]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
1) Add in EcpEfiBreakPoint and EcpMemoryFence which will be defined as EFI_BREAKPOINT...
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
ac644614 1/** @file\r
50a64e5b 2 Provides string functions, linked list functions, math functions, synchronization\r
3 functions, and CPU architecture specific functions.\r
ac644614 4\r
50a64e5b 5Copyright (c) 2006 - 2008, Intel Corporation\r
6All rights reserved. This program and the accompanying materials\r
7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at\r
9http://opensource.org/licenses/bsd-license.php\r
ac644614 10\r
50a64e5b 11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
ac644614 13\r
14**/\r
15\r
16#ifndef __BASE_LIB__\r
17#define __BASE_LIB__\r
18\r
fc30687f 19///\r
1106ffe1 20/// Definitions for SPIN_LOCK\r
fc30687f 21///\r
ac644614 22typedef volatile UINTN SPIN_LOCK;\r
23\r
1106ffe1 24//\r
25// Definitions for architecture specific types\r
26//\r
ac644614 27#if defined (MDE_CPU_IA32)\r
fc30687f 28///\r
29/// IA32 context buffer used by SetJump() and LongJump()\r
30///\r
ac644614 31typedef struct {\r
32 UINT32 Ebx;\r
33 UINT32 Esi;\r
34 UINT32 Edi;\r
35 UINT32 Ebp;\r
36 UINT32 Esp;\r
37 UINT32 Eip;\r
38} BASE_LIBRARY_JUMP_BUFFER;\r
39\r
40#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
41\r
aa4df547 42#endif // defined (MDE_CPU_IA32)\r
43\r
44#if defined (MDE_CPU_IPF)\r
ac644614 45\r
fc30687f 46///\r
47/// IPF context buffer used by SetJump() and LongJump()\r
48///\r
ac644614 49typedef struct {\r
50 UINT64 F2[2];\r
51 UINT64 F3[2];\r
52 UINT64 F4[2];\r
53 UINT64 F5[2];\r
54 UINT64 F16[2];\r
55 UINT64 F17[2];\r
56 UINT64 F18[2];\r
57 UINT64 F19[2];\r
58 UINT64 F20[2];\r
59 UINT64 F21[2];\r
60 UINT64 F22[2];\r
61 UINT64 F23[2];\r
62 UINT64 F24[2];\r
63 UINT64 F25[2];\r
64 UINT64 F26[2];\r
65 UINT64 F27[2];\r
66 UINT64 F28[2];\r
67 UINT64 F29[2];\r
68 UINT64 F30[2];\r
69 UINT64 F31[2];\r
70 UINT64 R4;\r
71 UINT64 R5;\r
72 UINT64 R6;\r
73 UINT64 R7;\r
74 UINT64 SP;\r
75 UINT64 BR0;\r
76 UINT64 BR1;\r
77 UINT64 BR2;\r
78 UINT64 BR3;\r
79 UINT64 BR4;\r
80 UINT64 BR5;\r
81 UINT64 InitialUNAT;\r
82 UINT64 AfterSpillUNAT;\r
83 UINT64 PFS;\r
84 UINT64 BSP;\r
85 UINT64 Predicates;\r
86 UINT64 LoopCount;\r
87 UINT64 FPSR;\r
88} BASE_LIBRARY_JUMP_BUFFER;\r
89\r
90#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
91\r
aa4df547 92#endif // defined (MDE_CPU_IPF)\r
93\r
94#if defined (MDE_CPU_X64)\r
fc30687f 95///\r
96/// X64 context buffer used by SetJump() and LongJump()\r
97///\r
ac644614 98typedef struct {\r
99 UINT64 Rbx;\r
100 UINT64 Rsp;\r
101 UINT64 Rbp;\r
102 UINT64 Rdi;\r
103 UINT64 Rsi;\r
104 UINT64 R12;\r
105 UINT64 R13;\r
106 UINT64 R14;\r
107 UINT64 R15;\r
108 UINT64 Rip;\r
109} BASE_LIBRARY_JUMP_BUFFER;\r
110\r
111#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
112\r
aa4df547 113#endif // defined (MDE_CPU_X64)\r
114\r
115#if defined (MDE_CPU_EBC)\r
fc30687f 116///\r
117/// EBC context buffer used by SetJump() and LongJump()\r
118///\r
ac644614 119typedef struct {\r
120 UINT64 R0;\r
121 UINT64 R1;\r
122 UINT64 R2;\r
123 UINT64 R3;\r
124 UINT64 IP;\r
125} BASE_LIBRARY_JUMP_BUFFER;\r
126\r
127#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
128\r
aa4df547 129#endif // defined (MDE_CPU_EBC)\r
ac644614 130\r
131//\r
132// String Services\r
133//\r
134\r
135/**\r
136 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
137 string and returns the new Unicode string.\r
138\r
139 This function copies the contents of the Unicode string Source to the Unicode\r
140 string Destination, and returns Destination. If Source and Destination\r
141 overlap, then the results are undefined.\r
142\r
143 If Destination is NULL, then ASSERT().\r
144 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
145 If Source is NULL, then ASSERT().\r
146 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
147 If Source and Destination overlap, then ASSERT().\r
148 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
149 PcdMaximumUnicodeStringLength Unicode characters not including the\r
150 Null-terminator, then ASSERT().\r
151\r
152 @param Destination Pointer to a Null-terminated Unicode string.\r
153 @param Source Pointer to a Null-terminated Unicode string.\r
154\r
9aa049d9 155 @return Destination.\r
ac644614 156\r
157**/\r
158CHAR16 *\r
159EFIAPI\r
160StrCpy (\r
161 OUT CHAR16 *Destination,\r
162 IN CONST CHAR16 *Source\r
163 );\r
164\r
165\r
166/**\r
17f695ed 167 Copies up to a specified length from one Null-terminated Unicode string to \r
168 another Null-terminated Unicode string and returns the new Unicode string.\r
ac644614 169\r
170 This function copies the contents of the Unicode string Source to the Unicode\r
171 string Destination, and returns Destination. At most, Length Unicode\r
172 characters are copied from Source to Destination. If Length is 0, then\r
173 Destination is returned unmodified. If Length is greater that the number of\r
174 Unicode characters in Source, then Destination is padded with Null Unicode\r
175 characters. If Source and Destination overlap, then the results are\r
176 undefined.\r
177\r
178 If Length > 0 and Destination is NULL, then ASSERT().\r
179 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
180 If Length > 0 and Source is NULL, then ASSERT().\r
181 If Length > 0 and Source is not aligned on a 16-bit bounadry, then ASSERT().\r
182 If Source and Destination overlap, then ASSERT().\r
183 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
184 PcdMaximumUnicodeStringLength Unicode characters not including the\r
185 Null-terminator, then ASSERT().\r
186\r
187 @param Destination Pointer to a Null-terminated Unicode string.\r
188 @param Source Pointer to a Null-terminated Unicode string.\r
189 @param Length Maximum number of Unicode characters to copy.\r
190\r
9aa049d9 191 @return Destination.\r
ac644614 192\r
193**/\r
194CHAR16 *\r
195EFIAPI\r
196StrnCpy (\r
197 OUT CHAR16 *Destination,\r
198 IN CONST CHAR16 *Source,\r
199 IN UINTN Length\r
200 );\r
201\r
202\r
203/**\r
204 Returns the length of a Null-terminated Unicode string.\r
205\r
206 This function returns the number of Unicode characters in the Null-terminated\r
207 Unicode string specified by String.\r
208\r
209 If String is NULL, then ASSERT().\r
210 If String is not aligned on a 16-bit boundary, then ASSERT().\r
211 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
212 PcdMaximumUnicodeStringLength Unicode characters not including the\r
213 Null-terminator, then ASSERT().\r
214\r
215 @param String Pointer to a Null-terminated Unicode string.\r
216\r
217 @return The length of String.\r
218\r
219**/\r
220UINTN\r
221EFIAPI\r
222StrLen (\r
223 IN CONST CHAR16 *String\r
224 );\r
225\r
226\r
227/**\r
228 Returns the size of a Null-terminated Unicode string in bytes, including the\r
229 Null terminator.\r
230\r
17f695ed 231 This function returns the size, in bytes, of the Null-terminated Unicode string \r
232 specified by String.\r
ac644614 233\r
234 If String is NULL, then ASSERT().\r
235 If String is not aligned on a 16-bit boundary, then ASSERT().\r
236 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
237 PcdMaximumUnicodeStringLength Unicode characters not including the\r
238 Null-terminator, then ASSERT().\r
239\r
240 @param String Pointer to a Null-terminated Unicode string.\r
241\r
242 @return The size of String.\r
243\r
244**/\r
245UINTN\r
246EFIAPI\r
247StrSize (\r
248 IN CONST CHAR16 *String\r
249 );\r
250\r
251\r
252/**\r
253 Compares two Null-terminated Unicode strings, and returns the difference\r
254 between the first mismatched Unicode characters.\r
255\r
256 This function compares the Null-terminated Unicode string FirstString to the\r
257 Null-terminated Unicode string SecondString. If FirstString is identical to\r
258 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
259 mismatched Unicode character in SecondString subtracted from the first\r
260 mismatched Unicode character in FirstString.\r
261\r
262 If FirstString is NULL, then ASSERT().\r
263 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
264 If SecondString is NULL, then ASSERT().\r
265 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
266 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
267 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
268 Null-terminator, then ASSERT().\r
269 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
270 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
271 Null-terminator, then ASSERT().\r
272\r
273 @param FirstString Pointer to a Null-terminated Unicode string.\r
274 @param SecondString Pointer to a Null-terminated Unicode string.\r
275\r
1106ffe1 276 @retval 0 FirstString is identical to SecondString.\r
277 @return others FirstString is not identical to SecondString.\r
ac644614 278\r
279**/\r
280INTN\r
281EFIAPI\r
282StrCmp (\r
283 IN CONST CHAR16 *FirstString,\r
284 IN CONST CHAR16 *SecondString\r
285 );\r
286\r
287\r
288/**\r
17f695ed 289 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
290 and returns the difference between the first mismatched Unicode characters.\r
291 \r
ac644614 292 This function compares the Null-terminated Unicode string FirstString to the\r
293 Null-terminated Unicode string SecondString. At most, Length Unicode\r
294 characters will be compared. If Length is 0, then 0 is returned. If\r
295 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
296 value returned is the first mismatched Unicode character in SecondString\r
297 subtracted from the first mismatched Unicode character in FirstString.\r
298\r
299 If Length > 0 and FirstString is NULL, then ASSERT().\r
300 If Length > 0 and FirstString is not aligned on a 16-bit bounadary, then ASSERT().\r
301 If Length > 0 and SecondString is NULL, then ASSERT().\r
302 If Length > 0 and SecondString is not aligned on a 16-bit bounadary, then ASSERT().\r
303 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
304 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
305 Null-terminator, then ASSERT().\r
306 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
307 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
308 Null-terminator, then ASSERT().\r
309\r
310 @param FirstString Pointer to a Null-terminated Unicode string.\r
311 @param SecondString Pointer to a Null-terminated Unicode string.\r
312 @param Length Maximum number of Unicode characters to compare.\r
313\r
1106ffe1 314 @retval 0 FirstString is identical to SecondString.\r
315 @return others FirstString is not identical to SecondString.\r
ac644614 316\r
317**/\r
318INTN\r
319EFIAPI\r
320StrnCmp (\r
321 IN CONST CHAR16 *FirstString,\r
322 IN CONST CHAR16 *SecondString,\r
323 IN UINTN Length\r
324 );\r
325\r
326\r
327/**\r
328 Concatenates one Null-terminated Unicode string to another Null-terminated\r
329 Unicode string, and returns the concatenated Unicode string.\r
330\r
331 This function concatenates two Null-terminated Unicode strings. The contents\r
332 of Null-terminated Unicode string Source are concatenated to the end of\r
333 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
334 Unicode String is returned. If Source and Destination overlap, then the\r
335 results are undefined.\r
336\r
337 If Destination is NULL, then ASSERT().\r
338 If Destination is not aligned on a 16-bit bounadary, then ASSERT().\r
339 If Source is NULL, then ASSERT().\r
340 If Source is not aligned on a 16-bit bounadary, then ASSERT().\r
341 If Source and Destination overlap, then ASSERT().\r
342 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
343 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
344 Null-terminator, then ASSERT().\r
345 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
346 PcdMaximumUnicodeStringLength Unicode characters not including the\r
347 Null-terminator, then ASSERT().\r
348 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
349 and Source results in a Unicode string with more than\r
350 PcdMaximumUnicodeStringLength Unicode characters not including the\r
351 Null-terminator, then ASSERT().\r
352\r
353 @param Destination Pointer to a Null-terminated Unicode string.\r
354 @param Source Pointer to a Null-terminated Unicode string.\r
355\r
9aa049d9 356 @return Destination.\r
ac644614 357\r
358**/\r
359CHAR16 *\r
360EFIAPI\r
361StrCat (\r
362 IN OUT CHAR16 *Destination,\r
363 IN CONST CHAR16 *Source\r
364 );\r
365\r
366\r
367/**\r
17f695ed 368 Concatenates up to a specified length one Null-terminated Unicode to the end \r
369 of another Null-terminated Unicode string, and returns the concatenated \r
ac644614 370 Unicode string.\r
371\r
372 This function concatenates two Null-terminated Unicode strings. The contents\r
373 of Null-terminated Unicode string Source are concatenated to the end of\r
374 Null-terminated Unicode string Destination, and Destination is returned. At\r
375 most, Length Unicode characters are concatenated from Source to the end of\r
376 Destination, and Destination is always Null-terminated. If Length is 0, then\r
377 Destination is returned unmodified. If Source and Destination overlap, then\r
378 the results are undefined.\r
379\r
380 If Destination is NULL, then ASSERT().\r
381 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
382 If Length > 0 and Source is NULL, then ASSERT().\r
383 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
384 If Source and Destination overlap, then ASSERT().\r
385 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
386 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
387 Null-terminator, then ASSERT().\r
388 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
389 PcdMaximumUnicodeStringLength Unicode characters not including the\r
390 Null-terminator, then ASSERT().\r
391 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
392 and Source results in a Unicode string with more than\r
393 PcdMaximumUnicodeStringLength Unicode characters not including the\r
394 Null-terminator, then ASSERT().\r
395\r
396 @param Destination Pointer to a Null-terminated Unicode string.\r
397 @param Source Pointer to a Null-terminated Unicode string.\r
398 @param Length Maximum number of Unicode characters to concatenate from\r
399 Source.\r
400\r
9aa049d9 401 @return Destination.\r
ac644614 402\r
403**/\r
404CHAR16 *\r
405EFIAPI\r
406StrnCat (\r
407 IN OUT CHAR16 *Destination,\r
408 IN CONST CHAR16 *Source,\r
409 IN UINTN Length\r
410 );\r
411\r
412/**\r
9aa049d9 413 Returns the first occurrence of a Null-terminated Unicode sub-string\r
ac644614 414 in a Null-terminated Unicode string.\r
415\r
416 This function scans the contents of the Null-terminated Unicode string\r
417 specified by String and returns the first occurrence of SearchString.\r
418 If SearchString is not found in String, then NULL is returned. If\r
419 the length of SearchString is zero, then String is\r
420 returned.\r
421\r
422 If String is NULL, then ASSERT().\r
423 If String is not aligned on a 16-bit boundary, then ASSERT().\r
424 If SearchString is NULL, then ASSERT().\r
425 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
426\r
427 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
428 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
429 characters not including the Null-terminator, then ASSERT().\r
430\r
17f695ed 431 @param String Pointer to a Null-terminated Unicode string.\r
432 @param SearchString Pointer to a Null-terminated Unicode string to search for.\r
ac644614 433\r
434 @retval NULL If the SearchString does not appear in String.\r
1106ffe1 435 @return others If there is a match.\r
ac644614 436\r
437**/\r
438CHAR16 *\r
439EFIAPI\r
440StrStr (\r
17f695ed 441 IN CONST CHAR16 *String,\r
442 IN CONST CHAR16 *SearchString\r
ac644614 443 );\r
444\r
445/**\r
446 Convert a Null-terminated Unicode decimal string to a value of\r
447 type UINTN.\r
448\r
449 This function returns a value of type UINTN by interpreting the contents\r
450 of the Unicode string specified by String as a decimal number. The format\r
451 of the input Unicode string String is:\r
452\r
453 [spaces] [decimal digits].\r
454\r
455 The valid decimal digit character is in the range [0-9]. The\r
456 function will ignore the pad space, which includes spaces or\r
457 tab characters, before [decimal digits]. The running zero in the\r
458 beginning of [decimal digits] will be ignored. Then, the function\r
459 stops at the first character that is a not a valid decimal character\r
460 or a Null-terminator, whichever one comes first.\r
461\r
462 If String is NULL, then ASSERT().\r
