]> git.proxmox.com Git - ceph.git/blob - ceph/src/rapidjson/thirdparty/gtest/googletest/test/gtest-printers_test.cc
update sources to v12.1.0
[ceph.git] / ceph / src / rapidjson / thirdparty / gtest / googletest / test / gtest-printers_test.cc
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Test - The Google C++ Testing Framework
33 //
34 // This file tests the universal value printer.
35
36 #include "gtest/gtest-printers.h"
37
38 #include <ctype.h>
39 #include <limits.h>
40 #include <string.h>
41 #include <algorithm>
42 #include <deque>
43 #include <list>
44 #include <map>
45 #include <set>
46 #include <sstream>
47 #include <string>
48 #include <utility>
49 #include <vector>
50
51 #include "gtest/gtest.h"
52
53 // hash_map and hash_set are available under Visual C++, or on Linux.
54 #if GTEST_HAS_HASH_MAP_
55 # include <hash_map> // NOLINT
56 #endif // GTEST_HAS_HASH_MAP_
57 #if GTEST_HAS_HASH_SET_
58 # include <hash_set> // NOLINT
59 #endif // GTEST_HAS_HASH_SET_
60
61 #if GTEST_HAS_STD_FORWARD_LIST_
62 # include <forward_list> // NOLINT
63 #endif // GTEST_HAS_STD_FORWARD_LIST_
64
65 // Some user-defined types for testing the universal value printer.
66
67 // An anonymous enum type.
68 enum AnonymousEnum {
69 kAE1 = -1,
70 kAE2 = 1
71 };
72
73 // An enum without a user-defined printer.
74 enum EnumWithoutPrinter {
75 kEWP1 = -2,
76 kEWP2 = 42
77 };
78
79 // An enum with a << operator.
80 enum EnumWithStreaming {
81 kEWS1 = 10
82 };
83
84 std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
85 return os << (e == kEWS1 ? "kEWS1" : "invalid");
86 }
87
88 // An enum with a PrintTo() function.
89 enum EnumWithPrintTo {
90 kEWPT1 = 1
91 };
92
93 void PrintTo(EnumWithPrintTo e, std::ostream* os) {
94 *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
95 }
96
97 // A class implicitly convertible to BiggestInt.
98 class BiggestIntConvertible {
99 public:
100 operator ::testing::internal::BiggestInt() const { return 42; }
101 };
102
103 // A user-defined unprintable class template in the global namespace.
104 template <typename T>
105 class UnprintableTemplateInGlobal {
106 public:
107 UnprintableTemplateInGlobal() : value_() {}
108 private:
109 T value_;
110 };
111
112 // A user-defined streamable type in the global namespace.
113 class StreamableInGlobal {
114 public:
115 virtual ~StreamableInGlobal() {}
116 };
117
118 inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
119 os << "StreamableInGlobal";
120 }
121
122 void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
123 os << "StreamableInGlobal*";
124 }
125
126 namespace foo {
127
128 // A user-defined unprintable type in a user namespace.
129 class UnprintableInFoo {
130 public:
131 UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
132 double z() const { return z_; }
133 private:
134 char xy_[8];
135 double z_;
136 };
137
138 // A user-defined printable type in a user-chosen namespace.
139 struct PrintableViaPrintTo {
140 PrintableViaPrintTo() : value() {}
141 int value;
142 };
143
144 void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
145 *os << "PrintableViaPrintTo: " << x.value;
146 }
147
148 // A type with a user-defined << for printing its pointer.
149 struct PointerPrintable {
150 };
151
152 ::std::ostream& operator<<(::std::ostream& os,
153 const PointerPrintable* /* x */) {
154 return os << "PointerPrintable*";
155 }
156
157 // A user-defined printable class template in a user-chosen namespace.
158 template <typename T>
159 class PrintableViaPrintToTemplate {
160 public:
161 explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
162
163 const T& value() const { return value_; }
164 private:
165 T value_;
166 };
167
168 template <typename T>
169 void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
170 *os << "PrintableViaPrintToTemplate: " << x.value();
171 }
172
173 // A user-defined streamable class template in a user namespace.
174 template <typename T>
175 class StreamableTemplateInFoo {
176 public:
177 StreamableTemplateInFoo() : value_() {}
178
179 const T& value() const { return value_; }
180 private:
181 T value_;
182 };
183
184 template <typename T>
185 inline ::std::ostream& operator<<(::std::ostream& os,
186 const StreamableTemplateInFoo<T>& x) {
187 return os << "StreamableTemplateInFoo: " << x.value();
188 }
189
190 } // namespace foo
191
192 namespace testing {
193 namespace gtest_printers_test {
194
195 using ::std::deque;
196 using ::std::list;
197 using ::std::make_pair;
198 using ::std::map;
199 using ::std::multimap;
200 using ::std::multiset;
201 using ::std::pair;
202 using ::std::set;
203 using ::std::vector;
204 using ::testing::PrintToString;
205 using ::testing::internal::FormatForComparisonFailureMessage;
206 using ::testing::internal::ImplicitCast_;
207 using ::testing::internal::NativeArray;
208 using ::testing::internal::RE;
209 using ::testing::internal::RelationToSourceReference;
210 using ::testing::internal::Strings;
211 using ::testing::internal::UniversalPrint;
212 using ::testing::internal::UniversalPrinter;
213 using ::testing::internal::UniversalTersePrint;
214 using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
215 using ::testing::internal::string;
216
217 // The hash_* classes are not part of the C++ standard. STLport
218 // defines them in namespace std. MSVC defines them in ::stdext. GCC
219 // defines them in ::.
220 #ifdef _STLP_HASH_MAP // We got <hash_map> from STLport.
221 using ::std::hash_map;
222 using ::std::hash_set;
223 using ::std::hash_multimap;
224 using ::std::hash_multiset;
225 #elif _MSC_VER
226 using ::stdext::hash_map;
227 using ::stdext::hash_set;
228 using ::stdext::hash_multimap;
229 using ::stdext::hash_multiset;
230 #endif
231
232 // Prints a value to a string using the universal value printer. This
233 // is a helper for testing UniversalPrinter<T>::Print() for various types.
234 template <typename T>
235 string Print(const T& value) {
236 ::std::stringstream ss;
237 UniversalPrinter<T>::Print(value, &ss);
238 return ss.str();
239 }
240
241 // Prints a value passed by reference to a string, using the universal
242 // value printer. This is a helper for testing
243 // UniversalPrinter<T&>::Print() for various types.
244 template <typename T>
245 string PrintByRef(const T& value) {
246 ::std::stringstream ss;
247 UniversalPrinter<T&>::Print(value, &ss);
248 return ss.str();
249 }
250
251 // Tests printing various enum types.
