]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/avp/avp_ethdev.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / avp / avp_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2013-2017 Wind River Systems, Inc.
3 */
4
5 #include <stdint.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <unistd.h>
10
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_memcpy.h>
14 #include <rte_string_fns.h>
15 #include <rte_malloc.h>
16 #include <rte_atomic.h>
17 #include <rte_branch_prediction.h>
18 #include <rte_pci.h>
19 #include <rte_bus_pci.h>
20 #include <rte_ether.h>
21 #include <rte_common.h>
22 #include <rte_cycles.h>
23 #include <rte_spinlock.h>
24 #include <rte_byteorder.h>
25 #include <rte_dev.h>
26 #include <rte_memory.h>
27 #include <rte_eal.h>
28 #include <rte_io.h>
29
30 #include "rte_avp_common.h"
31 #include "rte_avp_fifo.h"
32
33 #include "avp_logs.h"
34
35 int avp_logtype_driver;
36
37 static int avp_dev_create(struct rte_pci_device *pci_dev,
38 struct rte_eth_dev *eth_dev);
39
40 static int avp_dev_configure(struct rte_eth_dev *dev);
41 static int avp_dev_start(struct rte_eth_dev *dev);
42 static void avp_dev_stop(struct rte_eth_dev *dev);
43 static void avp_dev_close(struct rte_eth_dev *dev);
44 static void avp_dev_info_get(struct rte_eth_dev *dev,
45 struct rte_eth_dev_info *dev_info);
46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
48 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
49 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
50
51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
52 uint16_t rx_queue_id,
53 uint16_t nb_rx_desc,
54 unsigned int socket_id,
55 const struct rte_eth_rxconf *rx_conf,
56 struct rte_mempool *pool);
57
58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
59 uint16_t tx_queue_id,
60 uint16_t nb_tx_desc,
61 unsigned int socket_id,
62 const struct rte_eth_txconf *tx_conf);
63
64 static uint16_t avp_recv_scattered_pkts(void *rx_queue,
65 struct rte_mbuf **rx_pkts,
66 uint16_t nb_pkts);
67
68 static uint16_t avp_recv_pkts(void *rx_queue,
69 struct rte_mbuf **rx_pkts,
70 uint16_t nb_pkts);
71
72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
73 struct rte_mbuf **tx_pkts,
74 uint16_t nb_pkts);
75
76 static uint16_t avp_xmit_pkts(void *tx_queue,
77 struct rte_mbuf **tx_pkts,
78 uint16_t nb_pkts);
79
80 static void avp_dev_rx_queue_release(void *rxq);
81 static void avp_dev_tx_queue_release(void *txq);
82
83 static int avp_dev_stats_get(struct rte_eth_dev *dev,
84 struct rte_eth_stats *stats);
85 static void avp_dev_stats_reset(struct rte_eth_dev *dev);
86
87
88 #define AVP_MAX_RX_BURST 64
89 #define AVP_MAX_TX_BURST 64
90 #define AVP_MAX_MAC_ADDRS 1
91 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN
92
93
94 /*
95 * Defines the number of microseconds to wait before checking the response
96 * queue for completion.
97 */
98 #define AVP_REQUEST_DELAY_USECS (5000)
99
100 /*
101 * Defines the number times to check the response queue for completion before
102 * declaring a timeout.
103 */
104 #define AVP_MAX_REQUEST_RETRY (100)
105
106 /* Defines the current PCI driver version number */
107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
108
109 /*
110 * The set of PCI devices this driver supports
111 */
112 static const struct rte_pci_id pci_id_avp_map[] = {
113 { .vendor_id = RTE_AVP_PCI_VENDOR_ID,
114 .device_id = RTE_AVP_PCI_DEVICE_ID,
115 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
116 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
117 .class_id = RTE_CLASS_ANY_ID,
118 },
119
120 { .vendor_id = 0, /* sentinel */
121 },
122 };
123
124 /*
125 * dev_ops for avp, bare necessities for basic operation
126 */
127 static const struct eth_dev_ops avp_eth_dev_ops = {
128 .dev_configure = avp_dev_configure,
129 .dev_start = avp_dev_start,
130 .dev_stop = avp_dev_stop,
131 .dev_close = avp_dev_close,
132 .dev_infos_get = avp_dev_info_get,
133 .vlan_offload_set = avp_vlan_offload_set,
134 .stats_get = avp_dev_stats_get,
135 .stats_reset = avp_dev_stats_reset,
136 .link_update = avp_dev_link_update,
137 .promiscuous_enable = avp_dev_promiscuous_enable,
138 .promiscuous_disable = avp_dev_promiscuous_disable,
139 .rx_queue_setup = avp_dev_rx_queue_setup,
140 .rx_queue_release = avp_dev_rx_queue_release,
141 .tx_queue_setup = avp_dev_tx_queue_setup,
142 .tx_queue_release = avp_dev_tx_queue_release,
143 };
144
145 /**@{ AVP device flags */
146 #define AVP_F_PROMISC (1 << 1)
147 #define AVP_F_CONFIGURED (1 << 2)
148 #define AVP_F_LINKUP (1 << 3)
149 #define AVP_F_DETACHED (1 << 4)
150 /**@} */
151
152 /* Ethernet device validation marker */
153 #define AVP_ETHDEV_MAGIC 0x92972862
154
155 /*
156 * Defines the AVP device attributes which are attached to an RTE ethernet
157 * device
158 */
159 struct avp_dev {
160 uint32_t magic; /**< Memory validation marker */
161 uint64_t device_id; /**< Unique system identifier */
162 struct ether_addr ethaddr; /**< Host specified MAC address */
163 struct rte_eth_dev_data *dev_data;
164 /**< Back pointer to ethernet device data */
165 volatile uint32_t flags; /**< Device operational flags */
166 uint16_t port_id; /**< Ethernet port identifier */
167 struct rte_mempool *pool; /**< pkt mbuf mempool */
168 unsigned int guest_mbuf_size; /**< local pool mbuf size */
169 unsigned int host_mbuf_size; /**< host mbuf size */
170 unsigned int max_rx_pkt_len; /**< maximum receive unit */
171 uint32_t host_features; /**< Supported feature bitmap */
172 uint32_t features; /**< Enabled feature bitmap */
173 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
174 unsigned int max_tx_queues; /**< Maximum number of transmit queues */
175 unsigned int num_rx_queues; /**< Negotiated number of receive queues */
176 unsigned int max_rx_queues; /**< Maximum number of receive queues */
177
178 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
179 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
180 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
181 /**< Allocated mbufs queue */
182 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
183 /**< To be freed mbufs queue */
184
185 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
186 rte_spinlock_t lock;
187
188 /* For request & response */
189 struct rte_avp_fifo *req_q; /**< Request queue */
190 struct rte_avp_fifo *resp_q; /**< Response queue */
191 void *host_sync_addr; /**< (host) Req/Resp Mem address */
192 void *sync_addr; /**< Req/Resp Mem address */
193 void *host_mbuf_addr; /**< (host) MBUF pool start address */
194 void *mbuf_addr; /**< MBUF pool start address */
195 } __rte_cache_aligned;
196
197 /* RTE ethernet private data */
198 struct avp_adapter {
199 struct avp_dev avp;
200 } __rte_cache_aligned;
201
202
203 /* 32-bit MMIO register write */
204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
205
206 /* 32-bit MMIO register read */
207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr))
208
209 /* Macro to cast the ethernet device private data to a AVP object */
210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \
211 (&((struct avp_adapter *)adapter)->avp)
212
213 /*
214 * Defines the structure of a AVP device queue for the purpose of handling the
215 * receive and transmit burst callback functions
216 */
217 struct avp_queue {
218 struct rte_eth_dev_data *dev_data;
219 /**< Backpointer to ethernet device data */
220 struct avp_dev *avp; /**< Backpointer to AVP device */
221 uint16_t queue_id;
222 /**< Queue identifier used for indexing current queue */
223 uint16_t queue_base;
224 /**< Base queue identifier for queue servicing */
225 uint16_t queue_limit;
226 /**< Maximum queue identifier for queue servicing */
227
228 uint64_t packets;
229 uint64_t bytes;
230 uint64_t errors;
231 };
232
233 /* send a request and wait for a response
234 *
235 * @warning must be called while holding the avp->lock spinlock.
