]> git.proxmox.com Git - mirror_edk2.git/blame - MdeModulePkg/Core/PiSmmCore/HeapGuard.c
MdeModulePkg/Core: Fix heap guard issues
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / HeapGuard.c
CommitLineData
e63da9f0
JW
1/** @file\r
2 UEFI Heap Guard functions.\r
3\r
4Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>\r
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "HeapGuard.h"\r
16\r
17//\r
18// Global to avoid infinite reentrance of memory allocation when updating\r
19// page table attributes, which may need allocating pages for new PDE/PTE.\r
20//\r
21GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;\r
22\r
23//\r
24// Pointer to table tracking the Guarded memory with bitmap, in which '1'\r
25// is used to indicate memory guarded. '0' might be free memory or Guard\r
26// page itself, depending on status of memory adjacent to it.\r
27//\r
28GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;\r
29\r
30//\r
31// Current depth level of map table pointed by mGuardedMemoryMap.\r
32// mMapLevel must be initialized at least by 1. It will be automatically\r
33// updated according to the address of memory just tracked.\r
34//\r
35GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;\r
36\r
37//\r
38// Shift and mask for each level of map table\r
39//\r
40GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
41 = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;\r
42GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]\r
43 = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;\r
44\r
45//\r
46// SMM memory attribute protocol\r
47//\r
48EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *mSmmMemoryAttribute = NULL;\r
49\r
50/**\r
51 Set corresponding bits in bitmap table to 1 according to the address.\r
52\r
53 @param[in] Address Start address to set for.\r
54 @param[in] BitNumber Number of bits to set.\r
55 @param[in] BitMap Pointer to bitmap which covers the Address.\r
56\r
57 @return VOID\r
58**/\r
59STATIC\r
60VOID\r
61SetBits (\r
62 IN EFI_PHYSICAL_ADDRESS Address,\r
63 IN UINTN BitNumber,\r
64 IN UINT64 *BitMap\r
65 )\r
66{\r
67 UINTN Lsbs;\r
68 UINTN Qwords;\r
69 UINTN Msbs;\r
70 UINTN StartBit;\r
71 UINTN EndBit;\r
72\r
73 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
74 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
75\r
76 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
77 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
78 GUARDED_HEAP_MAP_ENTRY_BITS;\r
79 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
80 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
81 } else {\r
82 Msbs = BitNumber;\r
83 Lsbs = 0;\r
84 Qwords = 0;\r
85 }\r
86\r
87 if (Msbs > 0) {\r
88 *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
89 BitMap += 1;\r
90 }\r
91\r
92 if (Qwords > 0) {\r
93 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,\r
94 (UINT64)-1);\r
95 BitMap += Qwords;\r
96 }\r
97\r
98 if (Lsbs > 0) {\r
99 *BitMap |= (LShiftU64 (1, Lsbs) - 1);\r
100 }\r
101}\r
102\r
103/**\r
104 Set corresponding bits in bitmap table to 0 according to the address.\r
105\r
106 @param[in] Address Start address to set for.\r
107 @param[in] BitNumber Number of bits to set.\r
108 @param[in] BitMap Pointer to bitmap which covers the Address.\r
109\r
110 @return VOID.\r
111**/\r
112STATIC\r
113VOID\r
114ClearBits (\r
115 IN EFI_PHYSICAL_ADDRESS Address,\r
116 IN UINTN BitNumber,\r
117 IN UINT64 *BitMap\r
118 )\r
119{\r
120 UINTN Lsbs;\r
121 UINTN Qwords;\r
122 UINTN Msbs;\r
123 UINTN StartBit;\r
124 UINTN EndBit;\r
125\r
126 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
127 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
128\r
129 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
130 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %\r
131 GUARDED_HEAP_MAP_ENTRY_BITS;\r
132 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
133 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;\r
134 } else {\r
135 Msbs = BitNumber;\r
136 Lsbs = 0;\r
137 Qwords = 0;\r
138 }\r
139\r
140 if (Msbs > 0) {\r
141 *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);\r
142 BitMap += 1;\r
143 }\r
144\r
145 if (Qwords > 0) {\r
146 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);\r
147 BitMap += Qwords;\r
148 }\r
149\r
150 if (Lsbs > 0) {\r
151 *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);\r
152 }\r
153}\r
154\r
155/**\r
156 Get corresponding bits in bitmap table according to the address.\r
157\r
158 The value of bit 0 corresponds to the status of memory at given Address.\r
159 No more than 64 bits can be retrieved in one call.\r
160\r
161 @param[in] Address Start address to retrieve bits for.\r
162 @param[in] BitNumber Number of bits to get.\r
163 @param[in] BitMap Pointer to bitmap which covers the Address.\r
164\r
165 @return An integer containing the bits information.\r
166**/\r
167STATIC\r
168UINT64\r
169GetBits (\r
170 IN EFI_PHYSICAL_ADDRESS Address,\r
171 IN UINTN BitNumber,\r
172 IN UINT64 *BitMap\r
173 )\r
174{\r
175 UINTN StartBit;\r
176 UINTN EndBit;\r
177 UINTN Lsbs;\r
178 UINTN Msbs;\r
179 UINT64 Result;\r
180\r
181 ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
182\r
183 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);\r
184 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
185\r
186 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {\r
187 Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;\r