252
253 TEST(PrintEnumTest, AnonymousEnum) {
254 EXPECT_EQ("-1", Print(kAE1));
255 EXPECT_EQ("1", Print(kAE2));
256 }
257
258 TEST(PrintEnumTest, EnumWithoutPrinter) {
259 EXPECT_EQ("-2", Print(kEWP1));
260 EXPECT_EQ("42", Print(kEWP2));
261 }
262
263 TEST(PrintEnumTest, EnumWithStreaming) {
264 EXPECT_EQ("kEWS1", Print(kEWS1));
265 EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
266 }
267
268 TEST(PrintEnumTest, EnumWithPrintTo) {
269 EXPECT_EQ("kEWPT1", Print(kEWPT1));
270 EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
271 }
272
273 // Tests printing a class implicitly convertible to BiggestInt.
274
275 TEST(PrintClassTest, BiggestIntConvertible) {
276 EXPECT_EQ("42", Print(BiggestIntConvertible()));
277 }
278
279 // Tests printing various char types.
280
281 // char.
282 TEST(PrintCharTest, PlainChar) {
283 EXPECT_EQ("'\\0'", Print('\0'));
284 EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
285 EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
286 EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
287 EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
288 EXPECT_EQ("'\\a' (7)", Print('\a'));
289 EXPECT_EQ("'\\b' (8)", Print('\b'));
290 EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
291 EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
292 EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
293 EXPECT_EQ("'\\t' (9)", Print('\t'));
294 EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
295 EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
296 EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
297 EXPECT_EQ("' ' (32, 0x20)", Print(' '));
298 EXPECT_EQ("'a' (97, 0x61)", Print('a'));
299 }
300
301 // signed char.
302 TEST(PrintCharTest, SignedChar) {
303 EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
304 EXPECT_EQ("'\\xCE' (-50)",
305 Print(static_cast<signed char>(-50)));
306 }
307
308 // unsigned char.
309 TEST(PrintCharTest, UnsignedChar) {
310 EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
311 EXPECT_EQ("'b' (98, 0x62)",
312 Print(static_cast<unsigned char>('b')));
313 }
314
315 // Tests printing other simple, built-in types.
316
317 // bool.
318 TEST(PrintBuiltInTypeTest, Bool) {
319 EXPECT_EQ("false", Print(false));
320 EXPECT_EQ("true", Print(true));
321 }
322
323 // wchar_t.
324 TEST(PrintBuiltInTypeTest, Wchar_t) {
325 EXPECT_EQ("L'\\0'", Print(L'\0'));
326 EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
327 EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
328 EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
329 EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
330 EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
331 EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
332 EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
333 EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
334 EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
335 EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
336 EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
337 EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
338 EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
339 EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
340 EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
341 EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
342 EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
343 }
344
345 // Test that Int64 provides more storage than wchar_t.
346 TEST(PrintTypeSizeTest, Wchar_t) {
347 EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
348 }
349
350 // Various integer types.
351 TEST(PrintBuiltInTypeTest, Integer) {
352 EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
353 EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
354 EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16
355 EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16
356 EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32
357 EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32
358 EXPECT_EQ("18446744073709551615",
359 Print(static_cast<testing::internal::UInt64>(-1))); // uint64
360 EXPECT_EQ("-9223372036854775808",
361 Print(static_cast<testing::internal::Int64>(1) << 63)); // int64
362 }
363
364 // Size types.
365 TEST(PrintBuiltInTypeTest, Size_t) {
366 EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
367 #if !GTEST_OS_WINDOWS
368 // Windows has no ssize_t type.
369 EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
370 #endif // !GTEST_OS_WINDOWS
371 }
372
373 // Floating-points.
374 TEST(PrintBuiltInTypeTest, FloatingPoints) {
375 EXPECT_EQ("1.5", Print(1.5f)); // float
376 EXPECT_EQ("-2.5", Print(-2.5)); // double
377 }
378
379 // Since ::std::stringstream::operator<<(const void *) formats the pointer
380 // output differently with different compilers, we have to create the expected
381 // output first and use it as our expectation.
382 static string PrintPointer(const void *p) {
383 ::std::stringstream expected_result_stream;
384 expected_result_stream << p;
385 return expected_result_stream.str();
386 }
387
388 // Tests printing C strings.
389
390 // const char*.
391 TEST(PrintCStringTest, Const) {
392 const char* p = "World";
393 EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
394 }
395
396 // char*.
397 TEST(PrintCStringTest, NonConst) {
398 char p[] = "Hi";
399 EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
400 Print(static_cast<char*>(p)));
401 }
402
403 // NULL C string.
404 TEST(PrintCStringTest, Null) {
405 const char* p = NULL;
406 EXPECT_EQ("NULL", Print(p));
407 }
408
409 // Tests that C strings are escaped properly.
410 TEST(PrintCStringTest, EscapesProperly) {
411 const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
412 EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
413 "\\n\\r\\t\\v\\x7F\\xFF a\"",
414 Print(p));
415 }
416
417 // MSVC compiler can be configured to define whar_t as a typedef
418 // of unsigned short. Defining an overload for const wchar_t* in that case
419 // would cause pointers to unsigned shorts be printed as wide strings,
420 // possibly accessing more memory than intended and causing invalid
421 // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
422 // wchar_t is implemented as a native type.
423 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
424
425 // const wchar_t*.
426 TEST(PrintWideCStringTest, Const) {
427 const wchar_t* p = L"World";
428 EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
429 }
430
431 // wchar_t*.
432 TEST(PrintWideCStringTest, NonConst) {
433 wchar_t p[] = L"Hi";
434 EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
435 Print(static_cast<wchar_t*>(p)));
436 }
437
438 // NULL wide C string.
439 TEST(PrintWideCStringTest, Null) {
440 const wchar_t* p = NULL;
441 EXPECT_EQ("NULL", Print(p));
442 }
443
444 // Tests that wide C strings are escaped properly.
445 TEST(PrintWideCStringTest, EscapesProperly) {
446 const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
447 '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
448 EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
449 "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
450 Print(static_cast<const wchar_t*>(s)));
451 }
452 #endif // native wchar_t
453
454 // Tests printing pointers to other char types.
455
456 // signed char*.
457 TEST(PrintCharPointerTest, SignedChar) {
458 signed char* p = reinterpret_cast<signed char*>(0x1234);
459 EXPECT_EQ(PrintPointer(p), Print(p));
460 p = NULL;
461 EXPECT_EQ("NULL", Print(p));
462 }
463
464 // const signed char*.