236 */
237 static int
238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
239 {
240 unsigned int retry = AVP_MAX_REQUEST_RETRY;
241 void *resp_addr = NULL;
242 unsigned int count;
243 int ret;
244
245 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
246
247 request->result = -ENOTSUP;
248
249 /* Discard any stale responses before starting a new request */
250 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
251 PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
252
253 rte_memcpy(avp->sync_addr, request, sizeof(*request));
254 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
255 if (count < 1) {
256 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
257 request->req_id);
258 ret = -EBUSY;
259 goto done;
260 }
261
262 while (retry--) {
263 /* wait for a response */
264 usleep(AVP_REQUEST_DELAY_USECS);
265
266 count = avp_fifo_count(avp->resp_q);
267 if (count >= 1) {
268 /* response received */
269 break;
270 }
271
272 if ((count < 1) && (retry == 0)) {
273 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
274 request->req_id);
275 ret = -ETIME;
276 goto done;
277 }
278 }
279
280 /* retrieve the response */
281 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
282 if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
283 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
284 count, resp_addr, avp->host_sync_addr);
285 ret = -ENODATA;
286 goto done;
287 }
288
289 /* copy to user buffer */
290 rte_memcpy(request, avp->sync_addr, sizeof(*request));
291 ret = 0;
292
293 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
294 request->result, request->req_id);
295
296 done:
297 return ret;
298 }
299
300 static int
301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
302 {
303 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
304 struct rte_avp_request request;
305 int ret;
306
307 /* setup a link state change request */
308 memset(&request, 0, sizeof(request));
309 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
310 request.if_up = state;
311
312 ret = avp_dev_process_request(avp, &request);
313
314 return ret == 0 ? request.result : ret;
315 }
316
317 static int
318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
319 struct rte_avp_device_config *config)
320 {
321 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
322 struct rte_avp_request request;
323 int ret;
324
325 /* setup a configure request */
326 memset(&request, 0, sizeof(request));
327 request.req_id = RTE_AVP_REQ_CFG_DEVICE;
328 memcpy(&request.config, config, sizeof(request.config));
329
330 ret = avp_dev_process_request(avp, &request);
331
332 return ret == 0 ? request.result : ret;
333 }
334
335 static int
336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
337 {
338 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
339 struct rte_avp_request request;
340 int ret;
341
342 /* setup a shutdown request */
343 memset(&request, 0, sizeof(request));
344 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
345
346 ret = avp_dev_process_request(avp, &request);
347
348 return ret == 0 ? request.result : ret;
349 }
350
351 /* translate from host mbuf virtual address to guest virtual address */
352 static inline void *
353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
354 {
355 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
356 (uintptr_t)avp->host_mbuf_addr),
357 (uintptr_t)avp->mbuf_addr);
358 }
359
360 /* translate from host physical address to guest virtual address */
361 static void *
362 avp_dev_translate_address(struct rte_eth_dev *eth_dev,
363 rte_iova_t host_phys_addr)
364 {
365 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
366 struct rte_mem_resource *resource;
367 struct rte_avp_memmap_info *info;
368 struct rte_avp_memmap *map;
369 off_t offset;
370 void *addr;
371 unsigned int i;
372
373 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
374 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
375 info = (struct rte_avp_memmap_info *)resource->addr;
376
377 offset = 0;
378 for (i = 0; i < info->nb_maps; i++) {
379 /* search all segments looking for a matching address */
380 map = &info->maps[i];
381
382 if ((host_phys_addr >= map->phys_addr) &&
383 (host_phys_addr < (map->phys_addr + map->length))) {
384 /* address is within this segment */
385 offset += (host_phys_addr - map->phys_addr);
386 addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
387
388 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
389 host_phys_addr, addr);
390
391 return addr;
392 }
393 offset += map->length;
394 }
395
396 return NULL;
397 }
398
399 /* verify that the incoming device version is compatible with our version */
400 static int
401 avp_dev_version_check(uint32_t version)
402 {
403 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
404 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
405
406 if (device <= driver) {
407 /* the host driver version is less than or equal to ours */
408 return 0;
409 }
410
411 return 1;
412 }
413
414 /* verify that memory regions have expected version and validation markers */
415 static int
416 avp_dev_check_regions(struct rte_eth_dev *eth_dev)
417 {
418 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
419 struct rte_avp_memmap_info *memmap;
420 struct rte_avp_device_info *info;
421 struct rte_mem_resource *resource;
422 unsigned int i;
423
424 /* Dump resource info for debug */
425 for (i = 0; i < PCI_MAX_RESOURCE; i++) {
426 resource = &pci_dev->mem_resource[i];
427 if ((resource->phys_addr == 0) || (resource->len == 0))
428 continue;
429
430 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
431 i, resource->phys_addr,
432 resource->len, resource->addr);
433
434 switch (i) {
435 case RTE_AVP_PCI_MEMMAP_BAR:
436 memmap = (struct rte_avp_memmap_info *)resource->addr;
437 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
438 (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
439 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
440 memmap->magic, memmap->version);
441 return -EINVAL;
442 }
443 break;
444
445 case RTE_AVP_PCI_DEVICE_BAR:
446 info = (struct rte_avp_device_info *)resource->addr;
447 if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
448 avp_dev_version_check(info->version)) {
449 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
450 info->magic, info->version,
451 AVP_DPDK_DRIVER_VERSION);
452 return -EINVAL;
453 }
454 break;
455
456 case RTE_AVP_PCI_MEMORY_BAR:
457 case RTE_AVP_PCI_MMIO_BAR:
458 if (resource->addr == NULL) {
459 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
460 i);
461 return -EINVAL;
462 }
463 break;
464
465 case RTE_AVP_PCI_MSIX_BAR:
466 default:
467 /* no validation required */
468 break;
469 }
470 }
471
472 return 0;
473 }
474
475 static int
476 avp_dev_detach(struct rte_eth_dev *eth_dev)
477 {
478 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
479 int ret;
480
481 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
482 eth_dev->data->port_id, avp->device_id);
483
484 rte_spinlock_lock(&avp->lock);
485
486 if (avp->flags & AVP_F_DETACHED) {
487 PMD_DRV_LOG(NOTICE, "port %u already detached\n",
488 eth_dev->data->port_id);
489 ret = 0;
490 goto unlock;
491 }
492
493 /* shutdown the device first so the host stops sending us packets. */
494 ret = avp_dev_ctrl_shutdown(eth_dev);
495 if (ret < 0) {
496 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
497 ret);
498 avp->flags &= ~AVP_F_DETACHED;
499 goto unlock;
500 }
501
502 avp->flags |= AVP_F_DETACHED;
503 rte_wmb();
504
505 /* wait for queues to acknowledge the presence of the detach flag */
506 rte_delay_ms(1);
507
508 ret = 0;
509
510 unlock:
511 rte_spinlock_unlock(&avp->lock);
512 return ret;
513 }
514
515 static void
516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
517 {
518 struct avp_dev *avp =
519 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
520 struct avp_queue *rxq;
521 uint16_t queue_count;
522 uint16_t remainder;
523
524 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
525
526 /*
527 * Must map all AVP fifos as evenly as possible between the configured
528 * device queues. Each device queue will service a subset of the AVP
529 * fifos. If there is an odd number of device queues the first set of
530 * device queues will get the extra AVP fifos.
531 */
532 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
533 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
534 if (rx_queue_id < remainder) {
535 /* these queues must service one extra FIFO */
536 rxq->queue_base = rx_queue_id * (queue_count + 1);
537 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
538 } else {
539 /* these queues service the regular number of FIFO */
540 rxq->queue_base = ((remainder * (queue_count + 1)) +
541 ((rx_queue_id - remainder) * queue_count));
542 rxq->queue_limit = rxq->queue_base + queue_count - 1;
543 }
544
545 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
546 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
547
548 rxq->queue_id = rxq->queue_base;
549 }
550
551 static void
552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev)
553 {
554 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
555 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
556 struct rte_avp_device_info *host_info;
557 void *addr;
558
559 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
560 host_info = (struct rte_avp_device_info *)addr;
561
562 /*
563 * the transmit direction is not negotiated beyond respecting the max
564 * number of queues because the host can handle arbitrary guest tx
565 * queues (host rx queues).