188 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;\r
189 } else {\r
190 Msbs = BitNumber;\r
191 Lsbs = 0;\r
192 }\r
193\r
194 Result = RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1);\r
195 if (Lsbs > 0) {\r
196 BitMap += 1;\r
197 Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);\r
198 }\r
199\r
200 return Result;\r
201}\r
202\r
203/**\r
204 Helper function to allocate pages without Guard for internal uses.\r
205\r
206 @param[in] Pages Page number.\r
207\r
208 @return Address of memory allocated.\r
209**/\r
210VOID *\r
211PageAlloc (\r
212 IN UINTN Pages\r
213 )\r
214{\r
215 EFI_STATUS Status;\r
216 EFI_PHYSICAL_ADDRESS Memory;\r
217\r
218 Status = SmmInternalAllocatePages (AllocateAnyPages, EfiRuntimeServicesData,\r
219 Pages, &Memory, FALSE);\r
220 if (EFI_ERROR (Status)) {\r
221 Memory = 0;\r
222 }\r
223\r
224 return (VOID *)(UINTN)Memory;\r
225}\r
226\r
227/**\r
228 Locate the pointer of bitmap from the guarded memory bitmap tables, which\r
229 covers the given Address.\r
230\r
231 @param[in] Address Start address to search the bitmap for.\r
232 @param[in] AllocMapUnit Flag to indicate memory allocation for the table.\r
233 @param[out] BitMap Pointer to bitmap which covers the Address.\r
234\r
235 @return The bit number from given Address to the end of current map table.\r
236**/\r
237UINTN\r
238FindGuardedMemoryMap (\r
239 IN EFI_PHYSICAL_ADDRESS Address,\r
240 IN BOOLEAN AllocMapUnit,\r
241 OUT UINT64 **BitMap\r
242 )\r
243{\r
244 UINTN Level;\r
245 UINT64 *GuardMap;\r
246 UINT64 MapMemory;\r
247 UINTN Index;\r
248 UINTN Size;\r
249 UINTN BitsToUnitEnd;\r
250\r
251 //\r
252 // Adjust current map table depth according to the address to access\r
253 //\r
254 while (mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH\r
255 &&\r
256 RShiftU64 (\r
257 Address,\r
258 mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]\r
259 ) != 0) {\r
260\r
261 if (mGuardedMemoryMap != 0) {\r
262 Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)\r
263 * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
264 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));\r
265 ASSERT (MapMemory != 0);\r
266\r
267 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
268\r
269 *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;\r
270 mGuardedMemoryMap = MapMemory;\r
271 }\r
272\r
273 mMapLevel++;\r
274\r
275 }\r
276\r
277 GuardMap = &mGuardedMemoryMap;\r
278 for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
279 Level < GUARDED_HEAP_MAP_TABLE_DEPTH;\r
280 ++Level) {\r
281\r
282 if (*GuardMap == 0) {\r
283 if (!AllocMapUnit) {\r
284 GuardMap = NULL;\r
285 break;\r
286 }\r
287\r
288 Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;\r
289 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));\r
290 ASSERT (MapMemory != 0);\r
291\r
292 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);\r
293 *GuardMap = MapMemory;\r
294 }\r
295\r
296 Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);\r
297 Index &= mLevelMask[Level];\r
298 GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));\r
299\r
300 }\r
301\r
302 BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);\r
303 *BitMap = GuardMap;\r
304\r
305 return BitsToUnitEnd;\r
306}\r
307\r
308/**\r
309 Set corresponding bits in bitmap table to 1 according to given memory range.\r
310\r
311 @param[in] Address Memory address to guard from.\r
312 @param[in] NumberOfPages Number of pages to guard.\r
313\r
314 @return VOID\r
315**/\r
316VOID\r
317EFIAPI\r
318SetGuardedMemoryBits (\r
319 IN EFI_PHYSICAL_ADDRESS Address,\r
320 IN UINTN NumberOfPages\r
321 )\r
322{\r
323 UINT64 *BitMap;\r
324 UINTN Bits;\r
325 UINTN BitsToUnitEnd;\r
326\r
327 while (NumberOfPages > 0) {\r
328 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
329 ASSERT (BitMap != NULL);\r
330\r
331 if (NumberOfPages > BitsToUnitEnd) {\r
332 // Cross map unit\r
333 Bits = BitsToUnitEnd;\r
334 } else {\r
335 Bits = NumberOfPages;\r
336 }\r
337\r
338 SetBits (Address, Bits, BitMap);\r
339\r
340 NumberOfPages -= Bits;\r
341 Address += EFI_PAGES_TO_SIZE (Bits);\r
342 }\r
343}\r
344\r
345/**\r
346 Clear corresponding bits in bitmap table according to given memory range.\r
347\r
348 @param[in] Address Memory address to unset from.\r
349 @param[in] NumberOfPages Number of pages to unset guard.\r
350\r
351 @return VOID\r
352**/\r
353VOID\r
354EFIAPI\r
355ClearGuardedMemoryBits (\r
356 IN EFI_PHYSICAL_ADDRESS Address,\r
357 IN UINTN NumberOfPages\r
358 )\r
359{\r
360 UINT64 *BitMap;\r
361 UINTN Bits;\r
362 UINTN BitsToUnitEnd;\r
363\r
364 while (NumberOfPages > 0) {\r
365 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);\r
366 ASSERT (BitMap != NULL);\r
367\r
368 if (NumberOfPages > BitsToUnitEnd) {\r
369 // Cross map unit\r
370 Bits = BitsToUnitEnd;\r
371 } else {\r
372 Bits = NumberOfPages;\r
373 }\r
374\r
375 ClearBits (Address, Bits, BitMap);\r
376\r
377 NumberOfPages -= Bits;\r
378 Address += EFI_PAGES_TO_SIZE (Bits);\r
379 }\r
380}\r
381\r
382/**\r
383 Retrieve corresponding bits in bitmap table according to given memory range.\r
384\r
385 @param[in] Address Memory address to retrieve from.\r
386 @param[in] NumberOfPages Number of pages to retrieve.\r
387\r
388 @return An integer containing the guarded memory bitmap.\r
389**/\r
390UINTN\r
391GetGuardedMemoryBits (\r
392 IN EFI_PHYSICAL_ADDRESS Address,\r
