]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/avf/avf_ethdev.c
update download target update for octopus release
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41 struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44 struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50 struct ether_addr *addr,
51 uint32_t index,
52 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55 uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58 struct rte_eth_rss_reta_entry64 *reta_conf,
59 uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61 struct rte_eth_rss_reta_entry64 *reta_conf,
62 uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64 struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66 struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69 struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71 uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73 uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79 { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80 { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84 .dev_configure = avf_dev_configure,
85 .dev_start = avf_dev_start,
86 .dev_stop = avf_dev_stop,
87 .dev_close = avf_dev_close,
88 .dev_infos_get = avf_dev_info_get,
89 .dev_supported_ptypes_get = avf_dev_supported_ptypes_get,
90 .link_update = avf_dev_link_update,
91 .stats_get = avf_dev_stats_get,
92 .promiscuous_enable = avf_dev_promiscuous_enable,
93 .promiscuous_disable = avf_dev_promiscuous_disable,
94 .allmulticast_enable = avf_dev_allmulticast_enable,
95 .allmulticast_disable = avf_dev_allmulticast_disable,
96 .mac_addr_add = avf_dev_add_mac_addr,
97 .mac_addr_remove = avf_dev_del_mac_addr,
98 .vlan_filter_set = avf_dev_vlan_filter_set,
99 .vlan_offload_set = avf_dev_vlan_offload_set,
100 .rx_queue_start = avf_dev_rx_queue_start,
101 .rx_queue_stop = avf_dev_rx_queue_stop,
102 .tx_queue_start = avf_dev_tx_queue_start,
103 .tx_queue_stop = avf_dev_tx_queue_stop,
104 .rx_queue_setup = avf_dev_rx_queue_setup,
105 .rx_queue_release = avf_dev_rx_queue_release,
106 .tx_queue_setup = avf_dev_tx_queue_setup,
107 .tx_queue_release = avf_dev_tx_queue_release,
108 .mac_addr_set = avf_dev_set_default_mac_addr,
109 .reta_update = avf_dev_rss_reta_update,
110 .reta_query = avf_dev_rss_reta_query,
111 .rss_hash_update = avf_dev_rss_hash_update,
112 .rss_hash_conf_get = avf_dev_rss_hash_conf_get,
113 .rxq_info_get = avf_dev_rxq_info_get,
114 .txq_info_get = avf_dev_txq_info_get,
115 .rx_queue_count = avf_dev_rxq_count,
116 .rx_descriptor_status = avf_dev_rx_desc_status,
117 .tx_descriptor_status = avf_dev_tx_desc_status,
118 .mtu_set = avf_dev_mtu_set,
119 .rx_queue_intr_enable = avf_dev_rx_queue_intr_enable,
120 .rx_queue_intr_disable = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126 struct avf_adapter *ad =
127 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(ad);
129 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131 ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133 /* Initialize to TRUE. If any of Rx queues doesn't meet the
134 * vector Rx/Tx preconditions, it will be reset.
135 */
136 ad->rx_vec_allowed = true;
137 ad->tx_vec_allowed = true;
138 #else
139 ad->rx_vec_allowed = false;
140 ad->tx_vec_allowed = false;
141 #endif
142
143 /* Vlan stripping setting */
144 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146 avf_enable_vlan_strip(ad);
147 else
148 avf_disable_vlan_strip(ad);
149 }
150 return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
157 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
158 struct rte_eth_rss_conf *rss_conf;
159 uint8_t i, j, nb_q;
160 int ret;
161
162 rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
163 nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
164 AVF_MAX_NUM_QUEUES);
165
166 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
167 PMD_DRV_LOG(DEBUG, "RSS is not supported");
168 return -ENOTSUP;
169 }
170 if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
171 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
172 /* set all lut items to default queue */
173 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
174 vf->rss_lut[i] = 0;
175 ret = avf_configure_rss_lut(adapter);
176 return ret;
177 }
178
179 /* In AVF, RSS enablement is set by PF driver. It is not supported
180 * to set based on rss_conf->rss_hf.
181 */
182
183 /* configure RSS key */
184 if (!rss_conf->rss_key) {
185 /* Calculate the default hash key */
186 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
187 vf->rss_key[i] = (uint8_t)rte_rand();
188 } else
189 rte_memcpy(vf->rss_key, rss_conf->rss_key,
190 RTE_MIN(rss_conf->rss_key_len,
191 vf->vf_res->rss_key_size));
192
193 /* init RSS LUT table */
194 for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
195 if (j >= nb_q)
196 j = 0;
197 vf->rss_lut[i] = j;
198 }
199 /* send virtchnnl ops to configure rss*/
200 ret = avf_configure_rss_lut(adapter);
201 if (ret)
202 return ret;
203 ret = avf_configure_rss_key(adapter);
204 if (ret)
205 return ret;
206
207 return 0;
208 }
209
210 static int
211 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
212 {
213 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214 struct rte_eth_dev_data *dev_data = dev->data;
215 uint16_t buf_size, max_pkt_len, len;
216
217 buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
218
219 /* Calculate the maximum packet length allowed */
220 len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
221 max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
222
223 /* Check if the jumbo frame and maximum packet length are set
224 * correctly.