566 */
567 avp->num_tx_queues = eth_dev->data->nb_tx_queues;
568
569 /*
570 * the receive direction is more restrictive. The host requires a
571 * minimum number of guest rx queues (host tx queues) therefore
572 * negotiate a value that is at least as large as the host minimum
573 * requirement. If the host and guest values are not identical then a
574 * mapping will be established in the receive_queue_setup function.
575 */
576 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
577 eth_dev->data->nb_rx_queues);
578
579 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
580 avp->num_tx_queues, avp->num_rx_queues);
581 }
582
583 static int
584 avp_dev_attach(struct rte_eth_dev *eth_dev)
585 {
586 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
587 struct rte_avp_device_config config;
588 unsigned int i;
589 int ret;
590
591 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
592 eth_dev->data->port_id, avp->device_id);
593
594 rte_spinlock_lock(&avp->lock);
595
596 if (!(avp->flags & AVP_F_DETACHED)) {
597 PMD_DRV_LOG(NOTICE, "port %u already attached\n",
598 eth_dev->data->port_id);
599 ret = 0;
600 goto unlock;
601 }
602
603 /*
604 * make sure that the detached flag is set prior to reconfiguring the
605 * queues.
606 */
607 avp->flags |= AVP_F_DETACHED;
608 rte_wmb();
609
610 /*
611 * re-run the device create utility which will parse the new host info
612 * and setup the AVP device queue pointers.
613 */
614 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
615 if (ret < 0) {
616 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
617 ret);
618 goto unlock;
619 }
620
621 if (avp->flags & AVP_F_CONFIGURED) {
622 /*
623 * Update the receive queue mapping to handle cases where the
624 * source and destination hosts have different queue
625 * requirements. As long as the DETACHED flag is asserted the
626 * queue table should not be referenced so it should be safe to
627 * update it.
628 */
629 _avp_set_queue_counts(eth_dev);
630 for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
631 _avp_set_rx_queue_mappings(eth_dev, i);
632
633 /*
634 * Update the host with our config details so that it knows the
635 * device is active.
636 */
637 memset(&config, 0, sizeof(config));
638 config.device_id = avp->device_id;
639 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
640 config.driver_version = AVP_DPDK_DRIVER_VERSION;
641 config.features = avp->features;
642 config.num_tx_queues = avp->num_tx_queues;
643 config.num_rx_queues = avp->num_rx_queues;
644 config.if_up = !!(avp->flags & AVP_F_LINKUP);
645
646 ret = avp_dev_ctrl_set_config(eth_dev, &config);
647 if (ret < 0) {
648 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
649 ret);
650 goto unlock;
651 }
652 }
653
654 rte_wmb();
655 avp->flags &= ~AVP_F_DETACHED;
656
657 ret = 0;
658
659 unlock:
660 rte_spinlock_unlock(&avp->lock);
661 return ret;
662 }
663
664 static void
665 avp_dev_interrupt_handler(void *data)
666 {
667 struct rte_eth_dev *eth_dev = data;
668 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
669 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
670 uint32_t status, value;
671 int ret;
672
673 if (registers == NULL)
674 rte_panic("no mapped MMIO register space\n");
675
676 /* read the interrupt status register
677 * note: this register clears on read so all raised interrupts must be
678 * handled or remembered for later processing
679 */
680 status = AVP_READ32(
681 RTE_PTR_ADD(registers,
682 RTE_AVP_INTERRUPT_STATUS_OFFSET));
683
684 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
685 /* handle interrupt based on current status */
686 value = AVP_READ32(
687 RTE_PTR_ADD(registers,
688 RTE_AVP_MIGRATION_STATUS_OFFSET));
689 switch (value) {
690 case RTE_AVP_MIGRATION_DETACHED:
691 ret = avp_dev_detach(eth_dev);
692 break;
693 case RTE_AVP_MIGRATION_ATTACHED:
694 ret = avp_dev_attach(eth_dev);
695 break;
696 default:
697 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
698 value);
699 ret = -EINVAL;
700 }
701
702 /* acknowledge the request by writing out our current status */
703 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
704 AVP_WRITE32(value,
705 RTE_PTR_ADD(registers,
706 RTE_AVP_MIGRATION_ACK_OFFSET));
707
708 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
709 }
710
711 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
712 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
713 status);
714
715 /* re-enable UIO interrupt handling */
716 ret = rte_intr_enable(&pci_dev->intr_handle);
717 if (ret < 0) {
718 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
719 ret);
720 /* continue */
721 }
722 }
723
724 static int
725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
726 {
727 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
728 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
729 int ret;
730
731 if (registers == NULL)
732 return -EINVAL;
733
734 /* enable UIO interrupt handling */
735 ret = rte_intr_enable(&pci_dev->intr_handle);
736 if (ret < 0) {
737 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
738 ret);
739 return ret;
740 }
741
742 /* inform the device that all interrupts are enabled */
743 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
744 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
745
746 return 0;
747 }
748
749 static int
750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
751 {
752 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
753 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
754 int ret;
755
756 if (registers == NULL)
757 return 0;
758
759 /* inform the device that all interrupts are disabled */
760 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
761 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
762
763 /* enable UIO interrupt handling */
764 ret = rte_intr_disable(&pci_dev->intr_handle);
765 if (ret < 0) {
766 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
767 ret);
768 return ret;
769 }
770
771 return 0;
772 }
773
774 static int
775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
776 {
777 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
778 int ret;
779
780 /* register a callback handler with UIO for interrupt notifications */
781 ret = rte_intr_callback_register(&pci_dev->intr_handle,
782 avp_dev_interrupt_handler,
783 (void *)eth_dev);
784 if (ret < 0) {
785 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
786 ret);
787 return ret;
788 }
789
790 /* enable interrupt processing */
791 return avp_dev_enable_interrupts(eth_dev);
792 }
793
794 static int
795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
796 {
797 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
798 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
799 uint32_t value;
800
801 if (registers == NULL)
802 return 0;
803
804 value = AVP_READ32(RTE_PTR_ADD(registers,
805 RTE_AVP_MIGRATION_STATUS_OFFSET));
806 if (value == RTE_AVP_MIGRATION_DETACHED) {
807 /* migration is in progress; ack it if we have not already */
808 AVP_WRITE32(value,
809 RTE_PTR_ADD(registers,
810 RTE_AVP_MIGRATION_ACK_OFFSET));
811 return 1;
812 }
813 return 0;
814 }
815
816 /*
817 * create a AVP device using the supplied device info by first translating it
818 * to guest address space(s).