463 If String is not aligned in a 16-bit boundary, then ASSERT().\r
464 If String has only pad spaces, then 0 is returned.\r
465 If String has no pad spaces or valid decimal digits,\r
466 then 0 is returned.\r
467 If the number represented by String overflows according\r
468 to the range defined by UINTN, then ASSERT().\r
469\r
470 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
471 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
472 the Null-terminator, then ASSERT().\r
473\r
17f695ed 474 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 475\r
38bbd3d9 476 @retval Value translated from String.\r
ac644614 477\r
478**/\r
479UINTN\r
480EFIAPI\r
481StrDecimalToUintn (\r
17f695ed 482 IN CONST CHAR16 *String\r
ac644614 483 );\r
484\r
485/**\r
486 Convert a Null-terminated Unicode decimal string to a value of\r
487 type UINT64.\r
488\r
489 This function returns a value of type UINT64 by interpreting the contents\r
490 of the Unicode string specified by String as a decimal number. The format\r
491 of the input Unicode string String is:\r
492\r
493 [spaces] [decimal digits].\r
494\r
495 The valid decimal digit character is in the range [0-9]. The\r
496 function will ignore the pad space, which includes spaces or\r
497 tab characters, before [decimal digits]. The running zero in the\r
498 beginning of [decimal digits] will be ignored. Then, the function\r
499 stops at the first character that is a not a valid decimal character\r
500 or a Null-terminator, whichever one comes first.\r
501\r
502 If String is NULL, then ASSERT().\r
503 If String is not aligned in a 16-bit boundary, then ASSERT().\r
504 If String has only pad spaces, then 0 is returned.\r
505 If String has no pad spaces or valid decimal digits,\r
506 then 0 is returned.\r
507 If the number represented by String overflows according\r
508 to the range defined by UINT64, then ASSERT().\r
509\r
510 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
511 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
512 the Null-terminator, then ASSERT().\r
513\r
17f695ed 514 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 515\r
38bbd3d9 516 @retval Value translated from String.\r
ac644614 517\r
518**/\r
519UINT64\r
520EFIAPI\r
521StrDecimalToUint64 (\r
17f695ed 522 IN CONST CHAR16 *String\r
ac644614 523 );\r
524 \r
525\r
526/**\r
527 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
528\r
529 This function returns a value of type UINTN by interpreting the contents\r
530 of the Unicode string specified by String as a hexadecimal number.\r
531 The format of the input Unicode string String is:\r
532\r
533 [spaces][zeros][x][hexadecimal digits].\r
534\r
535 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
536 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
537 If "x" appears in the input string, it must be prefixed with at least one 0.\r
538 The function will ignore the pad space, which includes spaces or tab characters,\r
539 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
540 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
541 first valid hexadecimal digit. Then, the function stops at the first character that is\r
542 a not a valid hexadecimal character or NULL, whichever one comes first.\r
543\r
544 If String is NULL, then ASSERT().\r
545 If String is not aligned in a 16-bit boundary, then ASSERT().\r
546 If String has only pad spaces, then zero is returned.\r
547 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
548 then zero is returned.\r
549 If the number represented by String overflows according to the range defined by\r
550 UINTN, then ASSERT().\r
551\r
552 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
553 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
554 then ASSERT().\r
555\r
17f695ed 556 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 557\r
38bbd3d9 558 @retval Value translated from String.\r
ac644614 559\r
560**/\r
561UINTN\r
562EFIAPI\r
563StrHexToUintn (\r
17f695ed 564 IN CONST CHAR16 *String\r
ac644614 565 );\r
566\r
567\r
568/**\r
569 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
570\r
571 This function returns a value of type UINT64 by interpreting the contents\r
572 of the Unicode string specified by String as a hexadecimal number.\r
573 The format of the input Unicode string String is\r
574\r
575 [spaces][zeros][x][hexadecimal digits].\r
576\r
577 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
578 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
579 If "x" appears in the input string, it must be prefixed with at least one 0.\r
580 The function will ignore the pad space, which includes spaces or tab characters,\r
581 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
582 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
583 first valid hexadecimal digit. Then, the function stops at the first character that is\r
584 a not a valid hexadecimal character or NULL, whichever one comes first.\r
585\r
586 If String is NULL, then ASSERT().\r
587 If String is not aligned in a 16-bit boundary, then ASSERT().\r
588 If String has only pad spaces, then zero is returned.\r
589 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
590 then zero is returned.\r
591 If the number represented by String overflows according to the range defined by\r
592 UINT64, then ASSERT().\r
593\r
594 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
595 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
596 then ASSERT().\r
597\r
17f695ed 598 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 599\r
38bbd3d9 600 @retval Value translated from String.\r
ac644614 601\r
602**/\r
603UINT64\r
604EFIAPI\r
605StrHexToUint64 (\r
17f695ed 606 IN CONST CHAR16 *String\r
ac644614 607 );\r
608\r
ac644614 609/**\r
17f695ed 610 Convert a Null-terminated Unicode string to a Null-terminated\r
ac644614 611 ASCII string and returns the ASCII string.\r
612\r
613 This function converts the content of the Unicode string Source\r
614 to the ASCII string Destination by copying the lower 8 bits of\r
615 each Unicode character. It returns Destination.\r
616\r
617 If any Unicode characters in Source contain non-zero value in\r
618 the upper 8 bits, then ASSERT().\r
619\r
620 If Destination is NULL, then ASSERT().\r
621 If Source is NULL, then ASSERT().\r
622 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
623 If Source and Destination overlap, then ASSERT().\r
624\r
625 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
626 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
627 the Null-terminator, then ASSERT().\r
628\r
629 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
630 than PcdMaximumAsciiStringLength Unicode characters not including the\r
631 Null-terminator, then ASSERT().\r
632\r
633 @param Source Pointer to a Null-terminated Unicode string.\r
634 @param Destination Pointer to a Null-terminated ASCII string.\r
635\r
9aa049d9 636 @return Destination.\r
ac644614 637\r
638**/\r
639CHAR8 *\r
640EFIAPI\r
641UnicodeStrToAsciiStr (\r
17f695ed 642 IN CONST CHAR16 *Source,\r
643 OUT CHAR8 *Destination\r
ac644614 644 );\r
645\r
646\r
647/**\r
648 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
649 string and returns the new ASCII string.\r
650\r
651 This function copies the contents of the ASCII string Source to the ASCII\r
652 string Destination, and returns Destination. If Source and Destination\r
653 overlap, then the results are undefined.\r
654\r
655 If Destination is NULL, then ASSERT().\r
656 If Source is NULL, then ASSERT().\r
657 If Source and Destination overlap, then ASSERT().\r
658 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
659 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
660 then ASSERT().\r
661\r
662 @param Destination Pointer to a Null-terminated ASCII string.\r
663 @param Source Pointer to a Null-terminated ASCII string.\r
664\r
665 @return Destination\r
666\r
667**/\r
668CHAR8 *\r
669EFIAPI\r
670AsciiStrCpy (\r
671 OUT CHAR8 *Destination,\r
672 IN CONST CHAR8 *Source\r
673 );\r
674\r
675\r
676/**\r
17f695ed 677 Copies up to a specified length one Null-terminated ASCII string to another \r
678 Null-terminated ASCII string and returns the new ASCII string.\r
ac644614 679\r
680 This function copies the contents of the ASCII string Source to the ASCII\r
681 string Destination, and returns Destination. At most, Length ASCII characters\r
682 are copied from Source to Destination. If Length is 0, then Destination is\r
683 returned unmodified. If Length is greater that the number of ASCII characters\r
684 in Source, then Destination is padded with Null ASCII characters. If Source\r
685 and Destination overlap, then the results are undefined.\r
686\r
687 If Destination is NULL, then ASSERT().\r
688 If Source is NULL, then ASSERT().\r
689 If Source and Destination overlap, then ASSERT().\r
690 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
691 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
692 then ASSERT().\r
693\r
694 @param Destination Pointer to a Null-terminated ASCII string.\r
695 @param Source Pointer to a Null-terminated ASCII string.\r
696 @param Length Maximum number of ASCII characters to copy.\r
697\r
698 @return Destination\r
699\r
700**/\r
701CHAR8 *\r
702EFIAPI\r
703AsciiStrnCpy (\r
704 OUT CHAR8 *Destination,\r
705 IN CONST CHAR8 *Source,\r
706 IN UINTN Length\r
707 );\r
708\r
709\r
710/**\r
711 Returns the length of a Null-terminated ASCII string.\r
712\r
713 This function returns the number of ASCII characters in the Null-terminated\r
714 ASCII string specified by String.\r
715\r
716 If Length > 0 and Destination is NULL, then ASSERT().\r
717 If Length > 0 and Source is NULL, then ASSERT().\r
718 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
719 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
720 then ASSERT().\r
721\r
722 @param String Pointer to a Null-terminated ASCII string.\r
723\r
724 @return The length of String.\r
725\r
726**/\r
727UINTN\r
728EFIAPI\r
729AsciiStrLen (\r
730 IN CONST CHAR8 *String\r
731 );\r
732\r
733\r
734/**\r
735 Returns the size of a Null-terminated ASCII string in bytes, including the\r
736 Null terminator.\r
737\r
738 This function returns the size, in bytes, of the Null-terminated ASCII string\r
739 specified by String.\r
740\r
741 If String is NULL, then ASSERT().\r
742 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
743 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
744 then ASSERT().\r
745\r
746 @param String Pointer to a Null-terminated ASCII string.\r
747\r
748 @return The size of String.\r
749\r
750**/\r
751UINTN\r
752EFIAPI\r
753AsciiStrSize (\r
754 IN CONST CHAR8 *String\r
755 );\r
756\r
757\r
758/**\r
759 Compares two Null-terminated ASCII strings, and returns the difference\r
760 between the first mismatched ASCII characters.\r
761\r
762 This function compares the Null-terminated ASCII string FirstString to the\r
763 Null-terminated ASCII string SecondString. If FirstString is identical to\r
764 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
765 mismatched ASCII character in SecondString subtracted from the first\r
766 mismatched ASCII character in FirstString.\r
767\r
768 If FirstString is NULL, then ASSERT().\r
769 If SecondString is NULL, then ASSERT().\r
770 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
771 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
772 then ASSERT().\r
773 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
774 than PcdMaximumAsciiStringLength ASCII characters not including the\r
775 Null-terminator, then ASSERT().\r
776\r
777 @param FirstString Pointer to a Null-terminated ASCII string.\r
778 @param SecondString Pointer to a Null-terminated ASCII string.\r
779\r
17f695ed 780 @retval ==0 FirstString is identical to SecondString.\r
781 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 782\r
783**/\r
784INTN\r
785EFIAPI\r
786AsciiStrCmp (\r
787 IN CONST CHAR8 *FirstString,\r
788 IN CONST CHAR8 *SecondString\r
789 );\r
790\r
791\r
792/**\r
793 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
794 and returns the difference between the first mismatched ASCII characters.\r
795\r
796 This function performs a case insensitive comparison of the Null-terminated\r
797 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
798 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
799 value returned is the first mismatched lower case ASCII character in\r
800 SecondString subtracted from the first mismatched lower case ASCII character\r
801 in FirstString.\r
802\r
803 If FirstString is NULL, then ASSERT().\r
804 If SecondString is NULL, then ASSERT().\r
805 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
806 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
807 then ASSERT().\r
808 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
809 than PcdMaximumAsciiStringLength ASCII characters not including the\r
810 Null-terminator, then ASSERT().\r
811\r
812 @param FirstString Pointer to a Null-terminated ASCII string.\r
813 @param SecondString Pointer to a Null-terminated ASCII string.\r
814\r
17f695ed 815 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1106ffe1 816 comparisons.\r
17f695ed 817 @retval !=0 FirstString is not identical to SecondString using case\r
1106ffe1 818 insensitive comparisons.\r
ac644614 819\r
820**/\r
821INTN\r
822EFIAPI\r
823AsciiStriCmp (\r
824 IN CONST CHAR8 *FirstString,\r
825 IN CONST CHAR8 *SecondString\r
826 );\r
827\r
828\r
829/**\r
830 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
831 the difference between the first mismatched ASCII characters.\r
832\r
833 This function compares the Null-terminated ASCII string FirstString to the\r
834 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
835 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
836 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
837 is the first mismatched ASCII character in SecondString subtracted from the\r
838 first mismatched ASCII character in FirstString.\r
839\r
840 If Length > 0 and FirstString is NULL, then ASSERT().\r
841 If Length > 0 and SecondString is NULL, then ASSERT().\r
842 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
843 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
844 then ASSERT().\r
845 If PcdMaximumAsciiStringLength is not zero and SecondString contains more than\r
846 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
847 then ASSERT().\r
848\r
849 @param FirstString Pointer to a Null-terminated ASCII string.\r
850 @param SecondString Pointer to a Null-terminated ASCII string.\r
851 @param Length Maximum number of ASCII characters for compare.\r
852 \r
17f695ed 853 @retval ==0 FirstString is identical to SecondString.\r
854 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 855\r
856**/\r
857INTN\r
858EFIAPI\r
859AsciiStrnCmp (\r
860 IN CONST CHAR8 *FirstString,\r
861 IN CONST CHAR8 *SecondString,\r
862 IN UINTN Length\r
863 );\r
864\r
865\r
866/**\r
867 Concatenates one Null-terminated ASCII string to another Null-terminated\r
868 ASCII string, and returns the concatenated ASCII string.\r
869\r
870 This function concatenates two Null-terminated ASCII strings. The contents of\r
871 Null-terminated ASCII string Source are concatenated to the end of Null-\r
872 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
873 String is returned.\r
874\r
875 If Destination is NULL, then ASSERT().\r
876 If Source is NULL, then ASSERT().\r
877 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
878 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
879 then ASSERT().\r
880 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
881 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
882 then ASSERT().\r
883 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
884 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
885 ASCII characters, then ASSERT().\r
886\r
887 @param Destination Pointer to a Null-terminated ASCII string.\r
888 @param Source Pointer to a Null-terminated ASCII string.\r
889\r
890 @return Destination\r
891\r
892**/\r
893CHAR8 *\r
894EFIAPI\r
895AsciiStrCat (\r
896 IN OUT CHAR8 *Destination,\r
897 IN CONST CHAR8 *Source\r
898 );\r
899\r
900\r
901/**\r
17f695ed 902 Concatenates up to a specified length one Null-terminated ASCII string to \r
903 the end of another Null-terminated ASCII string, and returns the \r
904 concatenated ASCII string.\r
ac644614 905\r
906 This function concatenates two Null-terminated ASCII strings. The contents\r
907 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
908 terminated ASCII string Destination, and Destination is returned. At most,\r
