ << " " << cid << " " << oid
6472 << " 0x" << std::hex << offset << "~" << length << std::dec
6473 << " = " << r << dendl;
6474 logger->tinc(l_bluestore_read_lat, ceph_clock_now() - start);
6475 return r;
6476 }
6477
6478 // --------------------------------------------------------
6479 // intermediate data structures used while reading
6480 struct region_t {
6481 uint64_t logical_offset;
6482 uint64_t blob_xoffset; //region offset within the blob
6483 uint64_t length;
6484 bufferlist bl;
6485
6486 // used later in read process
6487 uint64_t front = 0;
6488 uint64_t r_off = 0;
6489
6490 region_t(uint64_t offset, uint64_t b_offs, uint64_t len)
6491 : logical_offset(offset),
6492 blob_xoffset(b_offs),
6493 length(len){}
6494 region_t(const region_t& from)
6495 : logical_offset(from.logical_offset),
6496 blob_xoffset(from.blob_xoffset),
6497 length(from.length){}
6498
6499 friend ostream& operator<<(ostream& out, const region_t& r) {
6500 return out << "0x" << std::hex << r.logical_offset << ":"
6501 << r.blob_xoffset << "~" << r.length << std::dec;
6502 }
6503 };
6504
6505 typedef list<region_t> regions2read_t;
6506 typedef map<BlueStore::BlobRef, regions2read_t> blobs2read_t;
6507
6508 int BlueStore::_do_read(
6509 Collection *c,
6510 OnodeRef o,
6511 uint64_t offset,
6512 size_t length,
6513 bufferlist& bl,
6514 uint32_t op_flags)
6515 {
6516 FUNCTRACE();
6517 int r = 0;
6518
6519 dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
6520 << " size 0x" << o->onode.size << " (" << std::dec
6521 << o->onode.size << ")" << dendl;
6522 bl.clear();
6523
6524 if (offset >= o->onode.size) {
6525 return r;
6526 }
6527
6528 // generally, don't buffer anything, unless the client explicitly requests
6529 // it.
6530 bool buffered = false;
6531 if (op_flags & CEPH_OSD_OP_FLAG_FADVISE_WILLNEED) {
6532 dout(20) << __func__ << " will do buffered read" << dendl;
6533 buffered = true;
6534 } else if (cct->_conf->bluestore_default_buffered_read &&
6535 (op_flags & (CEPH_OSD_OP_FLAG_FADVISE_DONTNEED |
6536 CEPH_OSD_OP_FLAG_FADVISE_NOCACHE)) == 0) {
6537 dout(20) << __func__ << " defaulting to buffered read" << dendl;
6538 buffered = true;
6539 }
6540
6541 if (offset + length > o->onode.size) {
6542 length = o->onode.size - offset;
6543 }
6544
6545 utime_t start = ceph_clock_now();
6546 o->extent_map.fault_range(db, offset, length);
6547 logger->tinc(l_bluestore_read_onode_meta_lat, ceph_clock_now() - start);
6548 _dump_onode(o);
6549
6550 ready_regions_t ready_regions;
6551
6552 // build blob-wise list to of stuff read (that isn't cached)
6553 blobs2read_t blobs2read;
6554 unsigned left = length;
6555 uint64_t pos = offset;
6556 unsigned num_regions = 0;
6557 auto lp = o->extent_map.seek_lextent(offset);
6558 while (left > 0 && lp != o->extent_map.extent_map.end()) {
6559 if (pos < lp->logical_offset) {
6560 unsigned hole = lp->logical_offset - pos;
6561 if (hole >= left) {
6562 break;
6563 }
6564 dout(30) << __func__ << " hole 0x" << std::hex << pos << "~" << hole
6565 << std::dec << dendl;
6566 pos += hole;
6567 left -= hole;
6568 }
6569 BlobRef bptr = lp->blob;
6570 unsigned l_off = pos - lp->logical_offset;
6571 unsigned b_off = l_off + lp->blob_offset;
6572 unsigned b_len = std::min(left, lp->length - l_off);
6573
6574 ready_regions_t cache_res;
6575 interval_set<uint32_t> cache_interval;
6576 bptr->shared_blob->bc.read(
6577 bptr->shared_blob->get_cache(), b_off, b_len, cache_res, cache_interval);
6578 dout(20) << __func__ << " blob " << *bptr << std::hex
6579 << " need 0x" << b_off << "~" << b_len
6580 << " cache has 0x" << cache_interval
6581 << std::dec << dendl;
6582
6583 auto pc = cache_res.begin();
6584 while (b_len > 0) {
6585 unsigned l;
6586 if (pc != cache_res.end() &&
6587 pc->first == b_off) {
6588 l = pc->second.length();
6589 ready_regions[pos].claim(pc->second);
6590 dout(30) << __func__ << " use cache 0x" << std::hex << pos << ": 0x"
6591 << b_off << "~" << l << std::dec << dendl;
6592 ++pc;
6593 } else {
6594 l = b_len;
6595 if (pc != cache_res.end()) {
6596 assert(pc->first > b_off);
6597 l = pc->first - b_off;
6598 }
6599 dout(30) << __func__ << " will read 0x" << std::hex << pos << ": 0x"
6600 << b_off << "~" << l << std::dec << dendl;
6601 blobs2read[bptr].emplace_back(region_t(pos, b_off, l));
6602 ++num_regions;
6603 }
6604 pos += l;
6605 b_off += l;
6606 left -= l;
6607 b_len -= l;
6608 }
6609 ++lp;
6610 }
6611
6612 // read raw blob data. use aio if we have >1 blobs to read.
6613 start = ceph_clock_now(); // for the sake of simplicity
6614 // measure the whole block below.
6615 // The error isn't that much...
6616 vector<bufferlist> compressed_blob_bls;
6617 IOContext ioc(cct, NULL, true); // allow EIO
6618 for (auto& p : blobs2read) {
6619 BlobRef bptr = p.first;
6620 dout(20) << __func__ << " blob " << *bptr << std::hex
6621 << " need " << p.second << std::dec << dendl;
6622 if (bptr->get_blob().is_compressed()) {
6623 // read the whole thing
6624 if (compressed_blob_bls.empty()) {
6625 // ensure we avoid any reallocation on subsequent blobs
6626 compressed_blob_bls.reserve(blobs2read.size());
6627 }
6628 compressed_blob_bls.push_back(bufferlist());
6629 bufferlist& bl = compressed_blob_bls.back();
6630 r = bptr->get_blob().map(
6631 0, bptr->get_blob().get_ondisk_length(),
6632 [&](uint64_t offset, uint64_t length) {
6633 int r;
6634 // use aio if there are more regions to read than those in this blob
6635 if (num_regions > p.second.size()) {
6636 r = bdev->aio_read(offset, length, &bl, &ioc);
6637 } else {
6638 r = bdev->read(offset, length, &bl, &ioc, false);
6639 }
6640 if (r < 0)
6641 return r;
6642 return 0;
6643 });
6644 if (r < 0) {
6645 derr << __func__ << " bdev-read failed: " << cpp_strerror(r) << dendl;
6646 if (r == -EIO) {
6647 // propagate EIO to caller
6648 return r;
6649 }
6650 assert(r == 0);
6651 }
6652 } else {
6653 // read the pieces
6654 for (auto& reg : p.second) {
6655 // determine how much of the blob to read
6656 uint64_t chunk_size = bptr->get_blob().get_chunk_size(block_size);
6657 reg.r_off = reg.blob_xoffset;
6658 uint64_t r_len = reg.length;
6659 reg.front = reg.r_off % chunk_size;
6660 if (reg.front) {
6661 reg.r_off -= reg.front;
6662 r_len += reg.front;
6663 }
6664 unsigned tail = r_len % chunk_size;
6665 if (tail) {
6666 r_len += chunk_size - tail;
6667 }
6668 dout(20) << __func__ << " region 0x" << std::hex
6669 << reg.logical_offset
6670 << ": 0x" << reg.blob_xoffset << "~" << reg.length
6671 << " reading 0x" << reg.r_off << "~" << r_len << std::dec
6672 << dendl;
6673
6674 // read it
6675 r = bptr->get_blob().map(
6676 reg.r_off, r_len,
6677 [&](uint64_t offset, uint64_t length) {
6678 int r;
6679 // use aio if there is more than one region to read
6680 if (num_regions > 1) {
6681 r = bdev->aio_read(offset, length, &reg.bl, &ioc);
6682 } else {
6683 r = bdev->read(offset, length, &reg.bl, &ioc, false);
6684 }
6685 if (r < 0)
6686 return r;
6687 return 0;
6688 });
6689 if (r < 0) {
6690 derr << __func__ << " bdev-read failed: " << cpp_strerror(r)
6691 << dendl;
6692 if (r == -EIO) {
6693 // propagate EIO to caller
6694 return r;
6695 }
6696 assert(r == 0);
6697 }
6698 assert(reg.bl.length() == r_len);
6699 }
6700 }
6701 }
6702 if (ioc.has_pending_aios()) {
6703 bdev->aio_submit(&ioc);
6704 dout(20) << __func__ << " waiting for aio" << dendl;
6705 ioc.aio_wait();
6706 r = ioc.get_return_value();
6707 if (r < 0) {
6708 assert(r == -EIO); // no other errors allowed
6709 return -EIO;
6710 }
6711 }
6712 logger->tinc(l_bluestore_read_wait_aio_lat, ceph_clock_now() - start);
6713
6714 // enumerate and decompress desired blobs
6715 auto p = compressed_blob_bls.begin();
6716 blobs2read_t::iterator b2r_it = blobs2read.begin();
6717 while (b2r_it != blobs2read.end()) {
6718 BlobRef bptr = b2r_it->first;
6719 dout(20) << __func__ << " blob " << *bptr << std::hex
6720 << " need 0x" << b2r_it->second << std::dec << dendl;
6721 if (bptr->get_blob().is_compressed()) {
6722 assert(p != compressed_blob_bls.end());
6723 bufferlist& compressed_bl = *p++;
6724 if (_verify_csum(o, &bptr->get_blob(), 0, compressed_bl,
6725 b2r_it->second.front().logical_offset) < 0) {
6726 return -EIO;
6727 }
6728 bufferlist raw_bl;
6729 r = _decompress(compressed_bl, &raw_bl);
6730 if (r < 0)
6731 return r;
6732 if (buffered) {
6733 bptr->shared_blob->bc.did_read(bptr->shared_blob->get_cache(), 0,
6734 raw_bl);
6735 }
6736 for (auto& i : b2r_it->second) {
6737 ready_regions[i.logical_offset].substr_of(
6738 raw_bl, i.blob_xoffset, i.length);
6739 }
6740 } else {
6741 for (auto& reg : b2r_it->second) {
6742 if (_verify_csum(o, &bptr->get_blob(), reg.r_off, reg.bl,
6743 reg.logical_offset) < 0) {
6744 return -EIO;
6745 }
6746 if (buffered) {
6747 bptr->shared_blob->bc.did_read(bptr->shared_blob->get_cache(),
6748 reg.r_off, reg.bl);
6749 }
6750
6751 // prune and keep result
6752 ready_regions[reg.logical_offset].substr_of(
6753 reg.bl, reg.front, reg.length);
6754 }
6755 }
6756 ++b2r_it;
6757 }
6758
6759 // generate a resulting buffer
6760 auto pr = ready_regions.begin();
6761 auto pr_end = ready_regions.end();
6762 pos = 0;
6763 while (pos < length) {
6764 if (pr != pr_end && pr->first == pos + offset) {
6765 dout(30) << __func__ << " assemble 0x" << std::hex << pos
6766 << ": data from 0x" << pr->first << "~" << pr->second.length()
6767 << std::dec << dendl;
6768 pos += pr->second.length();
6769 bl.claim_append(pr->second);
6770 ++pr;
6771 } else {
6772 uint64_t l = length - pos;
6773 if (pr != pr_end) {
6774 assert(pr->first > pos + offset);
6775 l = pr->first - (pos + offset);
6776 }
6777 dout(30) << __func__ << " assemble 0x" << std::hex << pos
6778 << ": zeros for 0x" << (pos + offset) << "~" << l
6779 << std::dec << dendl;
6780 bl.append_zero(l);
6781 pos += l;
6782 }
6783 }
6784 assert(bl.length() == length);
6785 assert(pos == length);
6786 assert(pr == pr_end);
6787 r = bl.length();
6788 return r;
6789 }
6790
6791 int BlueStore::_verify_csum(OnodeRef& o,
6792 const bluestore_blob_t* blob, uint64_t blob_xoffset,
6793 const bufferlist& bl,
6794 uint64_t logical_offset) const
6795 {
6796 int bad;
6797 uint64_t bad_csum;
6798 utime_t start = ceph_clock_now();
6799 int r = blob->verify_csum(blob_xoffset, bl, &bad, &bad_csum);
6800 if (r < 0) {
6801 if (r == -1) {
6802 PExtentVector pex;
6803 blob->map(
6804 bad,
6805 blob->get_csum_chunk_size(),
6806 [&](uint64_t offset, uint64_t length) {
6807 pex.emplace_back(bluestore_pextent_t(offset, length));
6808 return 0;
6809 });
6810 derr << __func__ << " bad "
6811 << Checksummer::get_csum_type_string(blob->csum_type)
6812 << "/0x" << std::hex << blob->get_csum_chunk_size()
6813 << " checksum at blob offset 0x" << bad
6814 << ", got 0x" << bad_csum << ", expected 0x"
6815 << blob->get_csum_item(bad / blob->get_csum_chunk_size()) << std::dec
6816 << ", device location " << pex
6817 << ", logical extent 0x" << std::hex
6818 << (logical_offset + bad - blob_xoffset) << "~"
6819 << blob->get_csum_chunk_size() << std::dec
6820 << ", object " << o->oid
6821 << dendl;
6822 } else {
6823 derr << __func__ << " failed with exit code: " << cpp_strerror(r) << dendl;
6824 }
6825 }
6826 logger->tinc(l_bluestore_csum_lat, ceph_clock_now() - start);
6827 return r;
6828 }
6829
6830 int BlueStore::_decompress(bufferlist& source, bufferlist* result)
6831 {
6832 int r = 0;
6833 utime_t start = ceph_clock_now();
6834 bufferlist::iterator i = source.begin();
6835 bluestore_compression_header_t chdr;
6836 ::decode(chdr, i);
6837 int alg = int(chdr.type);
6838 CompressorRef cp = compressor;
6839 if (!cp || (int)cp->get_type() != alg) {
6840 cp = Compressor::create(cct, alg);
6841 }
6842
6843 if (!cp.get()) {
6844 // if compressor isn't available - error, because cannot return
6845 // decompressed data?
6846 derr << __func__ << " can't load decompressor " << alg << dendl;
6847 r = -EIO;
6848 } else {
6849 r = cp->decompress(i, chdr.length, *result);
6850 if (r < 0) {
6851 derr << __func__ << " decompression failed with exit code " << r << dendl;
6852 r = -EIO;
6853 }
6854 }
6855 logger->tinc(l_bluestore_decompress_lat, ceph_clock_now() - start);
6856 return r;
6857 }
6858
6859 // this stores fiemap into interval_set, other variations
6860 // use it internally
6861 int BlueStore::_fiemap(
6862 CollectionHandle &c_,
6863 const ghobject_t& oid,
6864 uint64_t offset,
6865 size_t length,
6866 interval_set<uint64_t>& destset)
6867 {
6868 Collection *c = static_cast<Collection *>(c_.get());
6869 if (!c->exists)
6870 return -ENOENT;
6871 {
6872 RWLock::RLocker l(c->lock);
6873
6874 OnodeRef o = c->get_onode(oid, false);
6875 if (!o || !o->exists) {
6876 return -ENOENT;
6877 }
6878 _dump_onode(o);
6879
6880 dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
6881 << " size 0x" << o->onode.size << std::dec << dendl;
6882
6883 boost::intrusive::set<Extent>::iterator ep, eend;
6884 if (offset >= o->onode.size)
6885 goto out;
6886
6887 if (offset + length > o->onode.size) {
6888 length = o->onode.size - offset;
6889 }
6890
6891 o->extent_map.fault_range(db, offset, length);
6892 eend = o->extent_map.extent_map.end();
6893 ep = o->extent_map.seek_lextent(offset);
6894 while (length > 0) {
6895 dout(20) << __func__ << " offset " << offset << dendl;
6896 if (ep != eend && ep->logical_offset + ep->length <= offset) {
6897 ++ep;
6898 continue;
6899 }
6900
6901 uint64_t x_len = length;
6902 if (ep != eend && ep->logical_offset <= offset) {
6903 uint64_t x_off = offset - ep->logical_offset;
6904 x_len = MIN(x_len, ep->length - x_off);
6905 dout(30) << __func__ << " lextent 0x" << std::hex << offset << "~"
6906 << x_len << std::dec << " blob " << ep->blob << dendl;
6907 destset.insert(offset, x_len);
6908 length -= x_len;
6909 offset += x_len;
6910 if (x_off + x_len == ep->length)
6911 ++ep;
6912 continue;
6913 }
6914 if (ep != eend &&
6915 ep->logical_offset > offset &&
6916 ep->logical_offset - offset < x_len) {
6917 x_len = ep->logical_offset - offset;
6918 }
6919 offset += x_len;
6920 length -= x_len;
6921 }
6922 }
6923
6924 out:
6925 dout(20) << __func__ << " 0x" << std::hex << offset << "~" << length
6926 << " size = 0x(" << destset << ")" << std::dec << dendl;
6927 return 0;
6928 }
6929
6930 int BlueStore::fiemap(
6931 const coll_t& cid,
6932 const ghobject_t& oid,
6933 uint64_t offset,
6934 size_t len,
6935 bufferlist& bl)
6936 {
6937 CollectionHandle c = _get_collection(cid);
6938 if (!c)
6939 return -ENOENT;
6940 return fiemap(c, oid, offset, len, bl);
6941 }
6942
6943 int BlueStore::fiemap(
6944 CollectionHandle &c_,
6945 const ghobject_t& oid,
6946 uint64_t offset,
6947 size_t length,
6948 bufferlist& bl)
6949 {
6950 interval_set<uint64_t> m;
6951 int r = _fiemap(c_, oid, offset, length, m);
6952 if (r >= 0) {
6953 ::encode(m, bl);
6954 }
6955 return r;
6956 }
6957
6958 int BlueStore::fiemap(
6959 const coll_t& cid,
6960 const ghobject_t& oid,
6961 uint64_t offset,
6962 size_t len,
6963 map<uint64_t, uint64_t>& destmap)
6964 {
6965 CollectionHandle c = _get_collection(cid);
6966 if (!c)
6967 return -ENOENT;
6968 return fiemap(c, oid, offset, len, destmap);
6969 }
6970
6971 int BlueStore::fiemap(
6972 CollectionHandle &c_,
6973 const ghobject_t& oid,
6974 uint64_t offset,
6975 size_t length,
6976 map<uint64_t, uint64_t>& destmap)
6977 {
6978 interval_set<uint64_t> m;
6979 int r = _fiemap(c_, oid, offset, length, m);
6980 if (r >= 0) {
6981 m.move_into(destmap);
6982 }
6983 return r;
6984 }
6985
6986 int BlueStore::getattr(
6987 const coll_t& cid,
6988 const ghobject_t& oid,
6989 const char *name,
6990 bufferptr& value)
6991 {
6992 CollectionHandle c = _get_collection(cid);
6993 if (!c)
6994 return -ENOENT;
6995 return getattr(c, oid, name, value);
6996 }
6997
6998 int BlueStore::getattr(
6999 CollectionHandle &c_,
7000 const ghobject_t& oid,
7001 const char *name,
7002 bufferptr& value)
7003 {
7004 Collection *c = static_cast<Collection *>(c_.get());
7005 dout(15) << __func__ << " " << c->cid << " " << oid << " " << name << dendl;
7006 if (!c->exists)
7007 return -ENOENT;
7008
7009 int r;
7010 {
7011 RWLock::RLocker l(c->lock);
7012 mempool::bluestore_cache_other::string k(name);
7013
7014 OnodeRef o = c->get_onode(oid, false);
7015 if (!o || !o->exists) {
7016 r = -ENOENT;
7017 goto out;
7018 }
7019
7020 if (!o->onode.attrs.count(k)) {
7021 r = -ENODATA;
7022 goto out;
7023 }
7024 value = o->onode.attrs[k];
7025 r = 0;
7026 }
7027 out:
7028 if (r == 0 && _debug_mdata_eio(oid)) {
7029 r = -EIO;
7030 derr << __func__ << " " << c->cid << " " << oid << " INJECT EIO" << dendl;
7031 }
7032 dout(10) << __func__ << " " << c->cid << " " << oid << " " << name
7033 << " = " << r << dendl;
7034 return r;
7035 }
7036
7037
7038 int BlueStore::getattrs(
7039 const coll_t& cid,
7040 const ghobject_t& oid,
7041 map<string,bufferptr>& aset)
7042 {
7043 CollectionHandle c = _get_collection(cid);
7044 if (!c)
7045 return -ENOENT;
7046 return getattrs(c, oid, aset);
7047 }
7048
7049 int BlueStore::getattrs(
7050 CollectionHandle &c_,
7051 const ghobject_t& oid,
7052 map<string,bufferptr>& aset)
7053 {
7054 Collection *c = static_cast<Collection *>(c_.get());
7055 dout(15) << __func__ << " " << c->cid << " " << oid << dendl;
7056 if (!c->exists)
7057 return -ENOENT;
7058
7059 int r;
7060 {
7061 RWLock::RLocker l(c->lock);
7062
7063 OnodeRef o = c->get_onode(oid, false);
7064 if (!o || !o->exists) {
7065 r = -ENOENT;
7066 goto out;
7067 }
7068 for (auto& i : o->onode.attrs) {
7069 aset.emplace(i.first.c_str(), i.second);
7070 }
7071 r = 0;
7072 }
7073
7074 out:
7075 if (r == 0 && _debug_mdata_eio(oid)) {
7076 r = -EIO;
7077 derr << __func__ << " " << c->cid << " " << oid << " INJECT EIO" << dendl;
7078 }
7079 dout(10) << __func__ << " " << c->cid << " " << oid
7080 << " = " << r << dendl;
7081 return r;
7082 }
7083
7084 int BlueStore::list_collections(vector<coll_t>& ls)
7085 {
7086 RWLock::RLocker l(coll_lock);
7087 for (ceph::unordered_map<coll_t, CollectionRef>::iterator p = coll_map.begin();
7088 p != coll_map.end();
7089 ++p)
7090 ls.push_back(p->first);
7091 return 0;
7092 }
7093
7094 bool BlueStore::collection_exists(const coll_t& c)
7095 {
7096 RWLock::RLocker l(coll_lock);
7097 return coll_map.count(c);
7098 }
7099
7100 int BlueStore::collection_empty(const coll_t& cid, bool *empty)
7101 {
7102 dout(15) << __func__ << " " << cid << dendl;
7103 vector<ghobject_t> ls;
7104 ghobject_t next;
7105 int r = collection_list(cid, ghobject_t(), ghobject_t::get_max(), 1,
7106 &ls, &next);
7107 if (r < 0) {
7108 derr << __func__ << " collection_list returned: " << cpp_strerror(r)
7109 << dendl;
7110 return r;
7111 }
7112 *empty = ls.empty();
7113 dout(10) << __func__ << " " << cid << " = " << (int)(*empty) << dendl;
7114 return 0;
7115 }
7116
7117 int BlueStore::collection_bits(const coll_t& cid)
7118 {
7119 dout(15) << __func__ << " " << cid << dendl;
7120 CollectionRef c = _get_collection(cid);
7121 if (!c)
7122 return -ENOENT;
7123 RWLock::RLocker l(c->lock);
7124 dout(10) << __func__ << " " << cid << " = " << c->cnode.bits << dendl;
7125 return c->cnode.bits;
7126 }
7127
7128 int BlueStore::collection_list(
7129 const coll_t& cid, const ghobject_t& start, const ghobject_t& end, int max,
7130 vector<ghobject_t> *ls, ghobject_t *pnext)
7131 {
7132 CollectionHandle c = _get_collection(cid);
7133 if (!c)
7134 return -ENOENT;
7135 return collection_list(c, start, end, max, ls, pnext);
7136 }
7137
7138 int BlueStore::collection_list(
7139 CollectionHandle &c_, const ghobject_t& start, const ghobject_t& end, int max,
7140 vector<ghobject_t> *ls, ghobject_t *pnext)
7141 {
7142 Collection *c = static_cast<Collection *>(c_.get());
7143 dout(15) << __func__ << " " << c->cid
7144 << " start " << start << " end " << end << " max " << max << dendl;
7145 int r;
7146 {
7147 RWLock::RLocker l(c->lock);
7148 r = _collection_list(c, start, end, max, ls, pnext);
7149 }
7150
7151 dout(10) << __func__ << " " << c->cid
7152 << " start " << start << " end " << end << " max " << max
7153 << " = " << r << ", ls.size() = " << ls->size()
7154 << ", next = " << (pnext ? *pnext : ghobject_t()) << dendl;
7155 return r;
7156 }
7157
7158 int BlueStore::_collection_list(