225 */
226 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
227 if (max_pkt_len <= ETHER_MAX_LEN ||
228 max_pkt_len > AVF_FRAME_SIZE_MAX) {
229 PMD_DRV_LOG(ERR, "maximum packet length must be "
230 "larger than %u and smaller than %u, "
231 "as jumbo frame is enabled",
232 (uint32_t)ETHER_MAX_LEN,
233 (uint32_t)AVF_FRAME_SIZE_MAX);
234 return -EINVAL;
235 }
236 } else {
237 if (max_pkt_len < ETHER_MIN_LEN ||
238 max_pkt_len > ETHER_MAX_LEN) {
239 PMD_DRV_LOG(ERR, "maximum packet length must be "
240 "larger than %u and smaller than %u, "
241 "as jumbo frame is disabled",
242 (uint32_t)ETHER_MIN_LEN,
243 (uint32_t)ETHER_MAX_LEN);
244 return -EINVAL;
245 }
246 }
247
248 rxq->max_pkt_len = max_pkt_len;
249 if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
250 (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
251 dev_data->scattered_rx = 1;
252 }
253 AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
254 AVF_WRITE_FLUSH(hw);
255
256 return 0;
257 }
258
259 static int
260 avf_init_queues(struct rte_eth_dev *dev)
261 {
262 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
263 struct avf_rx_queue **rxq =
264 (struct avf_rx_queue **)dev->data->rx_queues;
265 struct avf_tx_queue **txq =
266 (struct avf_tx_queue **)dev->data->tx_queues;
267 int i, ret = AVF_SUCCESS;
268
269 for (i = 0; i < dev->data->nb_rx_queues; i++) {
270 if (!rxq[i] || !rxq[i]->q_set)
271 continue;
272 ret = avf_init_rxq(dev, rxq[i]);
273 if (ret != AVF_SUCCESS)
274 break;
275 }
276 /* set rx/tx function to vector/scatter/single-segment
277 * according to parameters
278 */
279 avf_set_rx_function(dev);
280 avf_set_tx_function(dev);
281
282 return ret;
283 }
284
285 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
286 struct rte_intr_handle *intr_handle)
287 {
288 struct avf_adapter *adapter =
289 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
290 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
291 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
292 uint16_t interval, i;
293 int vec;
294
295 if (rte_intr_cap_multiple(intr_handle) &&
296 dev->data->dev_conf.intr_conf.rxq) {
297 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
298 return -1;
299 }
300
301 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
302 intr_handle->intr_vec =
303 rte_zmalloc("intr_vec",
304 dev->data->nb_rx_queues * sizeof(int), 0);
305 if (!intr_handle->intr_vec) {
306 PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
307 dev->data->nb_rx_queues);
308 return -1;
309 }
310 }
311
312 if (!dev->data->dev_conf.intr_conf.rxq ||
313 !rte_intr_dp_is_en(intr_handle)) {
314 /* Rx interrupt disabled, Map interrupt only for writeback */
315 vf->nb_msix = 1;
316 if (vf->vf_res->vf_cap_flags &
317 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
318 /* If WB_ON_ITR supports, enable it */
319 vf->msix_base = AVF_RX_VEC_START;
320 AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
321 AVFINT_DYN_CTLN1_ITR_INDX_MASK |
322 AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
323 } else {
324 /* If no WB_ON_ITR offload flags, need to set
325 * interrupt for descriptor write back.
326 */
327 vf->msix_base = AVF_MISC_VEC_ID;
328
329 /* set ITR to max */
330 interval = avf_calc_itr_interval(
331 AVF_QUEUE_ITR_INTERVAL_MAX);
332 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
333 AVFINT_DYN_CTL01_INTENA_MASK |
334 (AVF_ITR_INDEX_DEFAULT <<
335 AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
336 (interval <<
337 AVFINT_DYN_CTL01_INTERVAL_SHIFT));
338 }
339 AVF_WRITE_FLUSH(hw);
340 /* map all queues to the same interrupt */
341 for (i = 0; i < dev->data->nb_rx_queues; i++)
342 vf->rxq_map[vf->msix_base] |= 1 << i;
343 } else {
344 if (!rte_intr_allow_others(intr_handle)) {
345 vf->nb_msix = 1;
346 vf->msix_base = AVF_MISC_VEC_ID;
347 for (i = 0; i < dev->data->nb_rx_queues; i++) {
348 vf->rxq_map[vf->msix_base] |= 1 << i;
349 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
350 }
351 PMD_DRV_LOG(DEBUG,
352 "vector %u are mapping to all Rx queues",
353 vf->msix_base);
354 } else {
355 /* If Rx interrupt is reuquired, and we can use
356 * multi interrupts, then the vec is from 1
357 */
358 vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
359 intr_handle->nb_efd);
360 vf->msix_base = AVF_RX_VEC_START;
361 vec = AVF_RX_VEC_START;
362 for (i = 0; i < dev->data->nb_rx_queues; i++) {
363 vf->rxq_map[vec] |= 1 << i;
364 intr_handle->intr_vec[i] = vec++;
365 if (vec >= vf->nb_msix)
366 vec = AVF_RX_VEC_START;
367 }
368 PMD_DRV_LOG(DEBUG,
369 "%u vectors are mapping to %u Rx queues",
370 vf->nb_msix, dev->data->nb_rx_queues);
371 }
372 }
373
374 if (avf_config_irq_map(adapter)) {
375 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
376 return -1;
377 }
378 return 0;
379 }
380
381 static int
382 avf_start_queues(struct rte_eth_dev *dev)
383 {
384 struct avf_rx_queue *rxq;
385 struct avf_tx_queue *txq;
386 int i;
387
388 for (i = 0; i < dev->data->nb_tx_queues; i++) {
389 txq = dev->data->tx_queues[i];
390 if (txq->tx_deferred_start)
391 continue;