819 */
820 static int
821 avp_dev_create(struct rte_pci_device *pci_dev,
822 struct rte_eth_dev *eth_dev)
823 {
824 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
825 struct rte_avp_device_info *host_info;
826 struct rte_mem_resource *resource;
827 unsigned int i;
828
829 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
830 if (resource->addr == NULL) {
831 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
832 RTE_AVP_PCI_DEVICE_BAR);
833 return -EFAULT;
834 }
835 host_info = (struct rte_avp_device_info *)resource->addr;
836
837 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
838 avp_dev_version_check(host_info->version)) {
839 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
840 host_info->magic, host_info->version,
841 AVP_DPDK_DRIVER_VERSION);
842 return -EINVAL;
843 }
844
845 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
846 RTE_AVP_GET_RELEASE_VERSION(host_info->version),
847 RTE_AVP_GET_MAJOR_VERSION(host_info->version),
848 RTE_AVP_GET_MINOR_VERSION(host_info->version));
849
850 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
851 host_info->min_tx_queues, host_info->max_tx_queues);
852 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
853 host_info->min_rx_queues, host_info->max_rx_queues);
854 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
855 host_info->features);
856
857 if (avp->magic != AVP_ETHDEV_MAGIC) {
858 /*
859 * First time initialization (i.e., not during a VM
860 * migration)
861 */
862 memset(avp, 0, sizeof(*avp));
863 avp->magic = AVP_ETHDEV_MAGIC;
864 avp->dev_data = eth_dev->data;
865 avp->port_id = eth_dev->data->port_id;
866 avp->host_mbuf_size = host_info->mbuf_size;
867 avp->host_features = host_info->features;
868 rte_spinlock_init(&avp->lock);
869 memcpy(&avp->ethaddr.addr_bytes[0],
870 host_info->ethaddr, ETHER_ADDR_LEN);
871 /* adjust max values to not exceed our max */
872 avp->max_tx_queues =
873 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
874 avp->max_rx_queues =
875 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
876 } else {
877 /* Re-attaching during migration */
878
879 /* TODO... requires validation of host values */
880 if ((host_info->features & avp->features) != avp->features) {
881 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
882 avp->features, host_info->features);
883 /* this should not be possible; continue for now */
884 }
885 }
886
887 /* the device id is allowed to change over migrations */
888 avp->device_id = host_info->device_id;
889
890 /* translate incoming host addresses to guest address space */
891 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
892 host_info->tx_phys);
893 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
894 host_info->alloc_phys);
895 for (i = 0; i < avp->max_tx_queues; i++) {
896 avp->tx_q[i] = avp_dev_translate_address(eth_dev,
897 host_info->tx_phys + (i * host_info->tx_size));
898
899 avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
900 host_info->alloc_phys + (i * host_info->alloc_size));
901 }
902
903 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
904 host_info->rx_phys);
905 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
906 host_info->free_phys);
907 for (i = 0; i < avp->max_rx_queues; i++) {
908 avp->rx_q[i] = avp_dev_translate_address(eth_dev,
909 host_info->rx_phys + (i * host_info->rx_size));
910 avp->free_q[i] = avp_dev_translate_address(eth_dev,
911 host_info->free_phys + (i * host_info->free_size));
912 }
913
914 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
915 host_info->req_phys);
916 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
917 host_info->resp_phys);
918 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
919 host_info->sync_phys);
920 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
921 host_info->mbuf_phys);
922 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
923 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
924 avp->sync_addr =
925 avp_dev_translate_address(eth_dev, host_info->sync_phys);
926 avp->mbuf_addr =
927 avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
928
929 /*
930 * store the host mbuf virtual address so that we can calculate
931 * relative offsets for each mbuf as they are processed
932 */
933 avp->host_mbuf_addr = host_info->mbuf_va;
934 avp->host_sync_addr = host_info->sync_va;
935
936 /*
937 * store the maximum packet length that is supported by the host.
938 */
939 avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
940 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
941 host_info->max_rx_pkt_len);
942
943 return 0;
944 }
945
946 /*
947 * This function is based on probe() function in avp_pci.c
948 * It returns 0 on success.
949 */
950 static int
951 eth_avp_dev_init(struct rte_eth_dev *eth_dev)
952 {
953 struct avp_dev *avp =
954 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
955 struct rte_pci_device *pci_dev;
956 int ret;
957
958 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
959 eth_dev->dev_ops = &avp_eth_dev_ops;
960 eth_dev->rx_pkt_burst = &avp_recv_pkts;
961 eth_dev->tx_pkt_burst = &avp_xmit_pkts;
962
963 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
964 /*
965 * no setup required on secondary processes. All data is saved
966 * in dev_private by the primary process. All resource should
967 * be mapped to the same virtual address so all pointers should
968 * be valid.
969 */
970 if (eth_dev->data->scattered_rx) {
971 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
972 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
973 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
974 }
975 return 0;
976 }
977
978 rte_eth_copy_pci_info(eth_dev, pci_dev);
979
980 /* Check current migration status */
981 if (avp_dev_migration_pending(eth_dev)) {
982 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
983 return -EBUSY;
984 }
985
986 /* Check BAR resources */
987 ret = avp_dev_check_regions(eth_dev);
988 if (ret < 0) {
989 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
990 ret);
991 return ret;
992 }
993
994 /* Enable interrupts */
995 ret = avp_dev_setup_interrupts(eth_dev);
996 if (ret < 0) {
997 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
998 return ret;
999 }
1000
1001 /* Handle each subtype */
1002 ret = avp_dev_create(pci_dev, eth_dev);
1003 if (ret < 0) {
1004 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
1005 return ret;
1006 }
1007
1008 /* Allocate memory for storing MAC addresses */
1009 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0);
1010 if (eth_dev->data->mac_addrs == NULL) {
1011 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
1012 ETHER_ADDR_LEN);
1013 return -ENOMEM;
1014 }
1015
1016 /* Get a mac from device config */
1017 ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);
1018
1019 return 0;
1020 }
1021
1022 static int
1023 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
1024 {
1025 int ret;
1026
1027 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1028 return -EPERM;
1029
1030 if (eth_dev->data == NULL)
1031 return 0;
1032
1033 ret = avp_dev_disable_interrupts(eth_dev);
1034 if (ret != 0) {
1035 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret);
1036 return ret;
1037 }
1038
1039 return 0;
1040 }
1041
1042 static int
1043 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1044 struct rte_pci_device *pci_dev)
1045 {
1046 return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
1047 eth_avp_dev_init);
1048 }
1049
1050 static int
1051 eth_avp_pci_remove(struct rte_pci_device *pci_dev)
1052 {
1053 return rte_eth_dev_pci_generic_remove(pci_dev,
1054 eth_avp_dev_uninit);
1055 }
1056
1057 static struct rte_pci_driver rte_avp_pmd = {
1058 .id_table = pci_id_avp_map,
1059 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1060 .probe = eth_avp_pci_probe,
1061 .remove = eth_avp_pci_remove,
1062 };
1063
1064 static int
1065 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
1066 struct avp_dev *avp)
1067 {
1068 unsigned int max_rx_pkt_len;
1069
1070 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1071
1072 if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
1073 (max_rx_pkt_len > avp->host_mbuf_size)) {
1074 /*
1075 * If the guest MTU is greater than either the host or guest
1076 * buffers then chained mbufs have to be enabled in the TX
1077 * direction. It is assumed that the application will not need
1078 * to send packets larger than their max_rx_pkt_len (MRU).
1079 */
1080 return 1;
1081 }
1082
1083 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
1084 (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
1085 /*
1086 * If the host MRU is greater than its own mbuf size or the
1087 * guest mbuf size then chained mbufs have to be enabled in the
1088 * RX direction.
