]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/lib/librte_mempool/rte_mempool.h
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / lib / librte_mempool / rte_mempool.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2016 6WIND S.A.
4 */
5
6 #ifndef _RTE_MEMPOOL_H_
7 #define _RTE_MEMPOOL_H_
8
9 /**
10 * @file
11 * RTE Mempool.
12 *
13 * A memory pool is an allocator of fixed-size object. It is
14 * identified by its name, and uses a ring to store free objects. It
15 * provides some other optional services, like a per-core object
16 * cache, and an alignment helper to ensure that objects are padded
17 * to spread them equally on all RAM channels, ranks, and so on.
18 *
19 * Objects owned by a mempool should never be added in another
20 * mempool. When an object is freed using rte_mempool_put() or
21 * equivalent, the object data is not modified; the user can save some
22 * meta-data in the object data and retrieve them when allocating a
23 * new object.
24 *
25 * Note: the mempool implementation is not preemptible. An lcore must not be
26 * interrupted by another task that uses the same mempool (because it uses a
27 * ring which is not preemptible). Also, usual mempool functions like
28 * rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
29 * thread due to the internal per-lcore cache. Due to the lack of caching,
30 * rte_mempool_get() or rte_mempool_put() performance will suffer when called
31 * by non-EAL threads. Instead, non-EAL threads should call
32 * rte_mempool_generic_get() or rte_mempool_generic_put() with a user cache
33 * created with rte_mempool_cache_create().
34 */
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <stdint.h>
39 #include <errno.h>
40 #include <inttypes.h>
41 #include <sys/queue.h>
42
43 #include <rte_config.h>
44 #include <rte_spinlock.h>
45 #include <rte_log.h>
46 #include <rte_debug.h>
47 #include <rte_lcore.h>
48 #include <rte_memory.h>
49 #include <rte_branch_prediction.h>
50 #include <rte_ring.h>
51 #include <rte_memcpy.h>
52 #include <rte_common.h>
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
59 #define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
60 #define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
61
62 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
63 /**
64 * A structure that stores the mempool statistics (per-lcore).
65 */
66 struct rte_mempool_debug_stats {
67 uint64_t put_bulk; /**< Number of puts. */
68 uint64_t put_objs; /**< Number of objects successfully put. */
69 uint64_t get_success_bulk; /**< Successful allocation number. */
70 uint64_t get_success_objs; /**< Objects successfully allocated. */
71 uint64_t get_fail_bulk; /**< Failed allocation number. */
72 uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
73 /** Successful allocation number of contiguous blocks. */
74 uint64_t get_success_blks;
75 /** Failed allocation number of contiguous blocks. */
76 uint64_t get_fail_blks;
77 } __rte_cache_aligned;
78 #endif
79
80 /**
81 * A structure that stores a per-core object cache.
82 */
83 struct rte_mempool_cache {
84 uint32_t size; /**< Size of the cache */
85 uint32_t flushthresh; /**< Threshold before we flush excess elements */
86 uint32_t len; /**< Current cache count */
87 /*
88 * Cache is allocated to this size to allow it to overflow in certain
89 * cases to avoid needless emptying of cache.
90 */
91 void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
92 } __rte_cache_aligned;
93
94 /**
95 * A structure that stores the size of mempool elements.
96 */
97 struct rte_mempool_objsz {
98 uint32_t elt_size; /**< Size of an element. */
99 uint32_t header_size; /**< Size of header (before elt). */
100 uint32_t trailer_size; /**< Size of trailer (after elt). */
101 uint32_t total_size;
102 /**< Total size of an object (header + elt + trailer). */
103 };
104
105 /**< Maximum length of a memory pool's name. */
106 #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
107 sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
108 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
109
110 /* "MP_<name>" */
111 #define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
112
113 #define MEMPOOL_PG_SHIFT_MAX (sizeof(uintptr_t) * CHAR_BIT - 1)
114
115 /** Mempool over one chunk of physically continuous memory */
116 #define MEMPOOL_PG_NUM_DEFAULT 1
117
118 #ifndef RTE_MEMPOOL_ALIGN
119 #define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE
120 #endif
121
122 #define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1)
123
124 /**
125 * Mempool object header structure
126 *
127 * Each object stored in mempools are prefixed by this header structure,
128 * it allows to retrieve the mempool pointer from the object and to
129 * iterate on all objects attached to a mempool. When debug is enabled,
130 * a cookie is also added in this structure preventing corruptions and
131 * double-frees.
132 */
133 struct rte_mempool_objhdr {
134 STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
135 struct rte_mempool *mp; /**< The mempool owning the object. */
136 RTE_STD_C11
137 union {
138 rte_iova_t iova; /**< IO address of the object. */
139 phys_addr_t physaddr; /**< deprecated - Physical address of the object. */
140 };
141 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
142 uint64_t cookie; /**< Debug cookie. */
143 #endif
144 };
145
146 /**
147 * A list of object headers type
148 */
149 STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
150
151 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
152
153 /**
154 * Mempool object trailer structure
155 *
156 * In debug mode, each object stored in mempools are suffixed by this
157 * trailer structure containing a cookie preventing memory corruptions.
158 */
159 struct rte_mempool_objtlr {
160 uint64_t cookie; /**< Debug cookie. */
161 };
162
163 #endif
164
165 /**
166 * A list of memory where objects are stored
167 */
168 STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
169
170 /**
171 * Callback used to free a memory chunk
172 */
173 typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
174 void *opaque);
175
176 /**
177 * Mempool objects memory header structure
178 *
179 * The memory chunks where objects are stored. Each chunk is virtually
180 * and physically contiguous.
181 */
182 struct rte_mempool_memhdr {
183 STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
184 struct rte_mempool *mp; /**< The mempool owning the chunk */
185 void *addr; /**< Virtual address of the chunk */
186 RTE_STD_C11
187 union {
188 rte_iova_t iova; /**< IO address of the chunk */
189 phys_addr_t phys_addr; /**< Physical address of the chunk */
190 };
191 size_t len; /**< length of the chunk */
192 rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
193 void *opaque; /**< Argument passed to the free callback */
194 };
195
196 /**
197 * @warning
198 * @b EXPERIMENTAL: this API may change without prior notice.
199 *
200 * Additional information about the mempool
201 *
202 * The structure is cache-line aligned to avoid ABI breakages in
203 * a number of cases when something small is added.
204 */
205 struct rte_mempool_info {
206 /** Number of objects in the contiguous block */
207 unsigned int contig_block_size;
208 } __rte_cache_aligned;
209
210 /**
211 * The RTE mempool structure.