392 if (avf_dev_tx_queue_start(dev, i) != 0) {
393 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
394 return -1;
395 }
396 }
397
398 for (i = 0; i < dev->data->nb_rx_queues; i++) {
399 rxq = dev->data->rx_queues[i];
400 if (rxq->rx_deferred_start)
401 continue;
402 if (avf_dev_rx_queue_start(dev, i) != 0) {
403 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
404 return -1;
405 }
406 }
407
408 return 0;
409 }
410
411 static int
412 avf_dev_start(struct rte_eth_dev *dev)
413 {
414 struct avf_adapter *adapter =
415 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
416 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
417 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
418 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
419 struct rte_intr_handle *intr_handle = dev->intr_handle;
420
421 PMD_INIT_FUNC_TRACE();
422
423 hw->adapter_stopped = 0;
424
425 vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
426 vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
427 dev->data->nb_tx_queues);
428
429 if (avf_init_queues(dev) != 0) {
430 PMD_DRV_LOG(ERR, "failed to do Queue init");
431 return -1;
432 }
433
434 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
435 if (avf_init_rss(adapter) != 0) {
436 PMD_DRV_LOG(ERR, "configure rss failed");
437 goto err_rss;
438 }
439 }
440
441 if (avf_configure_queues(adapter) != 0) {
442 PMD_DRV_LOG(ERR, "configure queues failed");
443 goto err_queue;
444 }
445
446 if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
447 PMD_DRV_LOG(ERR, "configure irq failed");
448 goto err_queue;
449 }
450 /* re-enable intr again, because efd assign may change */
451 if (dev->data->dev_conf.intr_conf.rxq != 0) {
452 rte_intr_disable(intr_handle);
453 rte_intr_enable(intr_handle);
454 }
455
456 /* Set all mac addrs */
457 avf_add_del_all_mac_addr(adapter, TRUE);
458
459 if (avf_start_queues(dev) != 0) {
460 PMD_DRV_LOG(ERR, "enable queues failed");
461 goto err_mac;
462 }
463
464 return 0;
465
466 err_mac:
467 avf_add_del_all_mac_addr(adapter, FALSE);
468 err_queue:
469 err_rss:
470 return -1;
471 }
472
473 static void
474 avf_dev_stop(struct rte_eth_dev *dev)
475 {
476 struct avf_adapter *adapter =
477 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
478 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
479 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
480 struct rte_intr_handle *intr_handle = dev->intr_handle;
481 int ret, i;
482
483 PMD_INIT_FUNC_TRACE();
484
485 if (hw->adapter_stopped == 1)
486 return;
487
488 avf_stop_queues(dev);
489
490 /* Disable the interrupt for Rx */
491 rte_intr_efd_disable(intr_handle);
492 /* Rx interrupt vector mapping free */
493 if (intr_handle->intr_vec) {
494 rte_free(intr_handle->intr_vec);
495 intr_handle->intr_vec = NULL;
496 }
497
498 /* remove all mac addrs */
499 avf_add_del_all_mac_addr(adapter, FALSE);
500 hw->adapter_stopped = 1;
501 }
502
503 static void
504 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
505 {
506 struct avf_adapter *adapter =
507 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
508 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
509
510 memset(dev_info, 0, sizeof(*dev_info));
511 dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
512 dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
513 dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
514 dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
515 dev_info->hash_key_size = vf->vf_res->rss_key_size;
516 dev_info->reta_size = vf->vf_res->rss_lut_size;
517 dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
518 dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
519 dev_info->rx_offload_capa =
520 DEV_RX_OFFLOAD_VLAN_STRIP |
521 DEV_RX_OFFLOAD_QINQ_STRIP |
522 DEV_RX_OFFLOAD_IPV4_CKSUM |
523 DEV_RX_OFFLOAD_UDP_CKSUM |
524 DEV_RX_OFFLOAD_TCP_CKSUM |
525 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
526 DEV_RX_OFFLOAD_CRC_STRIP |
527 DEV_RX_OFFLOAD_KEEP_CRC |
528 DEV_RX_OFFLOAD_SCATTER |
529 DEV_RX_OFFLOAD_JUMBO_FRAME |
530 DEV_RX_OFFLOAD_VLAN_FILTER;
531 dev_info->tx_offload_capa =
532 DEV_TX_OFFLOAD_VLAN_INSERT |
533 DEV_TX_OFFLOAD_QINQ_INSERT |
534 DEV_TX_OFFLOAD_IPV4_CKSUM |
535 DEV_TX_OFFLOAD_UDP_CKSUM |
536 DEV_TX_OFFLOAD_TCP_CKSUM |
537 DEV_TX_OFFLOAD_SCTP_CKSUM |
538 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
539 DEV_TX_OFFLOAD_TCP_TSO |
540 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
541 DEV_TX_OFFLOAD_GRE_TNL_TSO |
542 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
543 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
544 DEV_TX_OFFLOAD_MULTI_SEGS;
545
546 dev_info->default_rxconf = (struct rte_eth_rxconf) {
547 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
548 .rx_drop_en = 0,
549 .offloads = 0,
550 };
551
552 dev_info->default_txconf = (struct rte_eth_txconf) {
553 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
554 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
555 .offloads = 0,
556 };
557
558 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