1089 */
1090 return 1;
1091 }
1092
1093 return 0;
1094 }
1095
1096 static int
1097 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
1098 uint16_t rx_queue_id,
1099 uint16_t nb_rx_desc,
1100 unsigned int socket_id,
1101 const struct rte_eth_rxconf *rx_conf,
1102 struct rte_mempool *pool)
1103 {
1104 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1105 struct rte_pktmbuf_pool_private *mbp_priv;
1106 struct avp_queue *rxq;
1107
1108 if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
1109 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
1110 rx_queue_id, eth_dev->data->nb_rx_queues);
1111 return -EINVAL;
1112 }
1113
1114 /* Save mbuf pool pointer */
1115 avp->pool = pool;
1116
1117 /* Save the local mbuf size */
1118 mbp_priv = rte_mempool_get_priv(pool);
1119 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
1120 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
1121
1122 if (avp_dev_enable_scattered(eth_dev, avp)) {
1123 if (!eth_dev->data->scattered_rx) {
1124 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
1125 eth_dev->data->scattered_rx = 1;
1126 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1127 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1128 }
1129 }
1130
1131 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
1132 avp->max_rx_pkt_len,
1133 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
1134 avp->host_mbuf_size,
1135 avp->guest_mbuf_size);
1136
1137 /* allocate a queue object */
1138 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
1139 RTE_CACHE_LINE_SIZE, socket_id);
1140 if (rxq == NULL) {
1141 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
1142 return -ENOMEM;
1143 }
1144
1145 /* save back pointers to AVP and Ethernet devices */
1146 rxq->avp = avp;
1147 rxq->dev_data = eth_dev->data;
1148 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
1149
1150 /* setup the queue receive mapping for the current queue. */
1151 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
1152
1153 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
1154
1155 (void)nb_rx_desc;
1156 (void)rx_conf;
1157 return 0;
1158 }
1159
1160 static int
1161 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
1162 uint16_t tx_queue_id,
1163 uint16_t nb_tx_desc,
1164 unsigned int socket_id,
1165 const struct rte_eth_txconf *tx_conf)
1166 {
1167 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1168 struct avp_queue *txq;
1169
1170 if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
1171 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
1172 tx_queue_id, eth_dev->data->nb_tx_queues);
1173 return -EINVAL;
1174 }
1175
1176 /* allocate a queue object */
1177 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
1178 RTE_CACHE_LINE_SIZE, socket_id);
1179 if (txq == NULL) {
1180 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
1181 return -ENOMEM;
1182 }
1183
1184 /* only the configured set of transmit queues are used */
1185 txq->queue_id = tx_queue_id;
1186 txq->queue_base = tx_queue_id;
1187 txq->queue_limit = tx_queue_id;
1188
1189 /* save back pointers to AVP and Ethernet devices */
1190 txq->avp = avp;
1191 txq->dev_data = eth_dev->data;
1192 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
1193
1194 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
1195
1196 (void)nb_tx_desc;
1197 (void)tx_conf;
1198 return 0;
1199 }
1200
1201 static inline int
1202 _avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b)
1203 {
1204 uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
1205 uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
1206 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
1207 }
1208
1209 static inline int
1210 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
1211 {
1212 struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
1213
1214 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->d_addr) == 0)) {
1215 /* allow all packets destined to our address */
1216 return 0;
1217 }
1218
1219 if (likely(is_broadcast_ether_addr(&eth->d_addr))) {
1220 /* allow all broadcast packets */
1221 return 0;
1222 }
1223
1224 if (likely(is_multicast_ether_addr(&eth->d_addr))) {
1225 /* allow all multicast packets */
1226 return 0;
1227 }
1228
1229 if (avp->flags & AVP_F_PROMISC) {
1230 /* allow all packets when in promiscuous mode */
1231 return 0;
1232 }
1233
1234 return -1;
1235 }
1236
1237 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1238 static inline void
1239 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
1240 {
1241 struct rte_avp_desc *first_buf;
1242 struct rte_avp_desc *pkt_buf;
1243 unsigned int pkt_len;
1244 unsigned int nb_segs;
1245 void *pkt_data;
1246 unsigned int i;
1247
1248 first_buf = avp_dev_translate_buffer(avp, buf);
1249
1250 i = 0;
1251 pkt_len = 0;
1252 nb_segs = first_buf->nb_segs;
1253 do {
1254 /* Adjust pointers for guest addressing */
1255 pkt_buf = avp_dev_translate_buffer(avp, buf);
1256 if (pkt_buf == NULL)
1257 rte_panic("bad buffer: segment %u has an invalid address %p\n",
1258 i, buf);
1259 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1260 if (pkt_data == NULL)
1261 rte_panic("bad buffer: segment %u has a NULL data pointer\n",
1262 i);
1263 if (pkt_buf->data_len == 0)
1264 rte_panic("bad buffer: segment %u has 0 data length\n",
1265 i);
1266 pkt_len += pkt_buf->data_len;
1267 nb_segs--;
1268 i++;
1269
1270 } while (nb_segs && (buf = pkt_buf->next) != NULL);
1271
1272 if (nb_segs != 0)
1273 rte_panic("bad buffer: expected %u segments found %u\n",
1274 first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
1275 if (pkt_len != first_buf->pkt_len)
1276 rte_panic("bad buffer: expected length %u found %u\n",
1277 first_buf->pkt_len, pkt_len);
1278 }
1279
1280 #define avp_dev_buffer_sanity_check(a, b) \
1281 __avp_dev_buffer_sanity_check((a), (b))
1282
1283 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
1284
1285 #define avp_dev_buffer_sanity_check(a, b) do {} while (0)
1286
1287 #endif
1288
1289 /*
1290 * Copy a host buffer chain to a set of mbufs. This function assumes that
1291 * there exactly the required number of mbufs to copy all source bytes.
1292 */
1293 static inline struct rte_mbuf *
1294 avp_dev_copy_from_buffers(struct avp_dev *avp,
1295 struct rte_avp_desc *buf,
1296 struct rte_mbuf **mbufs,
1297 unsigned int count)
1298 {
1299 struct rte_mbuf *m_previous = NULL;
1300 struct rte_avp_desc *pkt_buf;
1301 unsigned int total_length = 0;
1302 unsigned int copy_length;
1303 unsigned int src_offset;
1304 struct rte_mbuf *m;
1305 uint16_t ol_flags;
1306 uint16_t vlan_tci;
1307 void *pkt_data;
1308 unsigned int i;
1309
1310 avp_dev_buffer_sanity_check(avp, buf);
1311
1312 /* setup the first source buffer */
1313 pkt_buf = avp_dev_translate_buffer(avp, buf);
1314 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1315 total_length = pkt_buf->pkt_len;
1316 src_offset = 0;
1317
1318 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1319 ol_flags = PKT_RX_VLAN;
1320 vlan_tci = pkt_buf->vlan_tci;
1321 } else {
1322 ol_flags = 0;
1323 vlan_tci = 0;
1324 }
1325
1326 for (i = 0; (i < count) && (buf != NULL); i++) {
1327 /* fill each destination buffer */
1328 m = mbufs[i];
1329
1330 if (m_previous != NULL)
1331 m_previous->next = m;
1332
1333 m_previous = m;
1334
1335 do {
1336 /*
1337 * Copy as many source buffers as will fit in the
1338 * destination buffer.
1339 */
1340 copy_length = RTE_MIN((avp->guest_mbuf_size -
1341 rte_pktmbuf_data_len(m)),
1342 (pkt_buf->data_len -
1343 src_offset));
1344 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1345 rte_pktmbuf_data_len(m)),
1346 RTE_PTR_ADD(pkt_data, src_offset),
1347 copy_length);
1348 rte_pktmbuf_data_len(m) += copy_length;
1349 src_offset += copy_length;
1350
1351 if (likely(src_offset == pkt_buf->data_len)) {
1352 /* need a new source buffer */
1353 buf = pkt_buf->next;
1354 if (buf != NULL) {
1355 pkt_buf = avp_dev_translate_buffer(
1356 avp, buf);
1357 pkt_data = avp_dev_translate_buffer(
1358 avp, pkt_buf->data);
1359 src_offset = 0;
1360 }
1361 }
1362
1363 if (unlikely(rte_pktmbuf_data_len(m) ==
1364 avp->guest_mbuf_size)) {
1365 /* need a new destination mbuf */
1366 break;
1367 }
1368
1369 } while (buf != NULL);