212 */
213 struct rte_mempool {
214 /*
215 * Note: this field kept the RTE_MEMZONE_NAMESIZE size due to ABI
216 * compatibility requirements, it could be changed to
217 * RTE_MEMPOOL_NAMESIZE next time the ABI changes
218 */
219 char name[RTE_MEMZONE_NAMESIZE]; /**< Name of mempool. */
220 RTE_STD_C11
221 union {
222 void *pool_data; /**< Ring or pool to store objects. */
223 uint64_t pool_id; /**< External mempool identifier. */
224 };
225 void *pool_config; /**< optional args for ops alloc. */
226 const struct rte_memzone *mz; /**< Memzone where pool is alloc'd. */
227 unsigned int flags; /**< Flags of the mempool. */
228 int socket_id; /**< Socket id passed at create. */
229 uint32_t size; /**< Max size of the mempool. */
230 uint32_t cache_size;
231 /**< Size of per-lcore default local cache. */
232
233 uint32_t elt_size; /**< Size of an element. */
234 uint32_t header_size; /**< Size of header (before elt). */
235 uint32_t trailer_size; /**< Size of trailer (after elt). */
236
237 unsigned private_data_size; /**< Size of private data. */
238 /**
239 * Index into rte_mempool_ops_table array of mempool ops
240 * structs, which contain callback function pointers.
241 * We're using an index here rather than pointers to the callbacks
242 * to facilitate any secondary processes that may want to use
243 * this mempool.
244 */
245 int32_t ops_index;
246
247 struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
248
249 uint32_t populated_size; /**< Number of populated objects. */
250 struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
251 uint32_t nb_mem_chunks; /**< Number of memory chunks */
252 struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
253
254 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
255 /** Per-lcore statistics. */
256 struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
257 #endif
258 } __rte_cache_aligned;
259
260 #define MEMPOOL_F_NO_SPREAD 0x0001 /**< Do not spread among memory channels. */
261 #define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/
262 #define MEMPOOL_F_SP_PUT 0x0004 /**< Default put is "single-producer".*/
263 #define MEMPOOL_F_SC_GET 0x0008 /**< Default get is "single-consumer".*/
264 #define MEMPOOL_F_POOL_CREATED 0x0010 /**< Internal: pool is created. */
265 #define MEMPOOL_F_NO_IOVA_CONTIG 0x0020 /**< Don't need IOVA contiguous objs. */
266 #define MEMPOOL_F_NO_PHYS_CONTIG MEMPOOL_F_NO_IOVA_CONTIG /* deprecated */
267
268 /**
269 * @internal When debug is enabled, store some statistics.
270 *
271 * @param mp
272 * Pointer to the memory pool.
273 * @param name
274 * Name of the statistics field to increment in the memory pool.
275 * @param n
276 * Number to add to the object-oriented statistics.
277 */
278 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
279 #define __MEMPOOL_STAT_ADD(mp, name, n) do { \
280 unsigned __lcore_id = rte_lcore_id(); \
281 if (__lcore_id < RTE_MAX_LCORE) { \
282 mp->stats[__lcore_id].name##_objs += n; \
283 mp->stats[__lcore_id].name##_bulk += 1; \
284 } \
285 } while(0)
286 #define __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, name, n) do { \
287 unsigned int __lcore_id = rte_lcore_id(); \
288 if (__lcore_id < RTE_MAX_LCORE) { \
289 mp->stats[__lcore_id].name##_blks += n; \
290 mp->stats[__lcore_id].name##_bulk += 1; \
291 } \
292 } while (0)
293 #else
294 #define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0)
295 #define __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, name, n) do {} while (0)
296 #endif
297
298 /**
299 * Calculate the size of the mempool header.
300 *
301 * @param mp
302 * Pointer to the memory pool.
303 * @param cs
304 * Size of the per-lcore cache.
305 */
306 #define MEMPOOL_HEADER_SIZE(mp, cs) \
307 (sizeof(*(mp)) + (((cs) == 0) ? 0 : \
308 (sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
309
310 /* return the header of a mempool object (internal) */
311 static inline struct rte_mempool_objhdr *__mempool_get_header(void *obj)
312 {
313 return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
314 sizeof(struct rte_mempool_objhdr));
315 }
316
317 /**
318 * Return a pointer to the mempool owning this object.
319 *
320 * @param obj
321 * An object that is owned by a pool. If this is not the case,
322 * the behavior is undefined.
323 * @return
324 * A pointer to the mempool structure.
325 */
326 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
327 {
328 struct rte_mempool_objhdr *hdr = __mempool_get_header(obj);
329 return hdr->mp;
330 }
331
332 /* return the trailer of a mempool object (internal) */
333 static inline struct rte_mempool_objtlr *__mempool_get_trailer(void *obj)
334 {
335 struct rte_mempool *mp = rte_mempool_from_obj(obj);
336 return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
337 }
338
339 /**
340 * @internal Check and update cookies or panic.
341 *
342 * @param mp
343 * Pointer to the memory pool.
344 * @param obj_table_const
345 * Pointer to a table of void * pointers (objects).
346 * @param n
347 * Index of object in object table.
348 * @param free
349 * - 0: object is supposed to be allocated, mark it as free
350 * - 1: object is supposed to be free, mark it as allocated
351 * - 2: just check that cookie is valid (free or allocated)
352 */
353 void rte_mempool_check_cookies(const struct rte_mempool *mp,
354 void * const *obj_table_const, unsigned n, int free);
355
356 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
357 #define __mempool_check_cookies(mp, obj_table_const, n, free) \
358 rte_mempool_check_cookies(mp, obj_table_const, n, free)
359 #else
360 #define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0)
361 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
362
363 /**
364 * @warning
365 * @b EXPERIMENTAL: this API may change without prior notice.
366 *
367 * @internal Check contiguous object blocks and update cookies or panic.
368 *
369 * @param mp
370 * Pointer to the memory pool.
371 * @param first_obj_table_const
372 * Pointer to a table of void * pointers (first object of the contiguous
373 * object blocks).
374 * @param n
375 * Number of contiguous object blocks.
376 * @param free
377 * - 0: object is supposed to be allocated, mark it as free
378 * - 1: object is supposed to be free, mark it as allocated
379 * - 2: just check that cookie is valid (free or allocated)
380 */
381 void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
382 void * const *first_obj_table_const, unsigned int n, int free);
383
384 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
385 #define __mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
386 free) \
387 rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
388 free)
389 #else
390 #define __mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
391 free) \
392 do {} while (0)
393 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
394
395 #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
396
397 /**
398 * Prototype for implementation specific data provisioning function.
399 *
400 * The function should provide the implementation specific memory for
401 * use by the other mempool ops functions in a given mempool ops struct.
402 * E.g. the default ops provides an instance of the rte_ring for this purpose.
403 * it will most likely point to a different type of data structure, and
404 * will be transparent to the application programmer.
405 * This function should set mp->pool_data.
406 */
407 typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
408
409 /**
410 * Free the opaque private data pointed to by mp->pool_data pointer.
411 */
412 typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
413
414 /**
415 * Enqueue an object into the external pool.
416 */
417 typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
418 void * const *obj_table, unsigned int n);
419
420 /**
421 * Dequeue an object from the external pool.