393 IN UINTN NumberOfPages\r
394 )\r
395{\r
396 UINT64 *BitMap;\r
397 UINTN Bits;\r
398 UINTN Result;\r
399 UINTN Shift;\r
400 UINTN BitsToUnitEnd;\r
401\r
402 ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);\r
403\r
404 Result = 0;\r
405 Shift = 0;\r
406 while (NumberOfPages > 0) {\r
407 BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);\r
408\r
409 if (NumberOfPages > BitsToUnitEnd) {\r
410 // Cross map unit\r
411 Bits = BitsToUnitEnd;\r
412 } else {\r
413 Bits = NumberOfPages;\r
414 }\r
415\r
416 if (BitMap != NULL) {\r
417 Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);\r
418 }\r
419\r
420 Shift += Bits;\r
421 NumberOfPages -= Bits;\r
422 Address += EFI_PAGES_TO_SIZE (Bits);\r
423 }\r
424\r
425 return Result;\r
426}\r
427\r
428/**\r
429 Get bit value in bitmap table for the given address.\r
430\r
431 @param[in] Address The address to retrieve for.\r
432\r
433 @return 1 or 0.\r
434**/\r
435UINTN\r
436EFIAPI\r
437GetGuardMapBit (\r
438 IN EFI_PHYSICAL_ADDRESS Address\r
439 )\r
440{\r
441 UINT64 *GuardMap;\r
442\r
443 FindGuardedMemoryMap (Address, FALSE, &GuardMap);\r
444 if (GuardMap != NULL) {\r
445 if (RShiftU64 (*GuardMap,\r
446 GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {\r
447 return 1;\r
448 }\r
449 }\r
450\r
451 return 0;\r
452}\r
453\r
454/**\r
455 Set the bit in bitmap table for the given address.\r
456\r
457 @param[in] Address The address to set for.\r
458\r
459 @return VOID.\r
460**/\r
461VOID\r
462EFIAPI\r
463SetGuardMapBit (\r
464 IN EFI_PHYSICAL_ADDRESS Address\r
465 )\r
466{\r
467 UINT64 *GuardMap;\r
468 UINT64 BitMask;\r
469\r
470 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
471 if (GuardMap != NULL) {\r
472 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
473 *GuardMap |= BitMask;\r
474 }\r
475}\r
476\r
477/**\r
478 Clear the bit in bitmap table for the given address.\r
479\r
480 @param[in] Address The address to clear for.\r
481\r
482 @return VOID.\r
483**/\r
484VOID\r
485EFIAPI\r
486ClearGuardMapBit (\r
487 IN EFI_PHYSICAL_ADDRESS Address\r
488 )\r
489{\r
490 UINT64 *GuardMap;\r
491 UINT64 BitMask;\r
492\r
493 FindGuardedMemoryMap (Address, TRUE, &GuardMap);\r
494 if (GuardMap != NULL) {\r
495 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));\r
496 *GuardMap &= ~BitMask;\r
497 }\r
498}\r
499\r
500/**\r
501 Check to see if the page at the given address is a Guard page or not.\r
502\r
503 @param[in] Address The address to check for.\r
504\r
505 @return TRUE The page at Address is a Guard page.\r
506 @return FALSE The page at Address is not a Guard page.\r
507**/\r
508BOOLEAN\r
509EFIAPI\r
510IsGuardPage (\r
511 IN EFI_PHYSICAL_ADDRESS Address\r
512)\r
513{\r
514 UINTN BitMap;\r
515\r
516 //\r
517 // There must be at least one guarded page before and/or after given\r
518 // address if it's a Guard page. The bitmap pattern should be one of\r
519 // 001, 100 and 101\r
520 //\r
521 BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);\r
522 return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));\r
523}\r
524\r
525/**\r
526 Check to see if the page at the given address is a head Guard page or not.\r
527\r
528 @param[in] Address The address to check for.\r
529\r
530 @return TRUE The page at Address is a head Guard page.\r
531 @return FALSE The page at Address is not a head Guard page.\r
532**/\r
533BOOLEAN\r
534EFIAPI\r
535IsHeadGuard (\r
536 IN EFI_PHYSICAL_ADDRESS Address\r
537 )\r
538{\r
539 return (GetGuardedMemoryBits (Address, 2) == BIT1);\r
540}\r
541\r
542/**\r
543 Check to see if the page at the given address is a tail Guard page or not.\r
544\r
545 @param[in] Address The address to check for.\r
546\r
547 @return TRUE The page at Address is a tail Guard page.\r
548 @return FALSE The page at Address is not a tail Guard page.\r
549**/\r
550BOOLEAN\r
551EFIAPI\r
552IsTailGuard (\r
553 IN EFI_PHYSICAL_ADDRESS Address\r
554 )\r
555{\r
556 return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) == BIT0);\r
557}\r
558\r
559/**\r
560 Check to see if the page at the given address is guarded or not.\r
561\r
562 @param[in] Address The address to check for.\r
563\r
564 @return TRUE The page at Address is guarded.\r
565 @return FALSE The page at Address is not guarded.\r
566**/\r
567BOOLEAN\r
568EFIAPI\r
569IsMemoryGuarded (\r
570 IN EFI_PHYSICAL_ADDRESS Address\r
571 )\r
572{\r
573 return (GetGuardMapBit (Address) == 1);\r
574}\r
575\r
576/**\r
577 Set the page at the given address to be a Guard page.\r
578\r
579 This is done by changing the page table attribute to be NOT PRSENT.\r
580\r
581 @param[in] BaseAddress Page address to Guard at.\r
582\r
583 @return VOID.\r
584**/\r
585VOID\r
586EFIAPI\r
587SetGuardPage (\r
588 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
589 )\r
590{\r
591 if (mSmmMemoryAttribute != NULL) {\r
592 mOnGuarding = TRUE;\r
593 mSmmMemoryAttribute->SetMemoryAttributes (\r
594 mSmmMemoryAttribute,\r
595 BaseAddress,\r
596 EFI_PAGE_SIZE,\r
597 EFI_MEMORY_RP\r
598 );\r
599 mOnGuarding = FALSE;\r
600 }\r
601}\r
602\r
603/**\r
604 Unset the Guard page at the given address to the normal memory.\r
605\r
606 This is done by changing the page table attribute to be PRSENT.\r
607\r
608 @param[in] BaseAddress Page address to Guard at.\r
609\r
610 @return VOID.\r
611**/\r
612VOID\r
613EFIAPI\r
614UnsetGuardPage (\r
615 IN EFI_PHYSICAL_ADDRESS BaseAddress\r
616 )\r
617{\r