7159 Collection *c, const ghobject_t& start, const ghobject_t& end, int max,
7160 vector<ghobject_t> *ls, ghobject_t *pnext)
7161 {
7162
7163 if (!c->exists)
7164 return -ENOENT;
7165
7166 int r = 0;
7167 ghobject_t static_next;
7168 KeyValueDB::Iterator it;
7169 string temp_start_key, temp_end_key;
7170 string start_key, end_key;
7171 bool set_next = false;
7172 string pend;
7173 bool temp;
7174
7175 if (!pnext)
7176 pnext = &static_next;
7177
7178 if (start == ghobject_t::get_max() ||
7179 start.hobj.is_max()) {
7180 goto out;
7181 }
7182 get_coll_key_range(c->cid, c->cnode.bits, &temp_start_key, &temp_end_key,
7183 &start_key, &end_key);
7184 dout(20) << __func__
7185 << " range " << pretty_binary_string(temp_start_key)
7186 << " to " << pretty_binary_string(temp_end_key)
7187 << " and " << pretty_binary_string(start_key)
7188 << " to " << pretty_binary_string(end_key)
7189 << " start " << start << dendl;
7190 it = db->get_iterator(PREFIX_OBJ);
7191 if (start == ghobject_t() ||
7192 start.hobj == hobject_t() ||
7193 start == c->cid.get_min_hobj()) {
7194 it->upper_bound(temp_start_key);
7195 temp = true;
7196 } else {
7197 string k;
7198 get_object_key(cct, start, &k);
7199 if (start.hobj.is_temp()) {
7200 temp = true;
7201 assert(k >= temp_start_key && k < temp_end_key);
7202 } else {
7203 temp = false;
7204 assert(k >= start_key && k < end_key);
7205 }
7206 dout(20) << " start from " << pretty_binary_string(k)
7207 << " temp=" << (int)temp << dendl;
7208 it->lower_bound(k);
7209 }
7210 if (end.hobj.is_max()) {
7211 pend = temp ? temp_end_key : end_key;
7212 } else {
7213 get_object_key(cct, end, &end_key);
7214 if (end.hobj.is_temp()) {
7215 if (temp)
7216 pend = end_key;
7217 else
7218 goto out;
7219 } else {
7220 pend = temp ? temp_end_key : end_key;
7221 }
7222 }
7223 dout(20) << __func__ << " pend " << pretty_binary_string(pend) << dendl;
7224 while (true) {
7225 if (!it->valid() || it->key() >= pend) {
7226 if (!it->valid())
7227 dout(20) << __func__ << " iterator not valid (end of db?)" << dendl;
7228 else
7229 dout(20) << __func__ << " key " << pretty_binary_string(it->key())
7230 << " >= " << end << dendl;
7231 if (temp) {
7232 if (end.hobj.is_temp()) {
7233 break;
7234 }
7235 dout(30) << __func__ << " switch to non-temp namespace" << dendl;
7236 temp = false;
7237 it->upper_bound(start_key);
7238 pend = end_key;
7239 dout(30) << __func__ << " pend " << pretty_binary_string(pend) << dendl;
7240 continue;
7241 }
7242 break;
7243 }
7244 dout(30) << __func__ << " key " << pretty_binary_string(it->key()) << dendl;
7245 if (is_extent_shard_key(it->key())) {
7246 it->next();
7247 continue;
7248 }
7249 ghobject_t oid;
7250 int r = get_key_object(it->key(), &oid);
7251 assert(r == 0);
7252 dout(20) << __func__ << " oid " << oid << " end " << end << dendl;
7253 if (ls->size() >= (unsigned)max) {
7254 dout(20) << __func__ << " reached max " << max << dendl;
7255 *pnext = oid;
7256 set_next = true;
7257 break;
7258 }
7259 ls->push_back(oid);
7260 it->next();
7261 }
7262 out:
7263 if (!set_next) {
7264 *pnext = ghobject_t::get_max();
7265 }
7266
7267 return r;
7268 }
7269
7270 int BlueStore::omap_get(
7271 const coll_t& cid, ///< [in] Collection containing oid
7272 const ghobject_t &oid, ///< [in] Object containing omap
7273 bufferlist *header, ///< [out] omap header
7274 map<string, bufferlist> *out /// < [out] Key to value map
7275 )
7276 {
7277 CollectionHandle c = _get_collection(cid);
7278 if (!c)
7279 return -ENOENT;
7280 return omap_get(c, oid, header, out);
7281 }
7282
7283 int BlueStore::omap_get(
7284 CollectionHandle &c_, ///< [in] Collection containing oid
7285 const ghobject_t &oid, ///< [in] Object containing omap
7286 bufferlist *header, ///< [out] omap header
7287 map<string, bufferlist> *out /// < [out] Key to value map
7288 )
7289 {
7290 Collection *c = static_cast<Collection *>(c_.get());
7291 dout(15) << __func__ << " " << c->get_cid() << " oid " << oid << dendl;
7292 if (!c->exists)
7293 return -ENOENT;
7294 RWLock::RLocker l(c->lock);
7295 int r = 0;
7296 OnodeRef o = c->get_onode(oid, false);
7297 if (!o || !o->exists) {
7298 r = -ENOENT;
7299 goto out;
7300 }
7301 if (!o->onode.has_omap())
7302 goto out;
7303 o->flush();
7304 {
7305 KeyValueDB::Iterator it = db->get_iterator(PREFIX_OMAP);
7306 string head, tail;
7307 get_omap_header(o->onode.nid, &head);
7308 get_omap_tail(o->onode.nid, &tail);
7309 it->lower_bound(head);
7310 while (it->valid()) {
7311 if (it->key() == head) {
7312 dout(30) << __func__ << " got header" << dendl;
7313 *header = it->value();
7314 } else if (it->key() >= tail) {
7315 dout(30) << __func__ << " reached tail" << dendl;
7316 break;
7317 } else {
7318 string user_key;
7319 decode_omap_key(it->key(), &user_key);
7320 dout(30) << __func__ << " got " << pretty_binary_string(it->key())
7321 << " -> " << user_key << dendl;
7322 (*out)[user_key] = it->value();
7323 }
7324 it->next();
7325 }
7326 }
7327 out:
7328 dout(10) << __func__ << " " << c->get_cid() << " oid " << oid << " = " << r
7329 << dendl;
7330 return r;
7331 }
7332
7333 int BlueStore::omap_get_header(
7334 const coll_t& cid, ///< [in] Collection containing oid
7335 const ghobject_t &oid, ///< [in] Object containing omap
7336 bufferlist *header, ///< [out] omap header
7337 bool allow_eio ///< [in] don't assert on eio
7338 )
7339 {
7340 CollectionHandle c = _get_collection(cid);
7341 if (!c)
7342 return -ENOENT;
7343 return omap_get_header(c, oid, header, allow_eio);
7344 }
7345
7346 int BlueStore::omap_get_header(
7347 CollectionHandle &c_, ///< [in] Collection containing oid
7348 const ghobject_t &oid, ///< [in] Object containing omap
7349 bufferlist *header, ///< [out] omap header
7350 bool allow_eio ///< [in] don't assert on eio
7351 )
7352 {
7353 Collection *c = static_cast<Collection *>(c_.get());
7354 dout(15) << __func__ << " " << c->get_cid() << " oid " << oid << dendl;
7355 if (!c->exists)
7356 return -ENOENT;
7357 RWLock::RLocker l(c->lock);
7358 int r = 0;
7359 OnodeRef o = c->get_onode(oid, false);
7360 if (!o || !o->exists) {
7361 r = -ENOENT;
7362 goto out;
7363 }
7364 if (!o->onode.has_omap())
7365 goto out;
7366 o->flush();
7367 {
7368 string head;
7369 get_omap_header(o->onode.nid, &head);
7370 if (db->get(PREFIX_OMAP, head, header) >= 0) {
7371 dout(30) << __func__ << " got header" << dendl;
7372 } else {
7373 dout(30) << __func__ << " no header" << dendl;
7374 }
7375 }
7376 out:
7377 dout(10) << __func__ << " " << c->get_cid() << " oid " << oid << " = " << r
7378 << dendl;
7379 return r;
7380 }
7381
7382 int BlueStore::omap_get_keys(
7383 const coll_t& cid, ///< [in] Collection containing oid
7384 const ghobject_t &oid, ///< [in] Object containing omap
7385 set<string> *keys ///< [out] Keys defined on oid
7386 )
7387 {
7388 CollectionHandle c = _get_collection(cid);
7389 if (!c)
7390 return -ENOENT;
7391 return omap_get_keys(c, oid, keys);
7392 }
7393
7394 int BlueStore::omap_get_keys(
7395 CollectionHandle &c_, ///< [in] Collection containing oid
7396 const ghobject_t &oid, ///< [in] Object containing omap
7397 set<string> *keys ///< [out] Keys defined on oid
7398 )
7399 {
7400 Collection *c = static_cast<Collection *>(c_.get());
7401 dout(15) << __func__ << " " << c->get_cid() << " oid " << oid << dendl;
7402 if (!c->exists)
7403 return -ENOENT;
7404 RWLock::RLocker l(c->lock);
7405 int r = 0;
7406 OnodeRef o = c->get_onode(oid, false);
7407 if (!o || !o->exists) {
7408 r = -ENOENT;
7409 goto out;
7410 }
7411 if (!o->onode.has_omap())
7412 goto out;
7413 o->flush();
7414 {
7415 KeyValueDB::Iterator it = db->get_iterator(PREFIX_OMAP);
7416 string head, tail;
7417 get_omap_key(o->onode.nid, string(), &head);
7418 get_omap_tail(o->onode.nid, &tail);
7419 it->lower_bound(head);
7420 while (it->valid()) {
7421 if (it->key() >= tail) {
7422 dout(30) << __func__ << " reached tail" << dendl;
7423 break;
7424 }
7425 string user_key;
7426 decode_omap_key(it->key(), &user_key);
7427 dout(30) << __func__ << " got " << pretty_binary_string(it->key())
7428 << " -> " << user_key << dendl;
7429 keys->insert(user_key);
7430 it->next();
7431 }
7432 }
7433 out:
7434 dout(10) << __func__ << " " << c->get_cid() << " oid " << oid << " = " << r
7435 << dendl;
7436 return r;
7437 }
7438
7439 int BlueStore::omap_get_values(
7440 const coll_t& cid, ///< [in] Collection containing oid
7441 const ghobject_t &oid, ///< [in] Object containing omap
7442 const set<string> &keys, ///< [in] Keys to get
7443 map<string, bufferlist> *out ///< [out] Returned keys and values
7444 )
7445 {
7446 CollectionHandle c = _get_collection(cid);
7447 if (!c)
7448 return -ENOENT;
7449 return omap_get_values(c, oid, keys, out);
7450 }
7451
7452 int BlueStore::omap_get_values(
7453 CollectionHandle &c_, ///< [in] Collection containing oid
7454 const ghobject_t &oid, ///< [in] Object containing omap
7455 const set<string> &keys, ///< [in] Keys to get
7456 map<string, bufferlist> *out ///< [out] Returned keys and values
7457 )
7458 {
7459 Collection *c = static_cast<Collection *>(c_.get());
7460 dout(15) << __func__ << " " << c->get_cid() << " oid " << oid << dendl;
7461 if (!c->exists)
7462 return -ENOENT;
7463 RWLock::RLocker l(c->lock);
7464 int r = 0;
7465 string final_key;
7466 OnodeRef o = c->get_onode(oid, false);
7467 if (!o || !o->exists) {
7468 r = -ENOENT;
7469 goto out;
7470 }
7471 if (!o->onode.has_omap())
7472 goto out;
7473 o->flush();
7474 _key_encode_u64(o->onode.nid, &final_key);
7475 final_key.push_back('.');
7476 for (set<string>::const_iterator p = keys.begin(); p != keys.end(); ++p) {
7477 final_key.resize(9); // keep prefix
7478 final_key += *p;
7479 bufferlist val;
7480 if (db->get(PREFIX_OMAP, final_key, &val) >= 0) {
7481 dout(30) << __func__ << " got " << pretty_binary_string(final_key)
7482 << " -> " << *p << dendl;
7483 out->insert(make_pair(*p, val));
7484 }
7485 }
7486 out:
7487 dout(10) << __func__ << " " << c->get_cid() << " oid " << oid << " = " << r
7488 << dendl;
7489 return r;
7490 }
7491
7492 int BlueStore::omap_check_keys(
7493 const coll_t& cid, ///< [in] Collection containing oid
7494 const ghobject_t &oid, ///< [in] Object containing omap
7495 const set<string> &keys, ///< [in] Keys to check
7496 set<string> *out ///< [out] Subset of keys defined on oid
7497 )
7498 {
7499 CollectionHandle c = _get_collection(cid);
7500 if (!c)
7501 return -ENOENT;
7502 return omap_check_keys(c, oid, keys, out);
7503 }
7504
7505 int BlueStore::omap_check_keys(
7506 CollectionHandle &c_, ///< [in] Collection containing oid
7507 const ghobject_t &oid, ///< [in] Object containing omap
7508 const set<string> &keys, ///< [in] Keys to check
7509 set<string> *out ///< [out] Subset of keys defined on oid
7510 )
7511 {
7512 Collection *c = static_cast<Collection *>(c_.get());
7513 dout(15) << __func__ << " " << c->get_cid() << " oid " << oid << dendl;
7514 if (!c->exists)
7515 return -ENOENT;
7516 RWLock::RLocker l(c->lock);
7517 int r = 0;
7518 string final_key;
7519 OnodeRef o = c->get_onode(oid, false);
7520 if (!o || !o->exists) {
7521 r = -ENOENT;
7522 goto out;
7523 }
7524 if (!o->onode.has_omap())
7525 goto out;
7526 o->flush();
7527 _key_encode_u64(o->onode.nid, &final_key);
7528 final_key.push_back('.');
7529 for (set<string>::const_iterator p = keys.begin(); p != keys.end(); ++p) {
7530 final_key.resize(9); // keep prefix
7531 final_key += *p;
7532 bufferlist val;
7533 if (db->get(PREFIX_OMAP, final_key, &val) >= 0) {
7534 dout(30) << __func__ << " have " << pretty_binary_string(final_key)
7535 << " -> " << *p << dendl;
7536 out->insert(*p);
7537 } else {
7538 dout(30) << __func__ << " miss " << pretty_binary_string(final_key)
7539 << " -> " << *p << dendl;
7540 }
7541 }
7542 out:
7543 dout(10) << __func__ << " " << c->get_cid() << " oid " << oid << " = " << r
7544 << dendl;
7545 return r;
7546 }
7547
7548 ObjectMap::ObjectMapIterator BlueStore::get_omap_iterator(
7549 const coll_t& cid, ///< [in] collection
7550 const ghobject_t &oid ///< [in] object
7551 )
7552 {
7553 CollectionHandle c = _get_collection(cid);
7554 if (!c) {
7555 dout(10) << __func__ << " " << cid << "doesn't exist" <<dendl;
7556 return ObjectMap::ObjectMapIterator();
7557 }
7558 return get_omap_iterator(c, oid);
7559 }
7560
7561 ObjectMap::ObjectMapIterator BlueStore::get_omap_iterator(
7562 CollectionHandle &c_, ///< [in] collection
7563 const ghobject_t &oid ///< [in] object
7564 )
7565 {
7566 Collection *c = static_cast<Collection *>(c_.get());
7567 dout(10) << __func__ << " " << c->get_cid() << " " << oid << dendl;
7568 if (!c->exists) {
7569 return ObjectMap::ObjectMapIterator();
7570 }
7571 RWLock::RLocker l(c->lock);
7572 OnodeRef o = c->get_onode(oid, false);
7573 if (!o || !o->exists) {
7574 dout(10) << __func__ << " " << oid << "doesn't exist" <<dendl;
7575 return ObjectMap::ObjectMapIterator();
7576 }
7577 o->flush();
7578 dout(10) << __func__ << " has_omap = " << (int)o->onode.has_omap() <<dendl;
7579 KeyValueDB::Iterator it = db->get_iterator(PREFIX_OMAP);
7580 return ObjectMap::ObjectMapIterator(new OmapIteratorImpl(c, o, it));
7581 }
7582
7583 // -----------------
7584 // write helpers
7585
7586 void BlueStore::_prepare_ondisk_format_super(KeyValueDB::Transaction& t)
7587 {
7588 dout(10) << __func__ << " ondisk_format " << ondisk_format
7589 << " min_compat_ondisk_format " << min_compat_ondisk_format
7590 << dendl;
7591 assert(ondisk_format == latest_ondisk_format);
7592 {
7593 bufferlist bl;
7594 ::encode(ondisk_format, bl);
7595 t->set(PREFIX_SUPER, "ondisk_format", bl);
7596 }
7597 {
7598 bufferlist bl;
7599 ::encode(min_compat_ondisk_format, bl);
7600 t->set(PREFIX_SUPER, "min_compat_ondisk_format", bl);
7601 }
7602 }
7603
7604 int BlueStore::_open_super_meta()
7605 {
7606 // nid
7607 {
7608 nid_max = 0;
7609 bufferlist bl;
7610 db->get(PREFIX_SUPER, "nid_max", &bl);
7611 bufferlist::iterator p = bl.begin();
7612 try {
7613 uint64_t v;
7614 ::decode(v, p);
7615 nid_max = v;
7616 } catch (buffer::error& e) {
7617 derr << __func__ << " unable to read nid_max" << dendl;
7618 return -EIO;
7619 }
7620 dout(10) << __func__ << " old nid_max " << nid_max << dendl;
7621 nid_last = nid_max.load();
7622 }
7623
7624 // blobid
7625 {
7626 blobid_max = 0;
7627 bufferlist bl;
7628 db->get(PREFIX_SUPER, "blobid_max", &bl);
7629 bufferlist::iterator p = bl.begin();
7630 try {
7631 uint64_t v;
7632 ::decode(v, p);
7633 blobid_max = v;
7634 } catch (buffer::error& e) {
7635 derr << __func__ << " unable to read blobid_max" << dendl;
7636 return -EIO;
7637 }
7638 dout(10) << __func__ << " old blobid_max " << blobid_max << dendl;
7639 blobid_last = blobid_max.load();
7640 }
7641
7642 // freelist
7643 {
7644 bufferlist bl;
7645 db->get(PREFIX_SUPER, "freelist_type", &bl);
7646 if (bl.length()) {
7647 freelist_type = std::string(bl.c_str(), bl.length());
7648 dout(10) << __func__ << " freelist_type " << freelist_type << dendl;
7649 } else {
7650 assert("Not Support extent freelist manager" == 0);
7651 }
7652 }
7653
7654 // bluefs alloc
7655 if (cct->_conf->bluestore_bluefs) {
7656 bluefs_extents.clear();
7657 bufferlist bl;
7658 db->get(PREFIX_SUPER, "bluefs_extents", &bl);
7659 bufferlist::iterator p = bl.begin();
7660 try {
7661 ::decode(bluefs_extents, p);
7662 }
7663 catch (buffer::error& e) {
7664 derr << __func__ << " unable to read bluefs_extents" << dendl;
7665 return -EIO;
7666 }
7667 dout(10) << __func__ << " bluefs_extents 0x" << std::hex << bluefs_extents
7668 << std::dec << dendl;
7669 }
7670
7671 // ondisk format
7672 int32_t compat_ondisk_format = 0;
7673 {
7674 bufferlist bl;
7675 int r = db->get(PREFIX_SUPER, "ondisk_format", &bl);
7676 if (r < 0) {
7677 // base case: kraken bluestore is v1 and readable by v1
7678 dout(20) << __func__ << " missing ondisk_format; assuming kraken"
7679 << dendl;
7680 ondisk_format = 1;
7681 compat_ondisk_format = 1;
7682 } else {
7683 auto p = bl.begin();
7684 try {
7685 ::decode(ondisk_format, p);
7686 } catch (buffer::error& e) {
7687 derr << __func__ << " unable to read ondisk_format" << dendl;
7688 return -EIO;
7689 }
7690 bl.clear();
7691 {
7692 r = db->get(PREFIX_SUPER, "min_compat_ondisk_format", &bl);
7693 assert(!r);
7694 auto p = bl.begin();
7695 try {
7696 ::decode(compat_ondisk_format, p);
7697 } catch (buffer::error& e) {
7698 derr << __func__ << " unable to read compat_ondisk_format" << dendl;
7699 return -EIO;
7700 }
7701 }
7702 }
7703 dout(10) << __func__ << " ondisk_format " << ondisk_format
7704 << " compat_ondisk_format " << compat_ondisk_format
7705 << dendl;
7706 }
7707
7708 if (latest_ondisk_format < compat_ondisk_format) {
7709 derr << __func__ << " compat_ondisk_format is "
7710 << compat_ondisk_format << " but we only understand version "
7711 << latest_ondisk_format << dendl;
7712 return -EPERM;
7713 }
7714 if (ondisk_format < latest_ondisk_format) {
7715 int r = _upgrade_super();
7716 if (r < 0) {
7717 return r;
7718 }
7719 }
7720
7721 {
7722 bufferlist bl;
7723 db->get(PREFIX_SUPER, "min_alloc_size", &bl);
7724 auto p = bl.begin();
7725 try {
7726 uint64_t val;
7727 ::decode(val, p);
7728 min_alloc_size = val;
7729 min_alloc_size_order = ctz(val);
7730 assert(min_alloc_size == 1u << min_alloc_size_order);
7731 } catch (buffer::error& e) {
7732 derr << __func__ << " unable to read min_alloc_size" << dendl;
7733 return -EIO;
7734 }
7735 dout(10) << __func__ << " min_alloc_size 0x" << std::hex << min_alloc_size
7736 << std::dec << dendl;
7737 }
7738 _open_statfs();
7739 _set_alloc_sizes();
7740 _set_throttle_params();
7741
7742 _set_csum();
7743 _set_compression();
7744 _set_blob_size();
7745
7746 return 0;
7747 }
7748
7749 int BlueStore::_upgrade_super()
7750 {
7751 dout(1) << __func__ << " from " << ondisk_format << ", latest "
7752 << latest_ondisk_format << dendl;
7753 assert(ondisk_format > 0);
7754 assert(ondisk_format < latest_ondisk_format);
7755
7756 if (ondisk_format == 1) {
7757 // changes:
7758 // - super: added ondisk_format
7759 // - super: added min_readable_ondisk_format
7760 // - super: added min_compat_ondisk_format
7761 // - super: added min_alloc_size
7762 // - super: removed min_min_alloc_size
7763 KeyValueDB::Transaction t = db->get_transaction();
7764 {
7765 bufferlist bl;
7766 db->get(PREFIX_SUPER, "min_min_alloc_size", &bl);
7767 auto p = bl.begin();
7768 try {
7769 uint64_t val;
7770 ::decode(val, p);
7771 min_alloc_size = val;
7772 } catch (buffer::error& e) {
7773 derr << __func__ << " failed to read min_min_alloc_size" << dendl;
7774 return -EIO;
7775 }
7776 t->set(PREFIX_SUPER, "min_alloc_size", bl);
7777 t->rmkey(PREFIX_SUPER, "min_min_alloc_size");
7778 }
7779 ondisk_format = 2;
7780 _prepare_ondisk_format_super(t);
7781 int r = db->submit_transaction_sync(t);
7782 assert(r == 0);
7783 }
7784
7785 // done
7786 dout(1) << __func__ << " done" << dendl;
7787 return 0;
7788 }
7789
7790 void BlueStore::_assign_nid(TransContext *txc, OnodeRef o)
7791 {
7792 if (o->onode.nid) {
7793 assert(o->exists);
7794 return;
7795 }
7796 uint64_t nid = ++nid_last;
7797 dout(20) << __func__ << " " << nid << dendl;
7798 o->onode.nid = nid;
7799 txc->last_nid = nid;
7800 o->exists = true;
7801 }
7802
7803 uint64_t BlueStore::_assign_blobid(TransContext *txc)
7804 {
7805 uint64_t bid = ++blobid_last;
7806 dout(20) << __func__ << " " << bid << dendl;
7807 txc->last_blobid = bid;
7808 return bid;
7809 }
7810
7811 void BlueStore::get_db_statistics(Formatter *f)
7812 {
7813 db->get_statistics(f);
7814 }
7815
7816 BlueStore::TransContext *BlueStore::_txc_create(OpSequencer *osr)
7817 {
7818 TransContext *txc = new TransContext(cct, osr);
7819 txc->t = db->get_transaction();
7820 osr->queue_new(txc);
7821 dout(20) << __func__ << " osr " << osr << " = " << txc
7822 << " seq " << txc->seq << dendl;
7823 return txc;
7824 }
7825
7826 void BlueStore::_txc_calc_cost(TransContext *txc)
7827 {
7828 // this is about the simplest model for transaction cost you can
7829 // imagine. there is some fixed overhead cost by saying there is a
7830 // minimum of one "io". and then we have some cost per "io" that is
7831 // a configurable (with different hdd and ssd defaults), and add
7832 // that to the bytes value.