559 .nb_max = AVF_MAX_RING_DESC,
560 .nb_min = AVF_MIN_RING_DESC,
561 .nb_align = AVF_ALIGN_RING_DESC,
562 };
563
564 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
565 .nb_max = AVF_MAX_RING_DESC,
566 .nb_min = AVF_MIN_RING_DESC,
567 .nb_align = AVF_ALIGN_RING_DESC,
568 };
569 }
570
571 static const uint32_t *
572 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
573 {
574 static const uint32_t ptypes[] = {
575 RTE_PTYPE_L2_ETHER,
576 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
577 RTE_PTYPE_L4_FRAG,
578 RTE_PTYPE_L4_ICMP,
579 RTE_PTYPE_L4_NONFRAG,
580 RTE_PTYPE_L4_SCTP,
581 RTE_PTYPE_L4_TCP,
582 RTE_PTYPE_L4_UDP,
583 RTE_PTYPE_UNKNOWN
584 };
585 return ptypes;
586 }
587
588 int
589 avf_dev_link_update(struct rte_eth_dev *dev,
590 __rte_unused int wait_to_complete)
591 {
592 struct rte_eth_link new_link;
593 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
594
595 /* Only read status info stored in VF, and the info is updated
596 * when receive LINK_CHANGE evnet from PF by Virtchnnl.
597 */
598 switch (vf->link_speed) {
599 case VIRTCHNL_LINK_SPEED_100MB:
600 new_link.link_speed = ETH_SPEED_NUM_100M;
601 break;
602 case VIRTCHNL_LINK_SPEED_1GB:
603 new_link.link_speed = ETH_SPEED_NUM_1G;
604 break;
605 case VIRTCHNL_LINK_SPEED_10GB:
606 new_link.link_speed = ETH_SPEED_NUM_10G;
607 break;
608 case VIRTCHNL_LINK_SPEED_20GB:
609 new_link.link_speed = ETH_SPEED_NUM_20G;
610 break;
611 case VIRTCHNL_LINK_SPEED_25GB:
612 new_link.link_speed = ETH_SPEED_NUM_25G;
613 break;
614 case VIRTCHNL_LINK_SPEED_40GB:
615 new_link.link_speed = ETH_SPEED_NUM_40G;
616 break;
617 default:
618 new_link.link_speed = ETH_SPEED_NUM_NONE;
619 break;
620 }
621
622 new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
623 new_link.link_status = vf->link_up ? ETH_LINK_UP :
624 ETH_LINK_DOWN;
625 new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
626 ETH_LINK_SPEED_FIXED);
627
628 if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
629 *(uint64_t *)&dev->data->dev_link,
630 *(uint64_t *)&new_link) == 0)
631 return -1;
632
633 return 0;
634 }
635
636 static void
637 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
638 {
639 struct avf_adapter *adapter =
640 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
641 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
642 int ret;
643
644 if (vf->promisc_unicast_enabled)
645 return;
646
647 ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
648 if (!ret)
649 vf->promisc_unicast_enabled = TRUE;
650 }
651
652 static void
653 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
654 {
655 struct avf_adapter *adapter =
656 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
657 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
658 int ret;
659
660 if (!vf->promisc_unicast_enabled)
661 return;
662
663 ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
664 if (!ret)
665 vf->promisc_unicast_enabled = FALSE;
666 }
667
668 static void
669 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
670 {
671 struct avf_adapter *adapter =
672 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
673 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
674 int ret;
675
676 if (vf->promisc_multicast_enabled)
677 return;
678
679 ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
680 if (!ret)
681 vf->promisc_multicast_enabled = TRUE;
682 }
683
684 static void
685 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
686 {
687 struct avf_adapter *adapter =
688 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
689 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
690 int ret;
691
692 if (!vf->promisc_multicast_enabled)
693 return;
694
695 ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
696 if (!ret)
697 vf->promisc_multicast_enabled = FALSE;
698 }
699
700 static int
701 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
702 __rte_unused uint32_t index,
703 __rte_unused uint32_t pool)
704 {
705 struct avf_adapter *adapter =
706 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
707 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
708 int err;
709
710 if (is_zero_ether_addr(addr)) {
711 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
712 return -EINVAL;
713 }
714
715 err = avf_add_del_eth_addr(adapter, addr, TRUE);
716 if (err) {
717 PMD_DRV_LOG(ERR, "fail to add MAC address");
718 return -EIO;
719 }
720
721 vf->mac_num++;
722
723 return 0;
724 }
725
726 static void
727 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
728 {
729 struct avf_adapter *adapter =
730 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
731 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
732 struct ether_addr *addr;
733 int err;
734
735 addr = &dev->data->mac_addrs[index];
736
737 err = avf_add_del_eth_addr(adapter, addr, FALSE);
738 if (err)
739 PMD_DRV_LOG(ERR, "fail to delete MAC address");
740
741 vf->mac_num--;
742 }
743
744 static int
745 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
746 {
747 struct avf_adapter *adapter =
748 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