909 Length ASCII characters are concatenated from Source to the end of\r
910 Destination, and Destination is always Null-terminated. If Length is 0, then\r
911 Destination is returned unmodified. If Source and Destination overlap, then\r
912 the results are undefined.\r
913\r
914 If Length > 0 and Destination is NULL, then ASSERT().\r
915 If Length > 0 and Source is NULL, then ASSERT().\r
916 If Source and Destination overlap, then ASSERT().\r
917 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
918 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
919 then ASSERT().\r
920 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
921 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
922 then ASSERT().\r
923 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
924 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
925 ASCII characters not including the Null-terminator, then ASSERT().\r
926\r
927 @param Destination Pointer to a Null-terminated ASCII string.\r
928 @param Source Pointer to a Null-terminated ASCII string.\r
929 @param Length Maximum number of ASCII characters to concatenate from\r
930 Source.\r
931\r
932 @return Destination\r
933\r
934**/\r
935CHAR8 *\r
936EFIAPI\r
937AsciiStrnCat (\r
938 IN OUT CHAR8 *Destination,\r
939 IN CONST CHAR8 *Source,\r
940 IN UINTN Length\r
941 );\r
942\r
943\r
944/**\r
9aa049d9 945 Returns the first occurrence of a Null-terminated ASCII sub-string\r
ac644614 946 in a Null-terminated ASCII string.\r
947\r
948 This function scans the contents of the ASCII string specified by String\r
949 and returns the first occurrence of SearchString. If SearchString is not\r
950 found in String, then NULL is returned. If the length of SearchString is zero,\r
951 then String is returned.\r
952\r
953 If String is NULL, then ASSERT().\r
954 If SearchString is NULL, then ASSERT().\r
955\r
956 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
957 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
958 not including the Null-terminator, then ASSERT().\r
959\r
1106ffe1 960 @param String Pointer to a Null-terminated ASCII string.\r
961 @param SearchString Pointer to a Null-terminated ASCII string to search for.\r
ac644614 962\r
963 @retval NULL If the SearchString does not appear in String.\r
17f695ed 964 @retval others If there is a match return the first occurrence of SearchingString.\r
9aa049d9 965 If the length of SearchString is zero,return String.\r
ac644614 966\r
967**/\r
968CHAR8 *\r
969EFIAPI\r
970AsciiStrStr (\r
17f695ed 971 IN CONST CHAR8 *String,\r
972 IN CONST CHAR8 *SearchString\r
ac644614 973 );\r
974\r
975\r
976/**\r
977 Convert a Null-terminated ASCII decimal string to a value of type\r
978 UINTN.\r
979\r
980 This function returns a value of type UINTN by interpreting the contents\r
981 of the ASCII string String as a decimal number. The format of the input\r
982 ASCII string String is:\r
983\r
984 [spaces] [decimal digits].\r
985\r
986 The valid decimal digit character is in the range [0-9]. The function will\r
987 ignore the pad space, which includes spaces or tab characters, before the digits.\r
988 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
989 function stops at the first character that is a not a valid decimal character or\r
990 Null-terminator, whichever on comes first.\r
991\r
992 If String has only pad spaces, then 0 is returned.\r
993 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
994 If the number represented by String overflows according to the range defined by\r
995 UINTN, then ASSERT().\r
996 If String is NULL, then ASSERT().\r
997 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
998 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
999 then ASSERT().\r
1000\r
17f695ed 1001 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1002\r
38bbd3d9 1003 @retval Value translated from String.\r
ac644614 1004\r
1005**/\r
1006UINTN\r
1007EFIAPI\r
1008AsciiStrDecimalToUintn (\r
1009 IN CONST CHAR8 *String\r
1010 );\r
1011\r
1012\r
1013/**\r
1014 Convert a Null-terminated ASCII decimal string to a value of type\r
1015 UINT64.\r
1016\r
1017 This function returns a value of type UINT64 by interpreting the contents\r
1018 of the ASCII string String as a decimal number. The format of the input\r
1019 ASCII string String is:\r
1020\r
1021 [spaces] [decimal digits].\r
1022\r
1023 The valid decimal digit character is in the range [0-9]. The function will\r
1024 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1025 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1026 function stops at the first character that is a not a valid decimal character or\r
1027 Null-terminator, whichever on comes first.\r
1028\r
1029 If String has only pad spaces, then 0 is returned.\r
1030 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1031 If the number represented by String overflows according to the range defined by\r
1032 UINT64, then ASSERT().\r
1033 If String is NULL, then ASSERT().\r
1034 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1035 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1036 then ASSERT().\r
1037\r
17f695ed 1038 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1039\r
38bbd3d9 1040 @retval Value translated from String.\r
ac644614 1041\r
1042**/\r
1043UINT64\r
1044EFIAPI\r
1045AsciiStrDecimalToUint64 (\r
17f695ed 1046 IN CONST CHAR8 *String\r
ac644614 1047 );\r
1048\r
1049\r
1050/**\r
1051 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
1052\r
1053 This function returns a value of type UINTN by interpreting the contents of\r
1054 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1055 string String is:\r
1056\r
1057 [spaces][zeros][x][hexadecimal digits].\r
1058\r
1059 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1060 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1061 appears in the input string, it must be prefixed with at least one 0. The function\r
1062 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1063 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1064 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1065 digit. Then, the function stops at the first character that is a not a valid\r
1066 hexadecimal character or Null-terminator, whichever on comes first.\r
1067\r
1068 If String has only pad spaces, then 0 is returned.\r
1069 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1070 0 is returned.\r
1071\r
1072 If the number represented by String overflows according to the range defined by UINTN,\r
1073 then ASSERT().\r
1074 If String is NULL, then ASSERT().\r
1075 If PcdMaximumAsciiStringLength is not zero,\r
1076 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1077 the Null-terminator, then ASSERT().\r
1078\r
17f695ed 1079 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1080\r
38bbd3d9 1081 @retval Value translated from String.\r
ac644614 1082\r
1083**/\r
1084UINTN\r
1085EFIAPI\r
1086AsciiStrHexToUintn (\r
17f695ed 1087 IN CONST CHAR8 *String\r
ac644614 1088 );\r
1089\r
1090\r
1091/**\r
1092 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
1093\r
1094 This function returns a value of type UINT64 by interpreting the contents of\r
1095 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1096 string String is:\r
1097\r
1098 [spaces][zeros][x][hexadecimal digits].\r
1099\r
1100 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1101 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1102 appears in the input string, it must be prefixed with at least one 0. The function\r
1103 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1104 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1105 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1106 digit. Then, the function stops at the first character that is a not a valid\r
1107 hexadecimal character or Null-terminator, whichever on comes first.\r
1108\r
1109 If String has only pad spaces, then 0 is returned.\r
1110 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1111 0 is returned.\r
1112\r
1113 If the number represented by String overflows according to the range defined by UINT64,\r
1114 then ASSERT().\r
1115 If String is NULL, then ASSERT().\r
1116 If PcdMaximumAsciiStringLength is not zero,\r
1117 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1118 the Null-terminator, then ASSERT().\r
1119\r
17f695ed 1120 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1121\r
38bbd3d9 1122 @retval Value translated from String.\r
ac644614 1123\r
1124**/\r
1125UINT64\r
1126EFIAPI\r
1127AsciiStrHexToUint64 (\r
17f695ed 1128 IN CONST CHAR8 *String\r
ac644614 1129 );\r
1130\r
1131\r
1132/**\r
1133 Convert one Null-terminated ASCII string to a Null-terminated\r
1134 Unicode string and returns the Unicode string.\r
1135\r
1136 This function converts the contents of the ASCII string Source to the Unicode\r
1137 string Destination, and returns Destination. The function terminates the\r
1138 Unicode string Destination by appending a Null-terminator character at the end.\r
1139 The caller is responsible to make sure Destination points to a buffer with size\r
1140 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
1141\r
1142 If Destination is NULL, then ASSERT().\r
1143 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1144 If Source is NULL, then ASSERT().\r
1145 If Source and Destination overlap, then ASSERT().\r
1146 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1147 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1148 then ASSERT().\r
1149 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1150 PcdMaximumUnicodeStringLength ASCII characters not including the\r
1151 Null-terminator, then ASSERT().\r
1152\r
1153 @param Source Pointer to a Null-terminated ASCII string.\r
1154 @param Destination Pointer to a Null-terminated Unicode string.\r
1155\r
9aa049d9 1156 @return Destination.\r
ac644614 1157\r
1158**/\r
1159CHAR16 *\r
1160EFIAPI\r
1161AsciiStrToUnicodeStr (\r
17f695ed 1162 IN CONST CHAR8 *Source,\r
1163 OUT CHAR16 *Destination\r
ac644614 1164 );\r
1165\r
1166\r
1167/**\r
1168 Converts an 8-bit value to an 8-bit BCD value.\r
1169\r
1170 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
1171 returned.\r
1172\r
1173 If Value >= 100, then ASSERT().\r
1174\r
1175 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
1176\r
9aa049d9 1177 @return The BCD value.\r
ac644614 1178\r
1179**/\r
1180UINT8\r
1181EFIAPI\r
1182DecimalToBcd8 (\r
1183 IN UINT8 Value\r
1184 );\r
1185\r
1186\r
1187/**\r
1188 Converts an 8-bit BCD value to an 8-bit value.\r
1189\r
1190 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
1191 value is returned.\r
1192\r
1193 If Value >= 0xA0, then ASSERT().\r
1194 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
1195\r
1196 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
1197\r
1198 @return The 8-bit value is returned.\r
1199\r
1200**/\r
1201UINT8\r
1202EFIAPI\r
1203BcdToDecimal8 (\r
1204 IN UINT8 Value\r
1205 );\r
1206\r
1207\r
1208//\r
1209// Linked List Functions and Macros\r
1210//\r
1211\r
1212/**\r
1213 Initializes the head node of a doubly linked list that is declared as a\r
1214 global variable in a module.\r
1215\r
1216 Initializes the forward and backward links of a new linked list. After\r
1217 initializing a linked list with this macro, the other linked list functions\r
1218 may be used to add and remove nodes from the linked list. This macro results\r
1219 in smaller executables by initializing the linked list in the data section,\r
1220 instead if calling the InitializeListHead() function to perform the\r
1221 equivalent operation.\r
1222\r
1223 @param ListHead The head note of a list to initiailize.\r
1224\r
1225**/\r
17f695ed 1226#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
ac644614 1227\r
1228\r
1229/**\r
1230 Initializes the head node of a doubly linked list, and returns the pointer to\r
1231 the head node of the doubly linked list.\r
1232\r
1233 Initializes the forward and backward links of a new linked list. After\r
1234 initializing a linked list with this function, the other linked list\r
1235 functions may be used to add and remove nodes from the linked list. It is up\r
1236 to the caller of this function to allocate the memory for ListHead.\r
1237\r
1238 If ListHead is NULL, then ASSERT().\r
1239\r
1240 @param ListHead A pointer to the head node of a new doubly linked list.\r
1241\r
1242 @return ListHead\r
1243\r
1244**/\r
1245LIST_ENTRY *\r
1246EFIAPI\r
1247InitializeListHead (\r
aa0583c7 1248 IN OUT LIST_ENTRY *ListHead\r
ac644614 1249 );\r
1250\r
1251\r
1252/**\r
1253 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
1254 to the head node of the doubly linked list.\r
1255\r
1256 Adds the node Entry at the beginning of the doubly linked list denoted by\r
1257 ListHead, and returns ListHead.\r
1258\r
1259 If ListHead is NULL, then ASSERT().\r
1260 If Entry is NULL, then ASSERT().\r
17f695ed 1261 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1262 InitializeListHead(), then ASSERT().\r
ac644614 1263 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1264 of nodes in ListHead, including the ListHead node, is greater than or\r
1265 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1266\r
1267 @param ListHead A pointer to the head node of a doubly linked list.\r
1268 @param Entry A pointer to a node that is to be inserted at the beginning\r
1269 of a doubly linked list.\r
1270\r
1271 @return ListHead\r
1272\r
1273**/\r
1274LIST_ENTRY *\r
1275EFIAPI\r
1276InsertHeadList (\r
aa0583c7 1277 IN OUT LIST_ENTRY *ListHead,\r
1278 IN OUT LIST_ENTRY *Entry\r
ac644614 1279 );\r
1280\r
1281\r
1282/**\r
1283 Adds a node to the end of a doubly linked list, and returns the pointer to\r
1284 the head node of the doubly linked list.\r
1285\r
1286 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
1287 and returns ListHead.\r
1288\r
1289 If ListHead is NULL, then ASSERT().\r
1290 If Entry is NULL, then ASSERT().\r
17f695ed 1291 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1292 InitializeListHead(), then ASSERT().\r
ac644614 1293 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1294 of nodes in ListHead, including the ListHead node, is greater than or\r
1295 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1296\r
1297 @param ListHead A pointer to the head node of a doubly linked list.\r
1298 @param Entry A pointer to a node that is to be added at the end of the\r
1299 doubly linked list.\r
1300\r
1301 @return ListHead\r
1302\r
1303**/\r
1304LIST_ENTRY *\r
1305EFIAPI\r
1306InsertTailList (\r
aa0583c7 1307 IN OUT LIST_ENTRY *ListHead,\r
1308 IN OUT LIST_ENTRY *Entry\r
ac644614 1309 );\r
1310\r
1311\r
1312/**\r
1313 Retrieves the first node of a doubly linked list.\r
1314\r
17f695ed 1315 Returns the first node of a doubly linked list. List must have been \r
1316 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1317 If List is empty, then List is returned.\r
ac644614 1318\r
1319 If List is NULL, then ASSERT().\r
17f695ed 1320 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1321 InitializeListHead(), then ASSERT().\r
ac644614 1322 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1323 in List, including the List node, is greater than or equal to\r
1324 PcdMaximumLinkedListLength, then ASSERT().\r
1325\r
1326 @param List A pointer to the head node of a doubly linked list.\r
1327\r
1328 @return The first node of a doubly linked list.\r
1329 @retval NULL The list is empty.\r
1330\r
1331**/\r
1332LIST_ENTRY *\r
1333EFIAPI\r
1334GetFirstNode (\r
1335 IN CONST LIST_ENTRY *List\r
1336 );\r
1337\r
1338\r
1339/**\r
1340 Retrieves the next node of a doubly linked list.\r
1341\r
17f695ed 1342 Returns the node of a doubly linked list that follows Node. \r
1343 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1344 or InitializeListHead(). If List is empty, then List is returned.\r
ac644614 1345\r
1346 If List is NULL, then ASSERT().\r
1347 If Node is NULL, then ASSERT().\r
17f695ed 1348 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1349 InitializeListHead(), then ASSERT().\r
ac644614 1350 If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
1351 PcdMaximumLinkedListLenth nodes, then ASSERT().\r
1352 If Node is not a node in List, then ASSERT().\r
1353\r
1354 @param List A pointer to the head node of a doubly linked list.\r
1355 @param Node A pointer to a node in the doubly linked list.\r
1356\r
1357 @return Pointer to the next node if one exists. Otherwise a null value which\r
1358 is actually List is returned.\r
1359\r
1360**/\r
1361LIST_ENTRY *\r
1362EFIAPI\r
1363GetNextNode (\r
1364 IN CONST LIST_ENTRY *List,\r