422 */
423 typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
424 void **obj_table, unsigned int n);
425
426 /**
427 * @warning
428 * @b EXPERIMENTAL: this API may change without prior notice.
429 *
430 * Dequeue a number of contiguous object blocks from the external pool.
431 */
432 typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
433 void **first_obj_table, unsigned int n);
434
435 /**
436 * Return the number of available objects in the external pool.
437 */
438 typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
439
440 /**
441 * Calculate memory size required to store given number of objects.
442 *
443 * If mempool objects are not required to be IOVA-contiguous
444 * (the flag MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
445 * virtually contiguous chunk size. Otherwise, if mempool objects must
446 * be IOVA-contiguous (the flag MEMPOOL_F_NO_IOVA_CONTIG is clear),
447 * min_chunk_size defines IOVA-contiguous chunk size.
448 *
449 * @param[in] mp
450 * Pointer to the memory pool.
451 * @param[in] obj_num
452 * Number of objects.
453 * @param[in] pg_shift
454 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
455 * @param[out] min_chunk_size
456 * Location for minimum size of the memory chunk which may be used to
457 * store memory pool objects.
458 * @param[out] align
459 * Location for required memory chunk alignment.
460 * @return
461 * Required memory size aligned at page boundary.
462 */
463 typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
464 uint32_t obj_num, uint32_t pg_shift,
465 size_t *min_chunk_size, size_t *align);
466
467 /**
468 * Default way to calculate memory size required to store given number of
469 * objects.
470 *
471 * If page boundaries may be ignored, it is just a product of total
472 * object size including header and trailer and number of objects.
473 * Otherwise, it is a number of pages required to store given number of
474 * objects without crossing page boundary.
475 *
476 * Note that if object size is bigger than page size, then it assumes
477 * that pages are grouped in subsets of physically continuous pages big
478 * enough to store at least one object.
479 *
480 * Minimum size of memory chunk is a maximum of the page size and total
481 * element size.
482 *
483 * Required memory chunk alignment is a maximum of page size and cache
484 * line size.
485 */
486 ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
487 uint32_t obj_num, uint32_t pg_shift,
488 size_t *min_chunk_size, size_t *align);
489
490 /**
491 * Function to be called for each populated object.
492 *
493 * @param[in] mp
494 * A pointer to the mempool structure.
495 * @param[in] opaque
496 * An opaque pointer passed to iterator.
497 * @param[in] vaddr
498 * Object virtual address.
499 * @param[in] iova
500 * Input/output virtual address of the object or RTE_BAD_IOVA.
501 */
502 typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
503 void *opaque, void *vaddr, rte_iova_t iova);
504
505 /**
506 * Populate memory pool objects using provided memory chunk.
507 *
508 * Populated objects should be enqueued to the pool, e.g. using
509 * rte_mempool_ops_enqueue_bulk().
510 *
511 * If the given IO address is unknown (iova = RTE_BAD_IOVA),
512 * the chunk doesn't need to be physically contiguous (only virtually),
513 * and allocated objects may span two pages.
514 *
515 * @param[in] mp
516 * A pointer to the mempool structure.
517 * @param[in] max_objs
518 * Maximum number of objects to be populated.
519 * @param[in] vaddr
520 * The virtual address of memory that should be used to store objects.
521 * @param[in] iova
522 * The IO address
523 * @param[in] len
524 * The length of memory in bytes.
525 * @param[in] obj_cb
526 * Callback function to be executed for each populated object.
527 * @param[in] obj_cb_arg
528 * An opaque pointer passed to the callback function.
529 * @return
530 * The number of objects added on success.
531 * On error, no objects are populated and a negative errno is returned.
532 */
533 typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
534 unsigned int max_objs,
535 void *vaddr, rte_iova_t iova, size_t len,
536 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
537
538 /**
539 * Default way to populate memory pool object using provided memory
540 * chunk: just slice objects one by one.
541 */
542 int rte_mempool_op_populate_default(struct rte_mempool *mp,
543 unsigned int max_objs,
544 void *vaddr, rte_iova_t iova, size_t len,
545 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
546
547 /**
548 * @warning
549 * @b EXPERIMENTAL: this API may change without prior notice.
550 *
551 * Get some additional information about a mempool.
552 */
553 typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
554 struct rte_mempool_info *info);
555
556
557 /** Structure defining mempool operations structure */
558 struct rte_mempool_ops {
559 char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
560 rte_mempool_alloc_t alloc; /**< Allocate private data. */
561 rte_mempool_free_t free; /**< Free the external pool. */
562 rte_mempool_enqueue_t enqueue; /**< Enqueue an object. */
563 rte_mempool_dequeue_t dequeue; /**< Dequeue an object. */
564 rte_mempool_get_count get_count; /**< Get qty of available objs. */
565 /**
566 * Optional callback to calculate memory size required to
567 * store specified number of objects.
568 */
569 rte_mempool_calc_mem_size_t calc_mem_size;
570 /**
571 * Optional callback to populate mempool objects using
572 * provided memory chunk.
573 */
574 rte_mempool_populate_t populate;
575 /**
576 * Get mempool info
577 */
578 rte_mempool_get_info_t get_info;
579 /**
580 * Dequeue a number of contiguous object blocks.
581 */
582 rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
583 } __rte_cache_aligned;
584
585 #define RTE_MEMPOOL_MAX_OPS_IDX 16 /**< Max registered ops structs */
586
587 /**
588 * Structure storing the table of registered ops structs, each of which contain
589 * the function pointers for the mempool ops functions.
590 * Each process has its own storage for this ops struct array so that
591 * the mempools can be shared across primary and secondary processes.
592 * The indices used to access the array are valid across processes, whereas
593 * any function pointers stored directly in the mempool struct would not be.
594 * This results in us simply having "ops_index" in the mempool struct.
595 */
596 struct rte_mempool_ops_table {
597 rte_spinlock_t sl; /**< Spinlock for add/delete. */
598 uint32_t num_ops; /**< Number of used ops structs in the table. */
599 /**
600 * Storage for all possible ops structs.
601 */
602 struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
603 } __rte_cache_aligned;
604
605 /** Array of registered ops structs. */
606 extern struct rte_mempool_ops_table rte_mempool_ops_table;
607
608 /**
609 * @internal Get the mempool ops struct from its index.
610 *
611 * @param ops_index
612 * The index of the ops struct in the ops struct table. It must be a valid
613 * index: (0 <= idx < num_ops).
614 * @return
615 * The pointer to the ops struct in the table.
616 */
617 static inline struct rte_mempool_ops *
618 rte_mempool_get_ops(int ops_index)
619 {
620 RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
621
622 return &rte_mempool_ops_table.ops[ops_index];
623 }
624
625 /**
626 * @internal Wrapper for mempool_ops alloc callback.
627 *
628 * @param mp
629 * Pointer to the memory pool.