465 TEST(PrintCharPointerTest, ConstSignedChar) {
466 signed char* p = reinterpret_cast<signed char*>(0x1234);
467 EXPECT_EQ(PrintPointer(p), Print(p));
468 p = NULL;
469 EXPECT_EQ("NULL", Print(p));
470 }
471
472 // unsigned char*.
473 TEST(PrintCharPointerTest, UnsignedChar) {
474 unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
475 EXPECT_EQ(PrintPointer(p), Print(p));
476 p = NULL;
477 EXPECT_EQ("NULL", Print(p));
478 }
479
480 // const unsigned char*.
481 TEST(PrintCharPointerTest, ConstUnsignedChar) {
482 const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
483 EXPECT_EQ(PrintPointer(p), Print(p));
484 p = NULL;
485 EXPECT_EQ("NULL", Print(p));
486 }
487
488 // Tests printing pointers to simple, built-in types.
489
490 // bool*.
491 TEST(PrintPointerToBuiltInTypeTest, Bool) {
492 bool* p = reinterpret_cast<bool*>(0xABCD);
493 EXPECT_EQ(PrintPointer(p), Print(p));
494 p = NULL;
495 EXPECT_EQ("NULL", Print(p));
496 }
497
498 // void*.
499 TEST(PrintPointerToBuiltInTypeTest, Void) {
500 void* p = reinterpret_cast<void*>(0xABCD);
501 EXPECT_EQ(PrintPointer(p), Print(p));
502 p = NULL;
503 EXPECT_EQ("NULL", Print(p));
504 }
505
506 // const void*.
507 TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
508 const void* p = reinterpret_cast<const void*>(0xABCD);
509 EXPECT_EQ(PrintPointer(p), Print(p));
510 p = NULL;
511 EXPECT_EQ("NULL", Print(p));
512 }
513
514 // Tests printing pointers to pointers.
515 TEST(PrintPointerToPointerTest, IntPointerPointer) {
516 int** p = reinterpret_cast<int**>(0xABCD);
517 EXPECT_EQ(PrintPointer(p), Print(p));
518 p = NULL;
519 EXPECT_EQ("NULL", Print(p));
520 }
521
522 // Tests printing (non-member) function pointers.
523
524 void MyFunction(int /* n */) {}
525
526 TEST(PrintPointerTest, NonMemberFunctionPointer) {
527 // We cannot directly cast &MyFunction to const void* because the
528 // standard disallows casting between pointers to functions and
529 // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
530 // this limitation.
531 EXPECT_EQ(
532 PrintPointer(reinterpret_cast<const void*>(
533 reinterpret_cast<internal::BiggestInt>(&MyFunction))),
534 Print(&MyFunction));
535 int (*p)(bool) = NULL; // NOLINT
536 EXPECT_EQ("NULL", Print(p));
537 }
538
539 // An assertion predicate determining whether a one string is a prefix for
540 // another.
541 template <typename StringType>
542 AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
543 if (str.find(prefix, 0) == 0)
544 return AssertionSuccess();
545
546 const bool is_wide_string = sizeof(prefix[0]) > 1;
547 const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
548 return AssertionFailure()
549 << begin_string_quote << prefix << "\" is not a prefix of "
550 << begin_string_quote << str << "\"\n";
551 }
552
553 // Tests printing member variable pointers. Although they are called
554 // pointers, they don't point to a location in the address space.
555 // Their representation is implementation-defined. Thus they will be
556 // printed as raw bytes.
557
558 struct Foo {
559 public:
560 virtual ~Foo() {}
561 int MyMethod(char x) { return x + 1; }
562 virtual char MyVirtualMethod(int /* n */) { return 'a'; }
563
564 int value;
565 };
566
567 TEST(PrintPointerTest, MemberVariablePointer) {
568 EXPECT_TRUE(HasPrefix(Print(&Foo::value),
569 Print(sizeof(&Foo::value)) + "-byte object "));
570 int (Foo::*p) = NULL; // NOLINT
571 EXPECT_TRUE(HasPrefix(Print(p),
572 Print(sizeof(p)) + "-byte object "));
573 }
574
575 // Tests printing member function pointers. Although they are called
576 // pointers, they don't point to a location in the address space.
577 // Their representation is implementation-defined. Thus they will be
578 // printed as raw bytes.
579 TEST(PrintPointerTest, MemberFunctionPointer) {
580 EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
581 Print(sizeof(&Foo::MyMethod)) + "-byte object "));
582 EXPECT_TRUE(
583 HasPrefix(Print(&Foo::MyVirtualMethod),
584 Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
585 int (Foo::*p)(char) = NULL; // NOLINT
586 EXPECT_TRUE(HasPrefix(Print(p),
587 Print(sizeof(p)) + "-byte object "));
588 }
589
590 // Tests printing C arrays.
591
592 // The difference between this and Print() is that it ensures that the
593 // argument is a reference to an array.
594 template <typename T, size_t N>
595 string PrintArrayHelper(T (&a)[N]) {
596 return Print(a);
597 }
598
599 // One-dimensional array.
600 TEST(PrintArrayTest, OneDimensionalArray) {
601 int a[5] = { 1, 2, 3, 4, 5 };
602 EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
603 }
604
605 // Two-dimensional array.
606 TEST(PrintArrayTest, TwoDimensionalArray) {
607 int a[2][5] = {
608 { 1, 2, 3, 4, 5 },
609 { 6, 7, 8, 9, 0 }
610 };
611 EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
612 }
613
614 // Array of const elements.
615 TEST(PrintArrayTest, ConstArray) {
616 const bool a[1] = { false };
617 EXPECT_EQ("{ false }", PrintArrayHelper(a));
618 }
619
620 // char array without terminating NUL.
621 TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
622 // Array a contains '\0' in the middle and doesn't end with '\0'.
623 char a[] = { 'H', '\0', 'i' };
624 EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
625 }
626
627 // const char array with terminating NUL.
628 TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
629 const char a[] = "\0Hi";
630 EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
631 }
632
633 // const wchar_t array without terminating NUL.
634 TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
635 // Array a contains '\0' in the middle and doesn't end with '\0'.
636 const wchar_t a[] = { L'H', L'\0', L'i' };
637 EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
638 }
639
640 // wchar_t array with terminating NUL.
641 TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
642 const wchar_t a[] = L"\0Hi";
643 EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
644 }
645
646 // Array of objects.
647 TEST(PrintArrayTest, ObjectArray) {
648 string a[3] = { "Hi", "Hello", "Ni hao" };
649 EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
650 }
651
652 // Array with many elements.
653 TEST(PrintArrayTest, BigArray) {
654 int a[100] = { 1, 2, 3 };
655 EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
656 PrintArrayHelper(a));
657 }
658
659 // Tests printing ::string and ::std::string.