618 if (mSmmMemoryAttribute != NULL) {\r
619 mOnGuarding = TRUE;\r
620 mSmmMemoryAttribute->ClearMemoryAttributes (\r
621 mSmmMemoryAttribute,\r
622 BaseAddress,\r
623 EFI_PAGE_SIZE,\r
624 EFI_MEMORY_RP\r
625 );\r
626 mOnGuarding = FALSE;\r
627 }\r
628}\r
629\r
630/**\r
631 Check to see if the memory at the given address should be guarded or not.\r
632\r
633 @param[in] MemoryType Memory type to check.\r
634 @param[in] AllocateType Allocation type to check.\r
635 @param[in] PageOrPool Indicate a page allocation or pool allocation.\r
636\r
637\r
638 @return TRUE The given type of memory should be guarded.\r
639 @return FALSE The given type of memory should not be guarded.\r
640**/\r
641BOOLEAN\r
642IsMemoryTypeToGuard (\r
643 IN EFI_MEMORY_TYPE MemoryType,\r
644 IN EFI_ALLOCATE_TYPE AllocateType,\r
645 IN UINT8 PageOrPool\r
646 )\r
647{\r
648 UINT64 TestBit;\r
649 UINT64 ConfigBit;\r
650\r
651 if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0\r
652 || mOnGuarding\r
653 || AllocateType == AllocateAddress) {\r
654 return FALSE;\r
655 }\r
656\r
657 ConfigBit = 0;\r
658 if ((PageOrPool & GUARD_HEAP_TYPE_POOL) != 0) {\r
659 ConfigBit |= PcdGet64 (PcdHeapGuardPoolType);\r
660 }\r
661\r
662 if ((PageOrPool & GUARD_HEAP_TYPE_PAGE) != 0) {\r
663 ConfigBit |= PcdGet64 (PcdHeapGuardPageType);\r
664 }\r
665\r
666 if (MemoryType == EfiRuntimeServicesData ||\r
667 MemoryType == EfiRuntimeServicesCode) {\r
668 TestBit = LShiftU64 (1, MemoryType);\r
669 } else if (MemoryType == EfiMaxMemoryType) {\r
670 TestBit = (UINT64)-1;\r
671 } else {\r
672 TestBit = 0;\r
673 }\r
674\r
675 return ((ConfigBit & TestBit) != 0);\r
676}\r
677\r
678/**\r
679 Check to see if the pool at the given address should be guarded or not.\r
680\r
681 @param[in] MemoryType Pool type to check.\r
682\r
683\r
684 @return TRUE The given type of pool should be guarded.\r
685 @return FALSE The given type of pool should not be guarded.\r
686**/\r
687BOOLEAN\r
688IsPoolTypeToGuard (\r
689 IN EFI_MEMORY_TYPE MemoryType\r
690 )\r
691{\r
692 return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,\r
693 GUARD_HEAP_TYPE_POOL);\r
694}\r
695\r
696/**\r
697 Check to see if the page at the given address should be guarded or not.\r
698\r
699 @param[in] MemoryType Page type to check.\r
700 @param[in] AllocateType Allocation type to check.\r
701\r
702 @return TRUE The given type of page should be guarded.\r
703 @return FALSE The given type of page should not be guarded.\r
704**/\r
705BOOLEAN\r
706IsPageTypeToGuard (\r
707 IN EFI_MEMORY_TYPE MemoryType,\r
708 IN EFI_ALLOCATE_TYPE AllocateType\r
709 )\r
710{\r
711 return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);\r
712}\r
713\r
714/**\r
715 Check to see if the heap guard is enabled for page and/or pool allocation.\r
716\r
717 @return TRUE/FALSE.\r
718**/\r
719BOOLEAN\r
720IsHeapGuardEnabled (\r
721 VOID\r
722 )\r
723{\r
724 return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages,\r
725 GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_PAGE);\r
726}\r
727\r
728/**\r
729 Set head Guard and tail Guard for the given memory range.\r
730\r
731 @param[in] Memory Base address of memory to set guard for.\r
732 @param[in] NumberOfPages Memory size in pages.\r
733\r
734 @return VOID.\r
735**/\r
736VOID\r
737SetGuardForMemory (\r
738 IN EFI_PHYSICAL_ADDRESS Memory,\r
739 IN UINTN NumberOfPages\r
740 )\r
741{\r
742 EFI_PHYSICAL_ADDRESS GuardPage;\r
743\r
744 //\r
745 // Set tail Guard\r
746 //\r
747 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
748 if (!IsGuardPage (GuardPage)) {\r
749 SetGuardPage (GuardPage);\r
750 }\r
751\r
752 // Set head Guard\r
753 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
754 if (!IsGuardPage (GuardPage)) {\r
755 SetGuardPage (GuardPage);\r
756 }\r
757\r
758 //\r
759 // Mark the memory range as Guarded\r
760 //\r
761 SetGuardedMemoryBits (Memory, NumberOfPages);\r
762}\r
763\r
764/**\r
765 Unset head Guard and tail Guard for the given memory range.\r
766\r
767 @param[in] Memory Base address of memory to unset guard for.\r
768 @param[in] NumberOfPages Memory size in pages.\r
769\r
770 @return VOID.\r
771**/\r
772VOID\r
773UnsetGuardForMemory (\r
774 IN EFI_PHYSICAL_ADDRESS Memory,\r
775 IN UINTN NumberOfPages\r
776 )\r
777{\r
778 EFI_PHYSICAL_ADDRESS GuardPage;\r
38d870fc 779 UINT64 GuardBitmap;\r
e63da9f0
JW
780\r
781 if (NumberOfPages == 0) {\r
782 return;\r
783 }\r
784\r
785 //\r
786 // Head Guard must be one page before, if any.\r
787 //\r
38d870fc
JW
788 // MSB-> 1 0 <-LSB\r
789 // -------------------\r
790 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
791 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
792 // 1 X -> Don't free first page (need a new Guard)\r
793 // (it'll be turned into a Guard page later)\r
794 // -------------------\r
795 // Start -> -1 -2\r
796 //\r
e63da9f0 797 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);\r
38d870fc
JW
798 GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);\r
799 if ((GuardBitmap & BIT1) == 0) {\r
800 //\r
801 // Head Guard exists.\r
802 //\r
803 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
804 //\r
805 // If the head Guard is not a tail Guard of adjacent memory block,\r
806 // unset it.\r
807 //\r
808 UnsetGuardPage (GuardPage);\r
809 }\r
38d870fc 810 } else {\r
e63da9f0
JW
811 //\r
812 // Pages before memory to free are still in Guard. It's a partial free\r