630 * @return
631 * - 0: Success; successfully allocated mempool pool_data.
632 * - <0: Error; code of alloc function.
633 */
634 int
635 rte_mempool_ops_alloc(struct rte_mempool *mp);
636
637 /**
638 * @internal Wrapper for mempool_ops dequeue callback.
639 *
640 * @param mp
641 * Pointer to the memory pool.
642 * @param obj_table
643 * Pointer to a table of void * pointers (objects).
644 * @param n
645 * Number of objects to get.
646 * @return
647 * - 0: Success; got n objects.
648 * - <0: Error; code of dequeue function.
649 */
650 static inline int
651 rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
652 void **obj_table, unsigned n)
653 {
654 struct rte_mempool_ops *ops;
655
656 ops = rte_mempool_get_ops(mp->ops_index);
657 return ops->dequeue(mp, obj_table, n);
658 }
659
660 /**
661 * @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
662 *
663 * @param[in] mp
664 * Pointer to the memory pool.
665 * @param[out] first_obj_table
666 * Pointer to a table of void * pointers (first objects).
667 * @param[in] n
668 * Number of blocks to get.
669 * @return
670 * - 0: Success; got n objects.
671 * - <0: Error; code of dequeue function.
672 */
673 static inline int
674 rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
675 void **first_obj_table, unsigned int n)
676 {
677 struct rte_mempool_ops *ops;
678
679 ops = rte_mempool_get_ops(mp->ops_index);
680 RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
681 return ops->dequeue_contig_blocks(mp, first_obj_table, n);
682 }
683
684 /**
685 * @internal wrapper for mempool_ops enqueue callback.
686 *
687 * @param mp
688 * Pointer to the memory pool.
689 * @param obj_table
690 * Pointer to a table of void * pointers (objects).
691 * @param n
692 * Number of objects to put.
693 * @return
694 * - 0: Success; n objects supplied.
695 * - <0: Error; code of enqueue function.
696 */
697 static inline int
698 rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
699 unsigned n)
700 {
701 struct rte_mempool_ops *ops;
702
703 ops = rte_mempool_get_ops(mp->ops_index);
704 return ops->enqueue(mp, obj_table, n);
705 }
706
707 /**
708 * @internal wrapper for mempool_ops get_count callback.
709 *
710 * @param mp
711 * Pointer to the memory pool.
712 * @return
713 * The number of available objects in the external pool.
714 */
715 unsigned
716 rte_mempool_ops_get_count(const struct rte_mempool *mp);
717
718 /**
719 * @internal wrapper for mempool_ops calc_mem_size callback.
720 * API to calculate size of memory required to store specified number of
721 * object.
722 *
723 * @param[in] mp
724 * Pointer to the memory pool.
725 * @param[in] obj_num
726 * Number of objects.
727 * @param[in] pg_shift
728 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
729 * @param[out] min_chunk_size
730 * Location for minimum size of the memory chunk which may be used to
731 * store memory pool objects.
732 * @param[out] align
733 * Location for required memory chunk alignment.
734 * @return
735 * Required memory size aligned at page boundary.
736 */
737 ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
738 uint32_t obj_num, uint32_t pg_shift,
739 size_t *min_chunk_size, size_t *align);
740
741 /**
742 * @internal wrapper for mempool_ops populate callback.
743 *
744 * Populate memory pool objects using provided memory chunk.
745 *
746 * @param[in] mp
747 * A pointer to the mempool structure.
748 * @param[in] max_objs
749 * Maximum number of objects to be populated.
750 * @param[in] vaddr
751 * The virtual address of memory that should be used to store objects.
752 * @param[in] iova
753 * The IO address
754 * @param[in] len
755 * The length of memory in bytes.
756 * @param[in] obj_cb
757 * Callback function to be executed for each populated object.
758 * @param[in] obj_cb_arg
759 * An opaque pointer passed to the callback function.
760 * @return
761 * The number of objects added on success.
762 * On error, no objects are populated and a negative errno is returned.
763 */
764 int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
765 void *vaddr, rte_iova_t iova, size_t len,
766 rte_mempool_populate_obj_cb_t *obj_cb,
767 void *obj_cb_arg);
768
769 /**
770 * @warning
771 * @b EXPERIMENTAL: this API may change without prior notice.
772 *
773 * Wrapper for mempool_ops get_info callback.
774 *
775 * @param[in] mp
776 * Pointer to the memory pool.
777 * @param[out] info
778 * Pointer to the rte_mempool_info structure
779 * @return
780 * - 0: Success; The mempool driver supports retrieving supplementary
781 * mempool information
782 * - -ENOTSUP - doesn't support get_info ops (valid case).
783 */
784 __rte_experimental
785 int rte_mempool_ops_get_info(const struct rte_mempool *mp,
786 struct rte_mempool_info *info);
787
788 /**
789 * @internal wrapper for mempool_ops free callback.
790 *
791 * @param mp
792 * Pointer to the memory pool.
793 */
794 void
795 rte_mempool_ops_free(struct rte_mempool *mp);
796
797 /**
798 * Set the ops of a mempool.
799 *
800 * This can only be done on a mempool that is not populated, i.e. just after
801 * a call to rte_mempool_create_empty().
802 *
803 * @param mp
804 * Pointer to the memory pool.
805 * @param name
806 * Name of the ops structure to use for this mempool.
807 * @param pool_config
808 * Opaque data that can be passed by the application to the ops functions.
809 * @return
810 * - 0: Success; the mempool is now using the requested ops functions.
811 * - -EINVAL - Invalid ops struct name provided.
812 * - -EEXIST - mempool already has an ops struct assigned.
813 */
814 int
815 rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
816 void *pool_config);
817
818 /**
819 * Register mempool operations.
820 *
821 * @param ops
822 * Pointer to an ops structure to register.
823 * @return
824 * - >=0: Success; return the index of the ops struct in the table.
825 * - -EINVAL - some missing callbacks while registering ops struct.
826 * - -ENOSPC - the maximum number of ops structs has been reached.
827 */
828 int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
829
830 /**
831 * Macro to statically register the ops of a mempool handler.
832 * Note that the rte_mempool_register_ops fails silently here when
833 * more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
834 */
835 #define MEMPOOL_REGISTER_OPS(ops) \
836 RTE_INIT(mp_hdlr_init_##ops) \
837 { \
838 rte_mempool_register_ops(&ops); \
839 }
840
841 /**
842 * An object callback function for mempool.
843 *
844 * Used by rte_mempool_create() and rte_mempool_obj_iter().
845 */
846 typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
847 void *opaque, void *obj, unsigned obj_idx);
848 typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
849
850 /**
851 * A memory callback function for mempool.
852 *
853 * Used by rte_mempool_mem_iter().
854 */
855 typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
856 void *opaque, struct rte_mempool_memhdr *memhdr,
857 unsigned mem_idx);
858
859 /**
860 * A mempool constructor callback function.