660
661 #if GTEST_HAS_GLOBAL_STRING
662 // ::string.
663 TEST(PrintStringTest, StringInGlobalNamespace) {
664 const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
665 const ::string str(s, sizeof(s));
666 EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
667 Print(str));
668 }
669 #endif // GTEST_HAS_GLOBAL_STRING
670
671 // ::std::string.
672 TEST(PrintStringTest, StringInStdNamespace) {
673 const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
674 const ::std::string str(s, sizeof(s));
675 EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
676 Print(str));
677 }
678
679 TEST(PrintStringTest, StringAmbiguousHex) {
680 // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
681 // '\x6', '\x6B', or '\x6BA'.
682
683 // a hex escaping sequence following by a decimal digit
684 EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
685 // a hex escaping sequence following by a hex digit (lower-case)
686 EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
687 // a hex escaping sequence following by a hex digit (upper-case)
688 EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
689 // a hex escaping sequence following by a non-xdigit
690 EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
691 }
692
693 // Tests printing ::wstring and ::std::wstring.
694
695 #if GTEST_HAS_GLOBAL_WSTRING
696 // ::wstring.
697 TEST(PrintWideStringTest, StringInGlobalNamespace) {
698 const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
699 const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
700 EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
701 "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
702 Print(str));
703 }
704 #endif // GTEST_HAS_GLOBAL_WSTRING
705
706 #if GTEST_HAS_STD_WSTRING
707 // ::std::wstring.
708 TEST(PrintWideStringTest, StringInStdNamespace) {
709 const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
710 const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
711 EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
712 "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
713 Print(str));
714 }
715
716 TEST(PrintWideStringTest, StringAmbiguousHex) {
717 // same for wide strings.
718 EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
719 EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
720 Print(::std::wstring(L"mm\x6" L"bananas")));
721 EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
722 Print(::std::wstring(L"NOM\x6" L"BANANA")));
723 EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
724 }
725 #endif // GTEST_HAS_STD_WSTRING
726
727 // Tests printing types that support generic streaming (i.e. streaming
728 // to std::basic_ostream<Char, CharTraits> for any valid Char and
729 // CharTraits types).
730
731 // Tests printing a non-template type that supports generic streaming.
732
733 class AllowsGenericStreaming {};
734
735 template <typename Char, typename CharTraits>
736 std::basic_ostream<Char, CharTraits>& operator<<(
737 std::basic_ostream<Char, CharTraits>& os,
738 const AllowsGenericStreaming& /* a */) {
739 return os << "AllowsGenericStreaming";
740 }
741
742 TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
743 AllowsGenericStreaming a;
744 EXPECT_EQ("AllowsGenericStreaming", Print(a));
745 }
746
747 // Tests printing a template type that supports generic streaming.
748
749 template <typename T>
750 class AllowsGenericStreamingTemplate {};
751
752 template <typename Char, typename CharTraits, typename T>
753 std::basic_ostream<Char, CharTraits>& operator<<(
754 std::basic_ostream<Char, CharTraits>& os,
755 const AllowsGenericStreamingTemplate<T>& /* a */) {
756 return os << "AllowsGenericStreamingTemplate";
757 }
758
759 TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
760 AllowsGenericStreamingTemplate<int> a;
761 EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
762 }
763
764 // Tests printing a type that supports generic streaming and can be
765 // implicitly converted to another printable type.
766
767 template <typename T>
768 class AllowsGenericStreamingAndImplicitConversionTemplate {
769 public:
770 operator bool() const { return false; }
771 };
772
773 template <typename Char, typename CharTraits, typename T>
774 std::basic_ostream<Char, CharTraits>& operator<<(
775 std::basic_ostream<Char, CharTraits>& os,
776 const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
777 return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
778 }
779
780 TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
781 AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
782 EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
783 }
784
785 #if GTEST_HAS_STRING_PIECE_
786
787 // Tests printing StringPiece.
788
789 TEST(PrintStringPieceTest, SimpleStringPiece) {
790 const StringPiece sp = "Hello";
791 EXPECT_EQ("\"Hello\"", Print(sp));
792 }
793
794 TEST(PrintStringPieceTest, UnprintableCharacters) {
795 const char str[] = "NUL (\0) and \r\t";
796 const StringPiece sp(str, sizeof(str) - 1);
797 EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
798 }
799
800 #endif // GTEST_HAS_STRING_PIECE_
801
802 // Tests printing STL containers.
803
804 TEST(PrintStlContainerTest, EmptyDeque) {
805 deque<char> empty;
806 EXPECT_EQ("{}", Print(empty));
807 }
808
809 TEST(PrintStlContainerTest, NonEmptyDeque) {
810 deque<int> non_empty;
811 non_empty.push_back(1);
812 non_empty.push_back(3);
813 EXPECT_EQ("{ 1, 3 }", Print(non_empty));
814 }
815
816 #if GTEST_HAS_HASH_MAP_
817
818 TEST(PrintStlContainerTest, OneElementHashMap) {
819 hash_map<int, char> map1;
820 map1[1] = 'a';
821 EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
822 }
823
824 TEST(PrintStlContainerTest, HashMultiMap) {
825 hash_multimap<int, bool> map1;
826 map1.insert(make_pair(5, true));
827 map1.insert(make_pair(5, false));
828
829 // Elements of hash_multimap can be printed in any order.
830 const string result = Print(map1);
831 EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
832 result == "{ (5, false), (5, true) }")
833 << " where Print(map1) returns \"" << result << "\".";
834 }
835
836 #endif // GTEST_HAS_HASH_MAP_
837
838 #if GTEST_HAS_HASH_SET_
839
840 TEST(PrintStlContainerTest, HashSet) {
841 hash_set<string> set1;
842 set1.insert("hello");
843 EXPECT_EQ("{ \"hello\" }", Print(set1));
844 }
845
846 TEST(PrintStlContainerTest, HashMultiSet) {
847 const int kSize = 5;
848 int a[kSize] = { 1, 1, 2, 5, 1 };
849 hash_multiset<int> set1(a, a + kSize);
850
851 // Elements of hash_multiset can be printed in any order.
852 const string result = Print(set1);
853 const string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
854
855 // Verifies the result matches the expected pattern; also extracts
856 // the numbers in the result.
857 ASSERT_EQ(expected_pattern.length(), result.length());
858 std::vector<int> numbers;
859 for (size_t i = 0; i != result.length(); i++) {
860 if (expected_pattern[i] == 'd') {
861 ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
862 numbers.push_back(result[i] - '0');
863 } else {
864 EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
865 << result;
866 }
867 }
868
869 // Makes sure the result contains the right numbers.