749 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
750 int err;
751
752 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
753 return -ENOTSUP;
754
755 err = avf_add_del_vlan(adapter, vlan_id, on);
756 if (err)
757 return -EIO;
758 return 0;
759 }
760
761 static int
762 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
763 {
764 struct avf_adapter *adapter =
765 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
766 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
767 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
768 int err;
769
770 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
771 return -ENOTSUP;
772
773 /* Vlan stripping setting */
774 if (mask & ETH_VLAN_STRIP_MASK) {
775 /* Enable or disable VLAN stripping */
776 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
777 err = avf_enable_vlan_strip(adapter);
778 else
779 err = avf_disable_vlan_strip(adapter);
780
781 if (err)
782 return -EIO;
783 }
784 return 0;
785 }
786
787 static int
788 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
789 struct rte_eth_rss_reta_entry64 *reta_conf,
790 uint16_t reta_size)
791 {
792 struct avf_adapter *adapter =
793 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
794 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
795 uint8_t *lut;
796 uint16_t i, idx, shift;
797 int ret;
798
799 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
800 return -ENOTSUP;
801
802 if (reta_size != vf->vf_res->rss_lut_size) {
803 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
804 "(%d) doesn't match the number of hardware can "
805 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
806 return -EINVAL;
807 }
808
809 lut = rte_zmalloc("rss_lut", reta_size, 0);
810 if (!lut) {
811 PMD_DRV_LOG(ERR, "No memory can be allocated");
812 return -ENOMEM;
813 }
814 /* store the old lut table temporarily */
815 rte_memcpy(lut, vf->rss_lut, reta_size);
816
817 for (i = 0; i < reta_size; i++) {
818 idx = i / RTE_RETA_GROUP_SIZE;
819 shift = i % RTE_RETA_GROUP_SIZE;
820 if (reta_conf[idx].mask & (1ULL << shift))
821 lut[i] = reta_conf[idx].reta[shift];
822 }
823
824 rte_memcpy(vf->rss_lut, lut, reta_size);
825 /* send virtchnnl ops to configure rss*/
826 ret = avf_configure_rss_lut(adapter);
827 if (ret) /* revert back */
828 rte_memcpy(vf->rss_lut, lut, reta_size);
829 rte_free(lut);
830
831 return ret;
832 }
833
834 static int
835 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
836 struct rte_eth_rss_reta_entry64 *reta_conf,
837 uint16_t reta_size)
838 {
839 struct avf_adapter *adapter =
840 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
841 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
842 uint16_t i, idx, shift;
843
844 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
845 return -ENOTSUP;
846
847 if (reta_size != vf->vf_res->rss_lut_size) {
848 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
849 "(%d) doesn't match the number of hardware can "
850 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
851 return -EINVAL;
852 }
853
854 for (i = 0; i < reta_size; i++) {
855 idx = i / RTE_RETA_GROUP_SIZE;
856 shift = i % RTE_RETA_GROUP_SIZE;
857 if (reta_conf[idx].mask & (1ULL << shift))
858 reta_conf[idx].reta[shift] = vf->rss_lut[i];
859 }
860
861 return 0;
862 }
863
864 static int
865 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
866 struct rte_eth_rss_conf *rss_conf)
867 {
868 struct avf_adapter *adapter =
869 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
870 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
871
872 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
873 return -ENOTSUP;
874
875 /* HENA setting, it is enabled by default, no change */
876 if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
877 PMD_DRV_LOG(DEBUG, "No key to be configured");
878 return 0;
879 } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
880 PMD_DRV_LOG(ERR, "The size of hash key configured "
881 "(%d) doesn't match the size of hardware can "
882 "support (%d)", rss_conf->rss_key_len,
883 vf->vf_res->rss_key_size);
884 return -EINVAL;
885 }
886
887 rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
888
889 return avf_configure_rss_key(adapter);
890 }
891
892 static int
893 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
894 struct rte_eth_rss_conf *rss_conf)
895 {
896 struct avf_adapter *adapter =
897 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
898 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
899
900 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
901 return -ENOTSUP;
902
903 /* Just set it to default value now. */
904 rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
905
906 if (!rss_conf->rss_key)
907 return 0;
908
909 rss_conf->rss_key_len = vf->vf_res->rss_key_size;
910 rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
911
912 return 0;
913 }
914
915 static int
916 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
917 {
918 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
919 uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