7833 int ios = 1; // one "io" for the kv commit
7834 for (auto& p : txc->ioc.pending_aios) {
7835 ios += p.iov.size();
7836 }
7837 auto cost = throttle_cost_per_io.load();
7838 txc->cost = ios * cost + txc->bytes;
7839 dout(10) << __func__ << " " << txc << " cost " << txc->cost << " ("
7840 << ios << " ios * " << cost << " + " << txc->bytes
7841 << " bytes)" << dendl;
7842 }
7843
7844 void BlueStore::_txc_update_store_statfs(TransContext *txc)
7845 {
7846 if (txc->statfs_delta.is_empty())
7847 return;
7848
7849 logger->inc(l_bluestore_allocated, txc->statfs_delta.allocated());
7850 logger->inc(l_bluestore_stored, txc->statfs_delta.stored());
7851 logger->inc(l_bluestore_compressed, txc->statfs_delta.compressed());
7852 logger->inc(l_bluestore_compressed_allocated, txc->statfs_delta.compressed_allocated());
7853 logger->inc(l_bluestore_compressed_original, txc->statfs_delta.compressed_original());
7854
7855 {
7856 std::lock_guard<std::mutex> l(vstatfs_lock);
7857 vstatfs += txc->statfs_delta;
7858 }
7859
7860 bufferlist bl;
7861 txc->statfs_delta.encode(bl);
7862
7863 txc->t->merge(PREFIX_STAT, "bluestore_statfs", bl);
7864 txc->statfs_delta.reset();
7865 }
7866
7867 void BlueStore::_txc_state_proc(TransContext *txc)
7868 {
7869 while (true) {
7870 dout(10) << __func__ << " txc " << txc
7871 << " " << txc->get_state_name() << dendl;
7872 switch (txc->state) {
7873 case TransContext::STATE_PREPARE:
7874 txc->log_state_latency(logger, l_bluestore_state_prepare_lat);
7875 if (txc->ioc.has_pending_aios()) {
7876 txc->state = TransContext::STATE_AIO_WAIT;
7877 txc->had_ios = true;
7878 _txc_aio_submit(txc);
7879 return;
7880 }
7881 // ** fall-thru **
7882
7883 case TransContext::STATE_AIO_WAIT:
7884 txc->log_state_latency(logger, l_bluestore_state_aio_wait_lat);
7885 _txc_finish_io(txc); // may trigger blocked txc's too
7886 return;
7887
7888 case TransContext::STATE_IO_DONE:
7889 //assert(txc->osr->qlock.is_locked()); // see _txc_finish_io
7890 if (txc->had_ios) {
7891 ++txc->osr->txc_with_unstable_io;
7892 }
7893 txc->log_state_latency(logger, l_bluestore_state_io_done_lat);
7894 txc->state = TransContext::STATE_KV_QUEUED;
7895 if (cct->_conf->bluestore_sync_submit_transaction) {
7896 if (txc->last_nid >= nid_max ||
7897 txc->last_blobid >= blobid_max) {
7898 dout(20) << __func__
7899 << " last_{nid,blobid} exceeds max, submit via kv thread"
7900 << dendl;
7901 } else if (txc->osr->kv_committing_serially) {
7902 dout(20) << __func__ << " prior txc submitted via kv thread, us too"
7903 << dendl;
7904 // note: this is starvation-prone. once we have a txc in a busy
7905 // sequencer that is committing serially it is possible to keep
7906 // submitting new transactions fast enough that we get stuck doing
7907 // so. the alternative is to block here... fixme?
7908 } else if (txc->osr->txc_with_unstable_io) {
7909 dout(20) << __func__ << " prior txc(s) with unstable ios "
7910 << txc->osr->txc_with_unstable_io.load() << dendl;
7911 } else if (cct->_conf->bluestore_debug_randomize_serial_transaction &&
7912 rand() % cct->_conf->bluestore_debug_randomize_serial_transaction
7913 == 0) {
7914 dout(20) << __func__ << " DEBUG randomly forcing submit via kv thread"
7915 << dendl;
7916 } else {
7917 txc->state = TransContext::STATE_KV_SUBMITTED;
7918 int r = cct->_conf->bluestore_debug_omit_kv_commit ? 0 : db->submit_transaction(txc->t);
7919 assert(r == 0);
7920 _txc_applied_kv(txc);
7921 }
7922 }
7923 {
7924 std::lock_guard<std::mutex> l(kv_lock);
7925 kv_queue.push_back(txc);
7926 kv_cond.notify_one();
7927 if (txc->state != TransContext::STATE_KV_SUBMITTED) {
7928 kv_queue_unsubmitted.push_back(txc);
7929 ++txc->osr->kv_committing_serially;
7930 }
7931 if (txc->had_ios)
7932 kv_ios++;
7933 kv_throttle_costs += txc->cost;
7934 }
7935 return;
7936 case TransContext::STATE_KV_SUBMITTED:
7937 txc->log_state_latency(logger, l_bluestore_state_kv_committing_lat);
7938 txc->state = TransContext::STATE_KV_DONE;
7939 _txc_committed_kv(txc);
7940 // ** fall-thru **
7941
7942 case TransContext::STATE_KV_DONE:
7943 txc->log_state_latency(logger, l_bluestore_state_kv_done_lat);
7944 if (txc->deferred_txn) {
7945 txc->state = TransContext::STATE_DEFERRED_QUEUED;
7946 _deferred_queue(txc);
7947 return;
7948 }
7949 txc->state = TransContext::STATE_FINISHING;
7950 break;
7951
7952 case TransContext::STATE_DEFERRED_CLEANUP:
7953 txc->log_state_latency(logger, l_bluestore_state_deferred_cleanup_lat);
7954 txc->state = TransContext::STATE_FINISHING;
7955 // ** fall-thru **
7956
7957 case TransContext::STATE_FINISHING:
7958 txc->log_state_latency(logger, l_bluestore_state_finishing_lat);
7959 _txc_finish(txc);
7960 return;
7961
7962 default:
7963 derr << __func__ << " unexpected txc " << txc
7964 << " state " << txc->get_state_name() << dendl;
7965 assert(0 == "unexpected txc state");
7966 return;
7967 }
7968 }
7969 }
7970
7971 void BlueStore::_txc_finish_io(TransContext *txc)
7972 {
7973 dout(20) << __func__ << " " << txc << dendl;
7974
7975 /*
7976 * we need to preserve the order of kv transactions,
7977 * even though aio will complete in any order.
7978 */
7979
7980 OpSequencer *osr = txc->osr.get();
7981 std::lock_guard<std::mutex> l(osr->qlock);
7982 txc->state = TransContext::STATE_IO_DONE;
7983
7984 // release aio contexts (including pinned buffers).
7985 txc->ioc.running_aios.clear();
7986
7987 OpSequencer::q_list_t::iterator p = osr->q.iterator_to(*txc);
7988 while (p != osr->q.begin()) {
7989 --p;
7990 if (p->state < TransContext::STATE_IO_DONE) {
7991 dout(20) << __func__ << " " << txc << " blocked by " << &*p << " "
7992 << p->get_state_name() << dendl;
7993 return;
7994 }
7995 if (p->state > TransContext::STATE_IO_DONE) {
7996 ++p;
7997 break;
7998 }
7999 }
8000 do {
8001 _txc_state_proc(&*p++);
8002 } while (p != osr->q.end() &&
8003 p->state == TransContext::STATE_IO_DONE);
8004
8005 if (osr->kv_submitted_waiters &&
8006 osr->_is_all_kv_submitted()) {
8007 osr->qcond.notify_all();
8008 }
8009 }
8010
8011 void BlueStore::_txc_write_nodes(TransContext *txc, KeyValueDB::Transaction t)
8012 {
8013 dout(20) << __func__ << " txc " << txc
8014 << " onodes " << txc->onodes
8015 << " shared_blobs " << txc->shared_blobs
8016 << dendl;
8017
8018 // finalize onodes
8019 for (auto o : txc->onodes) {
8020 // finalize extent_map shards
8021 o->extent_map.update(t, false);
8022 if (o->extent_map.needs_reshard()) {
8023 o->extent_map.reshard(db, t);
8024 o->extent_map.update(t, true);
8025 if (o->extent_map.needs_reshard()) {
8026 dout(20) << __func__ << " warning: still wants reshard, check options?"
8027 << dendl;
8028 o->extent_map.clear_needs_reshard();
8029 }
8030 logger->inc(l_bluestore_onode_reshard);
8031 }
8032
8033 // bound encode
8034 size_t bound = 0;
8035 denc(o->onode, bound);
8036 o->extent_map.bound_encode_spanning_blobs(bound);
8037 if (o->onode.extent_map_shards.empty()) {
8038 denc(o->extent_map.inline_bl, bound);
8039 }
8040
8041 // encode
8042 bufferlist bl;
8043 unsigned onode_part, blob_part, extent_part;
8044 {
8045 auto p = bl.get_contiguous_appender(bound, true);
8046 denc(o->onode, p);
8047 onode_part = p.get_logical_offset();
8048 o->extent_map.encode_spanning_blobs(p);
8049 blob_part = p.get_logical_offset() - onode_part;
8050 if (o->onode.extent_map_shards.empty()) {
8051 denc(o->extent_map.inline_bl, p);
8052 }
8053 extent_part = p.get_logical_offset() - onode_part - blob_part;
8054 }
8055
8056 dout(20) << " onode " << o->oid << " is " << bl.length()
8057 << " (" << onode_part << " bytes onode + "
8058 << blob_part << " bytes spanning blobs + "
8059 << extent_part << " bytes inline extents)"
8060 << dendl;
8061 t->set(PREFIX_OBJ, o->key.c_str(), o->key.size(), bl);
8062 o->flushing_count++;
8063 }
8064
8065 // objects we modified but didn't affect the onode
8066 auto p = txc->modified_objects.begin();
8067 while (p != txc->modified_objects.end()) {
8068 if (txc->onodes.count(*p) == 0) {
8069 (*p)->flushing_count++;
8070 ++p;
8071 } else {
8072 // remove dups with onodes list to avoid problems in _txc_finish
8073 p = txc->modified_objects.erase(p);
8074 }
8075 }
8076
8077 // finalize shared_blobs
8078 for (auto sb : txc->shared_blobs) {
8079 string key;
8080 auto sbid = sb->get_sbid();
8081 get_shared_blob_key(sbid, &key);
8082 if (sb->persistent->empty()) {
8083 dout(20) << " shared_blob 0x" << std::hex << sbid << std::dec
8084 << " is empty" << dendl;
8085 t->rmkey(PREFIX_SHARED_BLOB, key);
8086 } else {
8087 bufferlist bl;
8088 ::encode(*(sb->persistent), bl);
8089 dout(20) << " shared_blob 0x" << std::hex << sbid << std::dec
8090 << " is " << bl.length() << " " << *sb << dendl;
8091 t->set(PREFIX_SHARED_BLOB, key, bl);
8092 }
8093 }
8094 }
8095
8096 void BlueStore::BSPerfTracker::update_from_perfcounters(
8097 PerfCounters &logger)
8098 {
8099 os_commit_latency.consume_next(
8100 logger.get_tavg_ms(
8101 l_bluestore_commit_lat));
8102 os_apply_latency.consume_next(
8103 logger.get_tavg_ms(
8104 l_bluestore_commit_lat));
8105 }
8106
8107 void BlueStore::_txc_finalize_kv(TransContext *txc, KeyValueDB::Transaction t)
8108 {
8109 dout(20) << __func__ << " txc " << txc << std::hex
8110 << " allocated 0x" << txc->allocated
8111 << " released 0x" << txc->released
8112 << std::dec << dendl;
8113
8114 // We have to handle the case where we allocate *and* deallocate the
8115 // same region in this transaction. The freelist doesn't like that.
8116 // (Actually, the only thing that cares is the BitmapFreelistManager
8117 // debug check. But that's important.)
8118 interval_set<uint64_t> tmp_allocated, tmp_released;
8119 interval_set<uint64_t> *pallocated = &txc->allocated;
8120 interval_set<uint64_t> *preleased = &txc->released;
8121 if (!txc->allocated.empty() && !txc->released.empty()) {
8122 interval_set<uint64_t> overlap;
8123 overlap.intersection_of(txc->allocated, txc->released);
8124 if (!overlap.empty()) {
8125 tmp_allocated = txc->allocated;
8126 tmp_allocated.subtract(overlap);
8127 tmp_released = txc->released;
8128 tmp_released.subtract(overlap);
8129 dout(20) << __func__ << " overlap 0x" << std::hex << overlap
8130 << ", new allocated 0x" << tmp_allocated
8131 << " released 0x" << tmp_released << std::dec
8132 << dendl;
8133 pallocated = &tmp_allocated;
8134 preleased = &tmp_released;
8135 }
8136 }
8137
8138 // update freelist with non-overlap sets
8139 for (interval_set<uint64_t>::iterator p = pallocated->begin();
8140 p != pallocated->end();
8141 ++p) {
8142 fm->allocate(p.get_start(), p.get_len(), t);
8143 }
8144 for (interval_set<uint64_t>::iterator p = preleased->begin();
8145 p != preleased->end();
8146 ++p) {
8147 dout(20) << __func__ << " release 0x" << std::hex << p.get_start()
8148 << "~" << p.get_len() << std::dec << dendl;
8149 fm->release(p.get_start(), p.get_len(), t);
8150 }
8151
8152 _txc_update_store_statfs(txc);
8153 }
8154
8155 void BlueStore::_txc_applied_kv(TransContext *txc)
8156 {
8157 for (auto ls : { &txc->onodes, &txc->modified_objects }) {
8158 for (auto& o : *ls) {
8159 dout(20) << __func__ << " onode " << o << " had " << o->flushing_count
8160 << dendl;
8161 if (--o->flushing_count == 0) {
8162 std::lock_guard<std::mutex> l(o->flush_lock);
8163 o->flush_cond.notify_all();
8164 }
8165 }
8166 }
8167 }
8168
8169 void BlueStore::_txc_committed_kv(TransContext *txc)
8170 {
8171 dout(20) << __func__ << " txc " << txc << dendl;
8172
8173 // warning: we're calling onreadable_sync inside the sequencer lock
8174 if (txc->onreadable_sync) {
8175 txc->onreadable_sync->complete(0);
8176 txc->onreadable_sync = NULL;
8177 }
8178 unsigned n = txc->osr->parent->shard_hint.hash_to_shard(m_finisher_num);
8179 if (txc->oncommit) {
8180 logger->tinc(l_bluestore_commit_lat, ceph_clock_now() - txc->start);
8181 finishers[n]->queue(txc->oncommit);
8182 txc->oncommit = NULL;
8183 }
8184 if (txc->onreadable) {
8185 finishers[n]->queue(txc->onreadable);
8186 txc->onreadable = NULL;
8187 }
8188
8189 if (!txc->oncommits.empty()) {
8190 finishers[n]->queue(txc->oncommits);
8191 }
8192 }
8193
8194 void BlueStore::_txc_finish(TransContext *txc)
8195 {
8196 dout(20) << __func__ << " " << txc << " onodes " << txc->onodes << dendl;
8197 assert(txc->state == TransContext::STATE_FINISHING);
8198
8199 for (auto& sb : txc->shared_blobs_written) {
8200 sb->bc.finish_write(sb->get_cache(), txc->seq);
8201 }
8202 txc->shared_blobs_written.clear();
8203
8204 while (!txc->removed_collections.empty()) {
8205 _queue_reap_collection(txc->removed_collections.front());
8206 txc->removed_collections.pop_front();
8207 }
8208
8209 OpSequencerRef osr = txc->osr;
8210 bool empty = false;
8211 bool submit_deferred = false;
8212 OpSequencer::q_list_t releasing_txc;
8213 {
8214 std::lock_guard<std::mutex> l(osr->qlock);
8215 txc->state = TransContext::STATE_DONE;
8216 bool notify = false;
8217 while (!osr->q.empty()) {
8218 TransContext *txc = &osr->q.front();
8219 dout(20) << __func__ << " txc " << txc << " " << txc->get_state_name()
8220 << dendl;
8221 if (txc->state != TransContext::STATE_DONE) {
8222 if (txc->state == TransContext::STATE_PREPARE &&
8223 deferred_aggressive) {
8224 // for _osr_drain_preceding()
8225 notify = true;
8226 }
8227 if (txc->state == TransContext::STATE_DEFERRED_QUEUED &&
8228 osr->q.size() > g_conf->bluestore_max_deferred_txc) {
8229 submit_deferred = true;
8230 }
8231 break;
8232 }
8233
8234 osr->q.pop_front();
8235 releasing_txc.push_back(*txc);
8236 notify = true;
8237 }
8238 if (notify) {
8239 osr->qcond.notify_all();
8240 }
8241 if (osr->q.empty()) {
8242 dout(20) << __func__ << " osr " << osr << " q now empty" << dendl;
8243 empty = true;
8244 }
8245 }
8246 while (!releasing_txc.empty()) {
8247 // release to allocator only after all preceding txc's have also
8248 // finished any deferred writes that potentially land in these
8249 // blocks
8250 auto txc = &releasing_txc.front();
8251 _txc_release_alloc(txc);
8252 releasing_txc.pop_front();
8253 txc->log_state_latency(logger, l_bluestore_state_done_lat);
8254 delete txc;
8255 }
8256
8257 if (submit_deferred) {
8258 // we're pinning memory; flush! we could be more fine-grained here but
8259 // i'm not sure it's worth the bother.
8260 deferred_try_submit();
8261 }
8262
8263 if (empty && osr->zombie) {
8264 dout(10) << __func__ << " reaping empty zombie osr " << osr << dendl;
8265 osr->_unregister();
8266 }
8267 }
8268
8269 void BlueStore::_txc_release_alloc(TransContext *txc)
8270 {
8271 // update allocator with full released set
8272 if (!cct->_conf->bluestore_debug_no_reuse_blocks) {
8273 dout(10) << __func__ << " " << txc << " " << txc->released << dendl;
8274 for (interval_set<uint64_t>::iterator p = txc->released.begin();
8275 p != txc->released.end();
8276 ++p) {
8277 alloc->release(p.get_start(), p.get_len());
8278 }
8279 }
8280
8281 txc->allocated.clear();
8282 txc->released.clear();
8283 }
8284
8285 void BlueStore::_osr_drain_preceding(TransContext *txc)
8286 {
8287 OpSequencer *osr = txc->osr.get();
8288 dout(10) << __func__ << " " << txc << " osr " << osr << dendl;
8289 ++deferred_aggressive; // FIXME: maybe osr-local aggressive flag?
8290 {
8291 // submit anything pending
8292 deferred_lock.lock();
8293 if (osr->deferred_pending) {
8294 _deferred_submit_unlock(osr);
8295 } else {
8296 deferred_lock.unlock();
8297 }
8298 }
8299 {
8300 // wake up any previously finished deferred events
8301 std::lock_guard<std::mutex> l(kv_lock);
8302 kv_cond.notify_one();
8303 }
8304 osr->drain_preceding(txc);
8305 --deferred_aggressive;
8306 dout(10) << __func__ << " " << osr << " done" << dendl;
8307 }
8308
8309 void BlueStore::_osr_drain_all()
8310 {
8311 dout(10) << __func__ << dendl;
8312
8313 set<OpSequencerRef> s;
8314 {
8315 std::lock_guard<std::mutex> l(osr_lock);
8316 s = osr_set;
8317 }
8318 dout(20) << __func__ << " osr_set " << s << dendl;
8319
8320 ++deferred_aggressive;
8321 {
8322 // submit anything pending
8323 deferred_try_submit();
8324 }
8325 {
8326 // wake up any previously finished deferred events
8327 std::lock_guard<std::mutex> l(kv_lock);
8328 kv_cond.notify_one();
8329 }
8330 {
8331 std::lock_guard<std::mutex> l(kv_finalize_lock);
8332 kv_finalize_cond.notify_one();
8333 }
8334 for (auto osr : s) {
8335 dout(20) << __func__ << " drain " << osr << dendl;
8336 osr->drain();
8337 }
8338 --deferred_aggressive;
8339
8340 dout(10) << __func__ << " done" << dendl;
8341 }
8342
8343 void BlueStore::_osr_unregister_all()
8344 {
8345 set<OpSequencerRef> s;
8346 {
8347 std::lock_guard<std::mutex> l(osr_lock);
8348 s = osr_set;
8349 }
8350 dout(10) << __func__ << " " << s << dendl;
8351 for (auto osr : s) {
8352 osr->_unregister();
8353
8354 if (!osr->zombie) {
8355 // break link from Sequencer to us so that this OpSequencer
8356 // instance can die with this mount/umount cycle. note that
8357 // we assume umount() will not race against ~Sequencer.
8358 assert(osr->parent);
8359 osr->parent->p.reset();
8360 }
8361 }
8362 // nobody should be creating sequencers during umount either.
8363 {
8364 std::lock_guard<std::mutex> l(osr_lock);
8365 assert(osr_set.empty());
8366 }
8367 }
8368
8369 void BlueStore::_kv_start()
8370 {
8371 dout(10) << __func__ << dendl;
8372
8373 if (cct->_conf->bluestore_shard_finishers) {
8374 if (cct->_conf->osd_op_num_shards) {
8375 m_finisher_num = cct->_conf->osd_op_num_shards;
8376 } else {
8377 assert(bdev);
8378 if (bdev->is_rotational()) {
8379 m_finisher_num = cct->_conf->osd_op_num_shards_hdd;
8380 } else {
8381 m_finisher_num = cct->_conf->osd_op_num_shards_ssd;
8382 }
8383 }
8384 }
8385
8386 assert(m_finisher_num != 0);
8387
8388 for (int i = 0; i < m_finisher_num; ++i) {
8389 ostringstream oss;
8390 oss << "finisher-" << i;
8391 Finisher *f = new Finisher(cct, oss.str(), "finisher");
8392 finishers.push_back(f);
8393 }
8394
8395 deferred_finisher.start();
8396 for (auto f : finishers) {
8397 f->start();
8398 }
8399 kv_sync_thread.create("bstore_kv_sync");
8400 kv_finalize_thread.create("bstore_kv_final");
8401 }
8402
8403 void BlueStore::_kv_stop()
8404 {
8405 dout(10) << __func__ << dendl;
8406 {
8407 std::unique_lock<std::mutex> l(kv_lock);
8408 while (!kv_sync_started) {
8409 kv_cond.wait(l);
8410 }
8411 kv_stop = true;
8412 kv_cond.notify_all();
8413 }
8414 {
8415 std::unique_lock<std::mutex> l(kv_finalize_lock);
8416 while (!kv_finalize_started) {
8417 kv_finalize_cond.wait(l);
8418 }
8419 kv_finalize_stop = true;
8420 kv_finalize_cond.notify_all();
8421 }
8422 kv_sync_thread.join();
8423 kv_finalize_thread.join();
8424 {
8425 std::lock_guard<std::mutex> l(kv_lock);
8426 kv_stop = false;
8427 }
8428 {
8429 std::lock_guard<std::mutex> l(kv_finalize_lock);
8430 kv_finalize_stop = false;
8431 }
8432 dout(10) << __func__ << " stopping finishers" << dendl;
8433 deferred_finisher.wait_for_empty();
8434 deferred_finisher.stop();
8435 for (auto f : finishers) {
8436 f->wait_for_empty();
8437 f->stop();
8438 }
8439 dout(10) << __func__ << " stopped" << dendl;
8440 }
8441
8442 void BlueStore::_kv_sync_thread()
8443 {
8444 dout(10) << __func__ << " start" << dendl;
8445 std::unique_lock<std::mutex> l(kv_lock);
8446 assert(!kv_sync_started);
8447 kv_sync_started = true;
8448 kv_cond.notify_all();
8449 while (true) {
8450 assert(kv_committing.empty());
8451 if (kv_queue.empty() &&
8452 ((deferred_done_queue.empty() && deferred_stable_queue.empty()) ||
8453 !deferred_aggressive)) {
8454 if (kv_stop)
8455 break;
8456 dout(20) << __func__ << " sleep" << dendl;
8457 kv_cond.wait(l);
8458 dout(20) << __func__ << " wake" << dendl;
8459 } else {
8460 deque<TransContext*> kv_submitting;
8461 deque<DeferredBatch*> deferred_done, deferred_stable;
8462 uint64_t aios = 0, costs = 0;
8463
8464 dout(20) << __func__ << " committing " << kv_queue.size()
8465 << " submitting " << kv_queue_unsubmitted.size()
8466 << " deferred done " << deferred_done_queue.size()
8467 << " stable " << deferred_stable_queue.size()
8468 << dendl;
8469 kv_committing.swap(kv_queue);
8470 kv_submitting.swap(kv_queue_unsubmitted);
8471 deferred_done.swap(deferred_done_queue);
8472 deferred_stable.swap(deferred_stable_queue);
8473 aios = kv_ios;
8474 costs = kv_throttle_costs;
8475 kv_ios = 0;
8476 kv_throttle_costs = 0;
8477 utime_t start = ceph_clock_now();
8478 l.unlock();
8479
8480 dout(30) << __func__ << " committing " << kv_committing << dendl;
8481 dout(30) << __func__ << " submitting " << kv_submitting << dendl;
8482 dout(30) << __func__ << " deferred_done " << deferred_done << dendl;
8483 dout(30) << __func__ << " deferred_stable " << deferred_stable << dendl;
8484
8485 bool force_flush = false;
8486 // if bluefs is sharing the same device as data (only), then we
8487 // can rely on the bluefs commit to flush the device and make
8488 // deferred aios stable. that means that if we do have done deferred
8489 // txcs AND we are not on a single device, we need to force a flush.