1365 IN CONST LIST_ENTRY *Node\r
1366 );\r
1367\r
1368\r
1369/**\r
1370 Checks to see if a doubly linked list is empty or not.\r
1371\r
1372 Checks to see if the doubly linked list is empty. If the linked list contains\r
1373 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
1374\r
1375 If ListHead is NULL, then ASSERT().\r
17f695ed 1376 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1377 InitializeListHead(), then ASSERT().\r
ac644614 1378 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1379 in List, including the List node, is greater than or equal to\r
1380 PcdMaximumLinkedListLength, then ASSERT().\r
1381\r
1382 @param ListHead A pointer to the head node of a doubly linked list.\r
1383\r
1384 @retval TRUE The linked list is empty.\r
1385 @retval FALSE The linked list is not empty.\r
1386\r
1387**/\r
1388BOOLEAN\r
1389EFIAPI\r
1390IsListEmpty (\r
1391 IN CONST LIST_ENTRY *ListHead\r
1392 );\r
1393\r
1394\r
1395/**\r
aa0583c7 1396 Determines if a node in a doubly linked list is the head node of a the same\r
1397 doubly linked list. This function is typically used to terminate a loop that\r
1398 traverses all the nodes in a doubly linked list starting with the head node.\r
ac644614 1399\r
aa0583c7 1400 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
1401 nodes in the doubly linked list specified by List. List must have been\r
17f695ed 1402 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 1403\r
1404 If List is NULL, then ASSERT().\r
1405 If Node is NULL, then ASSERT().\r
17f695ed 1406 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
1407 then ASSERT().\r
ac644614 1408 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1409 in List, including the List node, is greater than or equal to\r
1410 PcdMaximumLinkedListLength, then ASSERT().\r
1411 If Node is not a node in List and Node is not equal to List, then ASSERT().\r
1412\r
1413 @param List A pointer to the head node of a doubly linked list.\r
1414 @param Node A pointer to a node in the doubly linked list.\r
1415\r
1416 @retval TRUE Node is one of the nodes in the doubly linked list.\r
1417 @retval FALSE Node is not one of the nodes in the doubly linked list.\r
1418\r
1419**/\r
1420BOOLEAN\r
1421EFIAPI\r
1422IsNull (\r
1423 IN CONST LIST_ENTRY *List,\r
1424 IN CONST LIST_ENTRY *Node\r
1425 );\r
1426\r
1427\r
1428/**\r
1429 Determines if a node the last node in a doubly linked list.\r
1430\r
1431 Returns TRUE if Node is the last node in the doubly linked list specified by\r
1432 List. Otherwise, FALSE is returned. List must have been initialized with\r
17f695ed 1433 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 1434\r
1435 If List is NULL, then ASSERT().\r
1436 If Node is NULL, then ASSERT().\r
17f695ed 1437 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1438 InitializeListHead(), then ASSERT().\r
ac644614 1439 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1440 in List, including the List node, is greater than or equal to\r
1441 PcdMaximumLinkedListLength, then ASSERT().\r
1442 If Node is not a node in List, then ASSERT().\r
1443\r
1444 @param List A pointer to the head node of a doubly linked list.\r
1445 @param Node A pointer to a node in the doubly linked list.\r
1446\r
1447 @retval TRUE Node is the last node in the linked list.\r
1448 @retval FALSE Node is not the last node in the linked list.\r
1449\r
1450**/\r
1451BOOLEAN\r
1452EFIAPI\r
1453IsNodeAtEnd (\r
1454 IN CONST LIST_ENTRY *List,\r
1455 IN CONST LIST_ENTRY *Node\r
1456 );\r
1457\r
1458\r
1459/**\r
1460 Swaps the location of two nodes in a doubly linked list, and returns the\r
1461 first node after the swap.\r
1462\r
1463 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
1464 Otherwise, the location of the FirstEntry node is swapped with the location\r
1465 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
1466 same double linked list as FirstEntry and that double linked list must have\r
17f695ed 1467 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
1468 SecondEntry is returned after the nodes are swapped.\r
ac644614 1469\r
1470 If FirstEntry is NULL, then ASSERT().\r
1471 If SecondEntry is NULL, then ASSERT().\r
1472 If SecondEntry and FirstEntry are not in the same linked list, then ASSERT().\r
1473 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1474 linked list containing the FirstEntry and SecondEntry nodes, including\r
1475 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
1476 PcdMaximumLinkedListLength, then ASSERT().\r
1477\r
1478 @param FirstEntry A pointer to a node in a linked list.\r
1479 @param SecondEntry A pointer to another node in the same linked list.\r
38bbd3d9 1480 \r
9aa049d9 1481 @return SecondEntry.\r
ac644614 1482\r
1483**/\r
1484LIST_ENTRY *\r
1485EFIAPI\r
1486SwapListEntries (\r
aa0583c7 1487 IN OUT LIST_ENTRY *FirstEntry,\r
1488 IN OUT LIST_ENTRY *SecondEntry\r
ac644614 1489 );\r
1490\r
1491\r
1492/**\r
1493 Removes a node from a doubly linked list, and returns the node that follows\r
1494 the removed node.\r
1495\r
1496 Removes the node Entry from a doubly linked list. It is up to the caller of\r
1497 this function to release the memory used by this node if that is required. On\r
1498 exit, the node following Entry in the doubly linked list is returned. If\r
1499 Entry is the only node in the linked list, then the head node of the linked\r
1500 list is returned.\r
1501\r
1502 If Entry is NULL, then ASSERT().\r
1503 If Entry is the head node of an empty list, then ASSERT().\r
1504 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1505 linked list containing Entry, including the Entry node, is greater than\r
1506 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
1507\r
9aa049d9 1508 @param Entry A pointer to a node in a linked list.\r
ac644614 1509\r
9aa049d9 1510 @return Entry.\r
ac644614 1511\r
1512**/\r
1513LIST_ENTRY *\r
1514EFIAPI\r
1515RemoveEntryList (\r
1516 IN CONST LIST_ENTRY *Entry\r
1517 );\r
1518\r
1519//\r
1520// Math Services\r
1521//\r
1522\r
1523/**\r
1524 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
1525 with zeros. The shifted value is returned.\r
1526\r
1527 This function shifts the 64-bit value Operand to the left by Count bits. The\r
1528 low Count bits are set to zero. The shifted value is returned.\r
1529\r
1530 If Count is greater than 63, then ASSERT().\r
1531\r
1532 @param Operand The 64-bit operand to shift left.\r
1533 @param Count The number of bits to shift left.\r
1534\r
9aa049d9 1535 @return Operand << Count.\r
ac644614 1536\r
1537**/\r
1538UINT64\r
1539EFIAPI\r
1540LShiftU64 (\r
1541 IN UINT64 Operand,\r
1542 IN UINTN Count\r
1543 );\r
1544\r
1545\r
1546/**\r
1547 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
1548 filled with zeros. The shifted value is returned.\r
1549\r
1550 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1551 high Count bits are set to zero. The shifted value is returned.\r
1552\r
1553 If Count is greater than 63, then ASSERT().\r
1554\r
1555 @param Operand The 64-bit operand to shift right.\r
1556 @param Count The number of bits to shift right.\r
1557\r
1558 @return Operand >> Count\r
1559\r
1560**/\r
1561UINT64\r
1562EFIAPI\r
1563RShiftU64 (\r
1564 IN UINT64 Operand,\r
1565 IN UINTN Count\r
1566 );\r
1567\r
1568\r
1569/**\r
1570 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
1571 with original integer's bit 63. The shifted value is returned.\r
1572\r
1573 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1574 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
1575\r
1576 If Count is greater than 63, then ASSERT().\r
1577\r
1578 @param Operand The 64-bit operand to shift right.\r
1579 @param Count The number of bits to shift right.\r
1580\r
1581 @return Operand >> Count\r
1582\r
1583**/\r
1584UINT64\r
1585EFIAPI\r
1586ARShiftU64 (\r
1587 IN UINT64 Operand,\r
1588 IN UINTN Count\r
1589 );\r
1590\r
1591\r
1592/**\r
1593 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
1594 with the high bits that were rotated.\r
1595\r
1596 This function rotates the 32-bit value Operand to the left by Count bits. The\r
1597 low Count bits are fill with the high Count bits of Operand. The rotated\r
1598 value is returned.\r
1599\r
1600 If Count is greater than 31, then ASSERT().\r
1601\r
1602 @param Operand The 32-bit operand to rotate left.\r
1603 @param Count The number of bits to rotate left.\r
1604\r
17f695ed 1605 @return Operand << Count\r
ac644614 1606\r
1607**/\r
1608UINT32\r
1609EFIAPI\r
1610LRotU32 (\r
1611 IN UINT32 Operand,\r
1612 IN UINTN Count\r
1613 );\r
1614\r
1615\r
1616/**\r
1617 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
1618 with the low bits that were rotated.\r
1619\r
1620 This function rotates the 32-bit value Operand to the right by Count bits.\r
1621 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1622 value is returned.\r
1623\r
1624 If Count is greater than 31, then ASSERT().\r
1625\r
1626 @param Operand The 32-bit operand to rotate right.\r
1627 @param Count The number of bits to rotate right.\r
1628\r
1629 @return Operand >>> Count\r
1630\r
1631**/\r
1632UINT32\r
1633EFIAPI\r
1634RRotU32 (\r
1635 IN UINT32 Operand,\r
1636 IN UINTN Count\r
1637 );\r
1638\r
1639\r
1640/**\r
1641 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
1642 with the high bits that were rotated.\r
1643\r
1644 This function rotates the 64-bit value Operand to the left by Count bits. The\r
1645 low Count bits are fill with the high Count bits of Operand. The rotated\r
1646 value is returned.\r
1647\r
1648 If Count is greater than 63, then ASSERT().\r
1649\r
1650 @param Operand The 64-bit operand to rotate left.\r
1651 @param Count The number of bits to rotate left.\r
1652\r
17f695ed 1653 @return Operand << Count\r
ac644614 1654\r
1655**/\r
1656UINT64\r
1657EFIAPI\r
1658LRotU64 (\r
1659 IN UINT64 Operand,\r
1660 IN UINTN Count\r
1661 );\r
1662\r
1663\r
1664/**\r
1665 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
1666 with the high low bits that were rotated.\r
1667\r
1668 This function rotates the 64-bit value Operand to the right by Count bits.\r
1669 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1670 value is returned.\r
1671\r
1672 If Count is greater than 63, then ASSERT().\r
1673\r
1674 @param Operand The 64-bit operand to rotate right.\r
1675 @param Count The number of bits to rotate right.\r
1676\r
17f695ed 1677 @return Operand >> Count\r
ac644614 1678\r
1679**/\r
1680UINT64\r
1681EFIAPI\r
1682RRotU64 (\r
1683 IN UINT64 Operand,\r
1684 IN UINTN Count\r
1685 );\r
1686\r
1687\r
1688/**\r
1689 Returns the bit position of the lowest bit set in a 32-bit value.\r
1690\r
1691 This function computes the bit position of the lowest bit set in the 32-bit\r
1692 value specified by Operand. If Operand is zero, then -1 is returned.\r
1693 Otherwise, a value between 0 and 31 is returned.\r
1694\r
1695 @param Operand The 32-bit operand to evaluate.\r
1696\r
9aa049d9 1697 @retval 0..31 The lowest bit set in Operand was found.\r
17f695ed 1698 @retval -1 Operand is zero.\r
ac644614 1699\r
1700**/\r
1701INTN\r
1702EFIAPI\r
1703LowBitSet32 (\r
1704 IN UINT32 Operand\r
1705 );\r
1706\r
1707\r
1708/**\r
1709 Returns the bit position of the lowest bit set in a 64-bit value.\r
1710\r
1711 This function computes the bit position of the lowest bit set in the 64-bit\r
1712 value specified by Operand. If Operand is zero, then -1 is returned.\r
1713 Otherwise, a value between 0 and 63 is returned.\r
1714\r
1715 @param Operand The 64-bit operand to evaluate.\r
1716\r
9aa049d9 1717 @retval 0..63 The lowest bit set in Operand was found.\r
17f695ed 1718 @retval -1 Operand is zero.\r
1719\r
ac644614 1720\r
1721**/\r
1722INTN\r
1723EFIAPI\r
1724LowBitSet64 (\r
1725 IN UINT64 Operand\r
1726 );\r
1727\r
1728\r
1729/**\r
1730 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
1731 to log2(x).\r
1732\r
1733 This function computes the bit position of the highest bit set in the 32-bit\r
1734 value specified by Operand. If Operand is zero, then -1 is returned.\r
1735 Otherwise, a value between 0 and 31 is returned.\r
1736\r
1737 @param Operand The 32-bit operand to evaluate.\r
1738\r
9aa049d9 1739 @retval 0..31 Position of the highest bit set in Operand if found.\r
17f695ed 1740 @retval -1 Operand is zero.\r
ac644614 1741\r
1742**/\r
1743INTN\r
1744EFIAPI\r
1745HighBitSet32 (\r
1746 IN UINT32 Operand\r
1747 );\r
1748\r
1749\r
1750/**\r
1751 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
1752 to log2(x).\r
1753\r
1754 This function computes the bit position of the highest bit set in the 64-bit\r
1755 value specified by Operand. If Operand is zero, then -1 is returned.\r
1756 Otherwise, a value between 0 and 63 is returned.\r
1757\r
1758 @param Operand The 64-bit operand to evaluate.\r
1759\r
9aa049d9 1760 @retval 0..63 Position of the highest bit set in Operand if found.\r
17f695ed 1761 @retval -1 Operand is zero.\r
ac644614 1762\r
1763**/\r
1764INTN\r
1765EFIAPI\r
1766HighBitSet64 (\r
1767 IN UINT64 Operand\r
1768 );\r
1769\r
1770\r
1771/**\r
1772 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
17f695ed 1773 1 << log2(x).\r
ac644614 1774\r
1775 This function computes the value of the highest bit set in the 32-bit value\r
1776 specified by Operand. If Operand is zero, then zero is returned.\r
1777\r
1778 @param Operand The 32-bit operand to evaluate.\r
1779\r
1780 @return 1 << HighBitSet32(Operand)\r
1781 @retval 0 Operand is zero.\r
1782\r
1783**/\r
1784UINT32\r
1785EFIAPI\r
1786GetPowerOfTwo32 (\r
1787 IN UINT32 Operand\r
1788 );\r
1789\r
1790\r
1791/**\r
1792 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
17f695ed 1793 1 << log2(x).\r
ac644614 1794\r
1795 This function computes the value of the highest bit set in the 64-bit value\r
1796 specified by Operand. If Operand is zero, then zero is returned.\r
1797\r
1798 @param Operand The 64-bit operand to evaluate.\r
1799\r
1800 @return 1 << HighBitSet64(Operand)\r
1801 @retval 0 Operand is zero.\r
1802\r
1803**/\r
1804UINT64\r
1805EFIAPI\r
1806GetPowerOfTwo64 (\r
1807 IN UINT64 Operand\r
1808 );\r
1809\r
1810\r
1811/**\r
1812 Switches the endianess of a 16-bit integer.\r
1813\r
1814 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
1815 from little endian to big endian or vice versa. The byte swapped value is\r
1816 returned.\r
1817\r
1818 @param Value Operand A 16-bit unsigned value.\r
1819\r
17f695ed 1820 @return The byte swapped Operand.\r
ac644614 1821\r
1822**/\r
1823UINT16\r
1824EFIAPI\r
1825SwapBytes16 (\r
1826 IN UINT16 Value\r
1827 );\r
1828\r
1829\r
1830/**\r
1831 Switches the endianess of a 32-bit integer.\r
1832\r
1833 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
1834 from little endian to big endian or vice versa. The byte swapped value is\r
1835 returned.\r
1836\r
1837 @param Value Operand A 32-bit unsigned value.\r
1838\r
17f695ed 1839 @return The byte swapped Operand.\r
ac644614 1840\r
1841**/\r
1842UINT32\r
1843EFIAPI\r
1844SwapBytes32 (\r
1845 IN UINT32 Value\r
1846 );\r
1847\r
1848\r
1849/**\r
1850 Switches the endianess of a 64-bit integer.\r
1851\r
1852 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
1853 from little endian to big endian or vice versa. The byte swapped value is\r
1854 returned.\r
1855\r
1856 @param Value Operand A 64-bit unsigned value.\r
1857\r
17f695ed 1858 @return The byte swapped Operand.\r
ac644614 1859\r
1860**/\r
1861UINT64\r
1862EFIAPI\r
1863SwapBytes64 (\r
1864 IN UINT64 Value\r
1865 );\r
1866\r
1867\r
1868/**\r
1869 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
1870 generates a 64-bit unsigned result.\r
1871\r
1872 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
1873 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1874 bit unsigned result is returned.\r
1875\r
ac644614 1876 @param Multiplicand A 64-bit unsigned value.\r
1877 @param Multiplier A 32-bit unsigned value.\r
1878\r
1879 @return Multiplicand * Multiplier\r
1880\r
1881**/\r
1882UINT64\r
1883EFIAPI\r
1884MultU64x32 (\r
1885 IN UINT64 Multiplicand,\r
1886 IN UINT32 Multiplier\r
1887 );\r
1888\r
1889\r
1890/**\r
1891 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
1892 generates a 64-bit unsigned result.\r
1893\r
1894 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
1895 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1896 bit unsigned result is returned.\r
1897\r
1898 If the result overflows, then ASSERT().\r
1899\r
1900 @param Multiplicand A 64-bit unsigned value.\r
1901 @param Multiplier A 64-bit unsigned value.\r
1902\r
1903 @return Multiplicand * Multiplier\r
1904\r
1905**/\r
1906UINT64\r