813 // case. Turn first page of memory block to free into a new Guard.\r
814 //\r
815 SetGuardPage (Memory);\r
816 }\r
817\r
818 //\r
819 // Tail Guard must be the page after this memory block to free, if any.\r
820 //\r
38d870fc
JW
821 // MSB-> 1 0 <-LSB\r
822 // --------------------\r
823 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
824 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
825 // X 1 -> Don't free last page (need a new Guard)\r
826 // (it'll be turned into a Guard page later)\r
827 // --------------------\r
828 // +1 +0 <- End\r
829 //\r
e63da9f0 830 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);\r
38d870fc
JW
831 GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);\r
832 if ((GuardBitmap & BIT0) == 0) {\r
833 //\r
834 // Tail Guard exists.\r
835 //\r
836 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
837 //\r
838 // If the tail Guard is not a head Guard of adjacent memory block,\r
839 // free it; otherwise, keep it.\r
840 //\r
841 UnsetGuardPage (GuardPage);\r
842 }\r
38d870fc 843 } else {\r
e63da9f0
JW
844 //\r
845 // Pages after memory to free are still in Guard. It's a partial free\r
846 // case. We need to keep one page to be a head Guard.\r
847 //\r
848 SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));\r
849 }\r
850\r
851 //\r
852 // No matter what, we just clear the mark of the Guarded memory.\r
853 //\r
854 ClearGuardedMemoryBits(Memory, NumberOfPages);\r
855}\r
856\r
857/**\r
858 Adjust address of free memory according to existing and/or required Guard.\r
859\r
860 This function will check if there're existing Guard pages of adjacent\r
861 memory blocks, and try to use it as the Guard page of the memory to be\r
862 allocated.\r
863\r
864 @param[in] Start Start address of free memory block.\r
865 @param[in] Size Size of free memory block.\r
866 @param[in] SizeRequested Size of memory to allocate.\r
867\r
868 @return The end address of memory block found.\r
869 @return 0 if no enough space for the required size of memory and its Guard.\r
870**/\r
871UINT64\r
872AdjustMemoryS (\r
873 IN UINT64 Start,\r
874 IN UINT64 Size,\r
875 IN UINT64 SizeRequested\r
876 )\r
877{\r
878 UINT64 Target;\r
879\r
c44218e5
JW
880 //\r
881 // UEFI spec requires that allocated pool must be 8-byte aligned. If it's\r
882 // indicated to put the pool near the Tail Guard, we need extra bytes to\r
883 // make sure alignment of the returned pool address.\r
884 //\r
885 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {\r
886 SizeRequested = ALIGN_VALUE(SizeRequested, 8);\r
887 }\r
888\r
e63da9f0
JW
889 Target = Start + Size - SizeRequested;\r
890\r
891 //\r
892 // At least one more page needed for Guard page.\r
893 //\r
894 if (Size < (SizeRequested + EFI_PAGES_TO_SIZE (1))) {\r
895 return 0;\r
896 }\r
897\r
898 if (!IsGuardPage (Start + Size)) {\r
899 // No Guard at tail to share. One more page is needed.\r
900 Target -= EFI_PAGES_TO_SIZE (1);\r
901 }\r
902\r
903 // Out of range?\r
904 if (Target < Start) {\r
905 return 0;\r
906 }\r
907\r
908 // At the edge?\r
909 if (Target == Start) {\r
910 if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {\r
911 // No enough space for a new head Guard if no Guard at head to share.\r
912 return 0;\r
913 }\r
914 }\r
915\r
916 // OK, we have enough pages for memory and its Guards. Return the End of the\r
917 // free space.\r
918 return Target + SizeRequested - 1;\r
919}\r
920\r
921/**\r
922 Adjust the start address and number of pages to free according to Guard.\r
923\r
924 The purpose of this function is to keep the shared Guard page with adjacent\r
925 memory block if it's still in guard, or free it if no more sharing. Another\r
926 is to reserve pages as Guard pages in partial page free situation.\r
927\r
928 @param[in,out] Memory Base address of memory to free.\r
929 @param[in,out] NumberOfPages Size of memory to free.\r
930\r
931 @return VOID.\r
932**/\r
933VOID\r
934AdjustMemoryF (\r
935 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
936 IN OUT UINTN *NumberOfPages\r
937 )\r
938{\r
939 EFI_PHYSICAL_ADDRESS Start;\r
940 EFI_PHYSICAL_ADDRESS MemoryToTest;\r
941 UINTN PagesToFree;\r
38d870fc 942 UINT64 GuardBitmap;\r
e63da9f0
JW
943\r
944 if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {\r
945 return;\r
946 }\r
947\r
948 Start = *Memory;\r
949 PagesToFree = *NumberOfPages;\r
950\r
951 //\r
952 // Head Guard must be one page before, if any.\r
953 //\r
38d870fc
JW
954 // MSB-> 1 0 <-LSB\r
955 // -------------------\r
956 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)\r
957 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)\r
958 // 1 X -> Don't free first page (need a new Guard)\r
959 // (it'll be turned into a Guard page later)\r
960 // -------------------\r
961 // Start -> -1 -2\r
962 //\r
963 MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);\r
964 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
965 if ((GuardBitmap & BIT1) == 0) {\r
966 //\r
967 // Head Guard exists.\r
968 //\r
969 if ((GuardBitmap & BIT0) == 0) {\r
e63da9f0
JW
970 //\r
971 // If the head Guard is not a tail Guard of adjacent memory block,\r
972 // free it; otherwise, keep it.\r
973 //\r
974 Start -= EFI_PAGES_TO_SIZE (1);\r
975 PagesToFree += 1;\r
976 }\r
38d870fc 977 } else {\r
e63da9f0 978 //\r
38d870fc
JW
979 // No Head Guard, and pages before memory to free are still in Guard. It's a\r