870 std::sort(numbers.begin(), numbers.end());
871 std::sort(a, a + kSize);
872 EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
873 }
874
875 #endif // GTEST_HAS_HASH_SET_
876
877 TEST(PrintStlContainerTest, List) {
878 const string a[] = {
879 "hello",
880 "world"
881 };
882 const list<string> strings(a, a + 2);
883 EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
884 }
885
886 TEST(PrintStlContainerTest, Map) {
887 map<int, bool> map1;
888 map1[1] = true;
889 map1[5] = false;
890 map1[3] = true;
891 EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
892 }
893
894 TEST(PrintStlContainerTest, MultiMap) {
895 multimap<bool, int> map1;
896 // The make_pair template function would deduce the type as
897 // pair<bool, int> here, and since the key part in a multimap has to
898 // be constant, without a templated ctor in the pair class (as in
899 // libCstd on Solaris), make_pair call would fail to compile as no
900 // implicit conversion is found. Thus explicit typename is used
901 // here instead.
902 map1.insert(pair<const bool, int>(true, 0));
903 map1.insert(pair<const bool, int>(true, 1));
904 map1.insert(pair<const bool, int>(false, 2));
905 EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
906 }
907
908 TEST(PrintStlContainerTest, Set) {
909 const unsigned int a[] = { 3, 0, 5 };
910 set<unsigned int> set1(a, a + 3);
911 EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
912 }
913
914 TEST(PrintStlContainerTest, MultiSet) {
915 const int a[] = { 1, 1, 2, 5, 1 };
916 multiset<int> set1(a, a + 5);
917 EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
918 }
919
920 #if GTEST_HAS_STD_FORWARD_LIST_
921 // <slist> is available on Linux in the google3 mode, but not on
922 // Windows or Mac OS X.
923
924 TEST(PrintStlContainerTest, SinglyLinkedList) {
925 int a[] = { 9, 2, 8 };
926 const std::forward_list<int> ints(a, a + 3);
927 EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
928 }
929 #endif // GTEST_HAS_STD_FORWARD_LIST_
930
931 TEST(PrintStlContainerTest, Pair) {
932 pair<const bool, int> p(true, 5);
933 EXPECT_EQ("(true, 5)", Print(p));
934 }
935
936 TEST(PrintStlContainerTest, Vector) {
937 vector<int> v;
938 v.push_back(1);
939 v.push_back(2);
940 EXPECT_EQ("{ 1, 2 }", Print(v));
941 }
942
943 TEST(PrintStlContainerTest, LongSequence) {
944 const int a[100] = { 1, 2, 3 };
945 const vector<int> v(a, a + 100);
946 EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
947 "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
948 }
949
950 TEST(PrintStlContainerTest, NestedContainer) {
951 const int a1[] = { 1, 2 };
952 const int a2[] = { 3, 4, 5 };
953 const list<int> l1(a1, a1 + 2);
954 const list<int> l2(a2, a2 + 3);
955
956 vector<list<int> > v;
957 v.push_back(l1);
958 v.push_back(l2);
959 EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
960 }
961
962 TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
963 const int a[3] = { 1, 2, 3 };
964 NativeArray<int> b(a, 3, RelationToSourceReference());
965 EXPECT_EQ("{ 1, 2, 3 }", Print(b));
966 }
967
968 TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
969 const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
970 NativeArray<int[3]> b(a, 2, RelationToSourceReference());
971 EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
972 }
973
974 // Tests that a class named iterator isn't treated as a container.
975
976 struct iterator {
977 char x;
978 };
979
980 TEST(PrintStlContainerTest, Iterator) {
981 iterator it = {};
982 EXPECT_EQ("1-byte object <00>", Print(it));
983 }
984
985 // Tests that a class named const_iterator isn't treated as a container.
986
987 struct const_iterator {
988 char x;
989 };
990
991 TEST(PrintStlContainerTest, ConstIterator) {
992 const_iterator it = {};
993 EXPECT_EQ("1-byte object <00>", Print(it));
994 }
995
996 #if GTEST_HAS_TR1_TUPLE
997 // Tests printing ::std::tr1::tuples.
998
999 // Tuples of various arities.
1000 TEST(PrintTr1TupleTest, VariousSizes) {
1001 ::std::tr1::tuple<> t0;
1002 EXPECT_EQ("()", Print(t0));
1003
1004 ::std::tr1::tuple<int> t1(5);
1005 EXPECT_EQ("(5)", Print(t1));
1006
1007 ::std::tr1::tuple<char, bool> t2('a', true);
1008 EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
1009
1010 ::std::tr1::tuple<bool, int, int> t3(false, 2, 3);
1011 EXPECT_EQ("(false, 2, 3)", Print(t3));
1012
1013 ::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4);
1014 EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1015
1016 ::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
1017 EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
1018
1019 ::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
1020 EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
1021
1022 ::std::tr1::tuple<bool, int, int, int, bool, int, int> t7(
1023 false, 2, 3, 4, true, 6, 7);
1024 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
1025
1026 ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool> t8(
1027 false, 2, 3, 4, true, 6, 7, true);
1028 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
1029
1030 ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
1031 false, 2, 3, 4, true, 6, 7, true, 9);
1032 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
1033
1034 const char* const str = "8";
1035 // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
1036 // an explicit type cast of NULL to be used.
1037 ::std::tr1::tuple<bool, char, short, testing::internal::Int32, // NOLINT
1038 testing::internal::Int64, float, double, const char*, void*, string>
1039 t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
1040 ImplicitCast_<void*>(NULL), "10");
1041 EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1042 " pointing to \"8\", NULL, \"10\")",
1043 Print(t10));
1044 }
1045
1046 // Nested tuples.
1047 TEST(PrintTr1TupleTest, NestedTuple) {
1048 ::std::tr1::tuple< ::std::tr1::tuple<int, bool>, char> nested(
1049 ::std::tr1::make_tuple(5, true), 'a');
1050 EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1051 }
1052
1053 #endif // GTEST_HAS_TR1_TUPLE
1054
1055 #if GTEST_HAS_STD_TUPLE_
1056 // Tests printing ::std::tuples.
1057
1058 // Tuples of various arities.