1907EFIAPI\r
1908MultU64x64 (\r
1909 IN UINT64 Multiplicand,\r
1910 IN UINT64 Multiplier\r
1911 );\r
1912\r
1913\r
1914/**\r
1915 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
1916 64-bit signed result.\r
1917\r
1918 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
1919 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
1920 signed result is returned.\r
1921\r
ac644614 1922 @param Multiplicand A 64-bit signed value.\r
1923 @param Multiplier A 64-bit signed value.\r
1924\r
1925 @return Multiplicand * Multiplier\r
1926\r
1927**/\r
1928INT64\r
1929EFIAPI\r
1930MultS64x64 (\r
1931 IN INT64 Multiplicand,\r
1932 IN INT64 Multiplier\r
1933 );\r
1934\r
1935\r
1936/**\r
1937 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1938 a 64-bit unsigned result.\r
1939\r
1940 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1941 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
1942 function returns the 64-bit unsigned quotient.\r
1943\r
1944 If Divisor is 0, then ASSERT().\r
1945\r
1946 @param Dividend A 64-bit unsigned value.\r
1947 @param Divisor A 32-bit unsigned value.\r
1948\r
1949 @return Dividend / Divisor\r
1950\r
1951**/\r
1952UINT64\r
1953EFIAPI\r
1954DivU64x32 (\r
1955 IN UINT64 Dividend,\r
1956 IN UINT32 Divisor\r
1957 );\r
1958\r
1959\r
1960/**\r
1961 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1962 a 32-bit unsigned remainder.\r
1963\r
1964 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1965 unsigned value Divisor and generates a 32-bit remainder. This function\r
1966 returns the 32-bit unsigned remainder.\r
1967\r
1968 If Divisor is 0, then ASSERT().\r
1969\r
1970 @param Dividend A 64-bit unsigned value.\r
1971 @param Divisor A 32-bit unsigned value.\r
1972\r
1973 @return Dividend % Divisor\r
1974\r
1975**/\r
1976UINT32\r
1977EFIAPI\r
1978ModU64x32 (\r
1979 IN UINT64 Dividend,\r
1980 IN UINT32 Divisor\r
1981 );\r
1982\r
1983\r
1984/**\r
1985 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1986 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
1987\r
1988 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1989 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
1990 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
1991 This function returns the 64-bit unsigned quotient.\r
1992\r
1993 If Divisor is 0, then ASSERT().\r
1994\r
1995 @param Dividend A 64-bit unsigned value.\r
1996 @param Divisor A 32-bit unsigned value.\r
1997 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
1998 optional and may be NULL.\r
1999\r
2000 @return Dividend / Divisor\r
2001\r
2002**/\r
2003UINT64\r
2004EFIAPI\r
2005DivU64x32Remainder (\r
2006 IN UINT64 Dividend,\r
2007 IN UINT32 Divisor,\r
2008 OUT UINT32 *Remainder OPTIONAL\r
2009 );\r
2010\r
2011\r
2012/**\r
2013 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
2014 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
2015\r
2016 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
2017 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2018 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
2019 This function returns the 64-bit unsigned quotient.\r
2020\r
2021 If Divisor is 0, then ASSERT().\r
2022\r
2023 @param Dividend A 64-bit unsigned value.\r
2024 @param Divisor A 64-bit unsigned value.\r
2025 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
2026 optional and may be NULL.\r
2027\r
2028 @return Dividend / Divisor\r
2029\r
2030**/\r
2031UINT64\r
2032EFIAPI\r
2033DivU64x64Remainder (\r
2034 IN UINT64 Dividend,\r
2035 IN UINT64 Divisor,\r
2036 OUT UINT64 *Remainder OPTIONAL\r
2037 );\r
2038\r
2039\r
2040/**\r
2041 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
2042 64-bit signed result and a optional 64-bit signed remainder.\r
2043\r
2044 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
2045 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
2046 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
2047 function returns the 64-bit signed quotient.\r
2048\r
9aa049d9 2049 It is the caller's responsibility to not call this function with a Divisor of 0.\r
17f695ed 2050 If Divisor is 0, then the quotient and remainder should be assumed to be \r
2051 the largest negative integer.\r
2052\r
ac644614 2053 If Divisor is 0, then ASSERT().\r
2054\r
2055 @param Dividend A 64-bit signed value.\r
2056 @param Divisor A 64-bit signed value.\r
2057 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
2058 optional and may be NULL.\r
2059\r
2060 @return Dividend / Divisor\r
2061\r
2062**/\r
2063INT64\r
2064EFIAPI\r
2065DivS64x64Remainder (\r
2066 IN INT64 Dividend,\r
2067 IN INT64 Divisor,\r
2068 OUT INT64 *Remainder OPTIONAL\r
2069 );\r
2070\r
2071\r
2072/**\r
2073 Reads a 16-bit value from memory that may be unaligned.\r
2074\r
2075 This function returns the 16-bit value pointed to by Buffer. The function\r
2076 guarantees that the read operation does not produce an alignment fault.\r
2077\r
2078 If the Buffer is NULL, then ASSERT().\r
2079\r
5385a579 2080 @param Buffer Pointer to a 16-bit value that may be unaligned.\r
ac644614 2081\r
5385a579 2082 @return The 16-bit value read from Buffer.\r
ac644614 2083\r
2084**/\r
2085UINT16\r
2086EFIAPI\r
2087ReadUnaligned16 (\r
5385a579 2088 IN CONST UINT16 *Buffer\r
ac644614 2089 );\r
2090\r
2091\r
2092/**\r
2093 Writes a 16-bit value to memory that may be unaligned.\r
2094\r
2095 This function writes the 16-bit value specified by Value to Buffer. Value is\r
2096 returned. The function guarantees that the write operation does not produce\r
2097 an alignment fault.\r
2098\r
2099 If the Buffer is NULL, then ASSERT().\r
2100\r
5385a579 2101 @param Buffer Pointer to a 16-bit value that may be unaligned.\r
ac644614 2102 @param Value 16-bit value to write to Buffer.\r
2103\r
5385a579 2104 @return The 16-bit value to write to Buffer.\r
ac644614 2105\r
2106**/\r
2107UINT16\r
2108EFIAPI\r
2109WriteUnaligned16 (\r
5385a579 2110 OUT UINT16 *Buffer,\r
2111 IN UINT16 Value\r
ac644614 2112 );\r
2113\r
2114\r
2115/**\r
2116 Reads a 24-bit value from memory that may be unaligned.\r
2117\r
2118 This function returns the 24-bit value pointed to by Buffer. The function\r
2119 guarantees that the read operation does not produce an alignment fault.\r
2120\r
2121 If the Buffer is NULL, then ASSERT().\r
2122\r
2123 @param Buffer Pointer to a 24-bit value that may be unaligned.\r
2124\r
5385a579 2125 @return The 24-bit value read from Buffer.\r
ac644614 2126\r
2127**/\r
2128UINT32\r
2129EFIAPI\r
2130ReadUnaligned24 (\r
5385a579 2131 IN CONST UINT32 *Buffer\r
ac644614 2132 );\r
2133\r
2134\r
2135/**\r
2136 Writes a 24-bit value to memory that may be unaligned.\r
2137\r
2138 This function writes the 24-bit value specified by Value to Buffer. Value is\r
2139 returned. The function guarantees that the write operation does not produce\r
2140 an alignment fault.\r
2141\r
2142 If the Buffer is NULL, then ASSERT().\r
2143\r
2144 @param Buffer Pointer to a 24-bit value that may be unaligned.\r
2145 @param Value 24-bit value to write to Buffer.\r
2146\r
5385a579 2147 @return The 24-bit value to write to Buffer.\r
ac644614 2148\r
2149**/\r
2150UINT32\r
2151EFIAPI\r
2152WriteUnaligned24 (\r
5385a579 2153 OUT UINT32 *Buffer,\r
2154 IN UINT32 Value\r
ac644614 2155 );\r
2156\r
2157\r
2158/**\r
2159 Reads a 32-bit value from memory that may be unaligned.\r
2160\r
2161 This function returns the 32-bit value pointed to by Buffer. The function\r
2162 guarantees that the read operation does not produce an alignment fault.\r
2163\r
2164 If the Buffer is NULL, then ASSERT().\r
2165\r
5385a579 2166 @param Buffer Pointer to a 32-bit value that may be unaligned.\r
ac644614 2167\r
5385a579 2168 @return The 32-bit value read from Buffer.\r
ac644614 2169\r
2170**/\r
2171UINT32\r
2172EFIAPI\r
2173ReadUnaligned32 (\r
5385a579 2174 IN CONST UINT32 *Buffer\r
ac644614 2175 );\r
2176\r
2177\r
2178/**\r
2179 Writes a 32-bit value to memory that may be unaligned.\r
2180\r
2181 This function writes the 32-bit value specified by Value to Buffer. Value is\r
2182 returned. The function guarantees that the write operation does not produce\r
2183 an alignment fault.\r
2184\r
2185 If the Buffer is NULL, then ASSERT().\r
2186\r
5385a579 2187 @param Buffer Pointer to a 32-bit value that may be unaligned.\r
ac644614 2188 @param Value 32-bit value to write to Buffer.\r
2189\r
5385a579 2190 @return The 32-bit value to write to Buffer.\r
ac644614 2191\r
2192**/\r
2193UINT32\r
2194EFIAPI\r
2195WriteUnaligned32 (\r
5385a579 2196 OUT UINT32 *Buffer,\r
2197 IN UINT32 Value\r
ac644614 2198 );\r
2199\r
2200\r
2201/**\r
2202 Reads a 64-bit value from memory that may be unaligned.\r
2203\r
2204 This function returns the 64-bit value pointed to by Buffer. The function\r
2205 guarantees that the read operation does not produce an alignment fault.\r
2206\r
2207 If the Buffer is NULL, then ASSERT().\r
2208\r
5385a579 2209 @param Buffer Pointer to a 64-bit value that may be unaligned.\r
ac644614 2210\r
5385a579 2211 @return The 64-bit value read from Buffer.\r
ac644614 2212\r
2213**/\r
2214UINT64\r
2215EFIAPI\r
2216ReadUnaligned64 (\r
5385a579 2217 IN CONST UINT64 *Buffer\r
ac644614 2218 );\r
2219\r
2220\r
2221/**\r
2222 Writes a 64-bit value to memory that may be unaligned.\r
2223\r
2224 This function writes the 64-bit value specified by Value to Buffer. Value is\r
2225 returned. The function guarantees that the write operation does not produce\r
2226 an alignment fault.\r
2227\r
2228 If the Buffer is NULL, then ASSERT().\r
2229\r
5385a579 2230 @param Buffer Pointer to a 64-bit value that may be unaligned.\r
ac644614 2231 @param Value 64-bit value to write to Buffer.\r
2232\r
5385a579 2233 @return The 64-bit value to write to Buffer.\r
ac644614 2234\r
2235**/\r
2236UINT64\r
2237EFIAPI\r
2238WriteUnaligned64 (\r
5385a579 2239 OUT UINT64 *Buffer,\r
2240 IN UINT64 Value\r
ac644614 2241 );\r
2242\r
2243\r
2244//\r
2245// Bit Field Functions\r
2246//\r
2247\r
2248/**\r
2249 Returns a bit field from an 8-bit value.\r
2250\r
2251 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2252\r
2253 If 8-bit operations are not supported, then ASSERT().\r
2254 If StartBit is greater than 7, then ASSERT().\r
2255 If EndBit is greater than 7, then ASSERT().\r
2256 If EndBit is less than StartBit, then ASSERT().\r
2257\r
2258 @param Operand Operand on which to perform the bitfield operation.\r
2259 @param StartBit The ordinal of the least significant bit in the bit field.\r
2260 Range 0..7.\r
2261 @param EndBit The ordinal of the most significant bit in the bit field.\r
2262 Range 0..7.\r
2263\r
2264 @return The bit field read.\r
2265\r
2266**/\r
2267UINT8\r
2268EFIAPI\r
2269BitFieldRead8 (\r
2270 IN UINT8 Operand,\r
2271 IN UINTN StartBit,\r
2272 IN UINTN EndBit\r
2273 );\r
2274\r
2275\r
2276/**\r
2277 Writes a bit field to an 8-bit value, and returns the result.\r
2278\r
2279 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2280 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
2281 returned.\r
2282\r
2283 If 8-bit operations are not supported, then ASSERT().\r
2284 If StartBit is greater than 7, then ASSERT().\r
2285 If EndBit is greater than 7, then ASSERT().\r
2286 If EndBit is less than StartBit, then ASSERT().\r
2287\r
2288 @param Operand Operand on which to perform the bitfield operation.\r
2289 @param StartBit The ordinal of the least significant bit in the bit field.\r
2290 Range 0..7.\r
2291 @param EndBit The ordinal of the most significant bit in the bit field.\r
2292 Range 0..7.\r
2293 @param Value New value of the bit field.\r
2294\r
2295 @return The new 8-bit value.\r
2296\r
2297**/\r
2298UINT8\r
2299EFIAPI\r
2300BitFieldWrite8 (\r
2301 IN UINT8 Operand,\r
2302 IN UINTN StartBit,\r
2303 IN UINTN EndBit,\r
2304 IN UINT8 Value\r
2305 );\r
2306\r
2307\r
2308/**\r
2309 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
2310 result.\r
2311\r
2312 Performs a bitwise inclusive OR between the bit field specified by StartBit\r
2313 and EndBit in Operand and the value specified by OrData. All other bits in\r
2314 Operand are preserved. The new 8-bit value is returned.\r
2315\r
2316 If 8-bit operations are not supported, then ASSERT().\r
2317 If StartBit is greater than 7, then ASSERT().\r
2318 If EndBit is greater than 7, then ASSERT().\r
2319 If EndBit is less than StartBit, then ASSERT().\r
2320\r
2321 @param Operand Operand on which to perform the bitfield operation.\r
2322 @param StartBit The ordinal of the least significant bit in the bit field.\r
2323 Range 0..7.\r
2324 @param EndBit The ordinal of the most significant bit in the bit field.\r
2325 Range 0..7.\r
2326 @param OrData The value to OR with the read value from the value\r
2327\r
2328 @return The new 8-bit value.\r
2329\r
2330**/\r
2331UINT8\r
2332EFIAPI\r
2333BitFieldOr8 (\r
2334 IN UINT8 Operand,\r
2335 IN UINTN StartBit,\r
2336 IN UINTN EndBit,\r
2337 IN UINT8 OrData\r
2338 );\r
2339\r
2340\r
2341/**\r
2342 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
2343 the result.\r
2344\r
2345 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2346 in Operand and the value specified by AndData. All other bits in Operand are\r
2347 preserved. The new 8-bit value is returned.\r
2348\r
2349 If 8-bit operations are not supported, then ASSERT().\r
2350 If StartBit is greater than 7, then ASSERT().\r
2351 If EndBit is greater than 7, then ASSERT().\r
2352 If EndBit is less than StartBit, then ASSERT().\r
2353\r
2354 @param Operand Operand on which to perform the bitfield operation.\r
2355 @param StartBit The ordinal of the least significant bit in the bit field.\r
2356 Range 0..7.\r
2357 @param EndBit The ordinal of the most significant bit in the bit field.\r
2358 Range 0..7.\r
2359 @param AndData The value to AND with the read value from the value.\r
2360\r
2361 @return The new 8-bit value.\r
2362\r
2363**/\r
2364UINT8\r
2365EFIAPI\r
2366BitFieldAnd8 (\r
2367 IN UINT8 Operand,\r
2368 IN UINTN StartBit,\r
2369 IN UINTN EndBit,\r
2370 IN UINT8 AndData\r
2371 );\r
2372\r
2373\r
2374/**\r
2375 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
2376 bitwise OR, and returns the result.\r
2377\r
2378 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2379 in Operand and the value specified by AndData, followed by a bitwise\r
2380 inclusive OR with value specified by OrData. All other bits in Operand are\r
2381 preserved. The new 8-bit value is returned.\r
2382\r
2383 If 8-bit operations are not supported, then ASSERT().\r
2384 If StartBit is greater than 7, then ASSERT().\r
2385 If EndBit is greater than 7, then ASSERT().\r
2386 If EndBit is less than StartBit, then ASSERT().\r
2387\r
2388 @param Operand Operand on which to perform the bitfield operation.\r
2389 @param StartBit The ordinal of the least significant bit in the bit field.\r
2390 Range 0..7.\r
2391 @param EndBit The ordinal of the most significant bit in the bit field.\r
2392 Range 0..7.\r
2393 @param AndData The value to AND with the read value from the value.\r
2394 @param OrData The value to OR with the result of the AND operation.\r
2395\r
2396 @return The new 8-bit value.\r
2397\r
2398**/\r
2399UINT8\r
2400EFIAPI\r
2401BitFieldAndThenOr8 (\r
2402 IN UINT8 Operand,\r
2403 IN UINTN StartBit,\r
2404 IN UINTN EndBit,\r
2405 IN UINT8 AndData,\r
2406 IN UINT8 OrData\r
2407 );\r
2408\r
2409\r
2410/**\r
2411 Returns a bit field from a 16-bit value.\r
2412\r
2413 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2414\r
2415 If 16-bit operations are not supported, then ASSERT().\r
2416 If StartBit is greater than 15, then ASSERT().\r
2417 If EndBit is greater than 15, then ASSERT().\r
2418 If EndBit is less than StartBit, then ASSERT().\r
2419\r
2420 @param Operand Operand on which to perform the bitfield operation.\r
2421 @param StartBit The ordinal of the least significant bit in the bit field.\r
2422 Range 0..15.\r
2423 @param EndBit The ordinal of the most significant bit in the bit field.\r
2424 Range 0..15.\r
2425\r
2426 @return The bit field read.\r
2427\r
2428**/\r
2429UINT16\r
2430EFIAPI\r
2431BitFieldRead16 (\r
2432 IN UINT16 Operand,\r
2433 IN UINTN StartBit,\r
2434 IN UINTN EndBit\r
2435 );\r
2436\r
2437\r
2438/**\r
2439 Writes a bit field to a 16-bit value, and returns the result.\r
2440\r
2441 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2442 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
2443 returned.\r
2444\r
2445 If 16-bit operations are not supported, then ASSERT().\r
2446 If StartBit is greater than 15, then ASSERT().\r
2447 If EndBit is greater than 15, then ASSERT().\r
2448 If EndBit is less than StartBit, then ASSERT().\r