8490 if (bluefs_single_shared_device && bluefs) {
8491 if (aios) {
8492 force_flush = true;
8493 } else if (kv_committing.empty() && kv_submitting.empty() &&
8494 deferred_stable.empty()) {
8495 force_flush = true; // there's nothing else to commit!
8496 } else if (deferred_aggressive) {
8497 force_flush = true;
8498 }
8499 } else
8500 force_flush = true;
8501
8502 if (force_flush) {
8503 dout(20) << __func__ << " num_aios=" << aios
8504 << " force_flush=" << (int)force_flush
8505 << ", flushing, deferred done->stable" << dendl;
8506 // flush/barrier on block device
8507 bdev->flush();
8508
8509 // if we flush then deferred done are now deferred stable
8510 deferred_stable.insert(deferred_stable.end(), deferred_done.begin(),
8511 deferred_done.end());
8512 deferred_done.clear();
8513 }
8514 utime_t after_flush = ceph_clock_now();
8515
8516 // we will use one final transaction to force a sync
8517 KeyValueDB::Transaction synct = db->get_transaction();
8518
8519 // increase {nid,blobid}_max? note that this covers both the
8520 // case where we are approaching the max and the case we passed
8521 // it. in either case, we increase the max in the earlier txn
8522 // we submit.
8523 uint64_t new_nid_max = 0, new_blobid_max = 0;
8524 if (nid_last + cct->_conf->bluestore_nid_prealloc/2 > nid_max) {
8525 KeyValueDB::Transaction t =
8526 kv_submitting.empty() ? synct : kv_submitting.front()->t;
8527 new_nid_max = nid_last + cct->_conf->bluestore_nid_prealloc;
8528 bufferlist bl;
8529 ::encode(new_nid_max, bl);
8530 t->set(PREFIX_SUPER, "nid_max", bl);
8531 dout(10) << __func__ << " new_nid_max " << new_nid_max << dendl;
8532 }
8533 if (blobid_last + cct->_conf->bluestore_blobid_prealloc/2 > blobid_max) {
8534 KeyValueDB::Transaction t =
8535 kv_submitting.empty() ? synct : kv_submitting.front()->t;
8536 new_blobid_max = blobid_last + cct->_conf->bluestore_blobid_prealloc;
8537 bufferlist bl;
8538 ::encode(new_blobid_max, bl);
8539 t->set(PREFIX_SUPER, "blobid_max", bl);
8540 dout(10) << __func__ << " new_blobid_max " << new_blobid_max << dendl;
8541 }
8542
8543 for (auto txc : kv_committing) {
8544 if (txc->state == TransContext::STATE_KV_QUEUED) {
8545 txc->log_state_latency(logger, l_bluestore_state_kv_queued_lat);
8546 int r = cct->_conf->bluestore_debug_omit_kv_commit ? 0 : db->submit_transaction(txc->t);
8547 assert(r == 0);
8548 _txc_applied_kv(txc);
8549 --txc->osr->kv_committing_serially;
8550 txc->state = TransContext::STATE_KV_SUBMITTED;
8551 if (txc->osr->kv_submitted_waiters) {
8552 std::lock_guard<std::mutex> l(txc->osr->qlock);
8553 if (txc->osr->_is_all_kv_submitted()) {
8554 txc->osr->qcond.notify_all();
8555 }
8556 }
8557
8558 } else {
8559 assert(txc->state == TransContext::STATE_KV_SUBMITTED);
8560 txc->log_state_latency(logger, l_bluestore_state_kv_queued_lat);
8561 }
8562 if (txc->had_ios) {
8563 --txc->osr->txc_with_unstable_io;
8564 }
8565 }
8566
8567 // release throttle *before* we commit. this allows new ops
8568 // to be prepared and enter pipeline while we are waiting on
8569 // the kv commit sync/flush. then hopefully on the next
8570 // iteration there will already be ops awake. otherwise, we
8571 // end up going to sleep, and then wake up when the very first
8572 // transaction is ready for commit.
8573 throttle_bytes.put(costs);
8574
8575 PExtentVector bluefs_gift_extents;
8576 if (bluefs &&
8577 after_flush - bluefs_last_balance >
8578 cct->_conf->bluestore_bluefs_balance_interval) {
8579 bluefs_last_balance = after_flush;
8580 int r = _balance_bluefs_freespace(&bluefs_gift_extents);
8581 assert(r >= 0);
8582 if (r > 0) {
8583 for (auto& p : bluefs_gift_extents) {
8584 bluefs_extents.insert(p.offset, p.length);
8585 }
8586 bufferlist bl;
8587 ::encode(bluefs_extents, bl);
8588 dout(10) << __func__ << " bluefs_extents now 0x" << std::hex
8589 << bluefs_extents << std::dec << dendl;
8590 synct->set(PREFIX_SUPER, "bluefs_extents", bl);
8591 }
8592 }
8593
8594 // cleanup sync deferred keys
8595 for (auto b : deferred_stable) {
8596 for (auto& txc : b->txcs) {
8597 bluestore_deferred_transaction_t& wt = *txc.deferred_txn;
8598 if (!wt.released.empty()) {
8599 // kraken replay compat only
8600 txc.released = wt.released;
8601 dout(10) << __func__ << " deferred txn has released "
8602 << txc.released
8603 << " (we just upgraded from kraken) on " << &txc << dendl;
8604 _txc_finalize_kv(&txc, synct);
8605 }
8606 // cleanup the deferred
8607 string key;
8608 get_deferred_key(wt.seq, &key);
8609 synct->rm_single_key(PREFIX_DEFERRED, key);
8610 }
8611 }
8612
8613 // submit synct synchronously (block and wait for it to commit)
8614 int r = cct->_conf->bluestore_debug_omit_kv_commit ? 0 : db->submit_transaction_sync(synct);
8615 assert(r == 0);
8616
8617 if (new_nid_max) {
8618 nid_max = new_nid_max;
8619 dout(10) << __func__ << " nid_max now " << nid_max << dendl;
8620 }
8621 if (new_blobid_max) {
8622 blobid_max = new_blobid_max;
8623 dout(10) << __func__ << " blobid_max now " << blobid_max << dendl;
8624 }
8625
8626 {
8627 utime_t finish = ceph_clock_now();
8628 utime_t dur_flush = after_flush - start;
8629 utime_t dur_kv = finish - after_flush;
8630 utime_t dur = finish - start;
8631 dout(20) << __func__ << " committed " << kv_committing.size()
8632 << " cleaned " << deferred_stable.size()
8633 << " in " << dur
8634 << " (" << dur_flush << " flush + " << dur_kv << " kv commit)"
8635 << dendl;
8636 logger->tinc(l_bluestore_kv_flush_lat, dur_flush);
8637 logger->tinc(l_bluestore_kv_commit_lat, dur_kv);
8638 logger->tinc(l_bluestore_kv_lat, dur);
8639 }
8640
8641 if (bluefs) {
8642 if (!bluefs_gift_extents.empty()) {
8643 _commit_bluefs_freespace(bluefs_gift_extents);
8644 }
8645 for (auto p = bluefs_extents_reclaiming.begin();
8646 p != bluefs_extents_reclaiming.end();
8647 ++p) {
8648 dout(20) << __func__ << " releasing old bluefs 0x" << std::hex
8649 << p.get_start() << "~" << p.get_len() << std::dec
8650 << dendl;
8651 alloc->release(p.get_start(), p.get_len());
8652 }
8653 bluefs_extents_reclaiming.clear();
8654 }
8655
8656 {
8657 std::unique_lock<std::mutex> m(kv_finalize_lock);
8658 if (kv_committing_to_finalize.empty()) {
8659 kv_committing_to_finalize.swap(kv_committing);
8660 } else {
8661 kv_committing_to_finalize.insert(
8662 kv_committing_to_finalize.end(),
8663 kv_committing.begin(),
8664 kv_committing.end());
8665 kv_committing.clear();
8666 }
8667 if (deferred_stable_to_finalize.empty()) {
8668 deferred_stable_to_finalize.swap(deferred_stable);
8669 } else {
8670 deferred_stable_to_finalize.insert(
8671 deferred_stable_to_finalize.end(),
8672 deferred_stable.begin(),
8673 deferred_stable.end());
8674 deferred_stable.clear();
8675 }
8676 kv_finalize_cond.notify_one();
8677 }
8678
8679 l.lock();
8680 // previously deferred "done" are now "stable" by virtue of this
8681 // commit cycle.
8682 deferred_stable_queue.swap(deferred_done);
8683 }
8684 }
8685 dout(10) << __func__ << " finish" << dendl;
8686 kv_sync_started = false;
8687 }
8688
8689 void BlueStore::_kv_finalize_thread()
8690 {
8691 deque<TransContext*> kv_committed;
8692 deque<DeferredBatch*> deferred_stable;
8693 dout(10) << __func__ << " start" << dendl;
8694 std::unique_lock<std::mutex> l(kv_finalize_lock);
8695 assert(!kv_finalize_started);
8696 kv_finalize_started = true;
8697 kv_finalize_cond.notify_all();
8698 while (true) {
8699 assert(kv_committed.empty());
8700 assert(deferred_stable.empty());
8701 if (kv_committing_to_finalize.empty() &&
8702 deferred_stable_to_finalize.empty()) {
8703 if (kv_finalize_stop)
8704 break;
8705 dout(20) << __func__ << " sleep" << dendl;
8706 kv_finalize_cond.wait(l);
8707 dout(20) << __func__ << " wake" << dendl;
8708 } else {
8709 kv_committed.swap(kv_committing_to_finalize);
8710 deferred_stable.swap(deferred_stable_to_finalize);
8711 l.unlock();
8712 dout(20) << __func__ << " kv_committed " << kv_committed << dendl;
8713 dout(20) << __func__ << " deferred_stable " << deferred_stable << dendl;
8714
8715 while (!kv_committed.empty()) {
8716 TransContext *txc = kv_committed.front();
8717 assert(txc->state == TransContext::STATE_KV_SUBMITTED);
8718 _txc_state_proc(txc);
8719 kv_committed.pop_front();
8720 }
8721
8722 for (auto b : deferred_stable) {
8723 auto p = b->txcs.begin();
8724 while (p != b->txcs.end()) {
8725 TransContext *txc = &*p;
8726 p = b->txcs.erase(p); // unlink here because
8727 _txc_state_proc(txc); // this may destroy txc
8728 }
8729 delete b;
8730 }
8731 deferred_stable.clear();
8732
8733 if (!deferred_aggressive) {
8734 if (deferred_queue_size >= deferred_batch_ops.load() ||
8735 throttle_deferred_bytes.past_midpoint()) {
8736 deferred_try_submit();
8737 }
8738 }
8739
8740 // this is as good a place as any ...
8741 _reap_collections();
8742
8743 l.lock();
8744 }
8745 }
8746 dout(10) << __func__ << " finish" << dendl;
8747 kv_finalize_started = false;
8748 }
8749
8750 bluestore_deferred_op_t *BlueStore::_get_deferred_op(
8751 TransContext *txc, OnodeRef o)
8752 {
8753 if (!txc->deferred_txn) {
8754 txc->deferred_txn = new bluestore_deferred_transaction_t;
8755 }
8756 txc->deferred_txn->ops.push_back(bluestore_deferred_op_t());
8757 return &txc->deferred_txn->ops.back();
8758 }
8759
8760 void BlueStore::_deferred_queue(TransContext *txc)
8761 {
8762 dout(20) << __func__ << " txc " << txc << " osr " << txc->osr << dendl;
8763 deferred_lock.lock();
8764 if (!txc->osr->deferred_pending &&
8765 !txc->osr->deferred_running) {
8766 deferred_queue.push_back(*txc->osr);
8767 }
8768 if (!txc->osr->deferred_pending) {
8769 txc->osr->deferred_pending = new DeferredBatch(cct, txc->osr.get());
8770 }
8771 ++deferred_queue_size;
8772 txc->osr->deferred_pending->txcs.push_back(*txc);
8773 bluestore_deferred_transaction_t& wt = *txc->deferred_txn;
8774 for (auto opi = wt.ops.begin(); opi != wt.ops.end(); ++opi) {
8775 const auto& op = *opi;
8776 assert(op.op == bluestore_deferred_op_t::OP_WRITE);
8777 bufferlist::const_iterator p = op.data.begin();
8778 for (auto e : op.extents) {
8779 txc->osr->deferred_pending->prepare_write(
8780 cct, wt.seq, e.offset, e.length, p);
8781 }
8782 }
8783 if (deferred_aggressive &&
8784 !txc->osr->deferred_running) {
8785 _deferred_submit_unlock(txc->osr.get());
8786 } else {
8787 deferred_lock.unlock();
8788 }
8789 }
8790
8791 void BlueStore::deferred_try_submit()
8792 {
8793 dout(20) << __func__ << " " << deferred_queue.size() << " osrs, "
8794 << deferred_queue_size << " txcs" << dendl;
8795 std::lock_guard<std::mutex> l(deferred_lock);
8796 vector<OpSequencerRef> osrs;
8797 osrs.reserve(deferred_queue.size());
8798 for (auto& osr : deferred_queue) {
8799 osrs.push_back(&osr);
8800 }
8801 for (auto& osr : osrs) {
8802 if (osr->deferred_pending) {
8803 if (!osr->deferred_running) {
8804 _deferred_submit_unlock(osr.get());
8805 deferred_lock.lock();
8806 } else {
8807 dout(20) << __func__ << " osr " << osr << " already has running"
8808 << dendl;
8809 }
8810 } else {
8811 dout(20) << __func__ << " osr " << osr << " has no pending" << dendl;
8812 }
8813 }
8814 }
8815
8816 void BlueStore::_deferred_submit_unlock(OpSequencer *osr)
8817 {
8818 dout(10) << __func__ << " osr " << osr
8819 << " " << osr->deferred_pending->iomap.size() << " ios pending "
8820 << dendl;
8821 assert(osr->deferred_pending);
8822 assert(!osr->deferred_running);
8823
8824 auto b = osr->deferred_pending;
8825 deferred_queue_size -= b->seq_bytes.size();
8826 assert(deferred_queue_size >= 0);
8827
8828 osr->deferred_running = osr->deferred_pending;
8829 osr->deferred_pending = nullptr;
8830
8831 uint64_t start = 0, pos = 0;
8832 bufferlist bl;
8833 auto i = b->iomap.begin();
8834 while (true) {
8835 if (i == b->iomap.end() || i->first != pos) {
8836 if (bl.length()) {
8837 dout(20) << __func__ << " write 0x" << std::hex
8838 << start << "~" << bl.length()
8839 << " crc " << bl.crc32c(-1) << std::dec << dendl;
8840 if (!g_conf->bluestore_debug_omit_block_device_write) {
8841 logger->inc(l_bluestore_deferred_write_ops);
8842 logger->inc(l_bluestore_deferred_write_bytes, bl.length());
8843 int r = bdev->aio_write(start, bl, &b->ioc, false);
8844 assert(r == 0);
8845 }
8846 }
8847 if (i == b->iomap.end()) {
8848 break;
8849 }
8850 start = 0;
8851 pos = i->first;
8852 bl.clear();
8853 }
8854 dout(20) << __func__ << " seq " << i->second.seq << " 0x"
8855 << std::hex << pos << "~" << i->second.bl.length() << std::dec
8856 << dendl;
8857 if (!bl.length()) {
8858 start = pos;
8859 }
8860 pos += i->second.bl.length();
8861 bl.claim_append(i->second.bl);
8862 ++i;
8863 }
8864
8865 deferred_lock.unlock();
8866 bdev->aio_submit(&b->ioc);
8867 }
8868
8869 struct C_DeferredTrySubmit : public Context {
8870 BlueStore *store;
8871 C_DeferredTrySubmit(BlueStore *s) : store(s) {}
8872 void finish(int r) {
8873 store->deferred_try_submit();
8874 }
8875 };
8876
8877 void BlueStore::_deferred_aio_finish(OpSequencer *osr)
8878 {
8879 dout(10) << __func__ << " osr " << osr << dendl;
8880 assert(osr->deferred_running);
8881 DeferredBatch *b = osr->deferred_running;
8882
8883 {
8884 std::lock_guard<std::mutex> l(deferred_lock);
8885 assert(osr->deferred_running == b);
8886 osr->deferred_running = nullptr;
8887 if (!osr->deferred_pending) {
8888 dout(20) << __func__ << " dequeueing" << dendl;
8889 auto q = deferred_queue.iterator_to(*osr);
8890 deferred_queue.erase(q);
8891 } else if (deferred_aggressive) {
8892 dout(20) << __func__ << " queuing async deferred_try_submit" << dendl;
8893 deferred_finisher.queue(new C_DeferredTrySubmit(this));
8894 } else {
8895 dout(20) << __func__ << " leaving queued, more pending" << dendl;
8896 }
8897 }
8898
8899 {
8900 uint64_t costs = 0;
8901 std::lock_guard<std::mutex> l2(osr->qlock);
8902 for (auto& i : b->txcs) {
8903 TransContext *txc = &i;
8904 txc->state = TransContext::STATE_DEFERRED_CLEANUP;
8905 costs += txc->cost;
8906 }
8907 osr->qcond.notify_all();
8908 throttle_deferred_bytes.put(costs);
8909 std::lock_guard<std::mutex> l(kv_lock);
8910 deferred_done_queue.emplace_back(b);
8911 }
8912
8913 // in the normal case, do not bother waking up the kv thread; it will
8914 // catch us on the next commit anyway.
8915 if (deferred_aggressive) {
8916 std::lock_guard<std::mutex> l(kv_lock);
8917 kv_cond.notify_one();
8918 }
8919 }
8920
8921 int BlueStore::_deferred_replay()
8922 {
8923 dout(10) << __func__ << " start" << dendl;
8924 OpSequencerRef osr = new OpSequencer(cct, this);
8925 int count = 0;
8926 int r = 0;
8927 KeyValueDB::Iterator it = db->get_iterator(PREFIX_DEFERRED);
8928 for (it->lower_bound(string()); it->valid(); it->next(), ++count) {
8929 dout(20) << __func__ << " replay " << pretty_binary_string(it->key())
8930 << dendl;
8931 bluestore_deferred_transaction_t *deferred_txn =
8932 new bluestore_deferred_transaction_t;
8933 bufferlist bl = it->value();
8934 bufferlist::iterator p = bl.begin();
8935 try {
8936 ::decode(*deferred_txn, p);
8937 } catch (buffer::error& e) {
8938 derr << __func__ << " failed to decode deferred txn "
8939 << pretty_binary_string(it->key()) << dendl;
8940 delete deferred_txn;
8941 r = -EIO;
8942 goto out;
8943 }
8944 TransContext *txc = _txc_create(osr.get());
8945 txc->deferred_txn = deferred_txn;
8946 txc->state = TransContext::STATE_KV_DONE;
8947 _txc_state_proc(txc);
8948 }
8949 out:
8950 dout(20) << __func__ << " draining osr" << dendl;
8951 _osr_drain_all();
8952 osr->discard();
8953 dout(10) << __func__ << " completed " << count << " events" << dendl;
8954 return r;
8955 }
8956
8957 // ---------------------------
8958 // transactions
8959
8960 int BlueStore::queue_transactions(
8961 Sequencer *posr,
8962 vector<Transaction>& tls,
8963 TrackedOpRef op,
8964 ThreadPool::TPHandle *handle)
8965 {
8966 FUNCTRACE();
8967 Context *onreadable;
8968 Context *ondisk;
8969 Context *onreadable_sync;
8970 ObjectStore::Transaction::collect_contexts(
8971 tls, &onreadable, &ondisk, &onreadable_sync);
8972
8973 if (cct->_conf->objectstore_blackhole) {
8974 dout(0) << __func__ << " objectstore_blackhole = TRUE, dropping transaction"
8975 << dendl;
8976 delete ondisk;
8977 delete onreadable;
8978 delete onreadable_sync;
8979 return 0;
8980 }
8981 utime_t start = ceph_clock_now();
8982 // set up the sequencer
8983 OpSequencer *osr;
8984 assert(posr);
8985 if (posr->p) {
8986 osr = static_cast<OpSequencer *>(posr->p.get());
8987 dout(10) << __func__ << " existing " << osr << " " << *osr << dendl;
8988 } else {
8989 osr = new OpSequencer(cct, this);
8990 osr->parent = posr;
8991 posr->p = osr;
8992 dout(10) << __func__ << " new " << osr << " " << *osr << dendl;
8993 }
8994
8995 // prepare
8996 TransContext *txc = _txc_create(osr);
8997 txc->onreadable = onreadable;
8998 txc->onreadable_sync = onreadable_sync;
8999 txc->oncommit = ondisk;
9000
9001 for (vector<Transaction>::iterator p = tls.begin(); p != tls.end(); ++p) {
9002 (*p).set_osr(osr);
9003 txc->bytes += (*p).get_num_bytes();
9004 _txc_add_transaction(txc, &(*p));
9005 }
9006 _txc_calc_cost(txc);
9007
9008 _txc_write_nodes(txc, txc->t);
9009
9010 // journal deferred items
9011 if (txc->deferred_txn) {
9012 txc->deferred_txn->seq = ++deferred_seq;
9013 bufferlist bl;
9014 ::encode(*txc->deferred_txn, bl);
9015 string key;
9016 get_deferred_key(txc->deferred_txn->seq, &key);
9017 txc->t->set(PREFIX_DEFERRED, key, bl);
9018 }
9019
9020 _txc_finalize_kv(txc, txc->t);
9021 if (handle)
9022 handle->suspend_tp_timeout();
9023
9024 utime_t tstart = ceph_clock_now();
9025 throttle_bytes.get(txc->cost);
9026 if (txc->deferred_txn) {
9027 // ensure we do not block here because of deferred writes
9028 if (!throttle_deferred_bytes.get_or_fail(txc->cost)) {
9029 dout(10) << __func__ << " failed get throttle_deferred_bytes, aggressive"
9030 << dendl;
9031 ++deferred_aggressive;
9032 deferred_try_submit();
9033 {
9034 // wake up any previously finished deferred events
9035 std::lock_guard<std::mutex> l(kv_lock);
9036 kv_cond.notify_one();
9037 }
9038 throttle_deferred_bytes.get(txc->cost);
9039 --deferred_aggressive;
9040 }
9041 }
9042 utime_t tend = ceph_clock_now();
9043
9044 if (handle)
9045 handle->reset_tp_timeout();
9046
9047 logger->inc(l_bluestore_txc);
9048
9049 // execute (start)
9050 _txc_state_proc(txc);
9051
9052 logger->tinc(l_bluestore_submit_lat, ceph_clock_now() - start);
9053 logger->tinc(l_bluestore_throttle_lat, tend - tstart);
9054 return 0;
9055 }
9056
9057 void BlueStore::_txc_aio_submit(TransContext *txc)
9058 {
9059 dout(10) << __func__ << " txc " << txc << dendl;
9060 bdev->aio_submit(&txc->ioc);
9061 }
9062
9063 void BlueStore::_txc_add_transaction(TransContext *txc, Transaction *t)
9064 {
9065 Transaction::iterator i = t->begin();
9066
9067 _dump_transaction(t);
9068
9069 vector<CollectionRef> cvec(i.colls.size());
9070 unsigned j = 0;
9071 for (vector<coll_t>::iterator p = i.colls.begin(); p != i.colls.end();
9072 ++p, ++j) {
9073 cvec[j] = _get_collection(*p);
9074 }
9075 vector<OnodeRef> ovec(i.objects.size());
9076
9077 for (int pos = 0; i.have_op(); ++pos) {
9078 Transaction::Op *op = i.decode_op();
9079 int r = 0;
9080
9081 // no coll or obj
9082 if (op->op == Transaction::OP_NOP)
9083 continue;
9084
9085 // collection operations
9086 CollectionRef &c = cvec[op->cid];
9087 switch (op->op) {
9088 case Transaction::OP_RMCOLL:
9089 {
9090 const coll_t &cid = i.get_cid(op->cid);
9091 r = _remove_collection(txc, cid, &c);
9092 if (!r)
9093 continue;
9094 }
9095 break;
9096
9097 case Transaction::OP_MKCOLL:
9098 {
9099 assert(!c);
9100 const coll_t &cid = i.get_cid(op->cid);
9101 r = _create_collection(txc, cid, op->split_bits, &c);
9102 if (!r)
9103 continue;
9104 }
9105 break;
9106
9107 case Transaction::OP_SPLIT_COLLECTION:
9108 assert(0 == "deprecated");
9109 break;
9110
9111 case Transaction::OP_SPLIT_COLLECTION2:
9112 {
9113 uint32_t bits = op->split_bits;
9114 uint32_t rem = op->split_rem;
9115 r = _split_collection(txc, c, cvec[op->dest_cid], bits, rem);
9116 if (!r)
9117 continue;
9118 }
9119 break;
9120
9121 case Transaction::OP_COLL_HINT:
9122 {
9123 uint32_t type = op->hint_type;