920 int ret = 0;
921
922 if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
923 return -EINVAL;
924
925 /* mtu setting is forbidden if port is start */
926 if (dev->data->dev_started) {
927 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
928 return -EBUSY;
929 }
930
931 if (frame_size > ETHER_MAX_LEN)
932 dev->data->dev_conf.rxmode.offloads |=
933 DEV_RX_OFFLOAD_JUMBO_FRAME;
934 else
935 dev->data->dev_conf.rxmode.offloads &=
936 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
937
938 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939
940 return ret;
941 }
942
943 static int
944 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
945 struct ether_addr *mac_addr)
946 {
947 struct avf_adapter *adapter =
948 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
949 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
950 struct ether_addr *perm_addr, *old_addr;
951 int ret;
952
953 old_addr = (struct ether_addr *)hw->mac.addr;
954 perm_addr = (struct ether_addr *)hw->mac.perm_addr;
955
956 if (is_same_ether_addr(mac_addr, old_addr))
957 return 0;
958
959 /* If the MAC address is configured by host, skip the setting */
960 if (is_valid_assigned_ether_addr(perm_addr))
961 return -EPERM;
962
963 ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
964 if (ret)
965 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
966 " %02X:%02X:%02X:%02X:%02X:%02X",
967 old_addr->addr_bytes[0],
968 old_addr->addr_bytes[1],
969 old_addr->addr_bytes[2],
970 old_addr->addr_bytes[3],
971 old_addr->addr_bytes[4],
972 old_addr->addr_bytes[5]);
973
974 ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
975 if (ret)
976 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
977 " %02X:%02X:%02X:%02X:%02X:%02X",
978 mac_addr->addr_bytes[0],
979 mac_addr->addr_bytes[1],
980 mac_addr->addr_bytes[2],
981 mac_addr->addr_bytes[3],
982 mac_addr->addr_bytes[4],
983 mac_addr->addr_bytes[5]);
984
985 if (ret)
986 return -EIO;
987
988 ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
989 return 0;
990 }
991
992 static int
993 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
994 {
995 struct avf_adapter *adapter =
996 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
997 struct virtchnl_eth_stats *pstats = NULL;
998 int ret;
999
1000 ret = avf_query_stats(adapter, &pstats);
1001 if (ret == 0) {
1002 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1003 pstats->rx_broadcast;
1004 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1005 pstats->tx_unicast;
1006 stats->imissed = pstats->rx_discards;
1007 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1008 stats->ibytes = pstats->rx_bytes;
1009 stats->obytes = pstats->tx_bytes;
1010 } else {
1011 PMD_DRV_LOG(ERR, "Get statistics failed");
1012 }
1013 return -EIO;
1014 }
1015
1016 static int
1017 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1018 {
1019 struct avf_adapter *adapter =
1020 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1021 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1022 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1023 uint16_t msix_intr;
1024
1025 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1026 if (msix_intr == AVF_MISC_VEC_ID) {
1027 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1028 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1029 AVFINT_DYN_CTL01_INTENA_MASK |
1030 AVFINT_DYN_CTL01_ITR_INDX_MASK);
1031 } else {
1032 AVF_WRITE_REG(hw,
1033 AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1034 AVFINT_DYN_CTLN1_INTENA_MASK |
1035 AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1036 }
1037
1038 AVF_WRITE_FLUSH(hw);
1039
1040 rte_intr_enable(&pci_dev->intr_handle);
1041
1042 return 0;
1043 }
1044
1045 static int
1046 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1047 {
1048 struct avf_adapter *adapter =
1049 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1050 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1051 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1052 uint16_t msix_intr;
1053
1054 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1055 if (msix_intr == AVF_MISC_VEC_ID) {
1056 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1057 return -EIO;
1058 }
1059
1060 AVF_WRITE_REG(hw,
1061 AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1062 0);
1063
1064 AVF_WRITE_FLUSH(hw);
1065 return 0;
1066 }
1067
1068 static int
1069 avf_check_vf_reset_done(struct avf_hw *hw)
1070 {
1071 int i, reset;
1072
1073 for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1074 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1075 AVFGEN_RSTAT_VFR_STATE_MASK;
1076 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1077 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1078 reset == VIRTCHNL_VFR_COMPLETED)
1079 break;
1080 rte_delay_ms(20);
1081 }
1082
1083 if (i >= AVF_RESET_WAIT_CNT)
1084 return -1;
1085
1086 return 0;
1087 }
1088
1089 static int
1090 avf_init_vf(struct rte_eth_dev *dev)
1091 {
1092 int i, err, bufsz;
1093 struct avf_adapter *adapter =