2449\r
2450 @param Operand Operand on which to perform the bitfield operation.\r
2451 @param StartBit The ordinal of the least significant bit in the bit field.\r
2452 Range 0..15.\r
2453 @param EndBit The ordinal of the most significant bit in the bit field.\r
2454 Range 0..15.\r
2455 @param Value New value of the bit field.\r
2456\r
2457 @return The new 16-bit value.\r
2458\r
2459**/\r
2460UINT16\r
2461EFIAPI\r
2462BitFieldWrite16 (\r
2463 IN UINT16 Operand,\r
2464 IN UINTN StartBit,\r
2465 IN UINTN EndBit,\r
2466 IN UINT16 Value\r
2467 );\r
2468\r
2469\r
2470/**\r
2471 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
2472 result.\r
2473\r
2474 Performs a bitwise inclusive OR between the bit field specified by StartBit\r
2475 and EndBit in Operand and the value specified by OrData. All other bits in\r
2476 Operand are preserved. The new 16-bit value is returned.\r
2477\r
2478 If 16-bit operations are not supported, then ASSERT().\r
2479 If StartBit is greater than 15, then ASSERT().\r
2480 If EndBit is greater than 15, then ASSERT().\r
2481 If EndBit is less than StartBit, then ASSERT().\r
2482\r
2483 @param Operand Operand on which to perform the bitfield operation.\r
2484 @param StartBit The ordinal of the least significant bit in the bit field.\r
2485 Range 0..15.\r
2486 @param EndBit The ordinal of the most significant bit in the bit field.\r
2487 Range 0..15.\r
2488 @param OrData The value to OR with the read value from the value\r
2489\r
2490 @return The new 16-bit value.\r
2491\r
2492**/\r
2493UINT16\r
2494EFIAPI\r
2495BitFieldOr16 (\r
2496 IN UINT16 Operand,\r
2497 IN UINTN StartBit,\r
2498 IN UINTN EndBit,\r
2499 IN UINT16 OrData\r
2500 );\r
2501\r
2502\r
2503/**\r
2504 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
2505 the result.\r
2506\r
2507 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2508 in Operand and the value specified by AndData. All other bits in Operand are\r
2509 preserved. The new 16-bit value is returned.\r
2510\r
2511 If 16-bit operations are not supported, then ASSERT().\r
2512 If StartBit is greater than 15, then ASSERT().\r
2513 If EndBit is greater than 15, then ASSERT().\r
2514 If EndBit is less than StartBit, then ASSERT().\r
2515\r
2516 @param Operand Operand on which to perform the bitfield operation.\r
2517 @param StartBit The ordinal of the least significant bit in the bit field.\r
2518 Range 0..15.\r
2519 @param EndBit The ordinal of the most significant bit in the bit field.\r
2520 Range 0..15.\r
2521 @param AndData The value to AND with the read value from the value\r
2522\r
2523 @return The new 16-bit value.\r
2524\r
2525**/\r
2526UINT16\r
2527EFIAPI\r
2528BitFieldAnd16 (\r
2529 IN UINT16 Operand,\r
2530 IN UINTN StartBit,\r
2531 IN UINTN EndBit,\r
2532 IN UINT16 AndData\r
2533 );\r
2534\r
2535\r
2536/**\r
2537 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
2538 bitwise OR, and returns the result.\r
2539\r
2540 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2541 in Operand and the value specified by AndData, followed by a bitwise\r
2542 inclusive OR with value specified by OrData. All other bits in Operand are\r
2543 preserved. The new 16-bit value is returned.\r
2544\r
2545 If 16-bit operations are not supported, then ASSERT().\r
2546 If StartBit is greater than 15, then ASSERT().\r
2547 If EndBit is greater than 15, then ASSERT().\r
2548 If EndBit is less than StartBit, then ASSERT().\r
2549\r
2550 @param Operand Operand on which to perform the bitfield operation.\r
2551 @param StartBit The ordinal of the least significant bit in the bit field.\r
2552 Range 0..15.\r
2553 @param EndBit The ordinal of the most significant bit in the bit field.\r
2554 Range 0..15.\r
2555 @param AndData The value to AND with the read value from the value.\r
2556 @param OrData The value to OR with the result of the AND operation.\r
2557\r
2558 @return The new 16-bit value.\r
2559\r
2560**/\r
2561UINT16\r
2562EFIAPI\r
2563BitFieldAndThenOr16 (\r
2564 IN UINT16 Operand,\r
2565 IN UINTN StartBit,\r
2566 IN UINTN EndBit,\r
2567 IN UINT16 AndData,\r
2568 IN UINT16 OrData\r
2569 );\r
2570\r
2571\r
2572/**\r
2573 Returns a bit field from a 32-bit value.\r
2574\r
2575 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2576\r
2577 If 32-bit operations are not supported, then ASSERT().\r
2578 If StartBit is greater than 31, then ASSERT().\r
2579 If EndBit is greater than 31, then ASSERT().\r
2580 If EndBit is less than StartBit, then ASSERT().\r
2581\r
2582 @param Operand Operand on which to perform the bitfield operation.\r
2583 @param StartBit The ordinal of the least significant bit in the bit field.\r
2584 Range 0..31.\r
2585 @param EndBit The ordinal of the most significant bit in the bit field.\r
2586 Range 0..31.\r
2587\r
2588 @return The bit field read.\r
2589\r
2590**/\r
2591UINT32\r
2592EFIAPI\r
2593BitFieldRead32 (\r
2594 IN UINT32 Operand,\r
2595 IN UINTN StartBit,\r
2596 IN UINTN EndBit\r
2597 );\r
2598\r
2599\r
2600/**\r
2601 Writes a bit field to a 32-bit value, and returns the result.\r
2602\r
2603 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2604 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
2605 returned.\r
2606\r
2607 If 32-bit operations are not supported, then ASSERT().\r
2608 If StartBit is greater than 31, then ASSERT().\r
2609 If EndBit is greater than 31, then ASSERT().\r
2610 If EndBit is less than StartBit, then ASSERT().\r
2611\r
2612 @param Operand Operand on which to perform the bitfield operation.\r
2613 @param StartBit The ordinal of the least significant bit in the bit field.\r
2614 Range 0..31.\r
2615 @param EndBit The ordinal of the most significant bit in the bit field.\r
2616 Range 0..31.\r
2617 @param Value New value of the bit field.\r
2618\r
2619 @return The new 32-bit value.\r
2620\r
2621**/\r
2622UINT32\r
2623EFIAPI\r
2624BitFieldWrite32 (\r
2625 IN UINT32 Operand,\r
2626 IN UINTN StartBit,\r
2627 IN UINTN EndBit,\r
2628 IN UINT32 Value\r
2629 );\r
2630\r
2631\r
2632/**\r
2633 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
2634 result.\r
2635\r
2636 Performs a bitwise inclusive OR between the bit field specified by StartBit\r
2637 and EndBit in Operand and the value specified by OrData. All other bits in\r
2638 Operand are preserved. The new 32-bit value is returned.\r
2639\r
2640 If 32-bit operations are not supported, then ASSERT().\r
2641 If StartBit is greater than 31, then ASSERT().\r
2642 If EndBit is greater than 31, then ASSERT().\r
2643 If EndBit is less than StartBit, then ASSERT().\r
2644\r
2645 @param Operand Operand on which to perform the bitfield operation.\r
2646 @param StartBit The ordinal of the least significant bit in the bit field.\r
2647 Range 0..31.\r
2648 @param EndBit The ordinal of the most significant bit in the bit field.\r
2649 Range 0..31.\r
2650 @param OrData The value to OR with the read value from the value\r
2651\r
2652 @return The new 32-bit value.\r
2653\r
2654**/\r
2655UINT32\r
2656EFIAPI\r
2657BitFieldOr32 (\r
2658 IN UINT32 Operand,\r
2659 IN UINTN StartBit,\r
2660 IN UINTN EndBit,\r
2661 IN UINT32 OrData\r
2662 );\r
2663\r
2664\r
2665/**\r
2666 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
2667 the result.\r
2668\r
2669 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2670 in Operand and the value specified by AndData. All other bits in Operand are\r
2671 preserved. The new 32-bit value is returned.\r
2672\r
2673 If 32-bit operations are not supported, then ASSERT().\r
2674 If StartBit is greater than 31, then ASSERT().\r
2675 If EndBit is greater than 31, then ASSERT().\r
2676 If EndBit is less than StartBit, then ASSERT().\r
2677\r
2678 @param Operand Operand on which to perform the bitfield operation.\r
2679 @param StartBit The ordinal of the least significant bit in the bit field.\r
2680 Range 0..31.\r
2681 @param EndBit The ordinal of the most significant bit in the bit field.\r
2682 Range 0..31.\r
2683 @param AndData The value to AND with the read value from the value\r
2684\r
2685 @return The new 32-bit value.\r
2686\r
2687**/\r
2688UINT32\r
2689EFIAPI\r
2690BitFieldAnd32 (\r
2691 IN UINT32 Operand,\r
2692 IN UINTN StartBit,\r
2693 IN UINTN EndBit,\r
2694 IN UINT32 AndData\r
2695 );\r
2696\r
2697\r
2698/**\r
2699 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
2700 bitwise OR, and returns the result.\r
2701\r
2702 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2703 in Operand and the value specified by AndData, followed by a bitwise\r
2704 inclusive OR with value specified by OrData. All other bits in Operand are\r
2705 preserved. The new 32-bit value is returned.\r
2706\r
2707 If 32-bit operations are not supported, then ASSERT().\r
2708 If StartBit is greater than 31, then ASSERT().\r
2709 If EndBit is greater than 31, then ASSERT().\r
2710 If EndBit is less than StartBit, then ASSERT().\r
2711\r
2712 @param Operand Operand on which to perform the bitfield operation.\r
2713 @param StartBit The ordinal of the least significant bit in the bit field.\r
2714 Range 0..31.\r
2715 @param EndBit The ordinal of the most significant bit in the bit field.\r
2716 Range 0..31.\r
2717 @param AndData The value to AND with the read value from the value.\r
2718 @param OrData The value to OR with the result of the AND operation.\r
2719\r
2720 @return The new 32-bit value.\r
2721\r
2722**/\r
2723UINT32\r
2724EFIAPI\r
2725BitFieldAndThenOr32 (\r
2726 IN UINT32 Operand,\r
2727 IN UINTN StartBit,\r
2728 IN UINTN EndBit,\r
2729 IN UINT32 AndData,\r
2730 IN UINT32 OrData\r
2731 );\r
2732\r
2733\r
2734/**\r
2735 Returns a bit field from a 64-bit value.\r
2736\r
2737 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2738\r
2739 If 64-bit operations are not supported, then ASSERT().\r
2740 If StartBit is greater than 63, then ASSERT().\r
2741 If EndBit is greater than 63, then ASSERT().\r
2742 If EndBit is less than StartBit, then ASSERT().\r
2743\r
2744 @param Operand Operand on which to perform the bitfield operation.\r
2745 @param StartBit The ordinal of the least significant bit in the bit field.\r
2746 Range 0..63.\r
2747 @param EndBit The ordinal of the most significant bit in the bit field.\r
2748 Range 0..63.\r
2749\r
2750 @return The bit field read.\r
2751\r
2752**/\r
2753UINT64\r
2754EFIAPI\r
2755BitFieldRead64 (\r
2756 IN UINT64 Operand,\r
2757 IN UINTN StartBit,\r
2758 IN UINTN EndBit\r
2759 );\r
2760\r
2761\r
2762/**\r
2763 Writes a bit field to a 64-bit value, and returns the result.\r
2764\r
2765 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2766 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
2767 returned.\r
2768\r
2769 If 64-bit operations are not supported, then ASSERT().\r
2770 If StartBit is greater than 63, then ASSERT().\r
2771 If EndBit is greater than 63, then ASSERT().\r
2772 If EndBit is less than StartBit, then ASSERT().\r
2773\r
2774 @param Operand Operand on which to perform the bitfield operation.\r
2775 @param StartBit The ordinal of the least significant bit in the bit field.\r
2776 Range 0..63.\r
2777 @param EndBit The ordinal of the most significant bit in the bit field.\r
2778 Range 0..63.\r
2779 @param Value New value of the bit field.\r
2780\r
2781 @return The new 64-bit value.\r
2782\r
2783**/\r
2784UINT64\r
2785EFIAPI\r
2786BitFieldWrite64 (\r
2787 IN UINT64 Operand,\r
2788 IN UINTN StartBit,\r
2789 IN UINTN EndBit,\r
2790 IN UINT64 Value\r
2791 );\r
2792\r
2793\r
2794/**\r
2795 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
2796 result.\r
2797\r
2798 Performs a bitwise inclusive OR between the bit field specified by StartBit\r
2799 and EndBit in Operand and the value specified by OrData. All other bits in\r
2800 Operand are preserved. The new 64-bit value is returned.\r
2801\r
2802 If 64-bit operations are not supported, then ASSERT().\r
2803 If StartBit is greater than 63, then ASSERT().\r
2804 If EndBit is greater than 63, then ASSERT().\r
2805 If EndBit is less than StartBit, then ASSERT().\r
2806\r
2807 @param Operand Operand on which to perform the bitfield operation.\r
2808 @param StartBit The ordinal of the least significant bit in the bit field.\r
2809 Range 0..63.\r
2810 @param EndBit The ordinal of the most significant bit in the bit field.\r
2811 Range 0..63.\r
2812 @param OrData The value to OR with the read value from the value\r
2813\r
2814 @return The new 64-bit value.\r
2815\r
2816**/\r
2817UINT64\r
2818EFIAPI\r
2819BitFieldOr64 (\r
2820 IN UINT64 Operand,\r
2821 IN UINTN StartBit,\r
2822 IN UINTN EndBit,\r
2823 IN UINT64 OrData\r
2824 );\r
2825\r
2826\r
2827/**\r
2828 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
2829 the result.\r
2830\r
2831 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2832 in Operand and the value specified by AndData. All other bits in Operand are\r
2833 preserved. The new 64-bit value is returned.\r
2834\r
2835 If 64-bit operations are not supported, then ASSERT().\r
2836 If StartBit is greater than 63, then ASSERT().\r
2837 If EndBit is greater than 63, then ASSERT().\r
2838 If EndBit is less than StartBit, then ASSERT().\r
2839\r
2840 @param Operand Operand on which to perform the bitfield operation.\r
2841 @param StartBit The ordinal of the least significant bit in the bit field.\r
2842 Range 0..63.\r
2843 @param EndBit The ordinal of the most significant bit in the bit field.\r
2844 Range 0..63.\r
2845 @param AndData The value to AND with the read value from the value\r
2846\r
2847 @return The new 64-bit value.\r
2848\r
2849**/\r
2850UINT64\r
2851EFIAPI\r
2852BitFieldAnd64 (\r
2853 IN UINT64 Operand,\r
2854 IN UINTN StartBit,\r
2855 IN UINTN EndBit,\r
2856 IN UINT64 AndData\r
2857 );\r
2858\r
2859\r
2860/**\r
2861 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
2862 bitwise OR, and returns the result.\r
2863\r
2864 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2865 in Operand and the value specified by AndData, followed by a bitwise\r
2866 inclusive OR with value specified by OrData. All other bits in Operand are\r
2867 preserved. The new 64-bit value is returned.\r
2868\r
2869 If 64-bit operations are not supported, then ASSERT().\r
2870 If StartBit is greater than 63, then ASSERT().\r
2871 If EndBit is greater than 63, then ASSERT().\r
2872 If EndBit is less than StartBit, then ASSERT().\r
2873\r
2874 @param Operand Operand on which to perform the bitfield operation.\r
2875 @param StartBit The ordinal of the least significant bit in the bit field.\r
2876 Range 0..63.\r
2877 @param EndBit The ordinal of the most significant bit in the bit field.\r
2878 Range 0..63.\r
2879 @param AndData The value to AND with the read value from the value.\r
2880 @param OrData The value to OR with the result of the AND operation.\r
2881\r
2882 @return The new 64-bit value.\r
2883\r
2884**/\r
2885UINT64\r
2886EFIAPI\r
2887BitFieldAndThenOr64 (\r
2888 IN UINT64 Operand,\r
2889 IN UINTN StartBit,\r
2890 IN UINTN EndBit,\r
2891 IN UINT64 AndData,\r
2892 IN UINT64 OrData\r
2893 );\r
2894\r
2895\r
2896//\r
2897// Base Library Synchronization Functions\r
2898//\r
2899\r
2900/**\r
2901 Retrieves the architecture specific spin lock alignment requirements for\r
2902 optimal spin lock performance.\r
2903\r
2904 This function retrieves the spin lock alignment requirements for optimal\r
2905 performance on a given CPU architecture. The spin lock alignment must be a\r
2906 power of two and is returned by this function. If there are no alignment\r
2907 requirements, then 1 must be returned. The spin lock synchronization\r
2908 functions must function correctly if the spin lock size and alignment values\r
2909 returned by this function are not used at all. These values are hints to the\r
2910 consumers of the spin lock synchronization functions to obtain optimal spin\r
2911 lock performance.\r
2912\r
2913 @return The architecture specific spin lock alignment.\r
2914\r
2915**/\r
2916UINTN\r
2917EFIAPI\r
2918GetSpinLockProperties (\r
2919 VOID\r
2920 );\r
2921\r
2922\r
2923/**\r
2924 Initializes a spin lock to the released state and returns the spin lock.\r
2925\r
2926 This function initializes the spin lock specified by SpinLock to the released\r
2927 state, and returns SpinLock. Optimal performance can be achieved by calling\r
2928 GetSpinLockProperties() to determine the size and alignment requirements for\r
2929 SpinLock.\r
2930\r
2931 If SpinLock is NULL, then ASSERT().\r
2932\r
2933 @param SpinLock A pointer to the spin lock to initialize to the released\r
2934 state.\r
2935\r
38bbd3d9 2936 @return SpinLock in release state.\r
ac644614 2937\r