9124 bufferlist hint;
9125 i.decode_bl(hint);
9126 bufferlist::iterator hiter = hint.begin();
9127 if (type == Transaction::COLL_HINT_EXPECTED_NUM_OBJECTS) {
9128 uint32_t pg_num;
9129 uint64_t num_objs;
9130 ::decode(pg_num, hiter);
9131 ::decode(num_objs, hiter);
9132 dout(10) << __func__ << " collection hint objects is a no-op, "
9133 << " pg_num " << pg_num << " num_objects " << num_objs
9134 << dendl;
9135 } else {
9136 // Ignore the hint
9137 dout(10) << __func__ << " unknown collection hint " << type << dendl;
9138 }
9139 continue;
9140 }
9141 break;
9142
9143 case Transaction::OP_COLL_SETATTR:
9144 r = -EOPNOTSUPP;
9145 break;
9146
9147 case Transaction::OP_COLL_RMATTR:
9148 r = -EOPNOTSUPP;
9149 break;
9150
9151 case Transaction::OP_COLL_RENAME:
9152 assert(0 == "not implemented");
9153 break;
9154 }
9155 if (r < 0) {
9156 derr << __func__ << " error " << cpp_strerror(r)
9157 << " not handled on operation " << op->op
9158 << " (op " << pos << ", counting from 0)" << dendl;
9159 _dump_transaction(t, 0);
9160 assert(0 == "unexpected error");
9161 }
9162
9163 // these operations implicity create the object
9164 bool create = false;
9165 if (op->op == Transaction::OP_TOUCH ||
9166 op->op == Transaction::OP_WRITE ||
9167 op->op == Transaction::OP_ZERO) {
9168 create = true;
9169 }
9170
9171 // object operations
9172 RWLock::WLocker l(c->lock);
9173 OnodeRef &o = ovec[op->oid];
9174 if (!o) {
9175 ghobject_t oid = i.get_oid(op->oid);
9176 o = c->get_onode(oid, create);
9177 }
9178 if (!create && (!o || !o->exists)) {
9179 dout(10) << __func__ << " op " << op->op << " got ENOENT on "
9180 << i.get_oid(op->oid) << dendl;
9181 r = -ENOENT;
9182 goto endop;
9183 }
9184
9185 switch (op->op) {
9186 case Transaction::OP_TOUCH:
9187 r = _touch(txc, c, o);
9188 break;
9189
9190 case Transaction::OP_WRITE:
9191 {
9192 uint64_t off = op->off;
9193 uint64_t len = op->len;
9194 uint32_t fadvise_flags = i.get_fadvise_flags();
9195 bufferlist bl;
9196 i.decode_bl(bl);
9197 r = _write(txc, c, o, off, len, bl, fadvise_flags);
9198 }
9199 break;
9200
9201 case Transaction::OP_ZERO:
9202 {
9203 uint64_t off = op->off;
9204 uint64_t len = op->len;
9205 r = _zero(txc, c, o, off, len);
9206 }
9207 break;
9208
9209 case Transaction::OP_TRIMCACHE:
9210 {
9211 // deprecated, no-op
9212 }
9213 break;
9214
9215 case Transaction::OP_TRUNCATE:
9216 {
9217 uint64_t off = op->off;
9218 r = _truncate(txc, c, o, off);
9219 }
9220 break;
9221
9222 case Transaction::OP_REMOVE:
9223 {
9224 r = _remove(txc, c, o);
9225 }
9226 break;
9227
9228 case Transaction::OP_SETATTR:
9229 {
9230 string name = i.decode_string();
9231 bufferptr bp;
9232 i.decode_bp(bp);
9233 r = _setattr(txc, c, o, name, bp);
9234 }
9235 break;
9236
9237 case Transaction::OP_SETATTRS:
9238 {
9239 map<string, bufferptr> aset;
9240 i.decode_attrset(aset);
9241 r = _setattrs(txc, c, o, aset);
9242 }
9243 break;
9244
9245 case Transaction::OP_RMATTR:
9246 {
9247 string name = i.decode_string();
9248 r = _rmattr(txc, c, o, name);
9249 }
9250 break;
9251
9252 case Transaction::OP_RMATTRS:
9253 {
9254 r = _rmattrs(txc, c, o);
9255 }
9256 break;
9257
9258 case Transaction::OP_CLONE:
9259 {
9260 OnodeRef& no = ovec[op->dest_oid];
9261 if (!no) {
9262 const ghobject_t& noid = i.get_oid(op->dest_oid);
9263 no = c->get_onode(noid, true);
9264 }
9265 r = _clone(txc, c, o, no);
9266 }
9267 break;
9268
9269 case Transaction::OP_CLONERANGE:
9270 assert(0 == "deprecated");
9271 break;
9272
9273 case Transaction::OP_CLONERANGE2:
9274 {
9275 OnodeRef& no = ovec[op->dest_oid];
9276 if (!no) {
9277 const ghobject_t& noid = i.get_oid(op->dest_oid);
9278 no = c->get_onode(noid, true);
9279 }
9280 uint64_t srcoff = op->off;
9281 uint64_t len = op->len;
9282 uint64_t dstoff = op->dest_off;
9283 r = _clone_range(txc, c, o, no, srcoff, len, dstoff);
9284 }
9285 break;
9286
9287 case Transaction::OP_COLL_ADD:
9288 assert(0 == "not implemented");
9289 break;
9290
9291 case Transaction::OP_COLL_REMOVE:
9292 assert(0 == "not implemented");
9293 break;
9294
9295 case Transaction::OP_COLL_MOVE:
9296 assert(0 == "deprecated");
9297 break;
9298
9299 case Transaction::OP_COLL_MOVE_RENAME:
9300 case Transaction::OP_TRY_RENAME:
9301 {
9302 assert(op->cid == op->dest_cid);
9303 const ghobject_t& noid = i.get_oid(op->dest_oid);
9304 OnodeRef& no = ovec[op->dest_oid];
9305 if (!no) {
9306 no = c->get_onode(noid, false);
9307 }
9308 r = _rename(txc, c, o, no, noid);
9309 }
9310 break;
9311
9312 case Transaction::OP_OMAP_CLEAR:
9313 {
9314 r = _omap_clear(txc, c, o);
9315 }
9316 break;
9317 case Transaction::OP_OMAP_SETKEYS:
9318 {
9319 bufferlist aset_bl;
9320 i.decode_attrset_bl(&aset_bl);
9321 r = _omap_setkeys(txc, c, o, aset_bl);
9322 }
9323 break;
9324 case Transaction::OP_OMAP_RMKEYS:
9325 {
9326 bufferlist keys_bl;
9327 i.decode_keyset_bl(&keys_bl);
9328 r = _omap_rmkeys(txc, c, o, keys_bl);
9329 }
9330 break;
9331 case Transaction::OP_OMAP_RMKEYRANGE:
9332 {
9333 string first, last;
9334 first = i.decode_string();
9335 last = i.decode_string();
9336 r = _omap_rmkey_range(txc, c, o, first, last);
9337 }
9338 break;
9339 case Transaction::OP_OMAP_SETHEADER:
9340 {
9341 bufferlist bl;
9342 i.decode_bl(bl);
9343 r = _omap_setheader(txc, c, o, bl);
9344 }
9345 break;
9346
9347 case Transaction::OP_SETALLOCHINT:
9348 {
9349 r = _set_alloc_hint(txc, c, o,
9350 op->expected_object_size,
9351 op->expected_write_size,
9352 op->alloc_hint_flags);
9353 }
9354 break;
9355
9356 default:
9357 derr << __func__ << "bad op " << op->op << dendl;
9358 ceph_abort();
9359 }
9360
9361 endop:
9362 if (r < 0) {
9363 bool ok = false;
9364
9365 if (r == -ENOENT && !(op->op == Transaction::OP_CLONERANGE ||
9366 op->op == Transaction::OP_CLONE ||
9367 op->op == Transaction::OP_CLONERANGE2 ||
9368 op->op == Transaction::OP_COLL_ADD ||
9369 op->op == Transaction::OP_SETATTR ||
9370 op->op == Transaction::OP_SETATTRS ||
9371 op->op == Transaction::OP_RMATTR ||
9372 op->op == Transaction::OP_OMAP_SETKEYS ||
9373 op->op == Transaction::OP_OMAP_RMKEYS ||
9374 op->op == Transaction::OP_OMAP_RMKEYRANGE ||
9375 op->op == Transaction::OP_OMAP_SETHEADER))
9376 // -ENOENT is usually okay
9377 ok = true;
9378 if (r == -ENODATA)
9379 ok = true;
9380
9381 if (!ok) {
9382 const char *msg = "unexpected error code";
9383
9384 if (r == -ENOENT && (op->op == Transaction::OP_CLONERANGE ||
9385 op->op == Transaction::OP_CLONE ||
9386 op->op == Transaction::OP_CLONERANGE2))
9387 msg = "ENOENT on clone suggests osd bug";
9388
9389 if (r == -ENOSPC)
9390 // For now, if we hit _any_ ENOSPC, crash, before we do any damage
9391 // by partially applying transactions.
9392 msg = "ENOSPC from bluestore, misconfigured cluster";
9393
9394 if (r == -ENOTEMPTY) {
9395 msg = "ENOTEMPTY suggests garbage data in osd data dir";
9396 }
9397
9398 derr << __func__ << " error " << cpp_strerror(r)
9399 << " not handled on operation " << op->op
9400 << " (op " << pos << ", counting from 0)"
9401 << dendl;
9402 derr << msg << dendl;
9403 _dump_transaction(t, 0);
9404 assert(0 == "unexpected error");
9405 }
9406 }
9407 }
9408 }
9409
9410
9411
9412 // -----------------
9413 // write operations
9414
9415 int BlueStore::_touch(TransContext *txc,
9416 CollectionRef& c,
9417 OnodeRef &o)
9418 {
9419 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
9420 int r = 0;
9421 _assign_nid(txc, o);
9422 txc->write_onode(o);
9423 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
9424 return r;
9425 }
9426
9427 void BlueStore::_dump_onode(OnodeRef o, int log_level)
9428 {
9429 if (!cct->_conf->subsys.should_gather(ceph_subsys_bluestore, log_level))
9430 return;
9431 dout(log_level) << __func__ << " " << o << " " << o->oid
9432 << " nid " << o->onode.nid
9433 << " size 0x" << std::hex << o->onode.size
9434 << " (" << std::dec << o->onode.size << ")"
9435 << " expected_object_size " << o->onode.expected_object_size
9436 << " expected_write_size " << o->onode.expected_write_size
9437 << " in " << o->onode.extent_map_shards.size() << " shards"
9438 << ", " << o->extent_map.spanning_blob_map.size()
9439 << " spanning blobs"
9440 << dendl;
9441 for (auto p = o->onode.attrs.begin();
9442 p != o->onode.attrs.end();
9443 ++p) {
9444 dout(log_level) << __func__ << " attr " << p->first
9445 << " len " << p->second.length() << dendl;
9446 }
9447 _dump_extent_map(o->extent_map, log_level);
9448 }
9449
9450 void BlueStore::_dump_extent_map(ExtentMap &em, int log_level)
9451 {
9452 uint64_t pos = 0;
9453 for (auto& s : em.shards) {
9454 dout(log_level) << __func__ << " shard " << *s.shard_info
9455 << (s.loaded ? " (loaded)" : "")
9456 << (s.dirty ? " (dirty)" : "")
9457 << dendl;
9458 }
9459 for (auto& e : em.extent_map) {
9460 dout(log_level) << __func__ << " " << e << dendl;
9461 assert(e.logical_offset >= pos);
9462 pos = e.logical_offset + e.length;
9463 const bluestore_blob_t& blob = e.blob->get_blob();
9464 if (blob.has_csum()) {
9465 vector<uint64_t> v;
9466 unsigned n = blob.get_csum_count();
9467 for (unsigned i = 0; i < n; ++i)
9468 v.push_back(blob.get_csum_item(i));
9469 dout(log_level) << __func__ << " csum: " << std::hex << v << std::dec
9470 << dendl;
9471 }
9472 std::lock_guard<std::recursive_mutex> l(e.blob->shared_blob->get_cache()->lock);
9473 for (auto& i : e.blob->shared_blob->bc.buffer_map) {
9474 dout(log_level) << __func__ << " 0x" << std::hex << i.first
9475 << "~" << i.second->length << std::dec
9476 << " " << *i.second << dendl;
9477 }
9478 }
9479 }
9480
9481 void BlueStore::_dump_transaction(Transaction *t, int log_level)
9482 {
9483 dout(log_level) << " transaction dump:\n";
9484 JSONFormatter f(true);
9485 f.open_object_section("transaction");
9486 t->dump(&f);
9487 f.close_section();
9488 f.flush(*_dout);
9489 *_dout << dendl;
9490 }
9491
9492 void BlueStore::_pad_zeros(
9493 bufferlist *bl, uint64_t *offset,
9494 uint64_t chunk_size)
9495 {
9496 auto length = bl->length();
9497 dout(30) << __func__ << " 0x" << std::hex << *offset << "~" << length
9498 << " chunk_size 0x" << chunk_size << std::dec << dendl;
9499 dout(40) << "before:\n";
9500 bl->hexdump(*_dout);
9501 *_dout << dendl;
9502 // front
9503 size_t front_pad = *offset % chunk_size;
9504 size_t back_pad = 0;
9505 size_t pad_count = 0;
9506 if (front_pad) {
9507 size_t front_copy = MIN(chunk_size - front_pad, length);
9508 bufferptr z = buffer::create_page_aligned(chunk_size);
9509 z.zero(0, front_pad, false);
9510 pad_count += front_pad;
9511 bl->copy(0, front_copy, z.c_str() + front_pad);
9512 if (front_copy + front_pad < chunk_size) {
9513 back_pad = chunk_size - (length + front_pad);
9514 z.zero(front_pad + length, back_pad, false);
9515 pad_count += back_pad;
9516 }
9517 bufferlist old, t;
9518 old.swap(*bl);
9519 t.substr_of(old, front_copy, length - front_copy);
9520 bl->append(z);
9521 bl->claim_append(t);
9522 *offset -= front_pad;
9523 length += pad_count;
9524 }
9525
9526 // back
9527 uint64_t end = *offset + length;
9528 unsigned back_copy = end % chunk_size;
9529 if (back_copy) {
9530 assert(back_pad == 0);
9531 back_pad = chunk_size - back_copy;
9532 assert(back_copy <= length);
9533 bufferptr tail(chunk_size);
9534 bl->copy(length - back_copy, back_copy, tail.c_str());
9535 tail.zero(back_copy, back_pad, false);
9536 bufferlist old;
9537 old.swap(*bl);
9538 bl->substr_of(old, 0, length - back_copy);
9539 bl->append(tail);
9540 length += back_pad;
9541 pad_count += back_pad;
9542 }
9543 dout(20) << __func__ << " pad 0x" << std::hex << front_pad << " + 0x"
9544 << back_pad << " on front/back, now 0x" << *offset << "~"
9545 << length << std::dec << dendl;
9546 dout(40) << "after:\n";
9547 bl->hexdump(*_dout);
9548 *_dout << dendl;
9549 if (pad_count)
9550 logger->inc(l_bluestore_write_pad_bytes, pad_count);
9551 assert(bl->length() == length);
9552 }
9553
9554 void BlueStore::_do_write_small(
9555 TransContext *txc,
9556 CollectionRef &c,
9557 OnodeRef o,
9558 uint64_t offset, uint64_t length,
9559 bufferlist::iterator& blp,
9560 WriteContext *wctx)
9561 {
9562 dout(10) << __func__ << " 0x" << std::hex << offset << "~" << length
9563 << std::dec << dendl;
9564 assert(length < min_alloc_size);
9565 uint64_t end_offs = offset + length;
9566
9567 logger->inc(l_bluestore_write_small);
9568 logger->inc(l_bluestore_write_small_bytes, length);
9569
9570 bufferlist bl;
9571 blp.copy(length, bl);
9572
9573 // Look for an existing mutable blob we can use.
9574 auto begin = o->extent_map.extent_map.begin();
9575 auto end = o->extent_map.extent_map.end();
9576 auto ep = o->extent_map.seek_lextent(offset);
9577 if (ep != begin) {
9578 --ep;
9579 if (ep->blob_end() <= offset) {
9580 ++ep;
9581 }
9582 }
9583 auto prev_ep = ep;
9584 if (prev_ep != begin) {
9585 --prev_ep;
9586 } else {
9587 prev_ep = end; // to avoid this extent check as it's a duplicate
9588 }
9589
9590 auto max_bsize = MAX(wctx->target_blob_size, min_alloc_size);
9591 auto min_off = offset >= max_bsize ? offset - max_bsize : 0;
9592 uint32_t alloc_len = min_alloc_size;
9593 auto offset0 = P2ALIGN(offset, alloc_len);
9594
9595 bool any_change;
9596
9597 // search suitable extent in both forward and reverse direction in
9598 // [offset - target_max_blob_size, offset + target_max_blob_size] range
9599 // then check if blob can be reused via can_reuse_blob func or apply
9600 // direct/deferred write (the latter for extents including or higher
9601 // than 'offset' only).
9602 do {
9603 any_change = false;
9604
9605 if (ep != end && ep->logical_offset < offset + max_bsize) {
9606 BlobRef b = ep->blob;
9607 auto bstart = ep->blob_start();
9608 dout(20) << __func__ << " considering " << *b
9609 << " bstart 0x" << std::hex << bstart << std::dec << dendl;
9610 if (bstart >= end_offs) {
9611 dout(20) << __func__ << " ignoring distant " << *b << dendl;
9612 } else if (!b->get_blob().is_mutable()) {
9613 dout(20) << __func__ << " ignoring immutable " << *b << dendl;
9614 } else if (ep->logical_offset % min_alloc_size !=
9615 ep->blob_offset % min_alloc_size) {
9616 dout(20) << __func__ << " ignoring offset-skewed " << *b << dendl;
9617 } else {
9618 uint64_t chunk_size = b->get_blob().get_chunk_size(block_size);
9619 // can we pad our head/tail out with zeros?
9620 uint64_t head_pad, tail_pad;
9621 head_pad = P2PHASE(offset, chunk_size);
9622 tail_pad = P2NPHASE(end_offs, chunk_size);
9623 if (head_pad || tail_pad) {
9624 o->extent_map.fault_range(db, offset - head_pad,
9625 end_offs - offset + head_pad + tail_pad);
9626 }
9627 if (head_pad &&
9628 o->extent_map.has_any_lextents(offset - head_pad, chunk_size)) {
9629 head_pad = 0;
9630 }
9631 if (tail_pad && o->extent_map.has_any_lextents(end_offs, tail_pad)) {
9632 tail_pad = 0;
9633 }
9634
9635 uint64_t b_off = offset - head_pad - bstart;
9636 uint64_t b_len = length + head_pad + tail_pad;
9637
9638 // direct write into unused blocks of an existing mutable blob?
9639 if ((b_off % chunk_size == 0 && b_len % chunk_size == 0) &&
9640 b->get_blob().get_ondisk_length() >= b_off + b_len &&
9641 b->get_blob().is_unused(b_off, b_len) &&
9642 b->get_blob().is_allocated(b_off, b_len)) {
9643 _apply_padding(head_pad, tail_pad, bl);
9644
9645 dout(20) << __func__ << " write to unused 0x" << std::hex
9646 << b_off << "~" << b_len
9647 << " pad 0x" << head_pad << " + 0x" << tail_pad
9648 << std::dec << " of mutable " << *b << dendl;
9649 _buffer_cache_write(txc, b, b_off, bl,
9650 wctx->buffered ? 0 : Buffer::FLAG_NOCACHE);
9651
9652 if (!g_conf->bluestore_debug_omit_block_device_write) {
9653 if (b_len <= prefer_deferred_size) {
9654 dout(20) << __func__ << " deferring small 0x" << std::hex
9655 << b_len << std::dec << " unused write via deferred" << dendl;
9656 bluestore_deferred_op_t *op = _get_deferred_op(txc, o);
9657 op->op = bluestore_deferred_op_t::OP_WRITE;
9658 b->get_blob().map(
9659 b_off, b_len,
9660 [&](uint64_t offset, uint64_t length) {
9661 op->extents.emplace_back(bluestore_pextent_t(offset, length));
9662 return 0;
9663 });
9664 op->data = bl;
9665 } else {
9666 b->get_blob().map_bl(
9667 b_off, bl,
9668 [&](uint64_t offset, bufferlist& t) {
9669 bdev->aio_write(offset, t,
9670 &txc->ioc, wctx->buffered);
9671 });
9672 }
9673 }
9674 b->dirty_blob().calc_csum(b_off, bl);
9675 dout(20) << __func__ << " lex old " << *ep << dendl;
9676 Extent *le = o->extent_map.set_lextent(c, offset, b_off + head_pad, length,
9677 b,
9678 &wctx->old_extents);
9679 b->dirty_blob().mark_used(le->blob_offset, le->length);
9680 txc->statfs_delta.stored() += le->length;
9681 dout(20) << __func__ << " lex " << *le << dendl;
9682 logger->inc(l_bluestore_write_small_unused);
9683 return;
9684 }
9685 // read some data to fill out the chunk?
9686 uint64_t head_read = P2PHASE(b_off, chunk_size);
9687 uint64_t tail_read = P2NPHASE(b_off + b_len, chunk_size);
9688 if ((head_read || tail_read) &&
9689 (b->get_blob().get_ondisk_length() >= b_off + b_len + tail_read) &&
9690 head_read + tail_read < min_alloc_size) {
9691 b_off -= head_read;
9692 b_len += head_read + tail_read;
9693
9694 } else {
9695 head_read = tail_read = 0;
9696 }
9697
9698 // chunk-aligned deferred overwrite?
9699 if (b->get_blob().get_ondisk_length() >= b_off + b_len &&
9700 b_off % chunk_size == 0 &&
9701 b_len % chunk_size == 0 &&
9702 b->get_blob().is_allocated(b_off, b_len)) {
9703
9704 _apply_padding(head_pad, tail_pad, bl);
9705
9706 dout(20) << __func__ << " reading head 0x" << std::hex << head_read
9707 << " and tail 0x" << tail_read << std::dec << dendl;
9708 if (head_read) {
9709 bufferlist head_bl;
9710 int r = _do_read(c.get(), o, offset - head_pad - head_read, head_read,
9711 head_bl, 0);
9712 assert(r >= 0 && r <= (int)head_read);
9713 size_t zlen = head_read - r;
9714 if (zlen) {
9715 head_bl.append_zero(zlen);
9716 logger->inc(l_bluestore_write_pad_bytes, zlen);
9717 }
9718 bl.claim_prepend(head_bl);
9719 logger->inc(l_bluestore_write_penalty_read_ops);
9720 }
9721 if (tail_read) {
9722 bufferlist tail_bl;
9723 int r = _do_read(c.get(), o, offset + length + tail_pad, tail_read,
9724 tail_bl, 0);
9725 assert(r >= 0 && r <= (int)tail_read);
9726 size_t zlen = tail_read - r;
9727 if (zlen) {
9728 tail_bl.append_zero(zlen);
9729 logger->inc(l_bluestore_write_pad_bytes, zlen);
9730 }
9731 bl.claim_append(tail_bl);
9732 logger->inc(l_bluestore_write_penalty_read_ops);
9733 }
9734 logger->inc(l_bluestore_write_small_pre_read);
9735
9736 bluestore_deferred_op_t *op = _get_deferred_op(txc, o);
9737 op->op = bluestore_deferred_op_t::OP_WRITE;
9738 _buffer_cache_write(txc, b, b_off, bl,
9739 wctx->buffered ? 0 : Buffer::FLAG_NOCACHE);
9740
9741 int r = b->get_blob().map(
9742 b_off, b_len,
9743 [&](uint64_t offset, uint64_t length) {
9744 op->extents.emplace_back(bluestore_pextent_t(offset, length));
9745 return 0;
9746 });
9747 assert(r == 0);
9748 if (b->get_blob().csum_type) {
9749 b->dirty_blob().calc_csum(b_off, bl);
9750 }
9751 op->data.claim(bl);
9752 dout(20) << __func__ << " deferred write 0x" << std::hex << b_off << "~"
9753 << b_len << std::dec << " of mutable " << *b
9754 << " at " << op->extents << dendl;
9755 Extent *le = o->extent_map.set_lextent(c, offset, offset - bstart, length,
9756 b, &wctx->old_extents);
9757 b->dirty_blob().mark_used(le->blob_offset, le->length);
9758 txc->statfs_delta.stored() += le->length;
9759 dout(20) << __func__ << " lex " << *le << dendl;
9760 logger->inc(l_bluestore_write_small_deferred);
9761 return;
9762 }
9763 // try to reuse blob if we can
9764 if (b->can_reuse_blob(min_alloc_size,
9765 max_bsize,
9766 offset0 - bstart,
9767 &alloc_len)) {
9768 assert(alloc_len == min_alloc_size); // expecting data always
9769 // fit into reused blob
9770 // Need to check for pending writes desiring to
9771 // reuse the same pextent. The rationale is that during GC two chunks
9772 // from garbage blobs(compressed?) can share logical space within the same
9773 // AU. That's in turn might be caused by unaligned len in clone_range2.
9774 // Hence the second write will fail in an attempt to reuse blob at
9775 // do_alloc_write().