861 *
862 * Arguments are the mempool and the opaque pointer given by the user in
863 * rte_mempool_create().
864 */
865 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
866
867 /**
868 * Create a new mempool named *name* in memory.
869 *
870 * This function uses ``rte_memzone_reserve()`` to allocate memory. The
871 * pool contains n elements of elt_size. Its size is set to n.
872 *
873 * @param name
874 * The name of the mempool.
875 * @param n
876 * The number of elements in the mempool. The optimum size (in terms of
877 * memory usage) for a mempool is when n is a power of two minus one:
878 * n = (2^q - 1).
879 * @param elt_size
880 * The size of each element.
881 * @param cache_size
882 * If cache_size is non-zero, the rte_mempool library will try to
883 * limit the accesses to the common lockless pool, by maintaining a
884 * per-lcore object cache. This argument must be lower or equal to
885 * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
886 * cache_size to have "n modulo cache_size == 0": if this is
887 * not the case, some elements will always stay in the pool and will
888 * never be used. The access to the per-lcore table is of course
889 * faster than the multi-producer/consumer pool. The cache can be
890 * disabled if the cache_size argument is set to 0; it can be useful to
891 * avoid losing objects in cache.
892 * @param private_data_size
893 * The size of the private data appended after the mempool
894 * structure. This is useful for storing some private data after the
895 * mempool structure, as is done for rte_mbuf_pool for example.
896 * @param mp_init
897 * A function pointer that is called for initialization of the pool,
898 * before object initialization. The user can initialize the private
899 * data in this function if needed. This parameter can be NULL if
900 * not needed.
901 * @param mp_init_arg
902 * An opaque pointer to data that can be used in the mempool
903 * constructor function.
904 * @param obj_init
905 * A function pointer that is called for each object at
906 * initialization of the pool. The user can set some meta data in
907 * objects if needed. This parameter can be NULL if not needed.
908 * The obj_init() function takes the mempool pointer, the init_arg,
909 * the object pointer and the object number as parameters.
910 * @param obj_init_arg
911 * An opaque pointer to data that can be used as an argument for
912 * each call to the object constructor function.
913 * @param socket_id
914 * The *socket_id* argument is the socket identifier in the case of
915 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
916 * constraint for the reserved zone.
917 * @param flags
918 * The *flags* arguments is an OR of following flags:
919 * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
920 * between channels in RAM: the pool allocator will add padding
921 * between objects depending on the hardware configuration. See
922 * Memory alignment constraints for details. If this flag is set,
923 * the allocator will just align them to a cache line.
924 * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
925 * cache-aligned. This flag removes this constraint, and no
926 * padding will be present between objects. This flag implies
927 * MEMPOOL_F_NO_SPREAD.
928 * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
929 * when using rte_mempool_put() or rte_mempool_put_bulk() is
930 * "single-producer". Otherwise, it is "multi-producers".
931 * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
932 * when using rte_mempool_get() or rte_mempool_get_bulk() is
933 * "single-consumer". Otherwise, it is "multi-consumers".
934 * - MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
935 * necessarily be contiguous in IO memory.
936 * @return
937 * The pointer to the new allocated mempool, on success. NULL on error
938 * with rte_errno set appropriately. Possible rte_errno values include:
939 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
940 * - E_RTE_SECONDARY - function was called from a secondary process instance
941 * - EINVAL - cache size provided is too large
942 * - ENOSPC - the maximum number of memzones has already been allocated
943 * - EEXIST - a memzone with the same name already exists
944 * - ENOMEM - no appropriate memory area found in which to create memzone
945 */
946 struct rte_mempool *
947 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
948 unsigned cache_size, unsigned private_data_size,
949 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
950 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
951 int socket_id, unsigned flags);
952
953 /**
954 * Create an empty mempool
955 *
956 * The mempool is allocated and initialized, but it is not populated: no
957 * memory is allocated for the mempool elements. The user has to call
958 * rte_mempool_populate_*() to add memory chunks to the pool. Once
959 * populated, the user may also want to initialize each object with
960 * rte_mempool_obj_iter().
961 *
962 * @param name
963 * The name of the mempool.
964 * @param n
965 * The maximum number of elements that can be added in the mempool.
966 * The optimum size (in terms of memory usage) for a mempool is when n
967 * is a power of two minus one: n = (2^q - 1).
968 * @param elt_size
969 * The size of each element.
970 * @param cache_size
971 * Size of the cache. See rte_mempool_create() for details.
972 * @param private_data_size
973 * The size of the private data appended after the mempool
974 * structure. This is useful for storing some private data after the
975 * mempool structure, as is done for rte_mbuf_pool for example.
976 * @param socket_id
977 * The *socket_id* argument is the socket identifier in the case of
978 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
979 * constraint for the reserved zone.
980 * @param flags
981 * Flags controlling the behavior of the mempool. See
982 * rte_mempool_create() for details.
983 * @return
984 * The pointer to the new allocated mempool, on success. NULL on error
985 * with rte_errno set appropriately. See rte_mempool_create() for details.
986 */
987 struct rte_mempool *
988 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
989 unsigned cache_size, unsigned private_data_size,
990 int socket_id, unsigned flags);
991 /**
992 * Free a mempool
993 *
994 * Unlink the mempool from global list, free the memory chunks, and all
995 * memory referenced by the mempool. The objects must not be used by
996 * other cores as they will be freed.
997 *
998 * @param mp
999 * A pointer to the mempool structure.
1000 */
1001 void
1002 rte_mempool_free(struct rte_mempool *mp);
1003
1004 /**
1005 * Add physically contiguous memory for objects in the pool at init
1006 *
1007 * Add a virtually and physically contiguous memory chunk in the pool
1008 * where objects can be instantiated.
1009 *
1010 * If the given IO address is unknown (iova = RTE_BAD_IOVA),
1011 * the chunk doesn't need to be physically contiguous (only virtually),
1012 * and allocated objects may span two pages.
1013 *
1014 * @param mp
1015 * A pointer to the mempool structure.
1016 * @param vaddr
1017 * The virtual address of memory that should be used to store objects.
1018 * @param iova
1019 * The IO address
1020 * @param len
1021 * The length of memory in bytes.
1022 * @param free_cb
1023 * The callback used to free this chunk when destroying the mempool.
1024 * @param opaque
1025 * An opaque argument passed to free_cb.
1026 * @return
1027 * The number of objects added on success.
1028 * On error, the chunk is not added in the memory list of the
1029 * mempool and a negative errno is returned.
1030 */
1031 int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
1032 rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
1033 void *opaque);
1034
1035 /**
1036 * Add virtually contiguous memory for objects in the pool at init
1037 *
1038 * Add a virtually contiguous memory chunk in the pool where objects can
1039 * be instantiated.
1040 *
1041 * @param mp
1042 * A pointer to the mempool structure.