1370 }
1371
1372 m = mbufs[0];
1373 m->ol_flags = ol_flags;
1374 m->nb_segs = count;
1375 rte_pktmbuf_pkt_len(m) = total_length;
1376 m->vlan_tci = vlan_tci;
1377
1378 __rte_mbuf_sanity_check(m, 1);
1379
1380 return m;
1381 }
1382
1383 static uint16_t
1384 avp_recv_scattered_pkts(void *rx_queue,
1385 struct rte_mbuf **rx_pkts,
1386 uint16_t nb_pkts)
1387 {
1388 struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1389 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1390 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
1391 struct avp_dev *avp = rxq->avp;
1392 struct rte_avp_desc *pkt_buf;
1393 struct rte_avp_fifo *free_q;
1394 struct rte_avp_fifo *rx_q;
1395 struct rte_avp_desc *buf;
1396 unsigned int count, avail, n;
1397 unsigned int guest_mbuf_size;
1398 struct rte_mbuf *m;
1399 unsigned int required;
1400 unsigned int buf_len;
1401 unsigned int port_id;
1402 unsigned int i;
1403
1404 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1405 /* VM live migration in progress */
1406 return 0;
1407 }
1408
1409 guest_mbuf_size = avp->guest_mbuf_size;
1410 port_id = avp->port_id;
1411 rx_q = avp->rx_q[rxq->queue_id];
1412 free_q = avp->free_q[rxq->queue_id];
1413
1414 /* setup next queue to service */
1415 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1416 (rxq->queue_id + 1) : rxq->queue_base;
1417
1418 /* determine how many slots are available in the free queue */
1419 count = avp_fifo_free_count(free_q);
1420
1421 /* determine how many packets are available in the rx queue */
1422 avail = avp_fifo_count(rx_q);
1423
1424 /* determine how many packets can be received */
1425 count = RTE_MIN(count, avail);
1426 count = RTE_MIN(count, nb_pkts);
1427 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1428
1429 if (unlikely(count == 0)) {
1430 /* no free buffers, or no buffers on the rx queue */
1431 return 0;
1432 }
1433
1434 /* retrieve pending packets */
1435 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1436 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1437 count, rx_q);
1438
1439 count = 0;
1440 for (i = 0; i < n; i++) {
1441 /* prefetch next entry while processing current one */
1442 if (i + 1 < n) {
1443 pkt_buf = avp_dev_translate_buffer(avp,
1444 avp_bufs[i + 1]);
1445 rte_prefetch0(pkt_buf);
1446 }
1447 buf = avp_bufs[i];
1448
1449 /* Peek into the first buffer to determine the total length */
1450 pkt_buf = avp_dev_translate_buffer(avp, buf);
1451 buf_len = pkt_buf->pkt_len;
1452
1453 /* Allocate enough mbufs to receive the entire packet */
1454 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
1455 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
1456 rxq->dev_data->rx_mbuf_alloc_failed++;
1457 continue;
1458 }
1459
1460 /* Copy the data from the buffers to our mbufs */
1461 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
1462
1463 /* finalize mbuf */
1464 m->port = port_id;
1465
1466 if (_avp_mac_filter(avp, m) != 0) {
1467 /* silently discard packets not destined to our MAC */
1468 rte_pktmbuf_free(m);
1469 continue;
1470 }
1471
1472 /* return new mbuf to caller */
1473 rx_pkts[count++] = m;
1474 rxq->bytes += buf_len;
1475 }
1476
1477 rxq->packets += count;
1478
1479 /* return the buffers to the free queue */
1480 avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1481
1482 return count;
1483 }
1484
1485
1486 static uint16_t
1487 avp_recv_pkts(void *rx_queue,
1488 struct rte_mbuf **rx_pkts,
1489 uint16_t nb_pkts)
1490 {
1491 struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1492 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1493 struct avp_dev *avp = rxq->avp;
1494 struct rte_avp_desc *pkt_buf;
1495 struct rte_avp_fifo *free_q;
1496 struct rte_avp_fifo *rx_q;
1497 unsigned int count, avail, n;
1498 unsigned int pkt_len;
1499 struct rte_mbuf *m;
1500 char *pkt_data;
1501 unsigned int i;
1502
1503 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1504 /* VM live migration in progress */
1505 return 0;
1506 }
1507
1508 rx_q = avp->rx_q[rxq->queue_id];
1509 free_q = avp->free_q[rxq->queue_id];
1510
1511 /* setup next queue to service */
1512 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1513 (rxq->queue_id + 1) : rxq->queue_base;
1514
1515 /* determine how many slots are available in the free queue */
1516 count = avp_fifo_free_count(free_q);
1517
1518 /* determine how many packets are available in the rx queue */
1519 avail = avp_fifo_count(rx_q);
1520
1521 /* determine how many packets can be received */
1522 count = RTE_MIN(count, avail);
1523 count = RTE_MIN(count, nb_pkts);
1524 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1525
1526 if (unlikely(count == 0)) {
1527 /* no free buffers, or no buffers on the rx queue */
1528 return 0;
1529 }
1530
1531 /* retrieve pending packets */
1532 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1533 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1534 count, rx_q);
1535
1536 count = 0;
1537 for (i = 0; i < n; i++) {
1538 /* prefetch next entry while processing current one */
1539 if (i < n - 1) {
1540 pkt_buf = avp_dev_translate_buffer(avp,
1541 avp_bufs[i + 1]);
1542 rte_prefetch0(pkt_buf);
1543 }
1544
1545 /* Adjust host pointers for guest addressing */
1546 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1547 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1548 pkt_len = pkt_buf->pkt_len;
1549
1550 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1551 (pkt_buf->nb_segs > 1))) {
1552 /*
1553 * application should be using the scattered receive
1554 * function
1555 */
1556 rxq->errors++;
1557 continue;
1558 }
1559
1560 /* process each packet to be transmitted */
1561 m = rte_pktmbuf_alloc(avp->pool);
1562 if (unlikely(m == NULL)) {
1563 rxq->dev_data->rx_mbuf_alloc_failed++;
1564 continue;
1565 }
1566
1567 /* copy data out of the host buffer to our buffer */
1568 m->data_off = RTE_PKTMBUF_HEADROOM;
1569 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
1570
1571 /* initialize the local mbuf */
1572 rte_pktmbuf_data_len(m) = pkt_len;
1573 rte_pktmbuf_pkt_len(m) = pkt_len;
1574 m->port = avp->port_id;
1575
1576 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1577 m->ol_flags = PKT_RX_VLAN;
1578 m->vlan_tci = pkt_buf->vlan_tci;
1579 }
1580
1581 if (_avp_mac_filter(avp, m) != 0) {
1582 /* silently discard packets not destined to our MAC */
1583 rte_pktmbuf_free(m);
1584 continue;
1585 }
1586
1587 /* return new mbuf to caller */
1588 rx_pkts[count++] = m;
1589 rxq->bytes += pkt_len;
1590 }
1591
1592 rxq->packets += count;
1593
1594 /* return the buffers to the free queue */
1595 avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1596
1597 return count;
1598 }
1599
1600 /*
1601 * Copy a chained mbuf to a set of host buffers. This function assumes that
1602 * there are sufficient destination buffers to contain the entire source
1603 * packet.
1604 */
1605 static inline uint16_t
1606 avp_dev_copy_to_buffers(struct avp_dev *avp,
1607 struct rte_mbuf *mbuf,
1608 struct rte_avp_desc **buffers,
1609 unsigned int count)
1610 {
1611 struct rte_avp_desc *previous_buf = NULL;
1612 struct rte_avp_desc *first_buf = NULL;
1613 struct rte_avp_desc *pkt_buf;
1614 struct rte_avp_desc *buf;
1615 size_t total_length;
1616 struct rte_mbuf *m;
1617 size_t copy_length;
1618 size_t src_offset;
1619 char *pkt_data;
1620 unsigned int i;
1621
1622 __rte_mbuf_sanity_check(mbuf, 1);
1623
1624 m = mbuf;
1625 src_offset = 0;
1626 total_length = rte_pktmbuf_pkt_len(m);
1627 for (i = 0; (i < count) && (m != NULL); i++) {
1628 /* fill each destination buffer */
1629 buf = buffers[i];
1630
1631 if (i < count - 1) {
1632 /* prefetch next entry while processing this one */
1633 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
1634 rte_prefetch0(pkt_buf);
1635 }
1636
1637 /* Adjust pointers for guest addressing */
1638 pkt_buf = avp_dev_translate_buffer(avp, buf);
1639 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1640
1641 /* setup the buffer chain */
1642 if (previous_buf != NULL)
1643 previous_buf->next = buf;
1644 else
1645 first_buf = pkt_buf;
1646
1647 previous_buf = pkt_buf;
1648
1649 do {
1650 /*
1651 * copy as many source mbuf segments as will fit in the
1652 * destination buffer.