9776 if (!wctx->has_conflict(b,
9777 offset0,
9778 offset0 + alloc_len,
9779 min_alloc_size)) {
9780
9781 // we can't reuse pad_head/pad_tail since they might be truncated
9782 // due to existent extents
9783 uint64_t b_off = offset - bstart;
9784 uint64_t b_off0 = b_off;
9785 _pad_zeros(&bl, &b_off0, chunk_size);
9786
9787 dout(20) << __func__ << " reuse blob " << *b << std::hex
9788 << " (0x" << b_off0 << "~" << bl.length() << ")"
9789 << " (0x" << b_off << "~" << length << ")"
9790 << std::dec << dendl;
9791
9792 o->extent_map.punch_hole(c, offset, length, &wctx->old_extents);
9793 wctx->write(offset, b, alloc_len, b_off0, bl, b_off, length,
9794 false, false);
9795 logger->inc(l_bluestore_write_small_unused);
9796 return;
9797 }
9798 }
9799 }
9800 ++ep;
9801 any_change = true;
9802 } // if (ep != end && ep->logical_offset < offset + max_bsize)
9803
9804 // check extent for reuse in reverse order
9805 if (prev_ep != end && prev_ep->logical_offset >= min_off) {
9806 BlobRef b = prev_ep->blob;
9807 auto bstart = prev_ep->blob_start();
9808 dout(20) << __func__ << " considering " << *b
9809 << " bstart 0x" << std::hex << bstart << std::dec << dendl;
9810 if (b->can_reuse_blob(min_alloc_size,
9811 max_bsize,
9812 offset0 - bstart,
9813 &alloc_len)) {
9814 assert(alloc_len == min_alloc_size); // expecting data always
9815 // fit into reused blob
9816 // Need to check for pending writes desiring to
9817 // reuse the same pextent. The rationale is that during GC two chunks
9818 // from garbage blobs(compressed?) can share logical space within the same
9819 // AU. That's in turn might be caused by unaligned len in clone_range2.
9820 // Hence the second write will fail in an attempt to reuse blob at
9821 // do_alloc_write().
9822 if (!wctx->has_conflict(b,
9823 offset0,
9824 offset0 + alloc_len,
9825 min_alloc_size)) {
9826
9827 uint64_t chunk_size = b->get_blob().get_chunk_size(block_size);
9828 uint64_t b_off = offset - bstart;
9829 uint64_t b_off0 = b_off;
9830 _pad_zeros(&bl, &b_off0, chunk_size);
9831
9832 dout(20) << __func__ << " reuse blob " << *b << std::hex
9833 << " (0x" << b_off0 << "~" << bl.length() << ")"
9834 << " (0x" << b_off << "~" << length << ")"
9835 << std::dec << dendl;
9836
9837 o->extent_map.punch_hole(c, offset, length, &wctx->old_extents);
9838 wctx->write(offset, b, alloc_len, b_off0, bl, b_off, length,
9839 false, false);
9840 logger->inc(l_bluestore_write_small_unused);
9841 return;
9842 }
9843 }
9844 if (prev_ep != begin) {
9845 --prev_ep;
9846 any_change = true;
9847 } else {
9848 prev_ep = end; // to avoid useless first extent re-check
9849 }
9850 } // if (prev_ep != end && prev_ep->logical_offset >= min_off)
9851 } while (any_change);
9852
9853 // new blob.
9854
9855 BlobRef b = c->new_blob();
9856 uint64_t b_off = P2PHASE(offset, alloc_len);
9857 uint64_t b_off0 = b_off;
9858 _pad_zeros(&bl, &b_off0, block_size);
9859 o->extent_map.punch_hole(c, offset, length, &wctx->old_extents);
9860 wctx->write(offset, b, alloc_len, b_off0, bl, b_off, length, true, true);
9861 logger->inc(l_bluestore_write_small_new);
9862
9863 return;
9864 }
9865
9866 void BlueStore::_do_write_big(
9867 TransContext *txc,
9868 CollectionRef &c,
9869 OnodeRef o,
9870 uint64_t offset, uint64_t length,
9871 bufferlist::iterator& blp,
9872 WriteContext *wctx)
9873 {
9874 dout(10) << __func__ << " 0x" << std::hex << offset << "~" << length
9875 << " target_blob_size 0x" << wctx->target_blob_size << std::dec
9876 << " compress " << (int)wctx->compress
9877 << dendl;
9878 logger->inc(l_bluestore_write_big);
9879 logger->inc(l_bluestore_write_big_bytes, length);
9880 o->extent_map.punch_hole(c, offset, length, &wctx->old_extents);
9881 auto max_bsize = MAX(wctx->target_blob_size, min_alloc_size);
9882 while (length > 0) {
9883 bool new_blob = false;
9884 uint32_t l = MIN(max_bsize, length);
9885 BlobRef b;
9886 uint32_t b_off = 0;
9887
9888 //attempting to reuse existing blob
9889 if (!wctx->compress) {
9890 // look for an existing mutable blob we can reuse
9891 auto begin = o->extent_map.extent_map.begin();
9892 auto end = o->extent_map.extent_map.end();
9893 auto ep = o->extent_map.seek_lextent(offset);
9894 auto prev_ep = ep;
9895 if (prev_ep != begin) {
9896 --prev_ep;
9897 } else {
9898 prev_ep = end; // to avoid this extent check as it's a duplicate
9899 }
9900 auto min_off = offset >= max_bsize ? offset - max_bsize : 0;
9901 // search suitable extent in both forward and reverse direction in
9902 // [offset - target_max_blob_size, offset + target_max_blob_size] range
9903 // then check if blob can be reused via can_reuse_blob func.
9904 bool any_change;
9905 do {
9906 any_change = false;
9907 if (ep != end && ep->logical_offset < offset + max_bsize) {
9908 if (offset >= ep->blob_start() &&
9909 ep->blob->can_reuse_blob(min_alloc_size, max_bsize,
9910 offset - ep->blob_start(),
9911 &l)) {
9912 b = ep->blob;
9913 b_off = offset - ep->blob_start();
9914 prev_ep = end; // to avoid check below
9915 dout(20) << __func__ << " reuse blob " << *b << std::hex
9916 << " (0x" << b_off << "~" << l << ")" << std::dec << dendl;
9917 } else {
9918 ++ep;
9919 any_change = true;
9920 }
9921 }
9922
9923 if (prev_ep != end && prev_ep->logical_offset >= min_off) {
9924 if (prev_ep->blob->can_reuse_blob(min_alloc_size, max_bsize,
9925 offset - prev_ep->blob_start(),
9926 &l)) {
9927 b = prev_ep->blob;
9928 b_off = offset - prev_ep->blob_start();
9929 dout(20) << __func__ << " reuse blob " << *b << std::hex
9930 << " (0x" << b_off << "~" << l << ")" << std::dec << dendl;
9931 } else if (prev_ep != begin) {
9932 --prev_ep;
9933 any_change = true;
9934 } else {
9935 prev_ep = end; // to avoid useless first extent re-check
9936 }
9937 }
9938 } while (b == nullptr && any_change);
9939 }
9940 if (b == nullptr) {
9941 b = c->new_blob();
9942 b_off = 0;
9943 new_blob = true;
9944 }
9945
9946 bufferlist t;
9947 blp.copy(l, t);
9948 wctx->write(offset, b, l, b_off, t, b_off, l, false, new_blob);
9949 offset += l;
9950 length -= l;
9951 logger->inc(l_bluestore_write_big_blobs);
9952 }
9953 }
9954
9955 int BlueStore::_do_alloc_write(
9956 TransContext *txc,
9957 CollectionRef coll,
9958 OnodeRef o,
9959 WriteContext *wctx)
9960 {
9961 dout(20) << __func__ << " txc " << txc
9962 << " " << wctx->writes.size() << " blobs"
9963 << dendl;
9964 if (wctx->writes.empty()) {
9965 return 0;
9966 }
9967
9968 CompressorRef c;
9969 double crr = 0;
9970 if (wctx->compress) {
9971 c = select_option(
9972 "compression_algorithm",
9973 compressor,
9974 [&]() {
9975 string val;
9976 if (coll->pool_opts.get(pool_opts_t::COMPRESSION_ALGORITHM, &val)) {
9977 CompressorRef cp = compressor;
9978 if (!cp || cp->get_type_name() != val) {
9979 cp = Compressor::create(cct, val);
9980 }
9981 return boost::optional<CompressorRef>(cp);
9982 }
9983 return boost::optional<CompressorRef>();
9984 }
9985 );
9986
9987 crr = select_option(
9988 "compression_required_ratio",
9989 cct->_conf->bluestore_compression_required_ratio,
9990 [&]() {
9991 double val;
9992 if (coll->pool_opts.get(pool_opts_t::COMPRESSION_REQUIRED_RATIO, &val)) {
9993 return boost::optional<double>(val);
9994 }
9995 return boost::optional<double>();
9996 }
9997 );
9998 }
9999
10000 // checksum
10001 int csum = csum_type.load();
10002 csum = select_option(
10003 "csum_type",
10004 csum,
10005 [&]() {
10006 int val;
10007 if (coll->pool_opts.get(pool_opts_t::CSUM_TYPE, &val)) {
10008 return boost::optional<int>(val);
10009 }
10010 return boost::optional<int>();
10011 }
10012 );
10013
10014 // compress (as needed) and calc needed space
10015 uint64_t need = 0;
10016 auto max_bsize = MAX(wctx->target_blob_size, min_alloc_size);
10017 for (auto& wi : wctx->writes) {
10018 if (c && wi.blob_length > min_alloc_size) {
10019 utime_t start = ceph_clock_now();
10020
10021 // compress
10022 assert(wi.b_off == 0);
10023 assert(wi.blob_length == wi.bl.length());
10024
10025 // FIXME: memory alignment here is bad
10026 bufferlist t;
10027 int r = c->compress(wi.bl, t);
10028 assert(r == 0);
10029
10030 bluestore_compression_header_t chdr;
10031 chdr.type = c->get_type();
10032 chdr.length = t.length();
10033 ::encode(chdr, wi.compressed_bl);
10034 wi.compressed_bl.claim_append(t);
10035
10036 wi.compressed_len = wi.compressed_bl.length();
10037 uint64_t newlen = P2ROUNDUP(wi.compressed_len, min_alloc_size);
10038 uint64_t want_len_raw = wi.blob_length * crr;
10039 uint64_t want_len = P2ROUNDUP(want_len_raw, min_alloc_size);
10040 if (newlen <= want_len && newlen < wi.blob_length) {
10041 // Cool. We compressed at least as much as we were hoping to.
10042 // pad out to min_alloc_size
10043 wi.compressed_bl.append_zero(newlen - wi.compressed_len);
10044 logger->inc(l_bluestore_write_pad_bytes, newlen - wi.compressed_len);
10045 dout(20) << __func__ << std::hex << " compressed 0x" << wi.blob_length
10046 << " -> 0x" << wi.compressed_len << " => 0x" << newlen
10047 << " with " << c->get_type()
10048 << std::dec << dendl;
10049 txc->statfs_delta.compressed() += wi.compressed_len;
10050 txc->statfs_delta.compressed_original() += wi.blob_length;
10051 txc->statfs_delta.compressed_allocated() += newlen;
10052 logger->inc(l_bluestore_compress_success_count);
10053 wi.compressed = true;
10054 need += newlen;
10055 } else {
10056 dout(20) << __func__ << std::hex << " 0x" << wi.blob_length
10057 << " compressed to 0x" << wi.compressed_len << " -> 0x" << newlen
10058 << " with " << c->get_type()
10059 << ", which is more than required 0x" << want_len_raw
10060 << " -> 0x" << want_len
10061 << ", leaving uncompressed"
10062 << std::dec << dendl;
10063 logger->inc(l_bluestore_compress_rejected_count);
10064 need += wi.blob_length;
10065 }
10066 logger->tinc(l_bluestore_compress_lat,
10067 ceph_clock_now() - start);
10068 } else {
10069 need += wi.blob_length;
10070 }
10071 }
10072 int r = alloc->reserve(need);
10073 if (r < 0) {
10074 derr << __func__ << " failed to reserve 0x" << std::hex << need << std::dec
10075 << dendl;
10076 return r;
10077 }
10078 AllocExtentVector prealloc;
10079 prealloc.reserve(2 * wctx->writes.size());;
10080 int prealloc_left = 0;
10081 prealloc_left = alloc->allocate(
10082 need, min_alloc_size, need,
10083 0, &prealloc);
10084 assert(prealloc_left == (int64_t)need);
10085 dout(20) << __func__ << " prealloc " << prealloc << dendl;
10086 auto prealloc_pos = prealloc.begin();
10087
10088 for (auto& wi : wctx->writes) {
10089 BlobRef b = wi.b;
10090 bluestore_blob_t& dblob = b->dirty_blob();
10091 uint64_t b_off = wi.b_off;
10092 bufferlist *l = &wi.bl;
10093 uint64_t final_length = wi.blob_length;
10094 uint64_t csum_length = wi.blob_length;
10095 unsigned csum_order = block_size_order;
10096 if (wi.compressed) {
10097 final_length = wi.compressed_bl.length();
10098 csum_length = final_length;
10099 csum_order = ctz(csum_length);
10100 l = &wi.compressed_bl;
10101 dblob.set_compressed(wi.blob_length, wi.compressed_len);
10102 } else if (wi.new_blob) {
10103 // initialize newly created blob only
10104 assert(dblob.is_mutable());
10105 if (l->length() != wi.blob_length) {
10106 // hrm, maybe we could do better here, but let's not bother.
10107 dout(20) << __func__ << " forcing csum_order to block_size_order "
10108 << block_size_order << dendl;
10109 csum_order = block_size_order;
10110 } else {
10111 csum_order = std::min(wctx->csum_order, ctz(l->length()));
10112 }
10113 // try to align blob with max_blob_size to improve
10114 // its reuse ratio, e.g. in case of reverse write
10115 uint32_t suggested_boff =
10116 (wi.logical_offset - (wi.b_off0 - wi.b_off)) % max_bsize;
10117 if ((suggested_boff % (1 << csum_order)) == 0 &&
10118 suggested_boff + final_length <= max_bsize &&
10119 suggested_boff > b_off) {
10120 dout(20) << __func__ << " forcing blob_offset to 0x"
10121 << std::hex << suggested_boff << std::dec << dendl;
10122 assert(suggested_boff >= b_off);
10123 csum_length += suggested_boff - b_off;
10124 b_off = suggested_boff;
10125 }
10126 if (csum != Checksummer::CSUM_NONE) {
10127 dout(20) << __func__ << " initialize csum setting for new blob " << *b
10128 << " csum_type " << Checksummer::get_csum_type_string(csum)
10129 << " csum_order " << csum_order
10130 << " csum_length 0x" << std::hex << csum_length << std::dec
10131 << dendl;
10132 dblob.init_csum(csum, csum_order, csum_length);
10133 }
10134 }
10135
10136 AllocExtentVector extents;
10137 int64_t left = final_length;
10138 while (left > 0) {
10139 assert(prealloc_left > 0);
10140 if (prealloc_pos->length <= left) {
10141 prealloc_left -= prealloc_pos->length;
10142 left -= prealloc_pos->length;
10143 txc->statfs_delta.allocated() += prealloc_pos->length;
10144 extents.push_back(*prealloc_pos);
10145 ++prealloc_pos;
10146 } else {
10147 extents.emplace_back(prealloc_pos->offset, left);
10148 prealloc_pos->offset += left;
10149 prealloc_pos->length -= left;
10150 prealloc_left -= left;
10151 txc->statfs_delta.allocated() += left;
10152 left = 0;
10153 break;
10154 }
10155 }
10156 for (auto& p : extents) {
10157 txc->allocated.insert(p.offset, p.length);
10158 }
10159 dblob.allocated(P2ALIGN(b_off, min_alloc_size), final_length, extents);
10160
10161 dout(20) << __func__ << " blob " << *b << dendl;
10162 if (dblob.has_csum()) {
10163 dblob.calc_csum(b_off, *l);
10164 }
10165
10166 if (wi.mark_unused) {
10167 auto b_end = b_off + wi.bl.length();
10168 if (b_off) {
10169 dblob.add_unused(0, b_off);
10170 }
10171 if (b_end < wi.blob_length) {
10172 dblob.add_unused(b_end, wi.blob_length - b_end);
10173 }
10174 }
10175
10176 Extent *le = o->extent_map.set_lextent(coll, wi.logical_offset,
10177 b_off + (wi.b_off0 - wi.b_off),
10178 wi.length0,
10179 wi.b,
10180 nullptr);
10181 wi.b->dirty_blob().mark_used(le->blob_offset, le->length);
10182 txc->statfs_delta.stored() += le->length;
10183 dout(20) << __func__ << " lex " << *le << dendl;
10184 _buffer_cache_write(txc, wi.b, b_off, wi.bl,
10185 wctx->buffered ? 0 : Buffer::FLAG_NOCACHE);
10186
10187 // queue io
10188 if (!g_conf->bluestore_debug_omit_block_device_write) {
10189 if (l->length() <= prefer_deferred_size.load()) {
10190 dout(20) << __func__ << " deferring small 0x" << std::hex
10191 << l->length() << std::dec << " write via deferred" << dendl;
10192 bluestore_deferred_op_t *op = _get_deferred_op(txc, o);
10193 op->op = bluestore_deferred_op_t::OP_WRITE;
10194 int r = b->get_blob().map(
10195 b_off, l->length(),
10196 [&](uint64_t offset, uint64_t length) {
10197 op->extents.emplace_back(bluestore_pextent_t(offset, length));
10198 return 0;
10199 });
10200 assert(r == 0);
10201 op->data = *l;
10202 } else {
10203 b->get_blob().map_bl(
10204 b_off, *l,
10205 [&](uint64_t offset, bufferlist& t) {
10206 bdev->aio_write(offset, t, &txc->ioc, false);
10207 });
10208 }
10209 }
10210 }
10211 assert(prealloc_pos == prealloc.end());
10212 assert(prealloc_left == 0);
10213 return 0;
10214 }
10215
10216 void BlueStore::_wctx_finish(
10217 TransContext *txc,
10218 CollectionRef& c,
10219 OnodeRef o,
10220 WriteContext *wctx,
10221 set<SharedBlob*> *maybe_unshared_blobs)
10222 {
10223 auto oep = wctx->old_extents.begin();
10224 while (oep != wctx->old_extents.end()) {
10225 auto &lo = *oep;
10226 oep = wctx->old_extents.erase(oep);
10227 dout(20) << __func__ << " lex_old " << lo.e << dendl;
10228 BlobRef b = lo.e.blob;
10229 const bluestore_blob_t& blob = b->get_blob();
10230 if (blob.is_compressed()) {
10231 if (lo.blob_empty) {
10232 txc->statfs_delta.compressed() -= blob.get_compressed_payload_length();
10233 }
10234 txc->statfs_delta.compressed_original() -= lo.e.length;
10235 }
10236 auto& r = lo.r;
10237 txc->statfs_delta.stored() -= lo.e.length;
10238 if (!r.empty()) {
10239 dout(20) << __func__ << " blob release " << r << dendl;
10240 if (blob.is_shared()) {
10241 PExtentVector final;
10242 c->load_shared_blob(b->shared_blob);
10243 for (auto e : r) {
10244 b->shared_blob->put_ref(
10245 e.offset, e.length, &final,
10246 b->is_referenced() ? nullptr : maybe_unshared_blobs);
10247 }
10248 dout(20) << __func__ << " shared_blob release " << final
10249 << " from " << *b->shared_blob << dendl;
10250 txc->write_shared_blob(b->shared_blob);
10251 r.clear();
10252 r.swap(final);
10253 }
10254 }
10255 // we can't invalidate our logical extents as we drop them because
10256 // other lextents (either in our onode or others) may still
10257 // reference them. but we can throw out anything that is no
10258 // longer allocated. Note that this will leave behind edge bits
10259 // that are no longer referenced but not deallocated (until they
10260 // age out of the cache naturally).
10261 b->discard_unallocated(c.get());
10262 for (auto e : r) {
10263 dout(20) << __func__ << " release " << e << dendl;
10264 txc->released.insert(e.offset, e.length);
10265 txc->statfs_delta.allocated() -= e.length;
10266 if (blob.is_compressed()) {
10267 txc->statfs_delta.compressed_allocated() -= e.length;
10268 }
10269 }
10270 delete &lo;
10271 if (b->is_spanning() && !b->is_referenced()) {
10272 dout(20) << __func__ << " spanning_blob_map removing empty " << *b
10273 << dendl;
10274 o->extent_map.spanning_blob_map.erase(b->id);
10275 }
10276 }
10277 }
10278
10279 void BlueStore::_do_write_data(
10280 TransContext *txc,
10281 CollectionRef& c,
10282 OnodeRef o,
10283 uint64_t offset,
10284 uint64_t length,
10285 bufferlist& bl,
10286 WriteContext *wctx)
10287 {
10288 uint64_t end = offset + length;
10289 bufferlist::iterator p = bl.begin();
10290
10291 if (offset / min_alloc_size == (end - 1) / min_alloc_size &&
10292 (length != min_alloc_size)) {
10293 // we fall within the same block
10294 _do_write_small(txc, c, o, offset, length, p, wctx);
10295 } else {
10296 uint64_t head_offset, head_length;
10297 uint64_t middle_offset, middle_length;
10298 uint64_t tail_offset, tail_length;
10299
10300 head_offset = offset;
10301 head_length = P2NPHASE(offset, min_alloc_size);
10302
10303 tail_offset = P2ALIGN(end, min_alloc_size);
10304 tail_length = P2PHASE(end, min_alloc_size);
10305
10306 middle_offset = head_offset + head_length;
10307 middle_length = length - head_length - tail_length;
10308
10309 if (head_length) {
10310 _do_write_small(txc, c, o, head_offset, head_length, p, wctx);
10311 }
10312
10313 if (middle_length) {
10314 _do_write_big(txc, c, o, middle_offset, middle_length, p, wctx);
10315 }
10316
10317 if (tail_length) {
10318 _do_write_small(txc, c, o, tail_offset, tail_length, p, wctx);
10319 }
10320 }
10321 }
10322
10323 void BlueStore::_choose_write_options(
10324 CollectionRef& c,
10325 OnodeRef o,
10326 uint32_t fadvise_flags,
10327 WriteContext *wctx)
10328 {
10329 if (fadvise_flags & CEPH_OSD_OP_FLAG_FADVISE_WILLNEED) {
10330 dout(20) << __func__ << " will do buffered write" << dendl;
10331 wctx->buffered = true;
10332 } else if (cct->_conf->bluestore_default_buffered_write &&
10333 (fadvise_flags & (CEPH_OSD_OP_FLAG_FADVISE_DONTNEED |
10334 CEPH_OSD_OP_FLAG_FADVISE_NOCACHE)) == 0) {
10335 dout(20) << __func__ << " defaulting to buffered write" << dendl;
10336 wctx->buffered = true;
10337 }
10338
10339 // apply basic csum block size
10340 wctx->csum_order = block_size_order;
10341
10342 // compression parameters
10343 unsigned alloc_hints = o->onode.alloc_hint_flags;
10344 auto cm = select_option(
10345 "compression_mode",
10346 comp_mode.load(),
10347 [&]() {
10348 string val;
10349 if(c->pool_opts.get(pool_opts_t::COMPRESSION_MODE, &val)) {
10350 return boost::optional<Compressor::CompressionMode>(
10351 Compressor::get_comp_mode_type(val));
10352 }
10353 return boost::optional<Compressor::CompressionMode>();
10354 }
10355 );
10356
10357 wctx->compress = (cm != Compressor::COMP_NONE) &&
10358 ((cm == Compressor::COMP_FORCE) ||
10359 (cm == Compressor::COMP_AGGRESSIVE &&
10360 (alloc_hints & CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE) == 0) ||
10361 (cm == Compressor::COMP_PASSIVE &&
10362 (alloc_hints & CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE)));
10363
10364 if ((alloc_hints & CEPH_OSD_ALLOC_HINT_FLAG_SEQUENTIAL_READ) &&
10365 (alloc_hints & CEPH_OSD_ALLOC_HINT_FLAG_RANDOM_READ) == 0 &&
10366 (alloc_hints & (CEPH_OSD_ALLOC_HINT_FLAG_IMMUTABLE |
10367 CEPH_OSD_ALLOC_HINT_FLAG_APPEND_ONLY)) &&
10368 (alloc_hints & CEPH_OSD_ALLOC_HINT_FLAG_RANDOM_WRITE) == 0) {
10369
10370 dout(20) << __func__ << " will prefer large blob and csum sizes" << dendl;
10371
10372 if (o->onode.expected_write_size) {
10373 wctx->csum_order = std::max(min_alloc_size_order,
10374 (uint8_t)ctz(o->onode.expected_write_size));
10375 } else {
10376 wctx->csum_order = min_alloc_size_order;
10377 }
10378
10379 if (wctx->compress) {
10380 wctx->target_blob_size = select_option(
10381 "compression_max_blob_size",
10382 comp_max_blob_size.load(),
10383 [&]() {
10384 int val;
10385 if(c->pool_opts.get(pool_opts_t::COMPRESSION_MAX_BLOB_SIZE, &val)) {
10386 return boost::optional<uint64_t>((uint64_t)val);
10387 }
10388 return boost::optional<uint64_t>();
10389 }
10390 );
10391 }
10392 } else {
10393 if (wctx->compress) {
10394 wctx->target_blob_size = select_option(
10395 "compression_min_blob_size",
10396 comp_min_blob_size.load(),
10397 [&]() {
10398 int val;
10399 if(c->pool_opts.get(pool_opts_t::COMPRESSION_MIN_BLOB_SIZE, &val)) {
10400 return boost::optional<uint64_t>((uint64_t)val);
10401 }
10402 return boost::optional<uint64_t>();
10403 }
10404 );
10405 }
10406 }
10407
10408 uint64_t max_bsize = max_blob_size.load();
10409 if (wctx->target_blob_size == 0 || wctx->target_blob_size > max_bsize) {
10410 wctx->target_blob_size = max_bsize;
10411 }
10412
10413 // set the min blob size floor at 2x the min_alloc_size, or else we
10414 // won't be able to allocate a smaller extent for the compressed
10415 // data.