1043 * @param addr
1044 * The virtual address of memory that should be used to store objects.
1045 * Must be page-aligned.
1046 * @param len
1047 * The length of memory in bytes. Must be page-aligned.
1048 * @param pg_sz
1049 * The size of memory pages in this virtual area.
1050 * @param free_cb
1051 * The callback used to free this chunk when destroying the mempool.
1052 * @param opaque
1053 * An opaque argument passed to free_cb.
1054 * @return
1055 * The number of objects added on success.
1056 * On error, the chunk is not added in the memory list of the
1057 * mempool and a negative errno is returned.
1058 */
1059 int
1060 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
1061 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
1062 void *opaque);
1063
1064 /**
1065 * Add memory for objects in the pool at init
1066 *
1067 * This is the default function used by rte_mempool_create() to populate
1068 * the mempool. It adds memory allocated using rte_memzone_reserve().
1069 *
1070 * @param mp
1071 * A pointer to the mempool structure.
1072 * @return
1073 * The number of objects added on success.
1074 * On error, the chunk is not added in the memory list of the
1075 * mempool and a negative errno is returned.
1076 */
1077 int rte_mempool_populate_default(struct rte_mempool *mp);
1078
1079 /**
1080 * Add memory from anonymous mapping for objects in the pool at init
1081 *
1082 * This function mmap an anonymous memory zone that is locked in
1083 * memory to store the objects of the mempool.
1084 *
1085 * @param mp
1086 * A pointer to the mempool structure.
1087 * @return
1088 * The number of objects added on success.
1089 * On error, the chunk is not added in the memory list of the
1090 * mempool and a negative errno is returned.
1091 */
1092 int rte_mempool_populate_anon(struct rte_mempool *mp);
1093
1094 /**
1095 * Call a function for each mempool element
1096 *
1097 * Iterate across all objects attached to a rte_mempool and call the
1098 * callback function on it.
1099 *
1100 * @param mp
1101 * A pointer to an initialized mempool.
1102 * @param obj_cb
1103 * A function pointer that is called for each object.
1104 * @param obj_cb_arg
1105 * An opaque pointer passed to the callback function.
1106 * @return
1107 * Number of objects iterated.
1108 */
1109 uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
1110 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
1111
1112 /**
1113 * Call a function for each mempool memory chunk
1114 *
1115 * Iterate across all memory chunks attached to a rte_mempool and call
1116 * the callback function on it.
1117 *
1118 * @param mp
1119 * A pointer to an initialized mempool.
1120 * @param mem_cb
1121 * A function pointer that is called for each memory chunk.
1122 * @param mem_cb_arg
1123 * An opaque pointer passed to the callback function.
1124 * @return
1125 * Number of memory chunks iterated.
1126 */
1127 uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
1128 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
1129
1130 /**
1131 * Dump the status of the mempool to a file.
1132 *
1133 * @param f
1134 * A pointer to a file for output
1135 * @param mp
1136 * A pointer to the mempool structure.
1137 */
1138 void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
1139
1140 /**
1141 * Create a user-owned mempool cache.
1142 *
1143 * This can be used by non-EAL threads to enable caching when they
1144 * interact with a mempool.
1145 *
1146 * @param size
1147 * The size of the mempool cache. See rte_mempool_create()'s cache_size
1148 * parameter description for more information. The same limits and
1149 * considerations apply here too.
1150 * @param socket_id
1151 * The socket identifier in the case of NUMA. The value can be
1152 * SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
1153 */
1154 struct rte_mempool_cache *
1155 rte_mempool_cache_create(uint32_t size, int socket_id);
1156
1157 /**
1158 * Free a user-owned mempool cache.
1159 *
1160 * @param cache
1161 * A pointer to the mempool cache.
1162 */
1163 void
1164 rte_mempool_cache_free(struct rte_mempool_cache *cache);
1165
1166 /**
1167 * Get a pointer to the per-lcore default mempool cache.
1168 *
1169 * @param mp
1170 * A pointer to the mempool structure.
1171 * @param lcore_id
1172 * The logical core id.
1173 * @return
1174 * A pointer to the mempool cache or NULL if disabled or non-EAL thread.
1175 */
1176 static __rte_always_inline struct rte_mempool_cache *
1177 rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
1178 {
1179 if (mp->cache_size == 0)
1180 return NULL;
1181
1182 if (lcore_id >= RTE_MAX_LCORE)
1183 return NULL;
1184
1185 return &mp->local_cache[lcore_id];
1186 }
1187
1188 /**
1189 * Flush a user-owned mempool cache to the specified mempool.
1190 *
1191 * @param cache
1192 * A pointer to the mempool cache.
1193 * @param mp
1194 * A pointer to the mempool.
1195 */
1196 static __rte_always_inline void
1197 rte_mempool_cache_flush(struct rte_mempool_cache *cache,
1198 struct rte_mempool *mp)
1199 {
1200 if (cache == NULL)
1201 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1202 if (cache == NULL || cache->len == 0)
1203 return;
1204 rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
1205 cache->len = 0;
1206 }
1207
1208 /**
1209 * @internal Put several objects back in the mempool; used internally.
1210 * @param mp
1211 * A pointer to the mempool structure.
1212 * @param obj_table
1213 * A pointer to a table of void * pointers (objects).
1214 * @param n
1215 * The number of objects to store back in the mempool, must be strictly
1216 * positive.
1217 * @param cache
1218 * A pointer to a mempool cache structure. May be NULL if not needed.
1219 */
1220 static __rte_always_inline void
1221 __mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1222 unsigned int n, struct rte_mempool_cache *cache)
1223 {
1224 void **cache_objs;
1225
1226 /* increment stat now, adding in mempool always success */
1227 __MEMPOOL_STAT_ADD(mp, put, n);
1228
1229 /* No cache provided or if put would overflow mem allocated for cache */
1230 if (unlikely(cache == NULL || n > RTE_MEMPOOL_CACHE_MAX_SIZE))
1231 goto ring_enqueue;
1232
1233 cache_objs = &cache->objs[cache->len];
1234
1235 /*
1236 * The cache follows the following algorithm
1237 * 1. Add the objects to the cache
1238 * 2. Anything greater than the cache min value (if it crosses the
1239 * cache flush threshold) is flushed to the ring.
1240 */
1241
1242 /* Add elements back into the cache */
1243 rte_memcpy(&cache_objs[0], obj_table, sizeof(void *) * n);
1244
1245 cache->len += n;
1246
1247 if (cache->len >= cache->flushthresh) {
1248 rte_mempool_ops_enqueue_bulk(mp, &cache->objs[cache->size],
1249 cache->len - cache->size);
1250 cache->len = cache->size;
1251 }
1252
1253 return;
1254
1255 ring_enqueue:
1256
1257 /* push remaining objects in ring */
1258 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1259 if (rte_mempool_ops_enqueue_bulk(mp, obj_table, n) < 0)
1260 rte_panic("cannot put objects in mempool\n");
1261 #else
1262 rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
1263 #endif
1264 }
1265
1266
1267 /**
1268 * Put several objects back in the mempool.
