]> git.proxmox.com Git - ceph.git/blob - ceph/src/rocksdb/util/autovector.h
import 14.2.4 nautilus point release
[ceph.git] / ceph / src / rocksdb / util / autovector.h
1 // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
2 // This source code is licensed under both the GPLv2 (found in the
3 // COPYING file in the root directory) and Apache 2.0 License
4 // (found in the LICENSE.Apache file in the root directory).
5 #pragma once
6
7 #include <algorithm>
8 #include <cassert>
9 #include <initializer_list>
10 #include <iterator>
11 #include <stdexcept>
12 #include <vector>
13
14 namespace rocksdb {
15
16 #ifdef ROCKSDB_LITE
17 template <class T, size_t kSize = 8>
18 class autovector : public std::vector<T> {
19 using std::vector<T>::vector;
20 };
21 #else
22 // A vector that leverages pre-allocated stack-based array to achieve better
23 // performance for array with small amount of items.
24 //
25 // The interface resembles that of vector, but with less features since we aim
26 // to solve the problem that we have in hand, rather than implementing a
27 // full-fledged generic container.
28 //
29 // Currently we don't support:
30 // * reserve()/shrink_to_fit()
31 // If used correctly, in most cases, people should not touch the
32 // underlying vector at all.
33 // * random insert()/erase(), please only use push_back()/pop_back().
34 // * No move/swap operations. Each autovector instance has a
35 // stack-allocated array and if we want support move/swap operations, we
36 // need to copy the arrays other than just swapping the pointers. In this
37 // case we'll just explicitly forbid these operations since they may
38 // lead users to make false assumption by thinking they are inexpensive
39 // operations.
40 //
41 // Naming style of public methods almost follows that of the STL's.
42 template <class T, size_t kSize = 8>
43 class autovector {
44 public:
45 // General STL-style container member types.
46 typedef T value_type;
47 typedef typename std::vector<T>::difference_type difference_type;
48 typedef typename std::vector<T>::size_type size_type;
49 typedef value_type& reference;
50 typedef const value_type& const_reference;
51 typedef value_type* pointer;
52 typedef const value_type* const_pointer;
53
54 // This class is the base for regular/const iterator
55 template <class TAutoVector, class TValueType>
56 class iterator_impl {
57 public:
58 // -- iterator traits
59 typedef iterator_impl<TAutoVector, TValueType> self_type;
60 typedef TValueType value_type;
61 typedef TValueType& reference;
62 typedef TValueType* pointer;
63 typedef typename TAutoVector::difference_type difference_type;
64 typedef std::random_access_iterator_tag iterator_category;
65
66 iterator_impl(TAutoVector* vect, size_t index)
67 : vect_(vect), index_(index) {};
68 iterator_impl(const iterator_impl&) = default;
69 ~iterator_impl() {}
70 iterator_impl& operator=(const iterator_impl&) = default;
71
72 // -- Advancement
73 // ++iterator
74 self_type& operator++() {
75 ++index_;
76 return *this;
77 }
78
79 // iterator++
80 self_type operator++(int) {
81 auto old = *this;
82 ++index_;
83 return old;
84 }
85
86 // --iterator
87 self_type& operator--() {
88 --index_;
89 return *this;
90 }
91
92 // iterator--
93 self_type operator--(int) {
94 auto old = *this;
95 --index_;
96 return old;
97 }
98
99 self_type operator-(difference_type len) const {
100 return self_type(vect_, index_ - len);
101 }
102
103 difference_type operator-(const self_type& other) const {
104 assert(vect_ == other.vect_);
105 return index_ - other.index_;
106 }
107
108 self_type operator+(difference_type len) const {
109 return self_type(vect_, index_ + len);
110 }
111
112 self_type& operator+=(difference_type len) {
113 index_ += len;
114 return *this;
115 }
116
117 self_type& operator-=(difference_type len) {
118 index_ -= len;
119 return *this;
120 }
121
122 // -- Reference
123 reference operator*() {
124 assert(vect_->size() >= index_);
125 return (*vect_)[index_];
126 }
127
128 const_reference operator*() const {
129 assert(vect_->size() >= index_);
130 return (*vect_)[index_];
131 }
132
133 pointer operator->() {
134 assert(vect_->size() >= index_);
135 return &(*vect_)[index_];
136 }
137
138 const_pointer operator->() const {
139 assert(vect_->size() >= index_);
140 return &(*vect_)[index_];
141 }
142
143
144 // -- Logical Operators
145 bool operator==(const self_type& other) const {
146 assert(vect_ == other.vect_);
147 return index_ == other.index_;
148 }
149
150 bool operator!=(const self_type& other) const { return !(*this == other); }
151
152 bool operator>(const self_type& other) const {
153 assert(vect_ == other.vect_);
154 return index_ > other.index_;
155 }
156
157 bool operator<(const self_type& other) const {
158 assert(vect_ == other.vect_);
159 return index_ < other.index_;
160 }
161
162 bool operator>=(const self_type& other) const {
163 assert(vect_ == other.vect_);
164 return index_ >= other.index_;
165 }
166
167 bool operator<=(const self_type& other) const {
168 assert(vect_ == other.vect_);
169 return index_ <= other.index_;
170 }
171
172 private:
173 TAutoVector* vect_ = nullptr;
174 size_t index_ = 0;
175 };
176
177 typedef iterator_impl<autovector, value_type> iterator;
178 typedef iterator_impl<const autovector, const value_type> const_iterator;
179 typedef std::reverse_iterator<iterator> reverse_iterator;
180 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
181
182 autovector() : values_(reinterpret_cast<pointer>(buf_)) {}
183
184 autovector(std::initializer_list<T> init_list)
185 : values_(reinterpret_cast<pointer>(buf_)) {
186 for (const T& item : init_list) {
187 push_back(item);
188 }
189 }
190
191 ~autovector() { clear(); }
192
193 // -- Immutable operations
194 // Indicate if all data resides in in-stack data structure.