2938**/\r
2939SPIN_LOCK *\r
2940EFIAPI\r
2941InitializeSpinLock (\r
282b7ec6 2942 OUT SPIN_LOCK *SpinLock\r
ac644614 2943 );\r
2944\r
2945\r
2946/**\r
2947 Waits until a spin lock can be placed in the acquired state.\r
2948\r
2949 This function checks the state of the spin lock specified by SpinLock. If\r
2950 SpinLock is in the released state, then this function places SpinLock in the\r
2951 acquired state and returns SpinLock. Otherwise, this function waits\r
2952 indefinitely for the spin lock to be released, and then places it in the\r
2953 acquired state and returns SpinLock. All state transitions of SpinLock must\r
2954 be performed using MP safe mechanisms.\r
2955\r
2956 If SpinLock is NULL, then ASSERT().\r
2957 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().\r
2958 If PcdSpinLockTimeout is not zero, and SpinLock is can not be acquired in\r
2959 PcdSpinLockTimeout microseconds, then ASSERT().\r
2960\r
2961 @param SpinLock A pointer to the spin lock to place in the acquired state.\r
2962\r
9aa049d9 2963 @return SpinLock acquired lock.\r
ac644614 2964\r
2965**/\r
2966SPIN_LOCK *\r
2967EFIAPI\r
2968AcquireSpinLock (\r
aa0583c7 2969 IN OUT SPIN_LOCK *SpinLock\r
ac644614 2970 );\r
2971\r
2972\r
2973/**\r
2974 Attempts to place a spin lock in the acquired state.\r
2975\r
2976 This function checks the state of the spin lock specified by SpinLock. If\r
2977 SpinLock is in the released state, then this function places SpinLock in the\r
2978 acquired state and returns TRUE. Otherwise, FALSE is returned. All state\r
2979 transitions of SpinLock must be performed using MP safe mechanisms.\r
2980\r
2981 If SpinLock is NULL, then ASSERT().\r
2982 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().\r
2983\r
2984 @param SpinLock A pointer to the spin lock to place in the acquired state.\r
2985\r
2986 @retval TRUE SpinLock was placed in the acquired state.\r
2987 @retval FALSE SpinLock could not be acquired.\r
2988\r
2989**/\r
2990BOOLEAN\r
2991EFIAPI\r
2992AcquireSpinLockOrFail (\r
aa0583c7 2993 IN OUT SPIN_LOCK *SpinLock\r
ac644614 2994 );\r
2995\r
2996\r
2997/**\r
2998 Releases a spin lock.\r
2999\r
3000 This function places the spin lock specified by SpinLock in the release state\r
3001 and returns SpinLock.\r
3002\r
3003 If SpinLock is NULL, then ASSERT().\r
3004 If SpinLock was not initialized with InitializeSpinLock(), then ASSERT().\r
3005\r
3006 @param SpinLock A pointer to the spin lock to release.\r
3007\r
38bbd3d9 3008 @return SpinLock released lock.\r
ac644614 3009\r
3010**/\r
3011SPIN_LOCK *\r
3012EFIAPI\r
3013ReleaseSpinLock (\r
aa0583c7 3014 IN OUT SPIN_LOCK *SpinLock\r
ac644614 3015 );\r
3016\r
3017\r
3018/**\r
3019 Performs an atomic increment of an 32-bit unsigned integer.\r
3020\r
3021 Performs an atomic increment of the 32-bit unsigned integer specified by\r
3022 Value and returns the incremented value. The increment operation must be\r
3023 performed using MP safe mechanisms. The state of the return value is not\r
3024 guaranteed to be MP safe.\r
3025\r
3026 If Value is NULL, then ASSERT().\r
3027\r
3028 @param Value A pointer to the 32-bit value to increment.\r
3029\r
3030 @return The incremented value.\r
3031\r
3032**/\r
3033UINT32\r
3034EFIAPI\r
3035InterlockedIncrement (\r
3036 IN UINT32 *Value\r
3037 );\r
3038\r
3039\r
3040/**\r
3041 Performs an atomic decrement of an 32-bit unsigned integer.\r
3042\r
3043 Performs an atomic decrement of the 32-bit unsigned integer specified by\r
3044 Value and returns the decremented value. The decrement operation must be\r
3045 performed using MP safe mechanisms. The state of the return value is not\r
3046 guaranteed to be MP safe.\r
3047\r
3048 If Value is NULL, then ASSERT().\r
3049\r
3050 @param Value A pointer to the 32-bit value to decrement.\r
3051\r
3052 @return The decremented value.\r
3053\r
3054**/\r
3055UINT32\r
3056EFIAPI\r
3057InterlockedDecrement (\r
3058 IN UINT32 *Value\r
3059 );\r
3060\r
3061\r
3062/**\r
3063 Performs an atomic compare exchange operation on a 32-bit unsigned integer.\r
3064\r
3065 Performs an atomic compare exchange operation on the 32-bit unsigned integer\r
3066 specified by Value. If Value is equal to CompareValue, then Value is set to\r
3067 ExchangeValue and CompareValue is returned. If Value is not equal to CompareValue,\r
3068 then Value is returned. The compare exchange operation must be performed using\r
3069 MP safe mechanisms.\r
3070\r
3071 If Value is NULL, then ASSERT().\r
3072\r
3073 @param Value A pointer to the 32-bit value for the compare exchange\r
3074 operation.\r
3075 @param CompareValue 32-bit value used in compare operation.\r
3076 @param ExchangeValue 32-bit value used in exchange operation.\r
3077\r
3078 @return The original *Value before exchange.\r
3079\r
3080**/\r
3081UINT32\r
3082EFIAPI\r
3083InterlockedCompareExchange32 (\r
3084 IN OUT UINT32 *Value,\r
3085 IN UINT32 CompareValue,\r
3086 IN UINT32 ExchangeValue\r
3087 );\r
3088\r
3089\r
3090/**\r
3091 Performs an atomic compare exchange operation on a 64-bit unsigned integer.\r
3092\r
3093 Performs an atomic compare exchange operation on the 64-bit unsigned integer specified\r
3094 by Value. If Value is equal to CompareValue, then Value is set to ExchangeValue and\r
3095 CompareValue is returned. If Value is not equal to CompareValue, then Value is returned.\r
3096 The compare exchange operation must be performed using MP safe mechanisms.\r
3097\r
3098 If Value is NULL, then ASSERT().\r
3099\r
3100 @param Value A pointer to the 64-bit value for the compare exchange\r
3101 operation.\r
3102 @param CompareValue 64-bit value used in compare operation.\r
3103 @param ExchangeValue 64-bit value used in exchange operation.\r
3104\r
3105 @return The original *Value before exchange.\r
3106\r
3107**/\r
3108UINT64\r
3109EFIAPI\r
3110InterlockedCompareExchange64 (\r
3111 IN OUT UINT64 *Value,\r
3112 IN UINT64 CompareValue,\r
3113 IN UINT64 ExchangeValue\r
3114 );\r
3115\r
3116\r
3117/**\r
3118 Performs an atomic compare exchange operation on a pointer value.\r
3119\r
3120 Performs an atomic compare exchange operation on the pointer value specified\r
3121 by Value. If Value is equal to CompareValue, then Value is set to\r
3122 ExchangeValue and CompareValue is returned. If Value is not equal to\r
3123 CompareValue, then Value is returned. The compare exchange operation must be\r
3124 performed using MP safe mechanisms.\r
3125\r
3126 If Value is NULL, then ASSERT().\r
3127\r
3128 @param Value A pointer to the pointer value for the compare exchange\r
3129 operation.\r
3130 @param CompareValue Pointer value used in compare operation.\r
3131 @param ExchangeValue Pointer value used in exchange operation.\r
3132\r
38bbd3d9 3133 @return The original *Value before exchange.\r
ac644614 3134**/\r
3135VOID *\r
3136EFIAPI\r
3137InterlockedCompareExchangePointer (\r
3138 IN OUT VOID **Value,\r
3139 IN VOID *CompareValue,\r
3140 IN VOID *ExchangeValue\r
3141 );\r
3142\r
3143\r
3144//\r
3145// Base Library Checksum Functions\r
3146//\r
3147\r
3148/**\r
17f695ed 3149 Returns the sum of all elements in a buffer in unit of UINT8.\r
ac644614 3150 During calculation, the carry bits are dropped.\r
3151\r
3152 This function calculates the sum of all elements in a buffer\r
3153 in unit of UINT8. The carry bits in result of addition are dropped.\r
3154 The result is returned as UINT8. If Length is Zero, then Zero is\r
3155 returned.\r
3156\r
3157 If Buffer is NULL, then ASSERT().\r
3158 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3159\r
1106ffe1 3160 @param Buffer Pointer to the buffer to carry out the sum operation.\r
17f695ed 3161 @param Length The size, in bytes, of Buffer.\r
ac644614 3162\r
3163 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3164\r
3165**/\r
3166UINT8\r
3167EFIAPI\r
3168CalculateSum8 (\r
ee6c452c 3169 IN CONST UINT8 *Buffer,\r
3170 IN UINTN Length\r
ac644614 3171 );\r
3172\r
3173\r
3174/**\r
3175 Returns the two's complement checksum of all elements in a buffer\r
3176 of 8-bit values.\r
3177\r
3178 This function first calculates the sum of the 8-bit values in the\r
3179 buffer specified by Buffer and Length. The carry bits in the result\r
3180 of addition are dropped. Then, the two's complement of the sum is\r
3181 returned. If Length is 0, then 0 is returned.\r
3182\r
3183 If Buffer is NULL, then ASSERT().\r
3184 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3185\r
1106ffe1 3186 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3187 @param Length The size, in bytes, of Buffer.\r
ac644614 3188\r
ee6c452c 3189 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3190\r
3191**/\r
3192UINT8\r
3193EFIAPI\r
3194CalculateCheckSum8 (\r
ee6c452c 3195 IN CONST UINT8 *Buffer,\r
3196 IN UINTN Length\r
ac644614 3197 );\r
3198\r
3199\r
3200/**\r
3201 Returns the sum of all elements in a buffer of 16-bit values. During\r
3202 calculation, the carry bits are dropped.\r
3203\r
3204 This function calculates the sum of the 16-bit values in the buffer\r
3205 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3206 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
3207\r
3208 If Buffer is NULL, then ASSERT().\r
3209 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3210 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3211 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3212\r
1106ffe1 3213 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3214 @param Length The size, in bytes, of Buffer.\r
ac644614 3215\r
3216 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3217\r
3218**/\r
3219UINT16\r
3220EFIAPI\r
3221CalculateSum16 (\r
ee6c452c 3222 IN CONST UINT16 *Buffer,\r
3223 IN UINTN Length\r
ac644614 3224 );\r
3225\r
3226\r
3227/**\r
3228 Returns the two's complement checksum of all elements in a buffer of\r
3229 16-bit values.\r
3230\r
3231 This function first calculates the sum of the 16-bit values in the buffer\r
3232 specified by Buffer and Length. The carry bits in the result of addition\r
3233 are dropped. Then, the two's complement of the sum is returned. If Length\r
3234 is 0, then 0 is returned.\r
3235\r
3236 If Buffer is NULL, then ASSERT().\r
3237 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3238 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3239 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3240\r
1106ffe1 3241 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3242 @param Length The size, in bytes, of Buffer.\r
ac644614 3243\r
ee6c452c 3244 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3245\r
3246**/\r
3247UINT16\r
3248EFIAPI\r
3249CalculateCheckSum16 (\r
ee6c452c 3250 IN CONST UINT16 *Buffer,\r
3251 IN UINTN Length\r
ac644614 3252 );\r
3253\r
3254\r
3255/**\r
17f695ed 3256 Returns the sum of all elements in a buffer of 32-bit values. During\r
ac644614 3257 calculation, the carry bits are dropped.\r
3258\r
3259 This function calculates the sum of the 32-bit values in the buffer\r
3260 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
17f695ed 3261 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
ac644614 3262\r
3263 If Buffer is NULL, then ASSERT().\r
3264 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3265 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3266 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3267\r
1106ffe1 3268 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3269 @param Length The size, in bytes, of Buffer.\r
ac644614 3270\r
3271 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3272\r
3273**/\r
3274UINT32\r
3275EFIAPI\r
3276CalculateSum32 (\r
ee6c452c 3277 IN CONST UINT32 *Buffer,\r
3278 IN UINTN Length\r
ac644614 3279 );\r
3280\r
3281\r
3282/**\r
3283 Returns the two's complement checksum of all elements in a buffer of\r
3284 32-bit values.\r
3285\r
3286 This function first calculates the sum of the 32-bit values in the buffer\r
3287 specified by Buffer and Length. The carry bits in the result of addition\r
3288 are dropped. Then, the two's complement of the sum is returned. If Length\r
3289 is 0, then 0 is returned.\r
3290\r
3291 If Buffer is NULL, then ASSERT().\r
3292 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3293 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3294 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3295\r
1106ffe1 3296 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3297 @param Length The size, in bytes, of Buffer.\r
ac644614 3298\r
ee6c452c 3299 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3300\r
3301**/\r
3302UINT32\r
3303EFIAPI\r
3304CalculateCheckSum32 (\r
ee6c452c 3305 IN CONST UINT32 *Buffer,\r
3306 IN UINTN Length\r
ac644614 3307 );\r
3308\r
3309\r
3310/**\r
3311 Returns the sum of all elements in a buffer of 64-bit values. During\r
3312 calculation, the carry bits are dropped.\r
3313\r
3314 This function calculates the sum of the 64-bit values in the buffer\r
3315 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3316 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
3317\r
3318 If Buffer is NULL, then ASSERT().\r
3319 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3320 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3321 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3322\r
1106ffe1 3323 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3324 @param Length The size, in bytes, of Buffer.\r
ac644614 3325\r
3326 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3327\r
3328**/\r
3329UINT64\r
3330EFIAPI\r
3331CalculateSum64 (\r
ee6c452c 3332 IN CONST UINT64 *Buffer,\r
3333 IN UINTN Length\r
ac644614 3334 );\r
3335\r
3336\r
3337/**\r
3338 Returns the two's complement checksum of all elements in a buffer of\r
3339 64-bit values.\r
3340\r
3341 This function first calculates the sum of the 64-bit values in the buffer\r
3342 specified by Buffer and Length. The carry bits in the result of addition\r
3343 are dropped. Then, the two's complement of the sum is returned. If Length\r
3344 is 0, then 0 is returned.\r
3345\r
3346 If Buffer is NULL, then ASSERT().\r
3347 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3348 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3349 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3350\r
1106ffe1 3351 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3352 @param Length The size, in bytes, of Buffer.\r
ac644614 3353\r
ee6c452c 3354 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3355\r
3356**/\r
3357UINT64\r
3358EFIAPI\r
3359CalculateCheckSum64 (\r
ee6c452c 3360 IN CONST UINT64 *Buffer,\r
3361 IN UINTN Length\r
ac644614 3362 );\r
3363\r
3364\r
1106ffe1 3365///\r
3366/// Base Library CPU Functions\r
3367///\r
ac644614 3368typedef\r
3369VOID\r
9810cdd8 3370(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
ac644614 3371 IN VOID *Context1, OPTIONAL\r
3372 IN VOID *Context2 OPTIONAL\r
3373 );\r
3374\r
3375\r
3376/**\r
3377 Used to serialize load and store operations.\r
3378\r
3379 All loads and stores that proceed calls to this function are guaranteed to be\r
3380 globally visible when this function returns.\r
3381\r
3382**/\r
3383VOID\r
3384EFIAPI\r
3385MemoryFence (\r
3386 VOID\r
3387 );\r
3388\r
3389\r
3390/**\r
3391 Saves the current CPU context that can be restored with a call to LongJump()\r
3392 and returns 0.\r
3393\r
3394 Saves the current CPU context in the buffer specified by JumpBuffer and\r
3395 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
3396 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
3397\r
3398 If JumpBuffer is NULL, then ASSERT().\r
3399 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
17f695ed 3400 \r
3401 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
3402 The same structure must never be used for more than one CPU architecture context.\r
3403 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
3404 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
ac644614 3405\r
3406 @param JumpBuffer A pointer to CPU context buffer.\r
3407\r
3408 @retval 0 Indicates a return from SetJump().\r
3409\r
3410**/\r
3411UINTN\r
3412EFIAPI\r
3413SetJump (\r
3414 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
3415 );\r
3416\r
3417\r
3418/**\r
3419 Restores the CPU context that was saved with SetJump().\r
3420\r
3421 Restores the CPU context from the buffer specified by JumpBuffer. This\r
3422 function never returns to the caller. Instead is resumes execution based on\r
3423 the state of JumpBuffer.\r
3424\r
3425 If JumpBuffer is NULL, then ASSERT().\r
3426 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
3427 If Value is 0, then ASSERT().\r
3428\r