10416 if (wctx->compress &&
10417 wctx->target_blob_size < min_alloc_size * 2) {
10418 wctx->target_blob_size = min_alloc_size * 2;
10419 }
10420
10421 dout(20) << __func__ << " prefer csum_order " << wctx->csum_order
10422 << " target_blob_size 0x" << std::hex << wctx->target_blob_size
10423 << std::dec << dendl;
10424 }
10425
10426 int BlueStore::_do_gc(
10427 TransContext *txc,
10428 CollectionRef& c,
10429 OnodeRef o,
10430 const GarbageCollector& gc,
10431 const WriteContext& wctx,
10432 uint64_t *dirty_start,
10433 uint64_t *dirty_end)
10434 {
10435 auto& extents_to_collect = gc.get_extents_to_collect();
10436
10437 WriteContext wctx_gc;
10438 wctx_gc.fork(wctx); // make a clone for garbage collection
10439
10440 for (auto it = extents_to_collect.begin();
10441 it != extents_to_collect.end();
10442 ++it) {
10443 bufferlist bl;
10444 int r = _do_read(c.get(), o, it->offset, it->length, bl, 0);
10445 assert(r == (int)it->length);
10446
10447 o->extent_map.fault_range(db, it->offset, it->length);
10448 _do_write_data(txc, c, o, it->offset, it->length, bl, &wctx_gc);
10449 logger->inc(l_bluestore_gc_merged, it->length);
10450
10451 if (*dirty_start > it->offset) {
10452 *dirty_start = it->offset;
10453 }
10454
10455 if (*dirty_end < it->offset + it->length) {
10456 *dirty_end = it->offset + it->length;
10457 }
10458 }
10459
10460 dout(30) << __func__ << " alloc write" << dendl;
10461 int r = _do_alloc_write(txc, c, o, &wctx_gc);
10462 if (r < 0) {
10463 derr << __func__ << " _do_alloc_write failed with " << cpp_strerror(r)
10464 << dendl;
10465 return r;
10466 }
10467
10468 _wctx_finish(txc, c, o, &wctx_gc);
10469 return 0;
10470 }
10471
10472 int BlueStore::_do_write(
10473 TransContext *txc,
10474 CollectionRef& c,
10475 OnodeRef o,
10476 uint64_t offset,
10477 uint64_t length,
10478 bufferlist& bl,
10479 uint32_t fadvise_flags)
10480 {
10481 int r = 0;
10482
10483 dout(20) << __func__
10484 << " " << o->oid
10485 << " 0x" << std::hex << offset << "~" << length
10486 << " - have 0x" << o->onode.size
10487 << " (" << std::dec << o->onode.size << ")"
10488 << " bytes"
10489 << " fadvise_flags 0x" << std::hex << fadvise_flags << std::dec
10490 << dendl;
10491 _dump_onode(o);
10492
10493 if (length == 0) {
10494 return 0;
10495 }
10496
10497 uint64_t end = offset + length;
10498
10499 GarbageCollector gc(c->store->cct);
10500 int64_t benefit;
10501 auto dirty_start = offset;
10502 auto dirty_end = end;
10503
10504 WriteContext wctx;
10505 _choose_write_options(c, o, fadvise_flags, &wctx);
10506 o->extent_map.fault_range(db, offset, length);
10507 _do_write_data(txc, c, o, offset, length, bl, &wctx);
10508 r = _do_alloc_write(txc, c, o, &wctx);
10509 if (r < 0) {
10510 derr << __func__ << " _do_alloc_write failed with " << cpp_strerror(r)
10511 << dendl;
10512 goto out;
10513 }
10514
10515 // NB: _wctx_finish() will empty old_extents
10516 // so we must do gc estimation before that
10517 benefit = gc.estimate(offset,
10518 length,
10519 o->extent_map,
10520 wctx.old_extents,
10521 min_alloc_size);
10522
10523 _wctx_finish(txc, c, o, &wctx);
10524 if (end > o->onode.size) {
10525 dout(20) << __func__ << " extending size to 0x" << std::hex << end
10526 << std::dec << dendl;
10527 o->onode.size = end;
10528 }
10529
10530 if (benefit >= g_conf->bluestore_gc_enable_total_threshold) {
10531 if (!gc.get_extents_to_collect().empty()) {
10532 dout(20) << __func__ << " perform garbage collection, "
10533 << "expected benefit = " << benefit << " AUs" << dendl;
10534 r = _do_gc(txc, c, o, gc, wctx, &dirty_start, &dirty_end);
10535 if (r < 0) {
10536 derr << __func__ << " _do_gc failed with " << cpp_strerror(r)
10537 << dendl;
10538 goto out;
10539 }
10540 }
10541 }
10542
10543 o->extent_map.compress_extent_map(dirty_start, dirty_end - dirty_start);
10544 o->extent_map.dirty_range(dirty_start, dirty_end - dirty_start);
10545
10546 r = 0;
10547
10548 out:
10549 return r;
10550 }
10551
10552 int BlueStore::_write(TransContext *txc,
10553 CollectionRef& c,
10554 OnodeRef& o,
10555 uint64_t offset, size_t length,
10556 bufferlist& bl,
10557 uint32_t fadvise_flags)
10558 {
10559 dout(15) << __func__ << " " << c->cid << " " << o->oid
10560 << " 0x" << std::hex << offset << "~" << length << std::dec
10561 << dendl;
10562 int r = 0;
10563 if (offset + length >= OBJECT_MAX_SIZE) {
10564 r = -E2BIG;
10565 } else {
10566 _assign_nid(txc, o);
10567 r = _do_write(txc, c, o, offset, length, bl, fadvise_flags);
10568 txc->write_onode(o);
10569 }
10570 dout(10) << __func__ << " " << c->cid << " " << o->oid
10571 << " 0x" << std::hex << offset << "~" << length << std::dec
10572 << " = " << r << dendl;
10573 return r;
10574 }
10575
10576 int BlueStore::_zero(TransContext *txc,
10577 CollectionRef& c,
10578 OnodeRef& o,
10579 uint64_t offset, size_t length)
10580 {
10581 dout(15) << __func__ << " " << c->cid << " " << o->oid
10582 << " 0x" << std::hex << offset << "~" << length << std::dec
10583 << dendl;
10584 int r = 0;
10585 if (offset + length >= OBJECT_MAX_SIZE) {
10586 r = -E2BIG;
10587 } else {
10588 _assign_nid(txc, o);
10589 r = _do_zero(txc, c, o, offset, length);
10590 }
10591 dout(10) << __func__ << " " << c->cid << " " << o->oid
10592 << " 0x" << std::hex << offset << "~" << length << std::dec
10593 << " = " << r << dendl;
10594 return r;
10595 }
10596
10597 int BlueStore::_do_zero(TransContext *txc,
10598 CollectionRef& c,
10599 OnodeRef& o,
10600 uint64_t offset, size_t length)
10601 {
10602 dout(15) << __func__ << " " << c->cid << " " << o->oid
10603 << " 0x" << std::hex << offset << "~" << length << std::dec
10604 << dendl;
10605 int r = 0;
10606
10607 _dump_onode(o);
10608
10609 WriteContext wctx;
10610 o->extent_map.fault_range(db, offset, length);
10611 o->extent_map.punch_hole(c, offset, length, &wctx.old_extents);
10612 o->extent_map.dirty_range(offset, length);
10613 _wctx_finish(txc, c, o, &wctx);
10614
10615 if (length > 0 && offset + length > o->onode.size) {
10616 o->onode.size = offset + length;
10617 dout(20) << __func__ << " extending size to " << offset + length
10618 << dendl;
10619 }
10620 txc->write_onode(o);
10621
10622 dout(10) << __func__ << " " << c->cid << " " << o->oid
10623 << " 0x" << std::hex << offset << "~" << length << std::dec
10624 << " = " << r << dendl;
10625 return r;
10626 }
10627
10628 void BlueStore::_do_truncate(
10629 TransContext *txc, CollectionRef& c, OnodeRef o, uint64_t offset,
10630 set<SharedBlob*> *maybe_unshared_blobs)
10631 {
10632 dout(15) << __func__ << " " << c->cid << " " << o->oid
10633 << " 0x" << std::hex << offset << std::dec << dendl;
10634
10635 _dump_onode(o, 30);
10636
10637 if (offset == o->onode.size)
10638 return;
10639
10640 if (offset < o->onode.size) {
10641 WriteContext wctx;
10642 uint64_t length = o->onode.size - offset;
10643 o->extent_map.fault_range(db, offset, length);
10644 o->extent_map.punch_hole(c, offset, length, &wctx.old_extents);
10645 o->extent_map.dirty_range(offset, length);
10646 _wctx_finish(txc, c, o, &wctx, maybe_unshared_blobs);
10647
10648 // if we have shards past EOF, ask for a reshard
10649 if (!o->onode.extent_map_shards.empty() &&
10650 o->onode.extent_map_shards.back().offset >= offset) {
10651 dout(10) << __func__ << " request reshard past EOF" << dendl;
10652 if (offset) {
10653 o->extent_map.request_reshard(offset - 1, offset + length);
10654 } else {
10655 o->extent_map.request_reshard(0, length);
10656 }
10657 }
10658 }
10659
10660 o->onode.size = offset;
10661
10662 txc->write_onode(o);
10663 }
10664
10665 int BlueStore::_truncate(TransContext *txc,
10666 CollectionRef& c,
10667 OnodeRef& o,
10668 uint64_t offset)
10669 {
10670 dout(15) << __func__ << " " << c->cid << " " << o->oid
10671 << " 0x" << std::hex << offset << std::dec
10672 << dendl;
10673 int r = 0;
10674 if (offset >= OBJECT_MAX_SIZE) {
10675 r = -E2BIG;
10676 } else {
10677 _do_truncate(txc, c, o, offset);
10678 }
10679 dout(10) << __func__ << " " << c->cid << " " << o->oid
10680 << " 0x" << std::hex << offset << std::dec
10681 << " = " << r << dendl;
10682 return r;
10683 }
10684
10685 int BlueStore::_do_remove(
10686 TransContext *txc,
10687 CollectionRef& c,
10688 OnodeRef o)
10689 {
10690 set<SharedBlob*> maybe_unshared_blobs;
10691 bool is_gen = !o->oid.is_no_gen();
10692 _do_truncate(txc, c, o, 0, is_gen ? &maybe_unshared_blobs : nullptr);
10693 if (o->onode.has_omap()) {
10694 o->flush();
10695 _do_omap_clear(txc, o->onode.nid);
10696 }
10697 o->exists = false;
10698 string key;
10699 for (auto &s : o->extent_map.shards) {
10700 dout(20) << __func__ << " removing shard 0x" << std::hex
10701 << s.shard_info->offset << std::dec << dendl;
10702 generate_extent_shard_key_and_apply(o->key, s.shard_info->offset, &key,
10703 [&](const string& final_key) {
10704 txc->t->rmkey(PREFIX_OBJ, final_key);
10705 }
10706 );
10707 }
10708 txc->t->rmkey(PREFIX_OBJ, o->key.c_str(), o->key.size());
10709 txc->removed(o);
10710 o->extent_map.clear();
10711 o->onode = bluestore_onode_t();
10712 _debug_obj_on_delete(o->oid);
10713
10714 if (!is_gen || maybe_unshared_blobs.empty()) {
10715 return 0;
10716 }
10717
10718 // see if we can unshare blobs still referenced by the head
10719 dout(10) << __func__ << " gen and maybe_unshared_blobs "
10720 << maybe_unshared_blobs << dendl;
10721 ghobject_t nogen = o->oid;
10722 nogen.generation = ghobject_t::NO_GEN;
10723 OnodeRef h = c->onode_map.lookup(nogen);
10724
10725 if (!h || !h->exists) {
10726 return 0;
10727 }
10728
10729 dout(20) << __func__ << " checking for unshareable blobs on " << h
10730 << " " << h->oid << dendl;
10731 map<SharedBlob*,bluestore_extent_ref_map_t> expect;
10732 for (auto& e : h->extent_map.extent_map) {
10733 const bluestore_blob_t& b = e.blob->get_blob();
10734 SharedBlob *sb = e.blob->shared_blob.get();
10735 if (b.is_shared() &&
10736 sb->loaded &&
10737 maybe_unshared_blobs.count(sb)) {
10738 if (b.is_compressed()) {
10739 expect[sb].get(0, b.get_ondisk_length());
10740 } else {
10741 b.map(e.blob_offset, e.length, [&](uint64_t off, uint64_t len) {
10742 expect[sb].get(off, len);
10743 return 0;
10744 });
10745 }
10746 }
10747 }
10748
10749 vector<SharedBlob*> unshared_blobs;
10750 unshared_blobs.reserve(maybe_unshared_blobs.size());
10751 for (auto& p : expect) {
10752 dout(20) << " ? " << *p.first << " vs " << p.second << dendl;
10753 if (p.first->persistent->ref_map == p.second) {
10754 SharedBlob *sb = p.first;
10755 dout(20) << __func__ << " unsharing " << *sb << dendl;
10756 unshared_blobs.push_back(sb);
10757 txc->unshare_blob(sb);
10758 uint64_t sbid = c->make_blob_unshared(sb);
10759 string key;
10760 get_shared_blob_key(sbid, &key);
10761 txc->t->rmkey(PREFIX_SHARED_BLOB, key);
10762 }
10763 }
10764
10765 if (unshared_blobs.empty()) {
10766 return 0;
10767 }
10768
10769 for (auto& e : h->extent_map.extent_map) {
10770 const bluestore_blob_t& b = e.blob->get_blob();
10771 SharedBlob *sb = e.blob->shared_blob.get();
10772 if (b.is_shared() &&
10773 std::find(unshared_blobs.begin(), unshared_blobs.end(),
10774 sb) != unshared_blobs.end()) {
10775 dout(20) << __func__ << " unsharing " << e << dendl;
10776 bluestore_blob_t& blob = e.blob->dirty_blob();
10777 blob.clear_flag(bluestore_blob_t::FLAG_SHARED);
10778 h->extent_map.dirty_range(e.logical_offset, 1);
10779 }
10780 }
10781 txc->write_onode(h);
10782
10783 return 0;
10784 }
10785
10786 int BlueStore::_remove(TransContext *txc,
10787 CollectionRef& c,
10788 OnodeRef &o)
10789 {
10790 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
10791 int r = _do_remove(txc, c, o);
10792 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
10793 return r;
10794 }
10795
10796 int BlueStore::_setattr(TransContext *txc,
10797 CollectionRef& c,
10798 OnodeRef& o,
10799 const string& name,
10800 bufferptr& val)
10801 {
10802 dout(15) << __func__ << " " << c->cid << " " << o->oid
10803 << " " << name << " (" << val.length() << " bytes)"
10804 << dendl;
10805 int r = 0;
10806 if (val.is_partial()) {
10807 auto& b = o->onode.attrs[name.c_str()] = bufferptr(val.c_str(),
10808 val.length());
10809 b.reassign_to_mempool(mempool::mempool_bluestore_cache_other);
10810 } else {
10811 auto& b = o->onode.attrs[name.c_str()] = val;
10812 b.reassign_to_mempool(mempool::mempool_bluestore_cache_other);
10813 }
10814 txc->write_onode(o);
10815 dout(10) << __func__ << " " << c->cid << " " << o->oid
10816 << " " << name << " (" << val.length() << " bytes)"
10817 << " = " << r << dendl;
10818 return r;
10819 }
10820
10821 int BlueStore::_setattrs(TransContext *txc,
10822 CollectionRef& c,
10823 OnodeRef& o,
10824 const map<string,bufferptr>& aset)
10825 {
10826 dout(15) << __func__ << " " << c->cid << " " << o->oid
10827 << " " << aset.size() << " keys"
10828 << dendl;
10829 int r = 0;
10830 for (map<string,bufferptr>::const_iterator p = aset.begin();
10831 p != aset.end(); ++p) {
10832 if (p->second.is_partial()) {
10833 auto& b = o->onode.attrs[p->first.c_str()] =
10834 bufferptr(p->second.c_str(), p->second.length());
10835 b.reassign_to_mempool(mempool::mempool_bluestore_cache_other);
10836 } else {
10837 auto& b = o->onode.attrs[p->first.c_str()] = p->second;
10838 b.reassign_to_mempool(mempool::mempool_bluestore_cache_other);
10839 }
10840 }
10841 txc->write_onode(o);
10842 dout(10) << __func__ << " " << c->cid << " " << o->oid
10843 << " " << aset.size() << " keys"
10844 << " = " << r << dendl;
10845 return r;
10846 }
10847
10848
10849 int BlueStore::_rmattr(TransContext *txc,
10850 CollectionRef& c,
10851 OnodeRef& o,
10852 const string& name)
10853 {
10854 dout(15) << __func__ << " " << c->cid << " " << o->oid
10855 << " " << name << dendl;
10856 int r = 0;
10857 auto it = o->onode.attrs.find(name.c_str());
10858 if (it == o->onode.attrs.end())
10859 goto out;
10860
10861 o->onode.attrs.erase(it);
10862 txc->write_onode(o);
10863
10864 out:
10865 dout(10) << __func__ << " " << c->cid << " " << o->oid
10866 << " " << name << " = " << r << dendl;
10867 return r;
10868 }
10869
10870 int BlueStore::_rmattrs(TransContext *txc,
10871 CollectionRef& c,
10872 OnodeRef& o)
10873 {
10874 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
10875 int r = 0;
10876
10877 if (o->onode.attrs.empty())
10878 goto out;
10879
10880 o->onode.attrs.clear();
10881 txc->write_onode(o);
10882
10883 out:
10884 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
10885 return r;
10886 }
10887
10888 void BlueStore::_do_omap_clear(TransContext *txc, uint64_t id)
10889 {
10890 KeyValueDB::Iterator it = db->get_iterator(PREFIX_OMAP);
10891 string prefix, tail;
10892 get_omap_header(id, &prefix);
10893 get_omap_tail(id, &tail);
10894 it->lower_bound(prefix);
10895 while (it->valid()) {
10896 if (it->key() >= tail) {
10897 dout(30) << __func__ << " stop at " << pretty_binary_string(tail)
10898 << dendl;
10899 break;
10900 }
10901 txc->t->rmkey(PREFIX_OMAP, it->key());
10902 dout(30) << __func__ << " rm " << pretty_binary_string(it->key()) << dendl;
10903 it->next();
10904 }
10905 }
10906
10907 int BlueStore::_omap_clear(TransContext *txc,
10908 CollectionRef& c,
10909 OnodeRef& o)
10910 {
10911 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
10912 int r = 0;
10913 if (o->onode.has_omap()) {
10914 o->flush();
10915 _do_omap_clear(txc, o->onode.nid);
10916 o->onode.clear_omap_flag();
10917 txc->write_onode(o);
10918 }
10919 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
10920 return r;
10921 }
10922
10923 int BlueStore::_omap_setkeys(TransContext *txc,
10924 CollectionRef& c,
10925 OnodeRef& o,
10926 bufferlist &bl)
10927 {
10928 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
10929 int r;
10930 bufferlist::iterator p = bl.begin();
10931 __u32 num;
10932 if (!o->onode.has_omap()) {
10933 o->onode.set_omap_flag();
10934 txc->write_onode(o);
10935 } else {
10936 txc->note_modified_object(o);
10937 }
10938 string final_key;
10939 _key_encode_u64(o->onode.nid, &final_key);
10940 final_key.push_back('.');
10941 ::decode(num, p);
10942 while (num--) {
10943 string key;
10944 bufferlist value;
10945 ::decode(key, p);
10946 ::decode(value, p);
10947 final_key.resize(9); // keep prefix
10948 final_key += key;
10949 dout(30) << __func__ << " " << pretty_binary_string(final_key)
10950 << " <- " << key << dendl;
10951 txc->t->set(PREFIX_OMAP, final_key, value);
10952 }
10953 r = 0;
10954 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
10955 return r;
10956 }
10957
10958 int BlueStore::_omap_setheader(TransContext *txc,
10959 CollectionRef& c,
10960 OnodeRef &o,
10961 bufferlist& bl)
10962 {
10963 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
10964 int r;
10965 string key;
10966 if (!o->onode.has_omap()) {
10967 o->onode.set_omap_flag();
10968 txc->write_onode(o);
10969 } else {
10970 txc->note_modified_object(o);
10971 }
10972 get_omap_header(o->onode.nid, &key);
10973 txc->t->set(PREFIX_OMAP, key, bl);
10974 r = 0;
10975 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
10976 return r;
10977 }
10978
10979 int BlueStore::_omap_rmkeys(TransContext *txc,
10980 CollectionRef& c,
10981 OnodeRef& o,
10982 bufferlist& bl)
10983 {
10984 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
10985 int r = 0;
10986 bufferlist::iterator p = bl.begin();
10987 __u32 num;
10988 string final_key;
10989
10990 if (!o->onode.has_omap()) {
10991 goto out;
10992 }
10993 _key_encode_u64(o->onode.nid, &final_key);
10994 final_key.push_back('.');
10995 ::decode(num, p);
10996 while (num--) {
10997 string key;
10998 ::decode(key, p);
10999 final_key.resize(9); // keep prefix
11000 final_key += key;
11001 dout(30) << __func__ << " rm " << pretty_binary_string(final_key)
11002 << " <- " << key << dendl;
11003 txc->t->rmkey(PREFIX_OMAP, final_key);
11004 }
11005 txc->note_modified_object(o);
11006
11007 out:
11008 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
11009 return r;
11010 }
11011
11012 int BlueStore::_omap_rmkey_range(TransContext *txc,
11013 CollectionRef& c,
11014 OnodeRef& o,
11015 const string& first, const string& last)
11016 {
11017 dout(15) << __func__ << " " << c->cid << " " << o->oid << dendl;
11018 KeyValueDB::Iterator it;
11019 string key_first, key_last;
11020 int r = 0;
11021 if (!o->onode.has_omap()) {
11022 goto out;
11023 }
11024 o->flush();
11025 it = db->get_iterator(PREFIX_OMAP);
11026 get_omap_key(o->onode.nid, first, &key_first);
11027 get_omap_key(o->onode.nid, last, &key_last);
11028 it->lower_bound(key_first);
11029 while (it->valid()) {
11030 if (it->key() >= key_last) {
11031 dout(30) << __func__ << " stop at " << pretty_binary_string(key_last)
11032 << dendl;
11033 break;
11034 }
11035 txc->t->rmkey(PREFIX_OMAP, it->key());
11036 dout(30) << __func__ << " rm " << pretty_binary_string(it->key()) << dendl;
11037 it->next();
11038 }
11039 txc->note_modified_object(o);
11040
11041 out:
11042 dout(10) << __func__ << " " << c->cid << " " << o->oid << " = " << r << dendl;
11043 return r;
11044 }
11045
11046 int BlueStore::_set_alloc_hint(
11047 TransContext *txc,
11048 CollectionRef& c,
11049 OnodeRef& o,
11050 uint64_t expected_object_size,
11051 uint64_t expected_write_size,
11052 uint32_t flags)
11053 {
11054 dout(15) << __func__ << " " << c->cid << " " << o->oid
11055 << " object_size " << expected_object_size
11056 << " write_size " << expected_write_size
11057 << " flags " << ceph_osd_alloc_hint_flag_string(flags)
11058 << dendl;
11059 int r = 0;
11060 o->onode.expected_object_size = expected_object_size;
11061 o->onode.expected_write_size = expected_write_size;
11062 o->onode.alloc_hint_flags = flags;
11063 txc->write_onode(o);
11064 dout(10) << __func__ << " " << c->cid << " " << o->oid
11065 << " object_size " << expected_object_size
11066 << " write_size " << expected_write_size
11067 << " flags " << ceph_osd_alloc_hint_flag_string(flags)
11068 << " = " << r << dendl;
11069 return r;
11070 }
11071
11072 int BlueStore::_clone(TransContext *txc,
11073 CollectionRef& c,
11074 OnodeRef& oldo,
11075 OnodeRef& newo)
11076 {
11077 dout(15) << __func__ << " " << c->cid << " " << oldo->oid << " -> "
11078 << newo->oid << dendl;
11079 int r = 0;
11080 if (oldo->oid.hobj.get_hash() != newo->oid.hobj.get_hash()) {
11081 derr << __func__ << " mismatched hash on " << oldo->oid
11082 << " and " << newo->oid << dendl;
11083 return -EINVAL;
11084 }
11085
11086 _assign_nid(txc, newo);
11087
11088 // clone data
11089 oldo->flush();
11090 _do_truncate(txc, c, newo, 0);
11091 if (cct->_conf->bluestore_clone_cow) {
11092 _do_clone_range(txc, c, oldo, newo, 0, oldo->onode.size, 0);
11093 } else {
11094 bufferlist bl;
11095 r = _do_read(c.get(), oldo, 0, oldo->onode.size, bl, 0);
11096 if (r < 0)
11097 goto out;
11098 r = _do_write(txc, c, newo, 0, oldo->onode.size, bl, 0);
11099 if (r < 0)
11100 goto out;
11101 }
11102
11103 // clone attrs
11104 newo->onode.attrs = oldo->onode.attrs;
11105
11106 // clone omap
11107 if (newo->onode.has_omap()) {
11108 dout(20) << __func__ << " clearing old omap data" << dendl;
11109 newo->flush();
11110 _do_omap_clear(txc, newo->onode.nid);
11111 }
11112 if (oldo->onode.has_omap()) {
11113 dout(20) << __func__ << " copying omap data" << dendl;
11114 if (!newo->onode.has_omap()) {
11115 newo->onode.set_omap_flag();
11116 }
11117 KeyValueDB::Iterator it = db->get_iterator(PREFIX_OMAP);
11118 string head, tail;
11119 get_omap_header(oldo->onode.nid, &head);
11120 get_omap_tail(oldo->onode.nid, &tail);
11121 it->lower_bound(head);
11122 while (it->valid()) {
11123 if (it->key() >= tail) {
11124 dout(30) << __func__ << " reached tail" << dendl;
11125 break;
11126 } else {
11127 dout(30) << __func__ << " got header/data "
11128 << pretty_binary_string(it->key()) << dendl;
11129 string key;
11130 rewrite_omap_key(newo->onode.nid, it->key(), &key);
11131 txc->t->set(PREFIX_OMAP, key, it->value());
11132 }
11133 it->next();
11134 }
11135 } else {
11136 newo->onode.clear_omap_flag();
11137 }
11138
11139 txc->write_onode(newo);
11140 r = 0;
11141
11142 out:
11143 dout(10) << __func__ << " " << c->cid << " " << oldo->oid << " -> "
11144 << newo->oid << " = " << r << dendl;
11145 return r;
11146 }
11147
11148 int BlueStore::_do_clone_range(
11149 TransContext *txc,
11150 CollectionRef& c,
11151 OnodeRef& oldo,
11152 OnodeRef& newo,
11153 uint64_t srcoff,
11154 uint64_t length,
11155 uint64_t dstoff)
11156 {
11157 dout(15) << __func__ << " " << c->cid << " " << oldo->oid << " -> "
11158 << newo->oid
11159 << " 0x" << std::hex << srcoff << "~" << length << " -> "
11160 << " 0x" << dstoff << "~" << length << std::dec << dendl;
11161 oldo->extent_map.fault_range(db, srcoff, length);
11162 newo->extent_map.fault_range(db, dstoff, length);
11163 _dump_onode(oldo);
11164 _dump_onode(newo);
11165
11166 // hmm, this could go into an ExtentMap::dup() method.