980 // partial free case. We need to keep one page to be a tail Guard.\r
e63da9f0
JW
981 //\r
982 Start += EFI_PAGES_TO_SIZE (1);\r
983 PagesToFree -= 1;\r
984 }\r
985\r
986 //\r
987 // Tail Guard must be the page after this memory block to free, if any.\r
988 //\r
38d870fc
JW
989 // MSB-> 1 0 <-LSB\r
990 // --------------------\r
991 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)\r
992 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)\r
993 // X 1 -> Don't free last page (need a new Guard)\r
994 // (it'll be turned into a Guard page later)\r
995 // --------------------\r
996 // +1 +0 <- End\r
997 //\r
e63da9f0 998 MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);\r
38d870fc
JW
999 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);\r
1000 if ((GuardBitmap & BIT0) == 0) {\r
1001 //\r
1002 // Tail Guard exists.\r
1003 //\r
1004 if ((GuardBitmap & BIT1) == 0) {\r
e63da9f0
JW
1005 //\r
1006 // If the tail Guard is not a head Guard of adjacent memory block,\r
1007 // free it; otherwise, keep it.\r
1008 //\r
1009 PagesToFree += 1;\r
1010 }\r
38d870fc 1011 } else if (PagesToFree > 0) {\r
e63da9f0 1012 //\r
38d870fc
JW
1013 // No Tail Guard, and pages after memory to free are still in Guard. It's a\r
1014 // partial free case. We need to keep one page to be a head Guard.\r
e63da9f0
JW
1015 //\r
1016 PagesToFree -= 1;\r
1017 }\r
1018\r
1019 *Memory = Start;\r
1020 *NumberOfPages = PagesToFree;\r
1021}\r
1022\r
1023/**\r
1024 Adjust the base and number of pages to really allocate according to Guard.\r
1025\r
1026 @param[in,out] Memory Base address of free memory.\r
1027 @param[in,out] NumberOfPages Size of memory to allocate.\r
1028\r
1029 @return VOID.\r
1030**/\r
1031VOID\r
1032AdjustMemoryA (\r
1033 IN OUT EFI_PHYSICAL_ADDRESS *Memory,\r
1034 IN OUT UINTN *NumberOfPages\r
1035 )\r
1036{\r
1037 //\r
1038 // FindFreePages() has already taken the Guard into account. It's safe to\r
1039 // adjust the start address and/or number of pages here, to make sure that\r
1040 // the Guards are also "allocated".\r
1041 //\r
1042 if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {\r
1043 // No tail Guard, add one.\r
1044 *NumberOfPages += 1;\r
1045 }\r
1046\r
1047 if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {\r
1048 // No head Guard, add one.\r
1049 *Memory -= EFI_PAGE_SIZE;\r
1050 *NumberOfPages += 1;\r
1051 }\r
1052}\r
1053\r
1054/**\r
1055 Adjust the pool head position to make sure the Guard page is adjavent to\r
1056 pool tail or pool head.\r
1057\r
1058 @param[in] Memory Base address of memory allocated.\r
1059 @param[in] NoPages Number of pages actually allocated.\r
1060 @param[in] Size Size of memory requested.\r
1061 (plus pool head/tail overhead)\r
1062\r
1063 @return Address of pool head\r
1064**/\r
1065VOID *\r
1066AdjustPoolHeadA (\r
1067 IN EFI_PHYSICAL_ADDRESS Memory,\r
1068 IN UINTN NoPages,\r
1069 IN UINTN Size\r
1070 )\r
1071{\r
c44218e5 1072 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
e63da9f0
JW
1073 //\r
1074 // Pool head is put near the head Guard\r
1075 //\r
1076 return (VOID *)(UINTN)Memory;\r
1077 }\r
1078\r
1079 //\r
1080 // Pool head is put near the tail Guard\r
1081 //\r
c44218e5 1082 Size = ALIGN_VALUE (Size, 8);\r
e63da9f0
JW
1083 return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);\r
1084}\r
1085\r
1086/**\r
1087 Get the page base address according to pool head address.\r
1088\r
1089 @param[in] Memory Head address of pool to free.\r
1090\r
1091 @return Address of pool head.\r
1092**/\r
1093VOID *\r
1094AdjustPoolHeadF (\r
1095 IN EFI_PHYSICAL_ADDRESS Memory\r
1096 )\r
1097{\r
c44218e5 1098 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {\r
e63da9f0
JW
1099 //\r
1100 // Pool head is put near the head Guard\r
1101 //\r
1102 return (VOID *)(UINTN)Memory;\r
1103 }\r
1104\r
1105 //\r
1106 // Pool head is put near the tail Guard\r
1107 //\r
1108 return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);\r
1109}\r
1110\r
1111/**\r
1112 Helper function of memory allocation with Guard pages.\r
1113\r
1114 @param FreePageList The free page node.\r
1115 @param NumberOfPages Number of pages to be allocated.\r
1116 @param MaxAddress Request to allocate memory below this address.\r
1117 @param MemoryType Type of memory requested.\r
1118\r
1119 @return Memory address of allocated pages.\r
1120**/\r
1121UINTN\r
1122InternalAllocMaxAddressWithGuard (\r
1123 IN OUT LIST_ENTRY *FreePageList,\r
1124 IN UINTN NumberOfPages,\r
1125 IN UINTN MaxAddress,\r
1126 IN EFI_MEMORY_TYPE MemoryType\r
1127\r
1128 )\r
1129{\r
1130 LIST_ENTRY *Node;\r
1131 FREE_PAGE_LIST *Pages;\r
1132 UINTN PagesToAlloc;\r
1133 UINTN HeadGuard;\r
1134 UINTN TailGuard;\r
1135 UINTN Address;\r
1136\r
1137 for (Node = FreePageList->BackLink; Node != FreePageList;\r
1138 Node = Node->BackLink) {\r
1139 Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);\r
1140 if (Pages->NumberOfPages >= NumberOfPages &&\r
1141 (UINTN)Pages + EFI_PAGES_TO_SIZE (NumberOfPages) - 1 <= MaxAddress) {\r
1142\r
1143 //\r
1144 // We may need 1 or 2 more pages for Guard. Check it out.\r
1145 //\r
1146 PagesToAlloc = NumberOfPages;\r
1147 TailGuard = (UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages);\r
1148 if (!IsGuardPage (TailGuard)) {\r
1149 //\r
1150 // Add one if no Guard at the end of current free memory block.\r
1151 //\r