195 bool only_in_stack() const {
196 // If no element was inserted at all, the vector's capacity will be `0`.
197 return vect_.capacity() == 0;
198 }
199
200 size_type size() const { return num_stack_items_ + vect_.size(); }
201
202 // resize does not guarantee anything about the contents of the newly
203 // available elements
204 void resize(size_type n) {
205 if (n > kSize) {
206 vect_.resize(n - kSize);
207 while (num_stack_items_ < kSize) {
208 new ((void*)(&values_[num_stack_items_++])) value_type();
209 }
210 num_stack_items_ = kSize;
211 } else {
212 vect_.clear();
213 while (num_stack_items_ < n) {
214 new ((void*)(&values_[num_stack_items_++])) value_type();
215 }
216 while (num_stack_items_ > n) {
217 values_[--num_stack_items_].~value_type();
218 }
219 }
220 }
221
222 bool empty() const { return size() == 0; }
223
224 const_reference operator[](size_type n) const {
225 assert(n < size());
226 if (n < kSize) {
227 return values_[n];
228 }
229 return vect_[n - kSize];
230 }
231
232 reference operator[](size_type n) {
233 assert(n < size());
234 if (n < kSize) {
235 return values_[n];
236 }
237 return vect_[n - kSize];
238 }
239
240 const_reference at(size_type n) const {
241 assert(n < size());
242 return (*this)[n];
243 }
244
245 reference at(size_type n) {
246 assert(n < size());
247 return (*this)[n];
248 }
249
250 reference front() {
251 assert(!empty());
252 return *begin();
253 }
254
255 const_reference front() const {
256 assert(!empty());
257 return *begin();
258 }
259
260 reference back() {
261 assert(!empty());
262 return *(end() - 1);
263 }
264
265 const_reference back() const {
266 assert(!empty());
267 return *(end() - 1);
268 }
269
270 // -- Mutable Operations
271 void push_back(T&& item) {
272 if (num_stack_items_ < kSize) {
273 new ((void*)(&values_[num_stack_items_])) value_type();
274 values_[num_stack_items_++] = std::move(item);
275 } else {
276 vect_.push_back(item);
277 }
278 }
279
280 void push_back(const T& item) {
281 if (num_stack_items_ < kSize) {
282 new ((void*)(&values_[num_stack_items_])) value_type();
283 values_[num_stack_items_++] = item;
284 } else {
285 vect_.push_back(item);
286 }
287 }
288
289 template <class... Args>
290 void emplace_back(Args&&... args) {
291 if (num_stack_items_ < kSize) {
292 new ((void*)(&values_[num_stack_items_++]))
293 value_type(std::forward<Args>(args)...);
294 } else {
295 vect_.emplace_back(std::forward<Args>(args)...);
296 }
297 }
298
299 void pop_back() {
300 assert(!empty());
301 if (!vect_.empty()) {
302 vect_.pop_back();
303 } else {
304 values_[--num_stack_items_].~value_type();
305 }
306 }
307
308 void clear() {
309 while (num_stack_items_ > 0) {
310 values_[--num_stack_items_].~value_type();
311 }
312 vect_.clear();
313 }
314
315 // -- Copy and Assignment
316 autovector& assign(const autovector& other);
317
318 autovector(const autovector& other) { assign(other); }
319
320 autovector& operator=(const autovector& other) { return assign(other); }
321
322 // -- Iterator Operations
323 iterator begin() { return iterator(this, 0); }
324
325 const_iterator begin() const { return const_iterator(this, 0); }
326
327 iterator end() { return iterator(this, this->size()); }
328
329 const_iterator end() const { return const_iterator(this, this->size()); }
330
331 reverse_iterator rbegin() { return reverse_iterator(end()); }
332
333 const_reverse_iterator rbegin() const {
334 return const_reverse_iterator(end());
335 }
336
337 reverse_iterator rend() { return reverse_iterator(begin()); }
338
339 const_reverse_iterator rend() const {
340 return const_reverse_iterator(begin());
341 }
342
343 private:
344 size_type num_stack_items_ = 0; // current number of items
345 alignas(alignof(
346 value_type)) char buf_[kSize *
347 sizeof(value_type)]; // the first `kSize` items
348 pointer values_;
349 // used only if there are more than `kSize` items.
350 std::vector<T> vect_;
351 };
352
353 template <class T, size_t kSize>
354 autovector<T, kSize>& autovector<T, kSize>::assign(const autovector& other) {
355 values_ = reinterpret_cast<pointer>(buf_);
356 // copy the internal vector
357 vect_.assign(other.vect_.begin(), other.vect_.end());
358
359 // copy array
360 num_stack_items_ = other.num_stack_items_;
361 std::copy(other.values_, other.values_ + num_stack_items_, values_);
362
363 return *this;
364 }
365 #endif // ROCKSDB_LITE
366 } // namespace rocksdb