1653 */
1654 copy_length = RTE_MIN((avp->host_mbuf_size -
1655 pkt_buf->data_len),
1656 (rte_pktmbuf_data_len(m) -
1657 src_offset));
1658 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
1659 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1660 src_offset),
1661 copy_length);
1662 pkt_buf->data_len += copy_length;
1663 src_offset += copy_length;
1664
1665 if (likely(src_offset == rte_pktmbuf_data_len(m))) {
1666 /* need a new source buffer */
1667 m = m->next;
1668 src_offset = 0;
1669 }
1670
1671 if (unlikely(pkt_buf->data_len ==
1672 avp->host_mbuf_size)) {
1673 /* need a new destination buffer */
1674 break;
1675 }
1676
1677 } while (m != NULL);
1678 }
1679
1680 first_buf->nb_segs = count;
1681 first_buf->pkt_len = total_length;
1682
1683 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1684 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1685 first_buf->vlan_tci = mbuf->vlan_tci;
1686 }
1687
1688 avp_dev_buffer_sanity_check(avp, buffers[0]);
1689
1690 return total_length;
1691 }
1692
1693
1694 static uint16_t
1695 avp_xmit_scattered_pkts(void *tx_queue,
1696 struct rte_mbuf **tx_pkts,
1697 uint16_t nb_pkts)
1698 {
1699 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
1700 RTE_AVP_MAX_MBUF_SEGMENTS)];
1701 struct avp_queue *txq = (struct avp_queue *)tx_queue;
1702 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
1703 struct avp_dev *avp = txq->avp;
1704 struct rte_avp_fifo *alloc_q;
1705 struct rte_avp_fifo *tx_q;
1706 unsigned int count, avail, n;
1707 unsigned int orig_nb_pkts;
1708 struct rte_mbuf *m;
1709 unsigned int required;
1710 unsigned int segments;
1711 unsigned int tx_bytes;
1712 unsigned int i;
1713
1714 orig_nb_pkts = nb_pkts;
1715 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1716 /* VM live migration in progress */
1717 /* TODO ... buffer for X packets then drop? */
1718 txq->errors += nb_pkts;
1719 return 0;
1720 }
1721
1722 tx_q = avp->tx_q[txq->queue_id];
1723 alloc_q = avp->alloc_q[txq->queue_id];
1724
1725 /* limit the number of transmitted packets to the max burst size */
1726 if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1727 nb_pkts = AVP_MAX_TX_BURST;
1728
1729 /* determine how many buffers are available to copy into */
1730 avail = avp_fifo_count(alloc_q);
1731 if (unlikely(avail > (AVP_MAX_TX_BURST *
1732 RTE_AVP_MAX_MBUF_SEGMENTS)))
1733 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
1734
1735 /* determine how many slots are available in the transmit queue */
1736 count = avp_fifo_free_count(tx_q);
1737
1738 /* determine how many packets can be sent */
1739 nb_pkts = RTE_MIN(count, nb_pkts);
1740
1741 /* determine how many packets will fit in the available buffers */
1742 count = 0;
1743 segments = 0;
1744 for (i = 0; i < nb_pkts; i++) {
1745 m = tx_pkts[i];
1746 if (likely(i < (unsigned int)nb_pkts - 1)) {
1747 /* prefetch next entry while processing this one */
1748 rte_prefetch0(tx_pkts[i + 1]);
1749 }
1750 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1751 avp->host_mbuf_size;
1752
1753 if (unlikely((required == 0) ||
1754 (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
1755 break;
1756 else if (unlikely(required + segments > avail))
1757 break;
1758 segments += required;
1759 count++;
1760 }
1761 nb_pkts = count;
1762
1763 if (unlikely(nb_pkts == 0)) {
1764 /* no available buffers, or no space on the tx queue */
1765 txq->errors += orig_nb_pkts;
1766 return 0;
1767 }
1768
1769 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1770 nb_pkts, tx_q);
1771
1772 /* retrieve sufficient send buffers */
1773 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
1774 if (unlikely(n != segments)) {
1775 PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
1776 "n=%u, segments=%u, orig=%u\n",
1777 n, segments, orig_nb_pkts);
1778 txq->errors += orig_nb_pkts;
1779 return 0;
1780 }
1781
1782 tx_bytes = 0;
1783 count = 0;
1784 for (i = 0; i < nb_pkts; i++) {
1785 /* process each packet to be transmitted */
1786 m = tx_pkts[i];
1787
1788 /* determine how many buffers are required for this packet */
1789 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1790 avp->host_mbuf_size;
1791
1792 tx_bytes += avp_dev_copy_to_buffers(avp, m,
1793 &avp_bufs[count], required);
1794 tx_bufs[i] = avp_bufs[count];
1795 count += required;
1796
1797 /* free the original mbuf */
1798 rte_pktmbuf_free(m);
1799 }
1800
1801 txq->packets += nb_pkts;
1802 txq->bytes += tx_bytes;
1803
1804 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1805 for (i = 0; i < nb_pkts; i++)
1806 avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
1807 #endif
1808
1809 /* send the packets */
1810 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
1811 if (unlikely(n != orig_nb_pkts))
1812 txq->errors += (orig_nb_pkts - n);
1813
1814 return n;
1815 }
1816
1817
1818 static uint16_t
1819 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1820 {
1821 struct avp_queue *txq = (struct avp_queue *)tx_queue;
1822 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
1823 struct avp_dev *avp = txq->avp;
1824 struct rte_avp_desc *pkt_buf;
1825 struct rte_avp_fifo *alloc_q;
1826 struct rte_avp_fifo *tx_q;
1827 unsigned int count, avail, n;
1828 struct rte_mbuf *m;
1829 unsigned int pkt_len;
1830 unsigned int tx_bytes;
1831 char *pkt_data;
1832 unsigned int i;
1833
1834 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1835 /* VM live migration in progress */
1836 /* TODO ... buffer for X packets then drop?! */
1837 txq->errors++;
1838 return 0;
1839 }
1840
1841 tx_q = avp->tx_q[txq->queue_id];
1842 alloc_q = avp->alloc_q[txq->queue_id];
1843
1844 /* limit the number of transmitted packets to the max burst size */
1845 if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1846 nb_pkts = AVP_MAX_TX_BURST;
1847
1848 /* determine how many buffers are available to copy into */
1849 avail = avp_fifo_count(alloc_q);
1850
1851 /* determine how many slots are available in the transmit queue */
1852 count = avp_fifo_free_count(tx_q);
1853
1854 /* determine how many packets can be sent */
1855 count = RTE_MIN(count, avail);
1856 count = RTE_MIN(count, nb_pkts);
1857
1858 if (unlikely(count == 0)) {
1859 /* no available buffers, or no space on the tx queue */
1860 txq->errors += nb_pkts;
1861 return 0;
1862 }
1863
1864 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1865 count, tx_q);
1866
1867 /* retrieve sufficient send buffers */
1868 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
1869 if (unlikely(n != count)) {
1870 txq->errors++;
1871 return 0;
1872 }
1873
1874 tx_bytes = 0;
1875 for (i = 0; i < count; i++) {
1876 /* prefetch next entry while processing the current one */
1877 if (i < count - 1) {
1878 pkt_buf = avp_dev_translate_buffer(avp,
1879 avp_bufs[i + 1]);
1880 rte_prefetch0(pkt_buf);
1881 }
1882
1883 /* process each packet to be transmitted */
1884 m = tx_pkts[i];
1885
1886 /* Adjust pointers for guest addressing */
1887 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1888 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1889 pkt_len = rte_pktmbuf_pkt_len(m);
1890
1891 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1892 (pkt_len > avp->host_mbuf_size))) {
1893 /*
1894 * application should be using the scattered transmit
1895 * function; send it truncated to avoid the performance
1896 * hit of having to manage returning the already
1897 * allocated buffer to the free list. This should not
1898 * happen since the application should have set the
1899 * max_rx_pkt_len based on its MTU and it should be
1900 * policing its own packet sizes.