1269 *
1270 * @param mp
1271 * A pointer to the mempool structure.
1272 * @param obj_table
1273 * A pointer to a table of void * pointers (objects).
1274 * @param n
1275 * The number of objects to add in the mempool from the obj_table.
1276 * @param cache
1277 * A pointer to a mempool cache structure. May be NULL if not needed.
1278 */
1279 static __rte_always_inline void
1280 rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1281 unsigned int n, struct rte_mempool_cache *cache)
1282 {
1283 __mempool_check_cookies(mp, obj_table, n, 0);
1284 __mempool_generic_put(mp, obj_table, n, cache);
1285 }
1286
1287 /**
1288 * Put several objects back in the mempool.
1289 *
1290 * This function calls the multi-producer or the single-producer
1291 * version depending on the default behavior that was specified at
1292 * mempool creation time (see flags).
1293 *
1294 * @param mp
1295 * A pointer to the mempool structure.
1296 * @param obj_table
1297 * A pointer to a table of void * pointers (objects).
1298 * @param n
1299 * The number of objects to add in the mempool from obj_table.
1300 */
1301 static __rte_always_inline void
1302 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
1303 unsigned int n)
1304 {
1305 struct rte_mempool_cache *cache;
1306 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1307 rte_mempool_generic_put(mp, obj_table, n, cache);
1308 }
1309
1310 /**
1311 * Put one object back in the mempool.
1312 *
1313 * This function calls the multi-producer or the single-producer
1314 * version depending on the default behavior that was specified at
1315 * mempool creation time (see flags).
1316 *
1317 * @param mp
1318 * A pointer to the mempool structure.
1319 * @param obj
1320 * A pointer to the object to be added.
1321 */
1322 static __rte_always_inline void
1323 rte_mempool_put(struct rte_mempool *mp, void *obj)
1324 {
1325 rte_mempool_put_bulk(mp, &obj, 1);
1326 }
1327
1328 /**
1329 * @internal Get several objects from the mempool; used internally.
1330 * @param mp
1331 * A pointer to the mempool structure.
1332 * @param obj_table
1333 * A pointer to a table of void * pointers (objects).
1334 * @param n
1335 * The number of objects to get, must be strictly positive.
1336 * @param cache
1337 * A pointer to a mempool cache structure. May be NULL if not needed.
1338 * @return
1339 * - >=0: Success; number of objects supplied.
1340 * - <0: Error; code of ring dequeue function.
1341 */
1342 static __rte_always_inline int
1343 __mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1344 unsigned int n, struct rte_mempool_cache *cache)
1345 {
1346 int ret;
1347 uint32_t index, len;
1348 void **cache_objs;
1349
1350 /* No cache provided or cannot be satisfied from cache */
1351 if (unlikely(cache == NULL || n >= cache->size))
1352 goto ring_dequeue;
1353
1354 cache_objs = cache->objs;
1355
1356 /* Can this be satisfied from the cache? */
1357 if (cache->len < n) {
1358 /* No. Backfill the cache first, and then fill from it */
1359 uint32_t req = n + (cache->size - cache->len);
1360
1361 /* How many do we require i.e. number to fill the cache + the request */
1362 ret = rte_mempool_ops_dequeue_bulk(mp,
1363 &cache->objs[cache->len], req);
1364 if (unlikely(ret < 0)) {
1365 /*
1366 * In the off chance that we are buffer constrained,
1367 * where we are not able to allocate cache + n, go to
1368 * the ring directly. If that fails, we are truly out of
1369 * buffers.
1370 */
1371 goto ring_dequeue;
1372 }
1373
1374 cache->len += req;
1375 }
1376
1377 /* Now fill in the response ... */
1378 for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
1379 *obj_table = cache_objs[len];
1380
1381 cache->len -= n;
1382
1383 __MEMPOOL_STAT_ADD(mp, get_success, n);
1384
1385 return 0;
1386
1387 ring_dequeue:
1388
1389 /* get remaining objects from ring */
1390 ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, n);
1391
1392 if (ret < 0)
1393 __MEMPOOL_STAT_ADD(mp, get_fail, n);
1394 else
1395 __MEMPOOL_STAT_ADD(mp, get_success, n);
1396
1397 return ret;
1398 }
1399
1400 /**
1401 * Get several objects from the mempool.
1402 *
1403 * If cache is enabled, objects will be retrieved first from cache,
1404 * subsequently from the common pool. Note that it can return -ENOENT when
1405 * the local cache and common pool are empty, even if cache from other
1406 * lcores are full.
1407 *
1408 * @param mp
1409 * A pointer to the mempool structure.
1410 * @param obj_table
1411 * A pointer to a table of void * pointers (objects) that will be filled.
1412 * @param n
1413 * The number of objects to get from mempool to obj_table.
1414 * @param cache
1415 * A pointer to a mempool cache structure. May be NULL if not needed.
1416 * @return
1417 * - 0: Success; objects taken.
1418 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1419 */
1420 static __rte_always_inline int
1421 rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1422 unsigned int n, struct rte_mempool_cache *cache)
1423 {
1424 int ret;
1425 ret = __mempool_generic_get(mp, obj_table, n, cache);
1426 if (ret == 0)
1427 __mempool_check_cookies(mp, obj_table, n, 1);
1428 return ret;
1429 }
1430
1431 /**
1432 * Get several objects from the mempool.
1433 *
1434 * This function calls the multi-consumers or the single-consumer
1435 * version, depending on the default behaviour that was specified at
1436 * mempool creation time (see flags).
1437 *
1438 * If cache is enabled, objects will be retrieved first from cache,
1439 * subsequently from the common pool. Note that it can return -ENOENT when
1440 * the local cache and common pool are empty, even if cache from other
1441 * lcores are full.
1442 *
1443 * @param mp
1444 * A pointer to the mempool structure.
1445 * @param obj_table
1446 * A pointer to a table of void * pointers (objects) that will be filled.
1447 * @param n
1448 * The number of objects to get from the mempool to obj_table.
1449 * @return
1450 * - 0: Success; objects taken
1451 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1452 */
1453 static __rte_always_inline int
1454 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
1455 {
1456 struct rte_mempool_cache *cache;
1457 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1458 return rte_mempool_generic_get(mp, obj_table, n, cache);
1459 }
1460
1461 /**
1462 * Get one object from the mempool.
1463 *
1464 * This function calls the multi-consumers or the single-consumer
1465 * version, depending on the default behavior that was specified at
1466 * mempool creation (see flags).
1467 *
1468 * If cache is enabled, objects will be retrieved first from cache,
1469 * subsequently from the common pool. Note that it can return -ENOENT when
1470 * the local cache and common pool are empty, even if cache from other
1471 * lcores are full.