1059 TEST(PrintStdTupleTest, VariousSizes) {
1060 ::std::tuple<> t0;
1061 EXPECT_EQ("()", Print(t0));
1062
1063 ::std::tuple<int> t1(5);
1064 EXPECT_EQ("(5)", Print(t1));
1065
1066 ::std::tuple<char, bool> t2('a', true);
1067 EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
1068
1069 ::std::tuple<bool, int, int> t3(false, 2, 3);
1070 EXPECT_EQ("(false, 2, 3)", Print(t3));
1071
1072 ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
1073 EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1074
1075 ::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
1076 EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
1077
1078 ::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
1079 EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
1080
1081 ::std::tuple<bool, int, int, int, bool, int, int> t7(
1082 false, 2, 3, 4, true, 6, 7);
1083 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
1084
1085 ::std::tuple<bool, int, int, int, bool, int, int, bool> t8(
1086 false, 2, 3, 4, true, 6, 7, true);
1087 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
1088
1089 ::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
1090 false, 2, 3, 4, true, 6, 7, true, 9);
1091 EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
1092
1093 const char* const str = "8";
1094 // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
1095 // an explicit type cast of NULL to be used.
1096 ::std::tuple<bool, char, short, testing::internal::Int32, // NOLINT
1097 testing::internal::Int64, float, double, const char*, void*, string>
1098 t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
1099 ImplicitCast_<void*>(NULL), "10");
1100 EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1101 " pointing to \"8\", NULL, \"10\")",
1102 Print(t10));
1103 }
1104
1105 // Nested tuples.
1106 TEST(PrintStdTupleTest, NestedTuple) {
1107 ::std::tuple< ::std::tuple<int, bool>, char> nested(
1108 ::std::make_tuple(5, true), 'a');
1109 EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1110 }
1111
1112 #endif // GTEST_LANG_CXX11
1113
1114 // Tests printing user-defined unprintable types.
1115
1116 // Unprintable types in the global namespace.
1117 TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
1118 EXPECT_EQ("1-byte object <00>",
1119 Print(UnprintableTemplateInGlobal<char>()));
1120 }
1121
1122 // Unprintable types in a user namespace.
1123 TEST(PrintUnprintableTypeTest, InUserNamespace) {
1124 EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1125 Print(::foo::UnprintableInFoo()));
1126 }
1127
1128 // Unprintable types are that too big to be printed completely.
1129
1130 struct Big {
1131 Big() { memset(array, 0, sizeof(array)); }
1132 char array[257];
1133 };
1134
1135 TEST(PrintUnpritableTypeTest, BigObject) {
1136 EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
1137 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1138 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1139 "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
1140 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1141 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1142 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
1143 Print(Big()));
1144 }
1145
1146 // Tests printing user-defined streamable types.
1147
1148 // Streamable types in the global namespace.
1149 TEST(PrintStreamableTypeTest, InGlobalNamespace) {
1150 StreamableInGlobal x;
1151 EXPECT_EQ("StreamableInGlobal", Print(x));
1152 EXPECT_EQ("StreamableInGlobal*", Print(&x));
1153 }
1154
1155 // Printable template types in a user namespace.
1156 TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
1157 EXPECT_EQ("StreamableTemplateInFoo: 0",
1158 Print(::foo::StreamableTemplateInFoo<int>()));
1159 }
1160
1161 // Tests printing user-defined types that have a PrintTo() function.
1162 TEST(PrintPrintableTypeTest, InUserNamespace) {
1163 EXPECT_EQ("PrintableViaPrintTo: 0",
1164 Print(::foo::PrintableViaPrintTo()));
1165 }
1166
1167 // Tests printing a pointer to a user-defined type that has a <<
1168 // operator for its pointer.
1169 TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
1170 ::foo::PointerPrintable x;
1171 EXPECT_EQ("PointerPrintable*", Print(&x));
1172 }
1173
1174 // Tests printing user-defined class template that have a PrintTo() function.
1175 TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
1176 EXPECT_EQ("PrintableViaPrintToTemplate: 5",
1177 Print(::foo::PrintableViaPrintToTemplate<int>(5)));
1178 }
1179
1180 // Tests that the universal printer prints both the address and the
1181 // value of a reference.
1182 TEST(PrintReferenceTest, PrintsAddressAndValue) {
1183 int n = 5;
1184 EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
1185
1186 int a[2][3] = {
1187 { 0, 1, 2 },
1188 { 3, 4, 5 }
1189 };
1190 EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
1191 PrintByRef(a));
1192
1193 const ::foo::UnprintableInFoo x;
1194 EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
1195 "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1196 PrintByRef(x));
1197 }
1198
1199 // Tests that the universal printer prints a function pointer passed by
1200 // reference.
1201 TEST(PrintReferenceTest, HandlesFunctionPointer) {
1202 void (*fp)(int n) = &MyFunction;
1203 const string fp_pointer_string =
1204 PrintPointer(reinterpret_cast<const void*>(&fp));
1205 // We cannot directly cast &MyFunction to const void* because the
1206 // standard disallows casting between pointers to functions and
1207 // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
1208 // this limitation.
1209 const string fp_string = PrintPointer(reinterpret_cast<const void*>(
1210 reinterpret_cast<internal::BiggestInt>(fp)));
1211 EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
1212 PrintByRef(fp));
1213 }
1214
1215 // Tests that the universal printer prints a member function pointer
1216 // passed by reference.
1217 TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
1218 int (Foo::*p)(char ch) = &Foo::MyMethod;
1219 EXPECT_TRUE(HasPrefix(
1220 PrintByRef(p),
1221 "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
1222 Print(sizeof(p)) + "-byte object "));
1223
1224 char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
1225 EXPECT_TRUE(HasPrefix(
1226 PrintByRef(p2),
1227 "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
1228 Print(sizeof(p2)) + "-byte object "));
1229 }
1230
1231 // Tests that the universal printer prints a member variable pointer
1232 // passed by reference.
1233 TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
1234 int (Foo::*p) = &Foo::value; // NOLINT
1235 EXPECT_TRUE(HasPrefix(
1236 PrintByRef(p),
1237 "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
1238 }
1239
1240 // Tests that FormatForComparisonFailureMessage(), which is used to print
1241 // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
1242 // fails, formats the operand in the desired way.
1243
1244 // scalar
1245 TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
1246 EXPECT_STREQ("123",
1247 FormatForComparisonFailureMessage(123, 124).c_str());
1248 }
1249
1250 // non-char pointer
1251 TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
1252 int n = 0;
1253 EXPECT_EQ(PrintPointer(&n),
1254 FormatForComparisonFailureMessage(&n, &n).c_str());
1255 }
1256
1257 // non-char array
1258 TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
1259 // In expression 'array == x', 'array' is compared by pointer.
1260 // Therefore we want to print an array operand as a pointer.
1261 int n[] = { 1, 2, 3 };
1262 EXPECT_EQ(PrintPointer(n),
1263 FormatForComparisonFailureMessage(n, n).c_str());
1264 }
1265
1266 // Tests formatting a char pointer when it's compared with another pointer.