1094 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1095 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1096 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1097
1098 err = avf_set_mac_type(hw);
1099 if (err) {
1100 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1101 goto err;
1102 }
1103
1104 err = avf_check_vf_reset_done(hw);
1105 if (err) {
1106 PMD_INIT_LOG(ERR, "VF is still resetting");
1107 goto err;
1108 }
1109
1110 avf_init_adminq_parameter(hw);
1111 err = avf_init_adminq(hw);
1112 if (err) {
1113 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1114 goto err;
1115 }
1116
1117 vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1118 if (!vf->aq_resp) {
1119 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1120 goto err_aq;
1121 }
1122 if (avf_check_api_version(adapter) != 0) {
1123 PMD_INIT_LOG(ERR, "check_api version failed");
1124 goto err_api;
1125 }
1126
1127 bufsz = sizeof(struct virtchnl_vf_resource) +
1128 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1129 vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1130 if (!vf->vf_res) {
1131 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1132 goto err_api;
1133 }
1134 if (avf_get_vf_resource(adapter) != 0) {
1135 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1136 goto err_alloc;
1137 }
1138 /* Allocate memort for RSS info */
1139 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1140 vf->rss_key = rte_zmalloc("rss_key",
1141 vf->vf_res->rss_key_size, 0);
1142 if (!vf->rss_key) {
1143 PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1144 goto err_rss;
1145 }
1146 vf->rss_lut = rte_zmalloc("rss_lut",
1147 vf->vf_res->rss_lut_size, 0);
1148 if (!vf->rss_lut) {
1149 PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1150 goto err_rss;
1151 }
1152 }
1153 return 0;
1154 err_rss:
1155 rte_free(vf->rss_key);
1156 rte_free(vf->rss_lut);
1157 err_alloc:
1158 rte_free(vf->vf_res);
1159 vf->vsi_res = NULL;
1160 err_api:
1161 rte_free(vf->aq_resp);
1162 err_aq:
1163 avf_shutdown_adminq(hw);
1164 err:
1165 return -1;
1166 }
1167
1168 /* Enable default admin queue interrupt setting */
1169 static inline void
1170 avf_enable_irq0(struct avf_hw *hw)
1171 {
1172 /* Enable admin queue interrupt trigger */
1173 AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1174
1175 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1176 AVFINT_DYN_CTL01_ITR_INDX_MASK);
1177
1178 AVF_WRITE_FLUSH(hw);
1179 }
1180
1181 static inline void
1182 avf_disable_irq0(struct avf_hw *hw)
1183 {
1184 /* Disable all interrupt types */
1185 AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1186 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1187 AVFINT_DYN_CTL01_ITR_INDX_MASK);
1188 AVF_WRITE_FLUSH(hw);
1189 }
1190
1191 static void
1192 avf_dev_interrupt_handler(void *param)
1193 {
1194 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1195 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1196
1197 avf_disable_irq0(hw);
1198
1199 avf_handle_virtchnl_msg(dev);
1200
1201 done:
1202 avf_enable_irq0(hw);
1203 }
1204
1205 static int
1206 avf_dev_init(struct rte_eth_dev *eth_dev)
1207 {
1208 struct avf_adapter *adapter =
1209 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1210 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1211 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1212
1213 PMD_INIT_FUNC_TRACE();
1214
1215 /* assign ops func pointer */
1216 eth_dev->dev_ops = &avf_eth_dev_ops;
1217 eth_dev->rx_pkt_burst = &avf_recv_pkts;
1218 eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1219 eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1220
1221 /* For secondary processes, we don't initialise any further as primary
1222 * has already done this work. Only check if we need a different RX
1223 * and TX function.
1224 */
1225 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1226 avf_set_rx_function(eth_dev);
1227 avf_set_tx_function(eth_dev);
1228 return 0;
1229 }
1230 rte_eth_copy_pci_info(eth_dev, pci_dev);
1231
1232 hw->vendor_id = pci_dev->id.vendor_id;
1233 hw->device_id = pci_dev->id.device_id;
1234 hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1235 hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1236 hw->bus.bus_id = pci_dev->addr.bus;
1237 hw->bus.device = pci_dev->addr.devid;
1238 hw->bus.func = pci_dev->addr.function;
1239 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1240 hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1241 adapter->eth_dev = eth_dev;
1242
1243 if (avf_init_vf(eth_dev) != 0) {
1244 PMD_INIT_LOG(ERR, "Init vf failed");
1245 return -1;
1246 }
1247
1248 /* copy mac addr */
1249 eth_dev->data->mac_addrs = rte_zmalloc(
1250 "avf_mac",
1251 ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1252 0);
1253 if (!eth_dev->data->mac_addrs) {
1254 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1255 " store MAC addresses",
1256 ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1257 return -ENOMEM;
1258 }
1259 /* If the MAC address is not configured by host,
1260 * generate a random one.