1152 PagesToAlloc += 1;\r
1153 TailGuard = 0;\r
1154 }\r
1155\r
1156 HeadGuard = (UINTN)Pages +\r
1157 EFI_PAGES_TO_SIZE (Pages->NumberOfPages - PagesToAlloc) -\r
1158 EFI_PAGE_SIZE;\r
1159 if (!IsGuardPage (HeadGuard)) {\r
1160 //\r
1161 // Add one if no Guard at the page before the address to allocate\r
1162 //\r
1163 PagesToAlloc += 1;\r
1164 HeadGuard = 0;\r
1165 }\r
1166\r
1167 if (Pages->NumberOfPages < PagesToAlloc) {\r
1168 // Not enough space to allocate memory with Guards? Try next block.\r
1169 continue;\r
1170 }\r
1171\r
1172 Address = InternalAllocPagesOnOneNode (Pages, PagesToAlloc, MaxAddress);\r
1173 ConvertSmmMemoryMapEntry(MemoryType, Address, PagesToAlloc, FALSE);\r
1174 CoreFreeMemoryMapStack();\r
1175 if (HeadGuard == 0) {\r
1176 // Don't pass the Guard page to user.\r
1177 Address += EFI_PAGE_SIZE;\r
1178 }\r
1179 SetGuardForMemory (Address, NumberOfPages);\r
1180 return Address;\r
1181 }\r
1182 }\r
1183\r
1184 return (UINTN)(-1);\r
1185}\r
1186\r
1187/**\r
1188 Helper function of memory free with Guard pages.\r
1189\r
1190 @param[in] Memory Base address of memory being freed.\r
1191 @param[in] NumberOfPages The number of pages to free.\r
1192 @param[in] AddRegion If this memory is new added region.\r
1193\r
1194 @retval EFI_NOT_FOUND Could not find the entry that covers the range.\r
1195 @retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.\r
1196 @return EFI_SUCCESS Pages successfully freed.\r
1197**/\r
1198EFI_STATUS\r
1199SmmInternalFreePagesExWithGuard (\r
1200 IN EFI_PHYSICAL_ADDRESS Memory,\r
1201 IN UINTN NumberOfPages,\r
1202 IN BOOLEAN AddRegion\r
1203 )\r
1204{\r
1205 EFI_PHYSICAL_ADDRESS MemoryToFree;\r
1206 UINTN PagesToFree;\r
1207\r
1208 MemoryToFree = Memory;\r
1209 PagesToFree = NumberOfPages;\r
1210\r
1211 AdjustMemoryF (&MemoryToFree, &PagesToFree);\r
1212 UnsetGuardForMemory (Memory, NumberOfPages);\r
38d870fc
JW
1213 if (PagesToFree == 0) {\r
1214 return EFI_SUCCESS;\r
1215 }\r
e63da9f0
JW
1216\r
1217 return SmmInternalFreePagesEx (MemoryToFree, PagesToFree, AddRegion);\r
1218}\r
1219\r
1220/**\r
1221 Set all Guard pages which cannot be set during the non-SMM mode time.\r
1222**/\r
1223VOID\r
1224SetAllGuardPages (\r
1225 VOID\r
1226 )\r
1227{\r
1228 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1229 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1230 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1231 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1232 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1233 UINT64 TableEntry;\r
1234 UINT64 Address;\r
1235 UINT64 GuardPage;\r
1236 INTN Level;\r
1237 UINTN Index;\r
1238 BOOLEAN OnGuarding;\r
1239\r
c6c50165
JW
1240 if (mGuardedMemoryMap == 0 ||\r
1241 mMapLevel == 0 ||\r
1242 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1243 return;\r
1244 }\r
1245\r
1246 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1247 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1248\r
1249 SetMem (Tables, sizeof(Tables), 0);\r
1250 SetMem (Addresses, sizeof(Addresses), 0);\r
1251 SetMem (Indices, sizeof(Indices), 0);\r
1252\r
1253 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1254 Tables[Level] = mGuardedMemoryMap;\r
1255 Address = 0;\r
1256 OnGuarding = FALSE;\r
1257\r
1258 DEBUG_CODE (\r
1259 DumpGuardedMemoryBitmap ();\r
1260 );\r
1261\r
1262 while (TRUE) {\r
1263 if (Indices[Level] > Entries[Level]) {\r
1264 Tables[Level] = 0;\r
1265 Level -= 1;\r
1266 } else {\r
1267\r
1268 TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];\r
1269 Address = Addresses[Level];\r
1270\r
1271 if (TableEntry == 0) {\r
1272\r
1273 OnGuarding = FALSE;\r
1274\r
1275 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1276\r
1277 Level += 1;\r
1278 Tables[Level] = TableEntry;\r
1279 Addresses[Level] = Address;\r
1280 Indices[Level] = 0;\r
1281\r
1282 continue;\r
1283\r
1284 } else {\r
1285\r
1286 Index = 0;\r
1287 while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {\r
1288 if ((TableEntry & 1) == 1) {\r
1289 if (OnGuarding) {\r
1290 GuardPage = 0;\r
1291 } else {\r
1292 GuardPage = Address - EFI_PAGE_SIZE;\r
1293 }\r
1294 OnGuarding = TRUE;\r
1295 } else {\r
1296 if (OnGuarding) {\r
1297 GuardPage = Address;\r
1298 } else {\r
1299 GuardPage = 0;\r
1300 }\r
1301 OnGuarding = FALSE;\r
1302 }\r
1303\r
1304 if (GuardPage != 0) {\r
1305 SetGuardPage (GuardPage);\r
1306 }\r
1307\r
1308 if (TableEntry == 0) {\r
1309 break;\r
1310 }\r
1311\r
1312 TableEntry = RShiftU64 (TableEntry, 1);\r
1313 Address += EFI_PAGE_SIZE;\r
1314 Index += 1;\r
1315 }\r
1316 }\r
1317 }\r
1318\r
1319 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1320 break;\r
1321 }\r
1322\r
1323 Indices[Level] += 1;\r
1324 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1325 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1326\r
1327 }\r
1328}\r
1329\r
1330/**\r
1331 Hook function used to set all Guard pages after entering SMM mode.\r
1332**/\r
1333VOID\r
1334SmmEntryPointMemoryManagementHook (\r
1335 VOID\r
1336 )\r
1337{\r
1338 EFI_STATUS Status;\r
1339\r
1340 if (mSmmMemoryAttribute == NULL) {\r
1341 Status = SmmLocateProtocol (\r
1342 &gEdkiiSmmMemoryAttributeProtocolGuid,\r
1343 NULL,\r
1344 (VOID **)&mSmmMemoryAttribute\r
1345 );\r
1346 if (!EFI_ERROR(Status)) {\r
1347 SetAllGuardPages ();\r
1348 }\r
1349 }\r
1350}\r
1351\r
1352/**\r
1353 Helper function to convert a UINT64 value in binary to a string.\r
