]> git.proxmox.com Git - mirror_edk2.git/blame - AppPkg/Applications/Python/Python-2.7.10/Modules/zlib/adler32.c
AppPkg/Applications/Python/Python-2.7.10: Initial Checkin part 2/5.
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.10 / Modules / zlib / adler32.c
CommitLineData
7eb75bcc
DM
1/* adler32.c -- compute the Adler-32 checksum of a data stream\r
2 * Copyright (C) 1995-2011 Mark Adler\r
3 * For conditions of distribution and use, see copyright notice in zlib.h\r
4 */\r
5\r
6/* @(#) $Id$ */\r
7\r
8#include "zutil.h"\r
9\r
10#define local static\r
11\r
12local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));\r
13\r
14#define BASE 65521 /* largest prime smaller than 65536 */\r
15#define NMAX 5552\r
16/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */\r
17\r
18#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}\r
19#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);\r
20#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);\r
21#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);\r
22#define DO16(buf) DO8(buf,0); DO8(buf,8);\r
23\r
24/* use NO_DIVIDE if your processor does not do division in hardware --\r
25 try it both ways to see which is faster */\r
26#ifdef NO_DIVIDE\r
27/* note that this assumes BASE is 65521, where 65536 % 65521 == 15\r
28 (thank you to John Reiser for pointing this out) */\r
29# define CHOP(a) \\r
30 do { \\r
31 unsigned long tmp = a >> 16; \\r
32 a &= 0xffffUL; \\r
33 a += (tmp << 4) - tmp; \\r
34 } while (0)\r
35# define MOD28(a) \\r
36 do { \\r
37 CHOP(a); \\r
38 if (a >= BASE) a -= BASE; \\r
39 } while (0)\r
40# define MOD(a) \\r
41 do { \\r
42 CHOP(a); \\r
43 MOD28(a); \\r
44 } while (0)\r
45# define MOD63(a) \\r
46 do { /* this assumes a is not negative */ \\r
47 z_off64_t tmp = a >> 32; \\r
48 a &= 0xffffffffL; \\r
49 a += (tmp << 8) - (tmp << 5) + tmp; \\r
50 tmp = a >> 16; \\r
51 a &= 0xffffL; \\r
52 a += (tmp << 4) - tmp; \\r
53 tmp = a >> 16; \\r
54 a &= 0xffffL; \\r
55 a += (tmp << 4) - tmp; \\r
56 if (a >= BASE) a -= BASE; \\r
57 } while (0)\r
58#else\r
59# define MOD(a) a %= BASE\r
60# define MOD28(a) a %= BASE\r
61# define MOD63(a) a %= BASE\r
62#endif\r
63\r
64/* ========================================================================= */\r
65uLong ZEXPORT adler32(adler, buf, len)\r
66 uLong adler;\r
67 const Bytef *buf;\r
68 uInt len;\r
69{\r
70 unsigned long sum2;\r
71 unsigned n;\r
72\r
73 /* split Adler-32 into component sums */\r
74 sum2 = (adler >> 16) & 0xffff;\r
75 adler &= 0xffff;\r
76\r
77 /* in case user likes doing a byte at a time, keep it fast */\r
78 if (len == 1) {\r
79 adler += buf[0];\r
80 if (adler >= BASE)\r
81 adler -= BASE;\r
82 sum2 += adler;\r
83 if (sum2 >= BASE)\r
84 sum2 -= BASE;\r
85 return adler | (sum2 << 16);\r
86 }\r
87\r
88 /* initial Adler-32 value (deferred check for len == 1 speed) */\r
89 if (buf == Z_NULL)\r
90 return 1L;\r
91\r
92 /* in case short lengths are provided, keep it somewhat fast */\r
93 if (len < 16) {\r
94 while (len--) {\r
95 adler += *buf++;\r
96 sum2 += adler;\r
97 }\r
98 if (adler >= BASE)\r
99 adler -= BASE;\r
100 MOD28(sum2); /* only added so many BASE's */\r
101 return adler | (sum2 << 16);\r
102 }\r
103\r
104 /* do length NMAX blocks -- requires just one modulo operation */\r
105 while (len >= NMAX) {\r
106 len -= NMAX;\r
107 n = NMAX / 16; /* NMAX is divisible by 16 */\r
108 do {\r
109 DO16(buf); /* 16 sums unrolled */\r
110 buf += 16;\r
111 } while (--n);\r
112 MOD(adler);\r
113 MOD(sum2);\r
114 }\r
115\r
116 /* do remaining bytes (less than NMAX, still just one modulo) */\r
117 if (len) { /* avoid modulos if none remaining */\r
118 while (len >= 16) {\r
119 len -= 16;\r
120 DO16(buf);\r
121 buf += 16;\r
122 }\r
123 while (len--) {\r
124 adler += *buf++;\r
125 sum2 += adler;\r
126 }\r
127 MOD(adler);\r
128 MOD(sum2);\r
129 }\r
130\r
131 /* return recombined sums */\r
132 return adler | (sum2 << 16);\r
133}\r
134\r
135/* ========================================================================= */\r
136local uLong adler32_combine_(adler1, adler2, len2)\r
137 uLong adler1;\r
138 uLong adler2;\r
139 z_off64_t len2;\r
140{\r
141 unsigned long sum1;\r
142 unsigned long sum2;\r
143 unsigned rem;\r
144\r
145 /* for negative len, return invalid adler32 as a clue for debugging */\r
146 if (len2 < 0)\r
147 return 0xffffffffUL;\r
148\r
149 /* the derivation of this formula is left as an exercise for the reader */\r
150 MOD63(len2); /* assumes len2 >= 0 */\r
151 rem = (unsigned)len2;\r
152 sum1 = adler1 & 0xffff;\r
153 sum2 = rem * sum1;\r
154 MOD(sum2);\r
155 sum1 += (adler2 & 0xffff) + BASE - 1;\r
156 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;\r
157 if (sum1 >= BASE) sum1 -= BASE;\r
158 if (sum1 >= BASE) sum1 -= BASE;\r
159 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);\r
160 if (sum2 >= BASE) sum2 -= BASE;\r
161 return sum1 | (sum2 << 16);\r
162}\r
163\r
164/* ========================================================================= */\r
165uLong ZEXPORT adler32_combine(adler1, adler2, len2)\r
166 uLong adler1;\r
167 uLong adler2;\r
168 z_off_t len2;\r
169{\r
170 return adler32_combine_(adler1, adler2, len2);\r
171}\r
172\r
173uLong ZEXPORT adler32_combine64(adler1, adler2, len2)\r
174 uLong adler1;\r
175 uLong adler2;\r
176 z_off64_t len2;\r
177{\r
178 return adler32_combine_(adler1, adler2, len2);\r
179}\r