]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/doc/guides/sample_app_ug/skeleton.rst
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / doc / guides / sample_app_ug / skeleton.rst
1 .. SPDX-License-Identifier: BSD-3-Clause
2 Copyright(c) 2015 Intel Corporation.
3
4 Basic Forwarding Sample Application
5 ===================================
6
7 The Basic Forwarding sample application is a simple *skeleton* example of a
8 forwarding application.
9
10 It is intended as a demonstration of the basic components of a DPDK forwarding
11 application. For more detailed implementations see the L2 and L3 forwarding
12 sample applications.
13
14 Compiling the Application
15 -------------------------
16
17 To compile the sample application see :doc:`compiling`.
18
19 The application is located in the ``skeleton`` sub-directory.
20
21 Running the Application
22 -----------------------
23
24 To run the example in a ``linux`` environment:
25
26 .. code-block:: console
27
28 ./build/basicfwd -l 1 -n 4
29
30 Refer to *DPDK Getting Started Guide* for general information on running
31 applications and the Environment Abstraction Layer (EAL) options.
32
33
34 Explanation
35 -----------
36
37 The following sections provide an explanation of the main components of the
38 code.
39
40 All DPDK library functions used in the sample code are prefixed with ``rte_``
41 and are explained in detail in the *DPDK API Documentation*.
42
43
44 The Main Function
45 ~~~~~~~~~~~~~~~~~
46
47 The ``main()`` function performs the initialization and calls the execution
48 threads for each lcore.
49
50 The first task is to initialize the Environment Abstraction Layer (EAL). The
51 ``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
52 function. The value returned is the number of parsed arguments:
53
54 .. code-block:: c
55
56 int ret = rte_eal_init(argc, argv);
57 if (ret < 0)
58 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
59
60
61 The ``main()`` also allocates a mempool to hold the mbufs (Message Buffers)
62 used by the application:
63
64 .. code-block:: c
65
66 mbuf_pool = rte_mempool_create("MBUF_POOL",
67 NUM_MBUFS * nb_ports,
68 MBUF_SIZE,
69 MBUF_CACHE_SIZE,
70 sizeof(struct rte_pktmbuf_pool_private),
71 rte_pktmbuf_pool_init, NULL,
72 rte_pktmbuf_init, NULL,
73 rte_socket_id(),
74 0);
75
76 Mbufs are the packet buffer structure used by DPDK. They are explained in
77 detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.
78
79 The ``main()`` function also initializes all the ports using the user defined
80 ``port_init()`` function which is explained in the next section:
81
82 .. code-block:: c
83
84 RTE_ETH_FOREACH_DEV(portid) {
85 if (port_init(portid, mbuf_pool) != 0) {
86 rte_exit(EXIT_FAILURE,
87 "Cannot init port %" PRIu8 "\n", portid);
88 }
89 }
90
91
92 Once the initialization is complete, the application is ready to launch a
93 function on an lcore. In this example ``lcore_main()`` is called on a single
94 lcore.
95
96
97 .. code-block:: c
98
99 lcore_main();
100
101 The ``lcore_main()`` function is explained below.
102
103
104
105 The Port Initialization Function
106 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
107
108 The main functional part of the port initialization used in the Basic
109 Forwarding application is shown below:
110
111 .. code-block:: c
112
113 static inline int
114 port_init(uint16_t port, struct rte_mempool *mbuf_pool)
115 {
116 struct rte_eth_conf port_conf = port_conf_default;
117 const uint16_t rx_rings = 1, tx_rings = 1;
118 struct rte_ether_addr addr;
119 int retval;
120 uint16_t q;
121
122 if (!rte_eth_dev_is_valid_port(port))
123 return -1;
124
125 /* Configure the Ethernet device. */
126 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
127 if (retval != 0)
128 return retval;
129
130 /* Allocate and set up 1 RX queue per Ethernet port. */
131 for (q = 0; q < rx_rings; q++) {
132 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
133 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
134 if (retval < 0)
135 return retval;
136 }
137
138 /* Allocate and set up 1 TX queue per Ethernet port. */
139 for (q = 0; q < tx_rings; q++) {
140 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
141 rte_eth_dev_socket_id(port), NULL);
142 if (retval < 0)
143 return retval;
144 }
145
146 /* Start the Ethernet port. */
147 retval = rte_eth_dev_start(port);
148 if (retval < 0)
149 return retval;
150
151 /* Enable RX in promiscuous mode for the Ethernet device. */
152 retval = rte_eth_promiscuous_enable(port);
153 if (retval != 0)
154 return retval;
155
156 return 0;
157 }
158
159 The Ethernet ports are configured with default settings using the
160 ``rte_eth_dev_configure()`` function and the ``port_conf_default`` struct:
161
162 .. code-block:: c
163
164 static const struct rte_eth_conf port_conf_default = {
165 .rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }
166 };
167
168 For this example the ports are set up with 1 RX and 1 TX queue using the
169 ``rte_eth_rx_queue_setup()`` and ``rte_eth_tx_queue_setup()`` functions.