1901 */
1902 txq->errors++;
1903 pkt_len = RTE_MIN(avp->guest_mbuf_size,
1904 avp->host_mbuf_size);
1905 }
1906
1907 /* copy data out of our mbuf and into the AVP buffer */
1908 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
1909 pkt_buf->pkt_len = pkt_len;
1910 pkt_buf->data_len = pkt_len;
1911 pkt_buf->nb_segs = 1;
1912 pkt_buf->next = NULL;
1913
1914 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1915 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1916 pkt_buf->vlan_tci = m->vlan_tci;
1917 }
1918
1919 tx_bytes += pkt_len;
1920
1921 /* free the original mbuf */
1922 rte_pktmbuf_free(m);
1923 }
1924
1925 txq->packets += count;
1926 txq->bytes += tx_bytes;
1927
1928 /* send the packets */
1929 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
1930
1931 return n;
1932 }
1933
1934 static void
1935 avp_dev_rx_queue_release(void *rx_queue)
1936 {
1937 struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1938 struct avp_dev *avp = rxq->avp;
1939 struct rte_eth_dev_data *data = avp->dev_data;
1940 unsigned int i;
1941
1942 for (i = 0; i < avp->num_rx_queues; i++) {
1943 if (data->rx_queues[i] == rxq)
1944 data->rx_queues[i] = NULL;
1945 }
1946 }
1947
1948 static void
1949 avp_dev_tx_queue_release(void *tx_queue)
1950 {
1951 struct avp_queue *txq = (struct avp_queue *)tx_queue;
1952 struct avp_dev *avp = txq->avp;
1953 struct rte_eth_dev_data *data = avp->dev_data;
1954 unsigned int i;
1955
1956 for (i = 0; i < avp->num_tx_queues; i++) {
1957 if (data->tx_queues[i] == txq)
1958 data->tx_queues[i] = NULL;
1959 }
1960 }
1961
1962 static int
1963 avp_dev_configure(struct rte_eth_dev *eth_dev)
1964 {
1965 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1966 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1967 struct rte_avp_device_info *host_info;
1968 struct rte_avp_device_config config;
1969 int mask = 0;
1970 void *addr;
1971 int ret;
1972
1973 rte_spinlock_lock(&avp->lock);
1974 if (avp->flags & AVP_F_DETACHED) {
1975 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
1976 ret = -ENOTSUP;
1977 goto unlock;
1978 }
1979
1980 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
1981 host_info = (struct rte_avp_device_info *)addr;
1982
1983 /* Setup required number of queues */
1984 _avp_set_queue_counts(eth_dev);
1985
1986 mask = (ETH_VLAN_STRIP_MASK |
1987 ETH_VLAN_FILTER_MASK |
1988 ETH_VLAN_EXTEND_MASK);
1989 ret = avp_vlan_offload_set(eth_dev, mask);
1990 if (ret < 0) {
1991 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
1992 ret);
1993 goto unlock;
1994 }
1995
1996 /* update device config */
1997 memset(&config, 0, sizeof(config));
1998 config.device_id = host_info->device_id;
1999 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
2000 config.driver_version = AVP_DPDK_DRIVER_VERSION;
2001 config.features = avp->features;
2002 config.num_tx_queues = avp->num_tx_queues;
2003 config.num_rx_queues = avp->num_rx_queues;
2004
2005 ret = avp_dev_ctrl_set_config(eth_dev, &config);
2006 if (ret < 0) {
2007 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
2008 ret);
2009 goto unlock;
2010 }
2011
2012 avp->flags |= AVP_F_CONFIGURED;
2013 ret = 0;
2014
2015 unlock:
2016 rte_spinlock_unlock(&avp->lock);
2017 return ret;
2018 }
2019
2020 static int
2021 avp_dev_start(struct rte_eth_dev *eth_dev)
2022 {
2023 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2024 int ret;
2025
2026 rte_spinlock_lock(&avp->lock);
2027 if (avp->flags & AVP_F_DETACHED) {
2028 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2029 ret = -ENOTSUP;
2030 goto unlock;
2031 }
2032
2033 /* update link state */
2034 ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
2035 if (ret < 0) {
2036 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2037 ret);
2038 goto unlock;
2039 }
2040
2041 /* remember current link state */
2042 avp->flags |= AVP_F_LINKUP;
2043
2044 ret = 0;
2045
2046 unlock:
2047 rte_spinlock_unlock(&avp->lock);
2048 return ret;
2049 }
2050
2051 static void
2052 avp_dev_stop(struct rte_eth_dev *eth_dev)
2053 {
2054 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2055 int ret;
2056
2057 rte_spinlock_lock(&avp->lock);
2058 if (avp->flags & AVP_F_DETACHED) {
2059 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2060 goto unlock;
2061 }
2062
2063 /* remember current link state */
2064 avp->flags &= ~AVP_F_LINKUP;
2065
2066 /* update link state */
2067 ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
2068 if (ret < 0) {
2069 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2070 ret);
2071 }
2072
2073 unlock:
2074 rte_spinlock_unlock(&avp->lock);
2075 }
2076
2077 static void
2078 avp_dev_close(struct rte_eth_dev *eth_dev)
2079 {
2080 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2081 int ret;
2082
2083 rte_spinlock_lock(&avp->lock);
2084 if (avp->flags & AVP_F_DETACHED) {
2085 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2086 goto unlock;
2087 }
2088
2089 /* remember current link state */
2090 avp->flags &= ~AVP_F_LINKUP;
2091 avp->flags &= ~AVP_F_CONFIGURED;
2092
2093 ret = avp_dev_disable_interrupts(eth_dev);
2094 if (ret < 0) {
2095 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
2096 /* continue */
2097 }
2098
2099 /* update device state */
2100 ret = avp_dev_ctrl_shutdown(eth_dev);
2101 if (ret < 0) {
2102 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
2103 ret);
2104 /* continue */
2105 }
2106
2107 unlock:
2108 rte_spinlock_unlock(&avp->lock);
2109 }
2110
2111 static int
2112 avp_dev_link_update(struct rte_eth_dev *eth_dev,
2113 __rte_unused int wait_to_complete)
2114 {
2115 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2116 struct rte_eth_link *link = &eth_dev->data->dev_link;
2117
2118 link->link_speed = ETH_SPEED_NUM_10G;
2119 link->link_duplex = ETH_LINK_FULL_DUPLEX;
2120 link->link_status = !!(avp->flags & AVP_F_LINKUP);
2121
2122 return -1;
2123 }
2124
2125 static void
2126 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
2127 {
2128 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2129
2130 rte_spinlock_lock(&avp->lock);
2131 if ((avp->flags & AVP_F_PROMISC) == 0) {
2132 avp->flags |= AVP_F_PROMISC;
2133 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
2134 eth_dev->data->port_id);
2135 }
2136 rte_spinlock_unlock(&avp->lock);
2137 }
2138
2139 static void
2140 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
2141 {
2142 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2143
2144 rte_spinlock_lock(&avp->lock);
2145 if ((avp->flags & AVP_F_PROMISC) != 0) {
2146 avp->flags &= ~AVP_F_PROMISC;
2147 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
2148 eth_dev->data->port_id);
2149 }
2150 rte_spinlock_unlock(&avp->lock);
2151 }
2152
2153 static void
2154 avp_dev_info_get(struct rte_eth_dev *eth_dev,
2155 struct rte_eth_dev_info *dev_info)
2156 {
2157 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2158
2159 dev_info->max_rx_queues = avp->max_rx_queues;
2160 dev_info->max_tx_queues = avp->max_tx_queues;
2161 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
2162 dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
2163 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
2164 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2165 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
2166 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
2167 }
2168 }
2169
2170 static int
2171 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
2172 {
2173 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2174 struct rte_eth_conf *dev_conf = &eth_dev->data->dev_conf;
2175 uint64_t offloads = dev_conf->rxmode.offloads;
2176
2177 if (mask & ETH_VLAN_STRIP_MASK) {
2178 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2179 if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2180 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
2181 else
2182 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
2183 } else {
2184 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
2185 }
2186 }
2187
2188 if (mask & ETH_VLAN_FILTER_MASK) {
2189 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2190 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
2191 }
2192
2193 if (mask & ETH_VLAN_EXTEND_MASK) {
2194 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2195 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
2196 }
2197
2198 return 0;
2199 }
2200
2201 static int
2202 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
2203 {
2204 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2205 unsigned int i;
2206
2207 for (i = 0; i < avp->num_rx_queues; i++) {
2208 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2209
2210 if (rxq) {
2211 stats->ipackets += rxq->packets;
2212 stats->ibytes += rxq->bytes;
2213 stats->ierrors += rxq->errors;
2214
2215 stats->q_ipackets[i] += rxq->packets;
2216 stats->q_ibytes[i] += rxq->bytes;
2217 stats->q_errors[i] += rxq->errors;
2218 }
2219 }
2220
2221 for (i = 0; i < avp->num_tx_queues; i++) {
2222 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2223
2224 if (txq) {
2225 stats->opackets += txq->packets;
2226 stats->obytes += txq->bytes;
2227 stats->oerrors += txq->errors;
2228
2229 stats->q_opackets[i] += txq->packets;
2230 stats->q_obytes[i] += txq->bytes;
2231 stats->q_errors[i] += txq->errors;
2232 }
2233 }
2234
2235 return 0;
2236 }
2237
2238 static void
2239 avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
2240 {
2241 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2242 unsigned int i;
2243
2244 for (i = 0; i < avp->num_rx_queues; i++) {
2245 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2246
2247 if (rxq) {
2248 rxq->bytes = 0;
2249 rxq->packets = 0;
2250 rxq->errors = 0;
2251 }
2252 }
2253
2254 for (i = 0; i < avp->num_tx_queues; i++) {
2255 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2256
2257 if (txq) {
2258 txq->bytes = 0;
2259 txq->packets = 0;
2260 txq->errors = 0;
2261 }
2262 }
2263 }
2264
2265 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
2266 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
2267
2268 RTE_INIT(avp_init_log)
2269 {
2270 avp_logtype_driver = rte_log_register("pmd.net.avp.driver");
2271 if (avp_logtype_driver >= 0)
2272 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE);
2273 }