1267 // In this case we want to print it as a raw pointer, as the comparision is by
1268 // pointer.
1269
1270 // char pointer vs pointer
1271 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
1272 // In expression 'p == x', where 'p' and 'x' are (const or not) char
1273 // pointers, the operands are compared by pointer. Therefore we
1274 // want to print 'p' as a pointer instead of a C string (we don't
1275 // even know if it's supposed to point to a valid C string).
1276
1277 // const char*
1278 const char* s = "hello";
1279 EXPECT_EQ(PrintPointer(s),
1280 FormatForComparisonFailureMessage(s, s).c_str());
1281
1282 // char*
1283 char ch = 'a';
1284 EXPECT_EQ(PrintPointer(&ch),
1285 FormatForComparisonFailureMessage(&ch, &ch).c_str());
1286 }
1287
1288 // wchar_t pointer vs pointer
1289 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
1290 // In expression 'p == x', where 'p' and 'x' are (const or not) char
1291 // pointers, the operands are compared by pointer. Therefore we
1292 // want to print 'p' as a pointer instead of a wide C string (we don't
1293 // even know if it's supposed to point to a valid wide C string).
1294
1295 // const wchar_t*
1296 const wchar_t* s = L"hello";
1297 EXPECT_EQ(PrintPointer(s),
1298 FormatForComparisonFailureMessage(s, s).c_str());
1299
1300 // wchar_t*
1301 wchar_t ch = L'a';
1302 EXPECT_EQ(PrintPointer(&ch),
1303 FormatForComparisonFailureMessage(&ch, &ch).c_str());
1304 }
1305
1306 // Tests formatting a char pointer when it's compared to a string object.
1307 // In this case we want to print the char pointer as a C string.
1308
1309 #if GTEST_HAS_GLOBAL_STRING
1310 // char pointer vs ::string
1311 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
1312 const char* s = "hello \"world";
1313 EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
1314 FormatForComparisonFailureMessage(s, ::string()).c_str());
1315
1316 // char*
1317 char str[] = "hi\1";
1318 char* p = str;
1319 EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
1320 FormatForComparisonFailureMessage(p, ::string()).c_str());
1321 }
1322 #endif
1323
1324 // char pointer vs std::string
1325 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
1326 const char* s = "hello \"world";
1327 EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
1328 FormatForComparisonFailureMessage(s, ::std::string()).c_str());
1329
1330 // char*
1331 char str[] = "hi\1";
1332 char* p = str;
1333 EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
1334 FormatForComparisonFailureMessage(p, ::std::string()).c_str());
1335 }
1336
1337 #if GTEST_HAS_GLOBAL_WSTRING
1338 // wchar_t pointer vs ::wstring
1339 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
1340 const wchar_t* s = L"hi \"world";
1341 EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
1342 FormatForComparisonFailureMessage(s, ::wstring()).c_str());
1343
1344 // wchar_t*
1345 wchar_t str[] = L"hi\1";
1346 wchar_t* p = str;
1347 EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
1348 FormatForComparisonFailureMessage(p, ::wstring()).c_str());
1349 }
1350 #endif
1351
1352 #if GTEST_HAS_STD_WSTRING
1353 // wchar_t pointer vs std::wstring
1354 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
1355 const wchar_t* s = L"hi \"world";
1356 EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
1357 FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
1358
1359 // wchar_t*
1360 wchar_t str[] = L"hi\1";
1361 wchar_t* p = str;
1362 EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
1363 FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
1364 }
1365 #endif
1366
1367 // Tests formatting a char array when it's compared with a pointer or array.
1368 // In this case we want to print the array as a row pointer, as the comparison
1369 // is by pointer.
1370
1371 // char array vs pointer
1372 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
1373 char str[] = "hi \"world\"";
1374 char* p = NULL;
1375 EXPECT_EQ(PrintPointer(str),
1376 FormatForComparisonFailureMessage(str, p).c_str());
1377 }
1378
1379 // char array vs char array
1380 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
1381 const char str[] = "hi \"world\"";
1382 EXPECT_EQ(PrintPointer(str),
1383 FormatForComparisonFailureMessage(str, str).c_str());
1384 }
1385
1386 // wchar_t array vs pointer
1387 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
1388 wchar_t str[] = L"hi \"world\"";
1389 wchar_t* p = NULL;
1390 EXPECT_EQ(PrintPointer(str),
1391 FormatForComparisonFailureMessage(str, p).c_str());
1392 }
1393
1394 // wchar_t array vs wchar_t array
1395 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
1396 const wchar_t str[] = L"hi \"world\"";
1397 EXPECT_EQ(PrintPointer(str),
1398 FormatForComparisonFailureMessage(str, str).c_str());
1399 }
1400
1401 // Tests formatting a char array when it's compared with a string object.
1402 // In this case we want to print the array as a C string.
1403
1404 #if GTEST_HAS_GLOBAL_STRING
1405 // char array vs string
1406 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
1407 const char str[] = "hi \"w\0rld\"";
1408 EXPECT_STREQ("\"hi \\\"w\"", // The content should be escaped.
1409 // Embedded NUL terminates the string.
1410 FormatForComparisonFailureMessage(str, ::string()).c_str());
1411 }
1412 #endif
1413
1414 // char array vs std::string
1415 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
1416 const char str[] = "hi \"world\"";
1417 EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
1418 FormatForComparisonFailureMessage(str, ::std::string()).c_str());
1419 }
1420
1421 #if GTEST_HAS_GLOBAL_WSTRING
1422 // wchar_t array vs wstring
1423 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
1424 const wchar_t str[] = L"hi \"world\"";
1425 EXPECT_STREQ("L\"hi \\\"world\\\"\"", // The content should be escaped.
1426 FormatForComparisonFailureMessage(str, ::wstring()).c_str());
1427 }
1428 #endif
1429
1430 #if GTEST_HAS_STD_WSTRING
1431 // wchar_t array vs std::wstring
1432 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
1433 const wchar_t str[] = L"hi \"w\0rld\"";
1434 EXPECT_STREQ(
1435 "L\"hi \\\"w\"", // The content should be escaped.
1436 // Embedded NUL terminates the string.
1437 FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
1438 }
1439 #endif
1440
1441 // Useful for testing PrintToString(). We cannot use EXPECT_EQ()
1442 // there as its implementation uses PrintToString(). The caller must
1443 // ensure that 'value' has no side effect.