170
171 The Ethernet port is then started:
172
173 .. code-block:: c
174
175 retval = rte_eth_dev_start(port);
176
177
178 Finally the RX port is set in promiscuous mode:
179
180 .. code-block:: c
181
182 retval = rte_eth_promiscuous_enable(port);
183
184
185 The Lcores Main
186 ~~~~~~~~~~~~~~~
187
188 As we saw above the ``main()`` function calls an application function on the
189 available lcores. For the Basic Forwarding application the lcore function
190 looks like the following:
191
192 .. code-block:: c
193
194 static __rte_noreturn void
195 lcore_main(void)
196 {
197 uint16_t port;
198
199 /*
200 * Check that the port is on the same NUMA node as the polling thread
201 * for best performance.
202 */
203 RTE_ETH_FOREACH_DEV(port)
204 if (rte_eth_dev_socket_id(port) > 0 &&
205 rte_eth_dev_socket_id(port) !=
206 (int)rte_socket_id())
207 printf("WARNING, port %u is on remote NUMA node to "
208 "polling thread.\n\tPerformance will "
209 "not be optimal.\n", port);
210
211 printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
212 rte_lcore_id());
213
214 /* Run until the application is quit or killed. */
215 for (;;) {
216 /*
217 * Receive packets on a port and forward them on the paired
218 * port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
219 */
220 RTE_ETH_FOREACH_DEV(port) {
221
222 /* Get burst of RX packets, from first port of pair. */
223 struct rte_mbuf *bufs[BURST_SIZE];
224 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
225 bufs, BURST_SIZE);
226
227 if (unlikely(nb_rx == 0))
228 continue;
229
230 /* Send burst of TX packets, to second port of pair. */
231 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
232 bufs, nb_rx);
233
234 /* Free any unsent packets. */
235 if (unlikely(nb_tx < nb_rx)) {
236 uint16_t buf;
237 for (buf = nb_tx; buf < nb_rx; buf++)
238 rte_pktmbuf_free(bufs[buf]);
239 }
240 }
241 }
242 }
243
244
245 The main work of the application is done within the loop:
246
247 .. code-block:: c
248
249 for (;;) {
250 RTE_ETH_FOREACH_DEV(port) {
251
252 /* Get burst of RX packets, from first port of pair. */
253 struct rte_mbuf *bufs[BURST_SIZE];
254 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
255 bufs, BURST_SIZE);
256
257 if (unlikely(nb_rx == 0))
258 continue;
259
260 /* Send burst of TX packets, to second port of pair. */
261 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
262 bufs, nb_rx);
263
264 /* Free any unsent packets. */
265 if (unlikely(nb_tx < nb_rx)) {
266 uint16_t buf;
267 for (buf = nb_tx; buf < nb_rx; buf++)
268 rte_pktmbuf_free(bufs[buf]);
269 }
270 }
271 }
272
273 Packets are received in bursts on the RX ports and transmitted in bursts on
274 the TX ports. The ports are grouped in pairs with a simple mapping scheme
275 using the an XOR on the port number::
276
277 0 -> 1
278 1 -> 0
279
280 2 -> 3
281 3 -> 2
282
283 etc.
284
285 The ``rte_eth_tx_burst()`` function frees the memory buffers of packets that
286 are transmitted. If packets fail to transmit, ``(nb_tx < nb_rx)``, then they
287 must be freed explicitly using ``rte_pktmbuf_free()``.
288
289 The forwarding loop can be interrupted and the application closed using
290 ``Ctrl-C``.