11167 vector<BlobRef> id_to_blob(oldo->extent_map.extent_map.size());
11168 for (auto &e : oldo->extent_map.extent_map) {
11169 e.blob->last_encoded_id = -1;
11170 }
11171 int n = 0;
11172 uint64_t end = srcoff + length;
11173 uint32_t dirty_range_begin = 0;
11174 uint32_t dirty_range_end = 0;
11175 bool src_dirty = false;
11176 for (auto ep = oldo->extent_map.seek_lextent(srcoff);
11177 ep != oldo->extent_map.extent_map.end();
11178 ++ep) {
11179 auto& e = *ep;
11180 if (e.logical_offset >= end) {
11181 break;
11182 }
11183 dout(20) << __func__ << " src " << e << dendl;
11184 BlobRef cb;
11185 bool blob_duped = true;
11186 if (e.blob->last_encoded_id >= 0) {
11187 // blob is already duped
11188 cb = id_to_blob[e.blob->last_encoded_id];
11189 blob_duped = false;
11190 } else {
11191 // dup the blob
11192 const bluestore_blob_t& blob = e.blob->get_blob();
11193 // make sure it is shared
11194 if (!blob.is_shared()) {
11195 c->make_blob_shared(_assign_blobid(txc), e.blob);
11196 if (!src_dirty) {
11197 src_dirty = true;
11198 dirty_range_begin = e.logical_offset;
11199 }
11200 assert(e.logical_end() > 0);
11201 // -1 to exclude next potential shard
11202 dirty_range_end = e.logical_end() - 1;
11203 } else {
11204 c->load_shared_blob(e.blob->shared_blob);
11205 }
11206 cb = new Blob();
11207 e.blob->last_encoded_id = n;
11208 id_to_blob[n] = cb;
11209 e.blob->dup(*cb);
11210 // bump the extent refs on the copied blob's extents
11211 for (auto p : blob.get_extents()) {
11212 if (p.is_valid()) {
11213 e.blob->shared_blob->get_ref(p.offset, p.length);
11214 }
11215 }
11216 txc->write_shared_blob(e.blob->shared_blob);
11217 dout(20) << __func__ << " new " << *cb << dendl;
11218 }
11219 // dup extent
11220 int skip_front, skip_back;
11221 if (e.logical_offset < srcoff) {
11222 skip_front = srcoff - e.logical_offset;
11223 } else {
11224 skip_front = 0;
11225 }
11226 if (e.logical_end() > end) {
11227 skip_back = e.logical_end() - end;
11228 } else {
11229 skip_back = 0;
11230 }
11231 Extent *ne = new Extent(e.logical_offset + skip_front + dstoff - srcoff,
11232 e.blob_offset + skip_front,
11233 e.length - skip_front - skip_back, cb);
11234 newo->extent_map.extent_map.insert(*ne);
11235 ne->blob->get_ref(c.get(), ne->blob_offset, ne->length);
11236 // fixme: we may leave parts of new blob unreferenced that could
11237 // be freed (relative to the shared_blob).
11238 txc->statfs_delta.stored() += ne->length;
11239 if (e.blob->get_blob().is_compressed()) {
11240 txc->statfs_delta.compressed_original() += ne->length;
11241 if (blob_duped){
11242 txc->statfs_delta.compressed() +=
11243 cb->get_blob().get_compressed_payload_length();
11244 }
11245 }
11246 dout(20) << __func__ << " dst " << *ne << dendl;
11247 ++n;
11248 }
11249 if (src_dirty) {
11250 oldo->extent_map.dirty_range(dirty_range_begin,
11251 dirty_range_end - dirty_range_begin);
11252 txc->write_onode(oldo);
11253 }
11254 txc->write_onode(newo);
11255
11256 if (dstoff + length > newo->onode.size) {
11257 newo->onode.size = dstoff + length;
11258 }
11259 newo->extent_map.dirty_range(dstoff, length);
11260 _dump_onode(oldo);
11261 _dump_onode(newo);
11262 return 0;
11263 }
11264
11265 int BlueStore::_clone_range(TransContext *txc,
11266 CollectionRef& c,
11267 OnodeRef& oldo,
11268 OnodeRef& newo,
11269 uint64_t srcoff, uint64_t length, uint64_t dstoff)
11270 {
11271 dout(15) << __func__ << " " << c->cid << " " << oldo->oid << " -> "
11272 << newo->oid << " from 0x" << std::hex << srcoff << "~" << length
11273 << " to offset 0x" << dstoff << std::dec << dendl;
11274 int r = 0;
11275
11276 if (srcoff + length >= OBJECT_MAX_SIZE ||
11277 dstoff + length >= OBJECT_MAX_SIZE) {
11278 r = -E2BIG;
11279 goto out;
11280 }
11281 if (srcoff + length > oldo->onode.size) {
11282 r = -EINVAL;
11283 goto out;
11284 }
11285
11286 _assign_nid(txc, newo);
11287
11288 if (length > 0) {
11289 if (cct->_conf->bluestore_clone_cow) {
11290 _do_zero(txc, c, newo, dstoff, length);
11291 _do_clone_range(txc, c, oldo, newo, srcoff, length, dstoff);
11292 } else {
11293 bufferlist bl;
11294 r = _do_read(c.get(), oldo, srcoff, length, bl, 0);
11295 if (r < 0)
11296 goto out;
11297 r = _do_write(txc, c, newo, dstoff, bl.length(), bl, 0);
11298 if (r < 0)
11299 goto out;
11300 }
11301 }
11302
11303 txc->write_onode(newo);
11304 r = 0;
11305
11306 out:
11307 dout(10) << __func__ << " " << c->cid << " " << oldo->oid << " -> "
11308 << newo->oid << " from 0x" << std::hex << srcoff << "~" << length
11309 << " to offset 0x" << dstoff << std::dec
11310 << " = " << r << dendl;
11311 return r;
11312 }
11313
11314 int BlueStore::_rename(TransContext *txc,
11315 CollectionRef& c,
11316 OnodeRef& oldo,
11317 OnodeRef& newo,
11318 const ghobject_t& new_oid)
11319 {
11320 dout(15) << __func__ << " " << c->cid << " " << oldo->oid << " -> "
11321 << new_oid << dendl;
11322 int r;
11323 ghobject_t old_oid = oldo->oid;
11324 mempool::bluestore_cache_other::string new_okey;
11325
11326 if (newo) {
11327 if (newo->exists) {
11328 r = -EEXIST;
11329 goto out;
11330 }
11331 assert(txc->onodes.count(newo) == 0);
11332 }
11333
11334 txc->t->rmkey(PREFIX_OBJ, oldo->key.c_str(), oldo->key.size());
11335
11336 // rewrite shards
11337 {
11338 oldo->extent_map.fault_range(db, 0, oldo->onode.size);
11339 get_object_key(cct, new_oid, &new_okey);
11340 string key;
11341 for (auto &s : oldo->extent_map.shards) {
11342 generate_extent_shard_key_and_apply(oldo->key, s.shard_info->offset, &key,
11343 [&](const string& final_key) {
11344 txc->t->rmkey(PREFIX_OBJ, final_key);
11345 }
11346 );
11347 s.dirty = true;
11348 }
11349 }
11350
11351 newo = oldo;
11352 txc->write_onode(newo);
11353
11354 // this adjusts oldo->{oid,key}, and reset oldo to a fresh empty
11355 // Onode in the old slot
11356 c->onode_map.rename(oldo, old_oid, new_oid, new_okey);
11357 r = 0;
11358
11359 out:
11360 dout(10) << __func__ << " " << c->cid << " " << old_oid << " -> "
11361 << new_oid << " = " << r << dendl;
11362 return r;
11363 }
11364
11365 // collections
11366
11367 int BlueStore::_create_collection(
11368 TransContext *txc,
11369 const coll_t &cid,
11370 unsigned bits,
11371 CollectionRef *c)
11372 {
11373 dout(15) << __func__ << " " << cid << " bits " << bits << dendl;
11374 int r;
11375 bufferlist bl;
11376
11377 {
11378 RWLock::WLocker l(coll_lock);
11379 if (*c) {
11380 r = -EEXIST;
11381 goto out;
11382 }
11383 c->reset(
11384 new Collection(
11385 this,
11386 cache_shards[cid.hash_to_shard(cache_shards.size())],
11387 cid));
11388 (*c)->cnode.bits = bits;
11389 coll_map[cid] = *c;
11390 }
11391 ::encode((*c)->cnode, bl);
11392 txc->t->set(PREFIX_COLL, stringify(cid), bl);
11393 r = 0;
11394
11395 out:
11396 dout(10) << __func__ << " " << cid << " bits " << bits << " = " << r << dendl;
11397 return r;
11398 }
11399
11400 int BlueStore::_remove_collection(TransContext *txc, const coll_t &cid,
11401 CollectionRef *c)
11402 {
11403 dout(15) << __func__ << " " << cid << dendl;
11404 int r;
11405
11406 {
11407 RWLock::WLocker l(coll_lock);
11408 if (!*c) {
11409 r = -ENOENT;
11410 goto out;
11411 }
11412 size_t nonexistent_count = 0;
11413 assert((*c)->exists);
11414 if ((*c)->onode_map.map_any([&](OnodeRef o) {
11415 if (o->exists) {
11416 dout(10) << __func__ << " " << o->oid << " " << o
11417 << " exists in onode_map" << dendl;
11418 return true;
11419 }
11420 ++nonexistent_count;
11421 return false;
11422 })) {
11423 r = -ENOTEMPTY;
11424 goto out;
11425 }
11426
11427 vector<ghobject_t> ls;
11428 ghobject_t next;
11429 // Enumerate onodes in db, up to nonexistent_count + 1
11430 // then check if all of them are marked as non-existent.
11431 // Bypass the check if returned number is greater than nonexistent_count
11432 r = _collection_list(c->get(), ghobject_t(), ghobject_t::get_max(),
11433 nonexistent_count + 1, &ls, &next);
11434 if (r >= 0) {
11435 bool exists = false; //ls.size() > nonexistent_count;
11436 for (auto it = ls.begin(); !exists && it < ls.end(); ++it) {
11437 dout(10) << __func__ << " oid " << *it << dendl;
11438 auto onode = (*c)->onode_map.lookup(*it);
11439 exists = !onode || onode->exists;
11440 if (exists) {
11441 dout(10) << __func__ << " " << *it
11442 << " exists in db" << dendl;
11443 }
11444 }
11445 if (!exists) {
11446 coll_map.erase(cid);
11447 txc->removed_collections.push_back(*c);
11448 (*c)->exists = false;
11449 c->reset();
11450 txc->t->rmkey(PREFIX_COLL, stringify(cid));
11451 r = 0;
11452 } else {
11453 dout(10) << __func__ << " " << cid
11454 << " is non-empty" << dendl;
11455 r = -ENOTEMPTY;
11456 }
11457 }
11458 }
11459
11460 out:
11461 dout(10) << __func__ << " " << cid << " = " << r << dendl;
11462 return r;
11463 }
11464
11465 int BlueStore::_split_collection(TransContext *txc,
11466 CollectionRef& c,
11467 CollectionRef& d,
11468 unsigned bits, int rem)
11469 {
11470 dout(15) << __func__ << " " << c->cid << " to " << d->cid << " "
11471 << " bits " << bits << dendl;
11472 RWLock::WLocker l(c->lock);
11473 RWLock::WLocker l2(d->lock);
11474 int r;
11475
11476 // flush all previous deferred writes on this sequencer. this is a bit
11477 // heavyweight, but we need to make sure all deferred writes complete
11478 // before we split as the new collection's sequencer may need to order
11479 // this after those writes, and we don't bother with the complexity of
11480 // moving those TransContexts over to the new osr.
11481 _osr_drain_preceding(txc);
11482
11483 // move any cached items (onodes and referenced shared blobs) that will
11484 // belong to the child collection post-split. leave everything else behind.
11485 // this may include things that don't strictly belong to the now-smaller
11486 // parent split, but the OSD will always send us a split for every new
11487 // child.
11488
11489 spg_t pgid, dest_pgid;
11490 bool is_pg = c->cid.is_pg(&pgid);
11491 assert(is_pg);
11492 is_pg = d->cid.is_pg(&dest_pgid);
11493 assert(is_pg);
11494
11495 // the destination should initially be empty.
11496 assert(d->onode_map.empty());
11497 assert(d->shared_blob_set.empty());
11498 assert(d->cnode.bits == bits);
11499
11500 c->split_cache(d.get());
11501
11502 // adjust bits. note that this will be redundant for all but the first
11503 // split call for this parent (first child).
11504 c->cnode.bits = bits;
11505 assert(d->cnode.bits == bits);
11506 r = 0;
11507
11508 bufferlist bl;
11509 ::encode(c->cnode, bl);
11510 txc->t->set(PREFIX_COLL, stringify(c->cid), bl);
11511
11512 dout(10) << __func__ << " " << c->cid << " to " << d->cid << " "
11513 << " bits " << bits << " = " << r << dendl;
11514 return r;
11515 }
11516
11517 // DB key value Histogram
11518 #define KEY_SLAB 32
11519 #define VALUE_SLAB 64
11520
11521 const string prefix_onode = "o";
11522 const string prefix_onode_shard = "x";
11523 const string prefix_other = "Z";
11524
11525 int BlueStore::DBHistogram::get_key_slab(size_t sz)
11526 {
11527 return (sz/KEY_SLAB);
11528 }
11529
11530 string BlueStore::DBHistogram::get_key_slab_to_range(int slab)
11531 {
11532 int lower_bound = slab * KEY_SLAB;
11533 int upper_bound = (slab + 1) * KEY_SLAB;
11534 string ret = "[" + stringify(lower_bound) + "," + stringify(upper_bound) + ")";
11535 return ret;
11536 }
11537
11538 int BlueStore::DBHistogram::get_value_slab(size_t sz)
11539 {
11540 return (sz/VALUE_SLAB);
11541 }
11542
11543 string BlueStore::DBHistogram::get_value_slab_to_range(int slab)
11544 {
11545 int lower_bound = slab * VALUE_SLAB;
11546 int upper_bound = (slab + 1) * VALUE_SLAB;
11547 string ret = "[" + stringify(lower_bound) + "," + stringify(upper_bound) + ")";
11548 return ret;
11549 }
11550
11551 void BlueStore::DBHistogram::update_hist_entry(map<string, map<int, struct key_dist> > &key_hist,
11552 const string &prefix, size_t key_size, size_t value_size)
11553 {
11554 uint32_t key_slab = get_key_slab(key_size);
11555 uint32_t value_slab = get_value_slab(value_size);
11556 key_hist[prefix][key_slab].count++;
11557 key_hist[prefix][key_slab].max_len = MAX(key_size, key_hist[prefix][key_slab].max_len);
11558 key_hist[prefix][key_slab].val_map[value_slab].count++;
11559 key_hist[prefix][key_slab].val_map[value_slab].max_len =
11560 MAX(value_size, key_hist[prefix][key_slab].val_map[value_slab].max_len);
11561 }
11562
11563 void BlueStore::DBHistogram::dump(Formatter *f)
11564 {
11565 f->open_object_section("rocksdb_value_distribution");
11566 for (auto i : value_hist) {
11567 f->dump_unsigned(get_value_slab_to_range(i.first).data(), i.second);
11568 }
11569 f->close_section();
11570
11571 f->open_object_section("rocksdb_key_value_histogram");
11572 for (auto i : key_hist) {
11573 f->dump_string("prefix", i.first);
11574 f->open_object_section("key_hist");
11575 for ( auto k : i.second) {
11576 f->dump_unsigned(get_key_slab_to_range(k.first).data(), k.second.count);
11577 f->dump_unsigned("max_len", k.second.max_len);
11578 f->open_object_section("value_hist");
11579 for ( auto j : k.second.val_map) {
11580 f->dump_unsigned(get_value_slab_to_range(j.first).data(), j.second.count);
11581 f->dump_unsigned("max_len", j.second.max_len);
11582 }
11583 f->close_section();
11584 }
11585 f->close_section();
11586 }
11587 f->close_section();
11588 }
11589
11590 //Itrerates through the db and collects the stats
11591 void BlueStore::generate_db_histogram(Formatter *f)
11592 {
11593 //globals
11594 uint64_t num_onodes = 0;
11595 uint64_t num_shards = 0;
11596 uint64_t num_super = 0;
11597 uint64_t num_coll = 0;
11598 uint64_t num_omap = 0;
11599 uint64_t num_deferred = 0;
11600 uint64_t num_alloc = 0;
11601 uint64_t num_stat = 0;
11602 uint64_t num_others = 0;
11603 uint64_t num_shared_shards = 0;
11604 size_t max_key_size =0, max_value_size = 0;
11605 uint64_t total_key_size = 0, total_value_size = 0;
11606 size_t key_size = 0, value_size = 0;
11607 DBHistogram hist;
11608
11609 utime_t start = ceph_clock_now();
11610
11611 KeyValueDB::WholeSpaceIterator iter = db->get_iterator();
11612 iter->seek_to_first();
11613 while (iter->valid()) {
11614 dout(30) << __func__ << " Key: " << iter->key() << dendl;
11615 key_size = iter->key_size();
11616 value_size = iter->value_size();
11617 hist.value_hist[hist.get_value_slab(value_size)]++;
11618 max_key_size = MAX(max_key_size, key_size);
11619 max_value_size = MAX(max_value_size, value_size);
11620 total_key_size += key_size;
11621 total_value_size += value_size;
11622
11623 pair<string,string> key(iter->raw_key());
11624
11625 if (key.first == PREFIX_SUPER) {
11626 hist.update_hist_entry(hist.key_hist, PREFIX_SUPER, key_size, value_size);
11627 num_super++;
11628 } else if (key.first == PREFIX_STAT) {
11629 hist.update_hist_entry(hist.key_hist, PREFIX_STAT, key_size, value_size);
11630 num_stat++;
11631 } else if (key.first == PREFIX_COLL) {
11632 hist.update_hist_entry(hist.key_hist, PREFIX_COLL, key_size, value_size);
11633 num_coll++;
11634 } else if (key.first == PREFIX_OBJ) {
11635 if (key.second.back() == ONODE_KEY_SUFFIX) {
11636 hist.update_hist_entry(hist.key_hist, prefix_onode, key_size, value_size);
11637 num_onodes++;
11638 } else {
11639 hist.update_hist_entry(hist.key_hist, prefix_onode_shard, key_size, value_size);
11640 num_shards++;
11641 }
11642 } else if (key.first == PREFIX_OMAP) {
11643 hist.update_hist_entry(hist.key_hist, PREFIX_OMAP, key_size, value_size);
11644 num_omap++;
11645 } else if (key.first == PREFIX_DEFERRED) {
11646 hist.update_hist_entry(hist.key_hist, PREFIX_DEFERRED, key_size, value_size);
11647 num_deferred++;
11648 } else if (key.first == PREFIX_ALLOC || key.first == "b" ) {
11649 hist.update_hist_entry(hist.key_hist, PREFIX_ALLOC, key_size, value_size);
11650 num_alloc++;
11651 } else if (key.first == PREFIX_SHARED_BLOB) {
11652 hist.update_hist_entry(hist.key_hist, PREFIX_SHARED_BLOB, key_size, value_size);
11653 num_shared_shards++;
11654 } else {
11655 hist.update_hist_entry(hist.key_hist, prefix_other, key_size, value_size);
11656 num_others++;
11657 }
11658 iter->next();
11659 }
11660
11661 utime_t duration = ceph_clock_now() - start;
11662 f->open_object_section("rocksdb_key_value_stats");
11663 f->dump_unsigned("num_onodes", num_onodes);
11664 f->dump_unsigned("num_shards", num_shards);
11665 f->dump_unsigned("num_super", num_super);
11666 f->dump_unsigned("num_coll", num_coll);
11667 f->dump_unsigned("num_omap", num_omap);
11668 f->dump_unsigned("num_deferred", num_deferred);
11669 f->dump_unsigned("num_alloc", num_alloc);
11670 f->dump_unsigned("num_stat", num_stat);
11671 f->dump_unsigned("num_shared_shards", num_shared_shards);
11672 f->dump_unsigned("num_others", num_others);
11673 f->dump_unsigned("max_key_size", max_key_size);
11674 f->dump_unsigned("max_value_size", max_value_size);
11675 f->dump_unsigned("total_key_size", total_key_size);
11676 f->dump_unsigned("total_value_size", total_value_size);
11677 f->close_section();
11678
11679 hist.dump(f);
11680
11681 dout(20) << __func__ << " finished in " << duration << " seconds" << dendl;
11682
11683 }
11684
11685 void BlueStore::_flush_cache()
11686 {
11687 dout(10) << __func__ << dendl;
11688 for (auto i : cache_shards) {
11689 i->trim_all();
11690 assert(i->empty());
11691 }
11692 for (auto& p : coll_map) {
11693 if (!p.second->onode_map.empty()) {
11694 derr << __func__ << "stray onodes on " << p.first << dendl;
11695 p.second->onode_map.dump(cct, 0);
11696 }
11697 if (!p.second->shared_blob_set.empty()) {
11698 derr << __func__ << " stray shared blobs on " << p.first << dendl;
11699 p.second->shared_blob_set.dump(cct, 0);
11700 }
11701 assert(p.second->onode_map.empty());
11702 assert(p.second->shared_blob_set.empty());
11703 }
11704 coll_map.clear();
11705 }
11706
11707 // For external caller.
11708 // We use a best-effort policy instead, e.g.,
11709 // we don't care if there are still some pinned onodes/data in the cache
11710 // after this command is completed.
11711 void BlueStore::flush_cache()
11712 {
11713 dout(10) << __func__ << dendl;
11714 for (auto i : cache_shards) {
11715 i->trim_all();
11716 }
11717 }
11718
11719 void BlueStore::_apply_padding(uint64_t head_pad,
11720 uint64_t tail_pad,
11721 bufferlist& padded)
11722 {
11723 if (head_pad) {
11724 padded.prepend_zero(head_pad);
11725 }
11726 if (tail_pad) {
11727 padded.append_zero(tail_pad);
11728 }
11729 if (head_pad || tail_pad) {
11730 dout(20) << __func__ << " can pad head 0x" << std::hex << head_pad
11731 << " tail 0x" << tail_pad << std::dec << dendl;
11732 logger->inc(l_bluestore_write_pad_bytes, head_pad + tail_pad);
11733 }
11734 }
11735
11736 // ===========================================