1354\r
1355 @param[in] Value Value of a UINT64 integer.\r
1356 @param[out] BinString String buffer to contain the conversion result.\r
1357\r
1358 @return VOID.\r
1359**/\r
1360VOID\r
1361Uint64ToBinString (\r
1362 IN UINT64 Value,\r
1363 OUT CHAR8 *BinString\r
1364 )\r
1365{\r
1366 UINTN Index;\r
1367\r
1368 if (BinString == NULL) {\r
1369 return;\r
1370 }\r
1371\r
1372 for (Index = 64; Index > 0; --Index) {\r
1373 BinString[Index - 1] = '0' + (Value & 1);\r
1374 Value = RShiftU64 (Value, 1);\r
1375 }\r
1376 BinString[64] = '\0';\r
1377}\r
1378\r
1379/**\r
1380 Dump the guarded memory bit map.\r
1381**/\r
1382VOID\r
1383EFIAPI\r
1384DumpGuardedMemoryBitmap (\r
1385 VOID\r
1386 )\r
1387{\r
1388 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1389 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1390 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1391 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1392 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];\r
1393 UINT64 TableEntry;\r
1394 UINT64 Address;\r
1395 INTN Level;\r
1396 UINTN RepeatZero;\r
1397 CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];\r
1398 CHAR8 *Ruler1;\r
1399 CHAR8 *Ruler2;\r
1400\r
c6c50165
JW
1401 if (mGuardedMemoryMap == 0 ||\r
1402 mMapLevel == 0 ||\r
1403 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {\r
e63da9f0
JW
1404 return;\r
1405 }\r
1406\r
1407 Ruler1 = " 3 2 1 0";\r
1408 Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";\r
1409\r
1410 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="\r
1411 " Guarded Memory Bitmap "\r
1412 "==============================\r\n"));\r
1413 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));\r
1414 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));\r
1415\r
1416 CopyMem (Entries, mLevelMask, sizeof (Entries));\r
1417 CopyMem (Shifts, mLevelShift, sizeof (Shifts));\r
1418\r
1419 SetMem (Indices, sizeof(Indices), 0);\r
1420 SetMem (Tables, sizeof(Tables), 0);\r
1421 SetMem (Addresses, sizeof(Addresses), 0);\r
1422\r
1423 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;\r
1424 Tables[Level] = mGuardedMemoryMap;\r
1425 Address = 0;\r
1426 RepeatZero = 0;\r
1427\r
1428 while (TRUE) {\r
1429 if (Indices[Level] > Entries[Level]) {\r
1430\r
1431 Tables[Level] = 0;\r
1432 Level -= 1;\r
1433 RepeatZero = 0;\r
1434\r
1435 DEBUG ((\r
1436 HEAP_GUARD_DEBUG_LEVEL,\r
1437 "========================================="\r
1438 "=========================================\r\n"\r
1439 ));\r
1440\r
1441 } else {\r
1442\r
1443 TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];\r
1444 Address = Addresses[Level];\r
1445\r
1446 if (TableEntry == 0) {\r
1447\r
1448 if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1449 if (RepeatZero == 0) {\r
1450 Uint64ToBinString(TableEntry, String);\r
1451 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1452 } else if (RepeatZero == 1) {\r
1453 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));\r
1454 }\r
1455 RepeatZero += 1;\r
1456 }\r
1457\r
1458 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {\r
1459\r
1460 Level += 1;\r
1461 Tables[Level] = TableEntry;\r
1462 Addresses[Level] = Address;\r
1463 Indices[Level] = 0;\r
1464 RepeatZero = 0;\r
1465\r
1466 continue;\r
1467\r
1468 } else {\r
1469\r
1470 RepeatZero = 0;\r
1471 Uint64ToBinString(TableEntry, String);\r
1472 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));\r
1473\r
1474 }\r
1475 }\r
1476\r
1477 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {\r
1478 break;\r
1479 }\r
1480\r
1481 Indices[Level] += 1;\r
1482 Address = (Level == 0) ? 0 : Addresses[Level - 1];\r
1483 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);\r
1484\r
1485 }\r
1486}\r
1487\r
1488/**\r
1489 Debug function used to verify if the Guard page is well set or not.\r
1490\r
1491 @param[in] BaseAddress Address of memory to check.\r
1492 @param[in] NumberOfPages Size of memory in pages.\r
1493\r
1494 @return TRUE The head Guard and tail Guard are both well set.\r
1495 @return FALSE The head Guard and/or tail Guard are not well set.\r
1496**/\r
1497BOOLEAN\r
1498VerifyMemoryGuard (\r
1499 IN EFI_PHYSICAL_ADDRESS BaseAddress,\r
1500 IN UINTN NumberOfPages\r
1501 )\r
1502{\r
1503 EFI_STATUS Status;\r
1504 UINT64 Attribute;\r
1505 EFI_PHYSICAL_ADDRESS Address;\r
1506\r
1507 if (mSmmMemoryAttribute == NULL) {\r
1508 return TRUE;\r
1509 }\r
1510\r
1511 Attribute = 0;\r
1512 Address = BaseAddress - EFI_PAGE_SIZE;\r
1513 Status = mSmmMemoryAttribute->GetMemoryAttributes (\r
1514 mSmmMemoryAttribute,\r
1515 Address,\r
1516 EFI_PAGE_SIZE,\r
1517 &Attribute\r
1518 );\r
1519 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {\r
1520 DEBUG ((DEBUG_ERROR, "Head Guard is not set at: %016lx (%016lX)!!!\r\n",\r
1521 Address, Attribute));\r
1522 DumpGuardedMemoryBitmap ();\r
1523 return FALSE;\r
1524 }\r
1525\r
1526 Attribute = 0;\r
1527 Address = BaseAddress + EFI_PAGES_TO_SIZE (NumberOfPages);\r
1528 Status = mSmmMemoryAttribute->GetMemoryAttributes (\r
1529 mSmmMemoryAttribute,\r
1530 Address,\r
1531 EFI_PAGE_SIZE,\r
1532 &Attribute\r
1533 );\r
1534 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {\r
1535 DEBUG ((DEBUG_ERROR, "Tail Guard is not set at: %016lx (%016lX)!!!\r\n",\r
1536 Address, Attribute));\r
1537 DumpGuardedMemoryBitmap ();\r
1538 return FALSE;\r
1539 }\r
1540\r
1541 return TRUE;\r
1542}\r
1543\r