1444 #define EXPECT_PRINT_TO_STRING_(value, expected_string) \
1445 EXPECT_TRUE(PrintToString(value) == (expected_string)) \
1446 << " where " #value " prints as " << (PrintToString(value))
1447
1448 TEST(PrintToStringTest, WorksForScalar) {
1449 EXPECT_PRINT_TO_STRING_(123, "123");
1450 }
1451
1452 TEST(PrintToStringTest, WorksForPointerToConstChar) {
1453 const char* p = "hello";
1454 EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1455 }
1456
1457 TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
1458 char s[] = "hello";
1459 char* p = s;
1460 EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1461 }
1462
1463 TEST(PrintToStringTest, EscapesForPointerToConstChar) {
1464 const char* p = "hello\n";
1465 EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
1466 }
1467
1468 TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
1469 char s[] = "hello\1";
1470 char* p = s;
1471 EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
1472 }
1473
1474 TEST(PrintToStringTest, WorksForArray) {
1475 int n[3] = { 1, 2, 3 };
1476 EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
1477 }
1478
1479 TEST(PrintToStringTest, WorksForCharArray) {
1480 char s[] = "hello";
1481 EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
1482 }
1483
1484 TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
1485 const char str_with_nul[] = "hello\0 world";
1486 EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
1487
1488 char mutable_str_with_nul[] = "hello\0 world";
1489 EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
1490 }
1491
1492 #undef EXPECT_PRINT_TO_STRING_
1493
1494 TEST(UniversalTersePrintTest, WorksForNonReference) {
1495 ::std::stringstream ss;
1496 UniversalTersePrint(123, &ss);
1497 EXPECT_EQ("123", ss.str());
1498 }
1499
1500 TEST(UniversalTersePrintTest, WorksForReference) {
1501 const int& n = 123;
1502 ::std::stringstream ss;
1503 UniversalTersePrint(n, &ss);
1504 EXPECT_EQ("123", ss.str());
1505 }
1506
1507 TEST(UniversalTersePrintTest, WorksForCString) {
1508 const char* s1 = "abc";
1509 ::std::stringstream ss1;
1510 UniversalTersePrint(s1, &ss1);
1511 EXPECT_EQ("\"abc\"", ss1.str());
1512
1513 char* s2 = const_cast<char*>(s1);
1514 ::std::stringstream ss2;
1515 UniversalTersePrint(s2, &ss2);
1516 EXPECT_EQ("\"abc\"", ss2.str());
1517
1518 const char* s3 = NULL;
1519 ::std::stringstream ss3;
1520 UniversalTersePrint(s3, &ss3);
1521 EXPECT_EQ("NULL", ss3.str());
1522 }
1523
1524 TEST(UniversalPrintTest, WorksForNonReference) {
1525 ::std::stringstream ss;
1526 UniversalPrint(123, &ss);
1527 EXPECT_EQ("123", ss.str());
1528 }
1529
1530 TEST(UniversalPrintTest, WorksForReference) {
1531 const int& n = 123;
1532 ::std::stringstream ss;
1533 UniversalPrint(n, &ss);
1534 EXPECT_EQ("123", ss.str());
1535 }
1536
1537 TEST(UniversalPrintTest, WorksForCString) {
1538 const char* s1 = "abc";
1539 ::std::stringstream ss1;
1540 UniversalPrint(s1, &ss1);
1541 EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str()));
1542
1543 char* s2 = const_cast<char*>(s1);
1544 ::std::stringstream ss2;
1545 UniversalPrint(s2, &ss2);
1546 EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str()));
1547
1548 const char* s3 = NULL;
1549 ::std::stringstream ss3;
1550 UniversalPrint(s3, &ss3);
1551 EXPECT_EQ("NULL", ss3.str());
1552 }
1553
1554 TEST(UniversalPrintTest, WorksForCharArray) {
1555 const char str[] = "\"Line\0 1\"\nLine 2";
1556 ::std::stringstream ss1;
1557 UniversalPrint(str, &ss1);
1558 EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
1559
1560 const char mutable_str[] = "\"Line\0 1\"\nLine 2";
1561 ::std::stringstream ss2;
1562 UniversalPrint(mutable_str, &ss2);
1563 EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
1564 }
1565
1566 #if GTEST_HAS_TR1_TUPLE
1567
1568 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) {
1569 Strings result = UniversalTersePrintTupleFieldsToStrings(
1570 ::std::tr1::make_tuple());
1571 EXPECT_EQ(0u, result.size());
1572 }
1573
1574 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) {
1575 Strings result = UniversalTersePrintTupleFieldsToStrings(
1576 ::std::tr1::make_tuple(1));
1577 ASSERT_EQ(1u, result.size());
1578 EXPECT_EQ("1", result[0]);
1579 }
1580
1581 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) {
1582 Strings result = UniversalTersePrintTupleFieldsToStrings(
1583 ::std::tr1::make_tuple(1, 'a'));
1584 ASSERT_EQ(2u, result.size());
1585 EXPECT_EQ("1", result[0]);
1586 EXPECT_EQ("'a' (97, 0x61)", result[1]);
1587 }
1588
1589 TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) {
1590 const int n = 1;
1591 Strings result = UniversalTersePrintTupleFieldsToStrings(
1592 ::std::tr1::tuple<const int&, const char*>(n, "a"));
1593 ASSERT_EQ(2u, result.size());
1594 EXPECT_EQ("1", result[0]);
1595 EXPECT_EQ("\"a\"", result[1]);
1596 }
1597
1598 #endif // GTEST_HAS_TR1_TUPLE
1599
1600 #if GTEST_HAS_STD_TUPLE_
1601
1602 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
1603 Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
1604 EXPECT_EQ(0u, result.size());
1605 }
1606
1607 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
1608 Strings result = UniversalTersePrintTupleFieldsToStrings(
1609 ::std::make_tuple(1));
1610 ASSERT_EQ(1u, result.size());
1611 EXPECT_EQ("1", result[0]);
1612 }
1613
1614 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
1615 Strings result = UniversalTersePrintTupleFieldsToStrings(
1616 ::std::make_tuple(1, 'a'));
1617 ASSERT_EQ(2u, result.size());
1618 EXPECT_EQ("1", result[0]);
1619 EXPECT_EQ("'a' (97, 0x61)", result[1]);
1620 }
1621
1622 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
1623 const int n = 1;
1624 Strings result = UniversalTersePrintTupleFieldsToStrings(
1625 ::std::tuple<const int&, const char*>(n, "a"));
1626 ASSERT_EQ(2u, result.size());
1627 EXPECT_EQ("1", result[0]);
1628 EXPECT_EQ("\"a\"", result[1]);
1629 }
1630
1631 #endif // GTEST_HAS_STD_TUPLE_
1632
1633 } // namespace gtest_printers_test
1634 } // namespace testing
1635