1472 *
1473 * @param mp
1474 * A pointer to the mempool structure.
1475 * @param obj_p
1476 * A pointer to a void * pointer (object) that will be filled.
1477 * @return
1478 * - 0: Success; objects taken.
1479 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1480 */
1481 static __rte_always_inline int
1482 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1483 {
1484 return rte_mempool_get_bulk(mp, obj_p, 1);
1485 }
1486
1487 /**
1488 * @warning
1489 * @b EXPERIMENTAL: this API may change without prior notice.
1490 *
1491 * Get a contiguous blocks of objects from the mempool.
1492 *
1493 * If cache is enabled, consider to flush it first, to reuse objects
1494 * as soon as possible.
1495 *
1496 * The application should check that the driver supports the operation
1497 * by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
1498 * is not zero.
1499 *
1500 * @param mp
1501 * A pointer to the mempool structure.
1502 * @param first_obj_table
1503 * A pointer to a pointer to the first object in each block.
1504 * @param n
1505 * The number of blocks to get from mempool.
1506 * @return
1507 * - 0: Success; blocks taken.
1508 * - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
1509 * - -EOPNOTSUPP: The mempool driver does not support block dequeue
1510 */
1511 static __rte_always_inline int
1512 __rte_experimental
1513 rte_mempool_get_contig_blocks(struct rte_mempool *mp,
1514 void **first_obj_table, unsigned int n)
1515 {
1516 int ret;
1517
1518 ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
1519 if (ret == 0) {
1520 __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, get_success, n);
1521 __mempool_contig_blocks_check_cookies(mp, first_obj_table, n,
1522 1);
1523 } else {
1524 __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, get_fail, n);
1525 }
1526
1527 return ret;
1528 }
1529
1530 /**
1531 * Return the number of entries in the mempool.
1532 *
1533 * When cache is enabled, this function has to browse the length of
1534 * all lcores, so it should not be used in a data path, but only for
1535 * debug purposes. User-owned mempool caches are not accounted for.
1536 *
1537 * @param mp
1538 * A pointer to the mempool structure.
1539 * @return
1540 * The number of entries in the mempool.
1541 */
1542 unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
1543
1544 /**
1545 * Return the number of elements which have been allocated from the mempool
1546 *
1547 * When cache is enabled, this function has to browse the length of
1548 * all lcores, so it should not be used in a data path, but only for
1549 * debug purposes.
1550 *
1551 * @param mp
1552 * A pointer to the mempool structure.
1553 * @return
1554 * The number of free entries in the mempool.
1555 */
1556 unsigned int
1557 rte_mempool_in_use_count(const struct rte_mempool *mp);
1558
1559 /**
1560 * Test if the mempool is full.
1561 *
1562 * When cache is enabled, this function has to browse the length of all
1563 * lcores, so it should not be used in a data path, but only for debug
1564 * purposes. User-owned mempool caches are not accounted for.
1565 *
1566 * @param mp
1567 * A pointer to the mempool structure.
1568 * @return
1569 * - 1: The mempool is full.
1570 * - 0: The mempool is not full.
1571 */
1572 static inline int
1573 rte_mempool_full(const struct rte_mempool *mp)
1574 {
1575 return !!(rte_mempool_avail_count(mp) == mp->size);
1576 }
1577
1578 /**
1579 * Test if the mempool is empty.
1580 *
1581 * When cache is enabled, this function has to browse the length of all
1582 * lcores, so it should not be used in a data path, but only for debug
1583 * purposes. User-owned mempool caches are not accounted for.
1584 *
1585 * @param mp
1586 * A pointer to the mempool structure.
1587 * @return
1588 * - 1: The mempool is empty.
1589 * - 0: The mempool is not empty.
1590 */
1591 static inline int
1592 rte_mempool_empty(const struct rte_mempool *mp)
1593 {
1594 return !!(rte_mempool_avail_count(mp) == 0);
1595 }
1596
1597 /**
1598 * Return the IO address of elt, which is an element of the pool mp.
1599 *
1600 * @param elt
1601 * A pointer (virtual address) to the element of the pool.
1602 * @return
1603 * The IO address of the elt element.
1604 * If the mempool was created with MEMPOOL_F_NO_IOVA_CONTIG, the
1605 * returned value is RTE_BAD_IOVA.
1606 */
1607 static inline rte_iova_t
1608 rte_mempool_virt2iova(const void *elt)
1609 {
1610 const struct rte_mempool_objhdr *hdr;
1611 hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
1612 sizeof(*hdr));
1613 return hdr->iova;
1614 }
1615
1616 /**
1617 * Check the consistency of mempool objects.
1618 *
1619 * Verify the coherency of fields in the mempool structure. Also check
1620 * that the cookies of mempool objects (even the ones that are not
1621 * present in pool) have a correct value. If not, a panic will occur.
1622 *
1623 * @param mp
1624 * A pointer to the mempool structure.
1625 */
1626 void rte_mempool_audit(struct rte_mempool *mp);
1627
1628 /**
1629 * Return a pointer to the private data in an mempool structure.
1630 *
1631 * @param mp
1632 * A pointer to the mempool structure.
1633 * @return
1634 * A pointer to the private data.
1635 */
1636 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1637 {
1638 return (char *)mp +
1639 MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
1640 }
1641
1642 /**
1643 * Dump the status of all mempools on the console
1644 *
1645 * @param f
1646 * A pointer to a file for output
1647 */
1648 void rte_mempool_list_dump(FILE *f);
1649
1650 /**
1651 * Search a mempool from its name
1652 *
1653 * @param name
1654 * The name of the mempool.
1655 * @return
1656 * The pointer to the mempool matching the name, or NULL if not found.
1657 * NULL on error
1658 * with rte_errno set appropriately. Possible rte_errno values include:
1659 * - ENOENT - required entry not available to return.
1660 *
1661 */
1662 struct rte_mempool *rte_mempool_lookup(const char *name);
1663
1664 /**
1665 * Get the header, trailer and total size of a mempool element.
1666 *
1667 * Given a desired size of the mempool element and mempool flags,
1668 * calculates header, trailer, body and total sizes of the mempool object.
1669 *
1670 * @param elt_size
1671 * The size of each element, without header and trailer.
1672 * @param flags
1673 * The flags used for the mempool creation.
1674 * Consult rte_mempool_create() for more information about possible values.
1675 * The size of each element.
1676 * @param sz
1677 * The calculated detailed size the mempool object. May be NULL.
1678 * @return
1679 * Total size of the mempool object.
1680 */
1681 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1682 struct rte_mempool_objsz *sz);
1683
1684 /**
1685 * Walk list of all memory pools
1686 *
1687 * @param func
1688 * Iterator function
1689 * @param arg
1690 * Argument passed to iterator
1691 */
1692 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
1693 void *arg);
1694
1695 #ifdef __cplusplus
1696 }
1697 #endif
1698
1699 #endif /* _RTE_MEMPOOL_H_ */