1261 */
1262 if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1263 eth_random_addr(hw->mac.addr);
1264 ether_addr_copy((struct ether_addr *)hw->mac.addr,
1265 &eth_dev->data->mac_addrs[0]);
1266
1267 /* register callback func to eal lib */
1268 rte_intr_callback_register(&pci_dev->intr_handle,
1269 avf_dev_interrupt_handler,
1270 (void *)eth_dev);
1271
1272 /* enable uio intr after callback register */
1273 rte_intr_enable(&pci_dev->intr_handle);
1274
1275 /* configure and enable device interrupt */
1276 avf_enable_irq0(hw);
1277
1278 return 0;
1279 }
1280
1281 static void
1282 avf_dev_close(struct rte_eth_dev *dev)
1283 {
1284 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1285 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1286 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1287
1288 avf_dev_stop(dev);
1289 avf_shutdown_adminq(hw);
1290 /* disable uio intr before callback unregister */
1291 rte_intr_disable(intr_handle);
1292
1293 /* unregister callback func from eal lib */
1294 rte_intr_callback_unregister(intr_handle,
1295 avf_dev_interrupt_handler, dev);
1296 avf_disable_irq0(hw);
1297 }
1298
1299 static int
1300 avf_dev_uninit(struct rte_eth_dev *dev)
1301 {
1302 struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1303 struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1304
1305 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1306 return -EPERM;
1307
1308 dev->dev_ops = NULL;
1309 dev->rx_pkt_burst = NULL;
1310 dev->tx_pkt_burst = NULL;
1311 if (hw->adapter_stopped == 0)
1312 avf_dev_close(dev);
1313
1314 rte_free(vf->vf_res);
1315 vf->vsi_res = NULL;
1316 vf->vf_res = NULL;
1317
1318 rte_free(vf->aq_resp);
1319 vf->aq_resp = NULL;
1320
1321 rte_free(dev->data->mac_addrs);
1322 dev->data->mac_addrs = NULL;
1323
1324 if (vf->rss_lut) {
1325 rte_free(vf->rss_lut);
1326 vf->rss_lut = NULL;
1327 }
1328 if (vf->rss_key) {
1329 rte_free(vf->rss_key);
1330 vf->rss_key = NULL;
1331 }
1332
1333 return 0;
1334 }
1335
1336 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1337 struct rte_pci_device *pci_dev)
1338 {
1339 return rte_eth_dev_pci_generic_probe(pci_dev,
1340 sizeof(struct avf_adapter), avf_dev_init);
1341 }
1342
1343 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1344 {
1345 return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1346 }
1347
1348 /* Adaptive virtual function driver struct */
1349 static struct rte_pci_driver rte_avf_pmd = {
1350 .id_table = pci_id_avf_map,
1351 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1352 RTE_PCI_DRV_IOVA_AS_VA,
1353 .probe = eth_avf_pci_probe,
1354 .remove = eth_avf_pci_remove,
1355 };
1356
1357 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1358 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1359 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1360 RTE_INIT(avf_init_log)
1361 {
1362 avf_logtype_init = rte_log_register("pmd.net.avf.init");
1363 if (avf_logtype_init >= 0)
1364 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1365 avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1366 if (avf_logtype_driver >= 0)
1367 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1368 }
1369
1370 /* memory func for base code */
1371 enum avf_status_code
1372 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1373 struct avf_dma_mem *mem,
1374 u64 size,
1375 u32 alignment)
1376 {
1377 const struct rte_memzone *mz = NULL;
1378 char z_name[RTE_MEMZONE_NAMESIZE];
1379
1380 if (!mem)
1381 return AVF_ERR_PARAM;
1382
1383 snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1384 mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1385 RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1386 if (!mz)
1387 return AVF_ERR_NO_MEMORY;
1388
1389 mem->size = size;
1390 mem->va = mz->addr;
1391 mem->pa = mz->phys_addr;
1392 mem->zone = (const void *)mz;
1393 PMD_DRV_LOG(DEBUG,
1394 "memzone %s allocated with physical address: %"PRIu64,
1395 mz->name, mem->pa);
1396
1397 return AVF_SUCCESS;
1398 }
1399
1400 enum avf_status_code
1401 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1402 struct avf_dma_mem *mem)
1403 {
1404 if (!mem)
1405 return AVF_ERR_PARAM;
1406
1407 PMD_DRV_LOG(DEBUG,
1408 "memzone %s to be freed with physical address: %"PRIu64,
1409 ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1410 rte_memzone_free((const struct rte_memzone *)mem->zone);
1411 mem->zone = NULL;
1412 mem->va = NULL;
1413 mem->pa = (u64)0;
1414
1415 return AVF_SUCCESS;
1416 }
1417
1418 enum avf_status_code
1419 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1420 struct avf_virt_mem *mem,
1421 u32 size)
1422 {
1423 if (!mem)
1424 return AVF_ERR_PARAM;
1425
1426 mem->size = size;
1427 mem->va = rte_zmalloc("avf", size, 0);
1428
1429 if (mem->va)
1430 return AVF_SUCCESS;
1431 else
1432 return AVF_ERR_NO_MEMORY;
1433 }
1434
1435 enum avf_status_code
1436 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1437 struct avf_virt_mem *mem)
1438 {
1439 if (!mem)
1440 return AVF_ERR_PARAM;
1441
1442 rte_free(mem->va);
1443 mem->va = NULL;
1444
1445 return AVF_SUCCESS;
1446 }