]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_acl/acl_run_scalar.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_acl / acl_run_scalar.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include "acl_run.h"
6
7 /*
8 * Resolve priority for multiple results (scalar version).
9 * This consists comparing the priority of the current traversal with the
10 * running set of results for the packet.
11 * For each result, keep a running array of the result (rule number) and
12 * its priority for each category.
13 */
14 static inline void
15 resolve_priority_scalar(uint64_t transition, int n,
16 const struct rte_acl_ctx *ctx, struct parms *parms,
17 const struct rte_acl_match_results *p, uint32_t categories)
18 {
19 uint32_t i;
20 int32_t *saved_priority;
21 uint32_t *saved_results;
22 const int32_t *priority;
23 const uint32_t *results;
24
25 saved_results = parms[n].cmplt->results;
26 saved_priority = parms[n].cmplt->priority;
27
28 /* results and priorities for completed trie */
29 results = p[transition].results;
30 priority = p[transition].priority;
31
32 /* if this is not the first completed trie */
33 if (parms[n].cmplt->count != ctx->num_tries) {
34 for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
35
36 if (saved_priority[i] <= priority[i]) {
37 saved_priority[i] = priority[i];
38 saved_results[i] = results[i];
39 }
40 if (saved_priority[i + 1] <= priority[i + 1]) {
41 saved_priority[i + 1] = priority[i + 1];
42 saved_results[i + 1] = results[i + 1];
43 }
44 if (saved_priority[i + 2] <= priority[i + 2]) {
45 saved_priority[i + 2] = priority[i + 2];
46 saved_results[i + 2] = results[i + 2];
47 }
48 if (saved_priority[i + 3] <= priority[i + 3]) {
49 saved_priority[i + 3] = priority[i + 3];
50 saved_results[i + 3] = results[i + 3];
51 }
52 }
53 } else {
54 for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
55 saved_priority[i] = priority[i];
56 saved_priority[i + 1] = priority[i + 1];
57 saved_priority[i + 2] = priority[i + 2];
58 saved_priority[i + 3] = priority[i + 3];
59
60 saved_results[i] = results[i];
61 saved_results[i + 1] = results[i + 1];
62 saved_results[i + 2] = results[i + 2];
63 saved_results[i + 3] = results[i + 3];
64 }
65 }
66 }
67
68 static inline uint32_t
69 scan_forward(uint32_t input, uint32_t max)
70 {
71 return (input == 0) ? max : rte_bsf32(input);
72 }
73
74 static inline uint64_t
75 scalar_transition(const uint64_t *trans_table, uint64_t transition,
76 uint8_t input)
77 {
78 uint32_t addr, index, ranges, x, a, b, c;
79
80 /* break transition into component parts */
81 ranges = transition >> (sizeof(index) * CHAR_BIT);
82 index = transition & ~RTE_ACL_NODE_INDEX;
83 addr = transition ^ index;
84
85 if (index != RTE_ACL_NODE_DFA) {
86 /* calc address for a QRANGE/SINGLE node */
87 c = (uint32_t)input * SCALAR_QRANGE_MULT;
88 a = ranges | SCALAR_QRANGE_MIN;
89 a -= (c & SCALAR_QRANGE_MASK);
90 b = c & SCALAR_QRANGE_MIN;
91 a &= SCALAR_QRANGE_MIN;
92 a ^= (ranges ^ b) & (a ^ b);
93 x = scan_forward(a, 32) >> 3;
94 } else {
95 /* calc address for a DFA node */
96 x = ranges >> (input /
97 RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
98 x &= UINT8_MAX;
99 x = input - x;
100 }
101
102 addr += x;
103
104 /* pickup next transition */
105 transition = *(trans_table + addr);
106 return transition;
107 }
108
109 int
110 rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
111 uint32_t *results, uint32_t num, uint32_t categories)
112 {
113 int n;
114 uint64_t transition0, transition1;
115 uint32_t input0, input1;
116 struct acl_flow_data flows;
117 uint64_t index_array[MAX_SEARCHES_SCALAR];
118 struct completion cmplt[MAX_SEARCHES_SCALAR];
119 struct parms parms[MAX_SEARCHES_SCALAR];
120
121 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
122 categories, ctx->trans_table);
123
124 for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
125 cmplt[n].count = 0;
126 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
127 }
128
129 transition0 = index_array[0];
130 transition1 = index_array[1];
131
132 while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
133 transition0 = acl_match_check(transition0,
134 0, ctx, parms, &flows, resolve_priority_scalar);
135 transition1 = acl_match_check(transition1,
136 1, ctx, parms, &flows, resolve_priority_scalar);
137 }
138
139 while (flows.started > 0) {
140
141 input0 = GET_NEXT_4BYTES(parms, 0);
142 input1 = GET_NEXT_4BYTES(parms, 1);
143
144 for (n = 0; n < 4; n++) {
145
146 transition0 = scalar_transition(flows.trans,
147 transition0, (uint8_t)input0);
148 input0 >>= CHAR_BIT;
149
150 transition1 = scalar_transition(flows.trans,
151 transition1, (uint8_t)input1);
152 input1 >>= CHAR_BIT;
153 }
154
155 while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
156 transition0 = acl_match_check(transition0,
157 0, ctx, parms, &flows, resolve_priority_scalar);
158 transition1 = acl_match_check(transition1,
159 1, ctx, parms, &flows, resolve_priority_scalar);
160 }
161 }
162 return 0;
163 }