3429 @param JumpBuffer A pointer to CPU context buffer.\r
3430 @param Value The value to return when the SetJump() context is\r
3431 restored and must be non-zero.\r
3432\r
3433**/\r
3434VOID\r
3435EFIAPI\r
3436LongJump (\r
3437 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
3438 IN UINTN Value\r
3439 );\r
3440\r
3441\r
3442/**\r
3443 Enables CPU interrupts.\r
3444\r
ac644614 3445**/\r
3446VOID\r
3447EFIAPI\r
3448EnableInterrupts (\r
3449 VOID\r
3450 );\r
3451\r
3452\r
3453/**\r
3454 Disables CPU interrupts.\r
3455\r
ac644614 3456**/\r
3457VOID\r
3458EFIAPI\r
3459DisableInterrupts (\r
3460 VOID\r
3461 );\r
3462\r
3463\r
3464/**\r
3465 Disables CPU interrupts and returns the interrupt state prior to the disable\r
3466 operation.\r
3467\r
ac644614 3468 @retval TRUE CPU interrupts were enabled on entry to this call.\r
3469 @retval FALSE CPU interrupts were disabled on entry to this call.\r
3470\r
3471**/\r
3472BOOLEAN\r
3473EFIAPI\r
3474SaveAndDisableInterrupts (\r
3475 VOID\r
3476 );\r
3477\r
3478\r
3479/**\r
3480 Enables CPU interrupts for the smallest window required to capture any\r
3481 pending interrupts.\r
3482\r
ac644614 3483**/\r
3484VOID\r
3485EFIAPI\r
3486EnableDisableInterrupts (\r
3487 VOID\r
3488 );\r
3489\r
3490\r
3491/**\r
3492 Retrieves the current CPU interrupt state.\r
3493\r
38bbd3d9 3494 Returns TRUE is interrupts are currently enabled. Otherwise\r
3495 returns FALSE.\r
ac644614 3496\r
3497 @retval TRUE CPU interrupts are enabled.\r
3498 @retval FALSE CPU interrupts are disabled.\r
3499\r
3500**/\r
3501BOOLEAN\r
3502EFIAPI\r
3503GetInterruptState (\r
3504 VOID\r
3505 );\r
3506\r
3507\r
3508/**\r
3509 Set the current CPU interrupt state.\r
3510\r
3511 Sets the current CPU interrupt state to the state specified by\r
3512 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
3513 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
3514 returned.\r
3515\r
3516 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
3517 interrupts should be disabled.\r
3518\r
3519 @return InterruptState\r
3520\r
3521**/\r
3522BOOLEAN\r
3523EFIAPI\r
3524SetInterruptState (\r
3525 IN BOOLEAN InterruptState\r
3526 );\r
3527\r
3528\r
3529/**\r
3530 Requests CPU to pause for a short period of time.\r
3531\r
3532 Requests CPU to pause for a short period of time. Typically used in MP\r
3533 systems to prevent memory starvation while waiting for a spin lock.\r
3534\r
3535**/\r
3536VOID\r
3537EFIAPI\r
3538CpuPause (\r
3539 VOID\r
3540 );\r
3541\r
3542\r
3543/**\r
3544 Transfers control to a function starting with a new stack.\r
3545\r
3546 Transfers control to the function specified by EntryPoint using the\r
3547 new stack specified by NewStack and passing in the parameters specified\r
3548 by Context1 and Context2. Context1 and Context2 are optional and may\r
3549 be NULL. The function EntryPoint must never return. This function\r
3550 supports a variable number of arguments following the NewStack parameter.\r
3551 These additional arguments are ignored on IA-32, x64, and EBC.\r
3552 IPF CPUs expect one additional parameter of type VOID * that specifies\r
3553 the new backing store pointer.\r
3554\r
3555 If EntryPoint is NULL, then ASSERT().\r
3556 If NewStack is NULL, then ASSERT().\r
3557\r
3558 @param EntryPoint A pointer to function to call with the new stack.\r
3559 @param Context1 A pointer to the context to pass into the EntryPoint\r
3560 function.\r
3561 @param Context2 A pointer to the context to pass into the EntryPoint\r
3562 function.\r
3563 @param NewStack A pointer to the new stack to use for the EntryPoint\r
3564 function.\r
285010e7 3565 @param ... This variable argument list is ignored for IA32, x64, and EBC. \r
3566 For IPF, this variable argument list is expected to contain \r
3567 a single parameter of type VOID * that specifies the new backing \r
3568 store pointer.\r
42eedea9 3569\r
ac644614 3570\r
3571**/\r
3572VOID\r
3573EFIAPI\r
3574SwitchStack (\r
3575 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
3576 IN VOID *Context1, OPTIONAL\r
3577 IN VOID *Context2, OPTIONAL\r
3578 IN VOID *NewStack,\r
3579 ...\r
3580 );\r
3581\r
3582\r
3583/**\r
3584 Generates a breakpoint on the CPU.\r
3585\r
3586 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
3587 that code can resume normal execution after the breakpoint.\r
3588\r
3589**/\r
3590VOID\r
3591EFIAPI\r
3592CpuBreakpoint (\r
3593 VOID\r
3594 );\r
3595\r
3596\r
3597/**\r
3598 Executes an infinite loop.\r
3599\r
3600 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
3601 past the loop and the code that follows the loop must execute properly. This\r
3602 implies that the infinite loop must not cause the code that follow it to be\r
3603 optimized away.\r
3604\r
3605**/\r
3606VOID\r
3607EFIAPI\r
3608CpuDeadLoop (\r
3609 VOID\r
3610 );\r
3611\r
ac644614 3612#if defined (MDE_CPU_IPF)\r
3613\r
3614/**\r
3615 Flush a range of cache lines in the cache coherency domain of the calling\r
3616 CPU.\r
3617\r
3618 Invalidates the cache lines specified by Address and Length. If Address is\r
3619 not aligned on a cache line boundary, then entire cache line containing\r
3620 Address is invalidated. If Address + Length is not aligned on a cache line\r
3621 boundary, then the entire instruction cache line containing Address + Length\r
3622 -1 is invalidated. This function may choose to invalidate the entire\r
3623 instruction cache if that is more efficient than invalidating the specified\r
3624 range. If Length is 0, the no instruction cache lines are invalidated.\r
3625 Address is returned.\r
3626\r
3627 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
3628\r
3629 @param Address The base address of the instruction lines to invalidate. If\r
3630 the CPU is in a physical addressing mode, then Address is a\r
3631 physical address. If the CPU is in a virtual addressing mode,\r
3632 then Address is a virtual address.\r
3633\r
3634 @param Length The number of bytes to invalidate from the instruction cache.\r
3635\r
3636 @return Address\r
3637\r
3638**/\r
3639VOID *\r
3640EFIAPI\r
3641IpfFlushCacheRange (\r
3642 IN VOID *Address,\r
3643 IN UINTN Length\r
3644 );\r
3645\r
3646\r
3647/**\r
3648 Executes a FC instruction\r
3649 Executes a FC instruction on the cache line specified by Address.\r
3650 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
3651 An implementation may flush a larger region. This function is only available on IPF.\r
3652\r
ee6c452c 3653 @param Address The Address of cache line to be flushed.\r
ac644614 3654\r
3655 @return The address of FC instruction executed.\r
3656\r
3657**/\r
3658UINT64\r
3659EFIAPI\r
3660AsmFc (\r
3661 IN UINT64 Address\r
3662 );\r
3663\r
3664\r
3665/**\r
3666 Executes a FC.I instruction.\r
3667 Executes a FC.I instruction on the cache line specified by Address.\r
3668 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
3669 An implementation may flush a larger region. This function is only available on IPF.\r
3670\r
ee6c452c 3671 @param Address The Address of cache line to be flushed.\r
ac644614 3672\r
3673 @return The address of FC.I instruction executed.\r
3674\r
3675**/\r
3676UINT64\r
3677EFIAPI\r
3678AsmFci (\r
3679 IN UINT64 Address\r
3680 );\r
3681\r
3682\r
3683/**\r
3684 Reads the current value of a Processor Identifier Register (CPUID).\r
17f695ed 3685 \r
3686 Reads and returns the current value of Processor Identifier Register specified by Index. \r
ac644614 3687 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
3688 registers) is determined by CPUID [3] bits {7:0}.\r
3689 No parameter checking is performed on Index. If the Index value is beyond the\r
3690 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
3691 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
3692 catch the faults. This function is only available on IPF.\r
3693\r
ee6c452c 3694 @param Index The 8-bit Processor Identifier Register index to read.\r
ac644614 3695\r
3696 @return The current value of Processor Identifier Register specified by Index.\r
3697\r
3698**/\r
3699UINT64\r
3700EFIAPI\r
3701AsmReadCpuid (\r
3702 IN UINT8 Index\r
3703 );\r
3704\r
3705\r
3706/**\r
3707 Reads the current value of 64-bit Processor Status Register (PSR).\r
3708 This function is only available on IPF.\r
3709\r
3710 @return The current value of PSR.\r
3711\r
3712**/\r
3713UINT64\r
3714EFIAPI\r
3715AsmReadPsr (\r
3716 VOID\r
3717 );\r
3718\r
3719\r
3720/**\r
3721 Writes the current value of 64-bit Processor Status Register (PSR).\r
22388319 3722\r
ac644614 3723 No parameter checking is performed on Value. All bits of Value corresponding to\r
22388319 3724 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
3725 The caller must either guarantee that Value is valid, or the caller must set up\r
3726 fault handlers to catch the faults. This function is only available on IPF.\r
ac644614 3727\r
ee6c452c 3728 @param Value The 64-bit value to write to PSR.\r
ac644614 3729\r
3730 @return The 64-bit value written to the PSR.\r
3731\r
3732**/\r
3733UINT64\r
3734EFIAPI\r
3735AsmWritePsr (\r
3736 IN UINT64 Value\r
3737 );\r
3738\r
3739\r
3740/**\r
3741 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
3742 This function is only available on IPF.\r
3743\r
3744 @return The current value of KR0.\r
3745\r
3746**/\r
3747UINT64\r
3748EFIAPI\r
3749AsmReadKr0 (\r
3750 VOID\r
3751 );\r
3752\r
3753\r
3754/**\r
3755 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
3756 This function is only available on IPF.\r
3757\r
3758 @return The current value of KR1.\r
3759\r
3760**/\r
3761UINT64\r
3762EFIAPI\r
3763AsmReadKr1 (\r
3764 VOID\r
3765 );\r
3766\r
3767\r
3768/**\r
3769 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
3770 This function is only available on IPF.\r
3771\r
3772 @return The current value of KR2.\r
3773\r
3774**/\r
3775UINT64\r
3776EFIAPI\r
3777AsmReadKr2 (\r
3778 VOID\r
3779 );\r
3780\r
3781\r
3782/**\r
3783 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
3784 This function is only available on IPF.\r
3785\r
3786 @return The current value of KR3.\r
3787\r
3788**/\r
3789UINT64\r
3790EFIAPI\r
3791AsmReadKr3 (\r
3792 VOID\r
3793 );\r
3794\r
3795\r
3796/**\r
3797 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
3798 This function is only available on IPF.\r
3799\r
3800 @return The current value of KR4.\r
3801\r
3802**/\r
3803UINT64\r
3804EFIAPI\r
3805AsmReadKr4 (\r
3806 VOID\r
3807 );\r
3808\r
3809\r
3810/**\r
3811 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
3812 This function is only available on IPF.\r
3813\r
3814 @return The current value of KR5.\r
3815\r
3816**/\r
3817UINT64\r
3818EFIAPI\r
3819AsmReadKr5 (\r
3820 VOID\r
3821 );\r
3822\r
3823\r
3824/**\r
3825 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
3826 This function is only available on IPF.\r
3827\r
3828 @return The current value of KR6.\r
3829\r
3830**/\r
3831UINT64\r
3832EFIAPI\r
3833AsmReadKr6 (\r
3834 VOID\r
3835 );\r
3836\r
3837\r
3838/**\r
3839 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
3840 This function is only available on IPF.\r
3841\r
3842 @return The current value of KR7.\r
3843\r
3844**/\r
3845UINT64\r
3846EFIAPI\r
3847AsmReadKr7 (\r
3848 VOID\r
3849 );\r
3850\r
3851\r
3852/**\r
3853 Write the current value of 64-bit Kernel Register #0 (KR0).\r
3854 This function is only available on IPF.\r
3855\r
ee6c452c 3856 @param Value The 64-bit value to write to KR0.\r
ac644614 3857\r
3858 @return The 64-bit value written to the KR0.\r
3859\r
3860**/\r
3861UINT64\r
3862EFIAPI\r
3863AsmWriteKr0 (\r
3864 IN UINT64 Value\r
3865 );\r
3866\r
3867\r
3868/**\r
3869 Write the current value of 64-bit Kernel Register #1 (KR1).\r
3870 This function is only available on IPF.\r
3871\r
ee6c452c 3872 @param Value The 64-bit value to write to KR1.\r
ac644614 3873\r
3874 @return The 64-bit value written to the KR1.\r
3875\r
3876**/\r
3877UINT64\r
3878EFIAPI\r
3879AsmWriteKr1 (\r
3880 IN UINT64 Value\r
3881 );\r
3882\r
3883\r
3884/**\r
3885 Write the current value of 64-bit Kernel Register #2 (KR2).\r
3886 This function is only available on IPF.\r
3887\r
ee6c452c 3888 @param Value The 64-bit value to write to KR2.\r
ac644614 3889\r
3890 @return The 64-bit value written to the KR2.\r
3891\r
3892**/\r
3893UINT64\r
3894EFIAPI\r
3895AsmWriteKr2 (\r
3896 IN UINT64 Value\r
3897 );\r
3898\r
3899\r
3900/**\r
3901 Write the current value of 64-bit Kernel Register #3 (KR3).\r
3902 This function is only available on IPF.\r
3903\r
ee6c452c 3904 @param Value The 64-bit value to write to KR3.\r
ac644614 3905\r
3906 @return The 64-bit value written to the KR3.\r
3907\r
3908**/\r
3909UINT64\r
3910EFIAPI\r
3911AsmWriteKr3 (\r
3912 IN UINT64 Value\r
3913 );\r
3914\r
3915\r
3916/**\r
3917 Write the current value of 64-bit Kernel Register #4 (KR4).\r
3918 This function is only available on IPF.\r
3919\r
ee6c452c 3920 @param Value The 64-bit value to write to KR4.\r
ac644614 3921\r
3922 @return The 64-bit value written to the KR4.\r
3923\r
3924**/\r
3925UINT64\r
3926EFIAPI\r
3927AsmWriteKr4 (\r
3928 IN UINT64 Value\r
3929 );\r
3930\r
3931\r
3932/**\r
3933 Write the current value of 64-bit Kernel Register #5 (KR5).\r
3934 This function is only available on IPF.\r
3935\r
ee6c452c 3936 @param Value The 64-bit value to write to KR5.\r
ac644614 3937\r
3938 @return The 64-bit value written to the KR5.\r
3939\r
3940**/\r
3941UINT64\r
3942EFIAPI\r
3943AsmWriteKr5 (\r
3944 IN UINT64 Value\r
3945 );\r
3946\r
3947\r
3948/**\r
3949 Write the current value of 64-bit Kernel Register #6 (KR6).\r
3950 This function is only available on IPF.\r
3951\r
ee6c452c 3952 @param Value The 64-bit value to write to KR6.\r
ac644614 3953\r
3954 @return The 64-bit value written to the KR6.\r
3955\r
3956**/\r
3957UINT64\r
3958EFIAPI\r
3959AsmWriteKr6 (\r
3960 IN UINT64 Value\r
3961 );\r
3962\r
3963\r
3964/**\r
3965 Write the current value of 64-bit Kernel Register #7 (KR7).\r
3966 This function is only available on IPF.\r
3967\r
ee6c452c 3968 @param Value The 64-bit value to write to KR7.\r
ac644614 3969\r
3970 @return The 64-bit value written to the KR7.\r
3971\r
3972**/\r
3973UINT64\r
3974EFIAPI\r
3975AsmWriteKr7 (\r
3976 IN UINT64 Value\r
3977 );\r
3978\r
3979\r
3980/**\r
3981 Reads the current value of Interval Timer Counter Register (ITC).\r
3982 This function is only available on IPF.\r
3983\r
3984 @return The current value of ITC.\r
3985\r
3986**/\r
3987UINT64\r
3988EFIAPI\r
3989AsmReadItc (\r
3990 VOID\r
3991 );\r
3992\r
3993\r
3994/**\r
3995 Reads the current value of Interval Timer Vector Register (ITV).\r
3996 This function is only available on IPF.\r
3997\r
3998 @return The current value of ITV.\r
3999\r
4000**/\r
4001UINT64\r
4002EFIAPI\r
4003AsmReadItv (\r
4004 VOID\r
4005 );\r
4006\r
4007\r
4008/**\r
4009 Reads the current value of Interval Timer Match Register (ITM).\r
4010 This function is only available on IPF.\r
4011\r
4012 @return The current value of ITM.\r
4013**/\r
4014UINT64\r
4015EFIAPI\r
4016AsmReadItm (\r
4017 VOID\r
4018 );\r
4019\r
4020\r
4021/**\r
4022 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
4023 This function is only available on IPF.\r
4024\r
ee6c452c 4025 @param Value The 64-bit value to write to ITC.\r
ac644614 4026\r
4027 @return The 64-bit value written to the ITC.\r
4028\r
4029**/\r
4030UINT64\r
4031EFIAPI\r
4032AsmWriteItc (\r
4033 IN UINT64 Value\r
4034 );\r
4035\r
4036\r
4037/**\r
4038 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
4039 This function is only available on IPF.\r
4040\r
ee6c452c 4041 @param Value The 64-bit value to write to ITM.\r
ac644614 4042\r
4043 @return The 64-bit value written to the ITM.\r
4044\r
4045**/\r
4046UINT64\r
4047EFIAPI\r
4048AsmWriteItm (\r
4049 IN UINT64 Value\r
4050 );\r
4051\r
4052\r
4053/**\r
4054 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
4055 No parameter checking is performed on Value. All bits of Value corresponding to\r
4056 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
4057 The caller must either guarantee that Value is valid, or the caller must set up\r
4058 fault handlers to catch the faults.\r
4059 This function is only available on IPF.\r
4060\r
ee6c452c 4061 @param Value The 64-bit value to write to ITV.\r
ac644614 4062\r
4063 @return The 64-bit value written to the ITV.\r
4064\r
4065**/\r
4066UINT64\r
4067EFIAPI\r
4068AsmWriteItv (\r
4069 IN UINT64 Value\r
4070 );\r
4071\r
4072\r
4073/**\r
4074 Reads the current value of Default Control Register (DCR).\r
4075 This function is only available on IPF.\r
4076\r
4077 @return The current value of DCR.\r
4078\r
4079**/\r
4080UINT64\r
4081EFIAPI\r
4082AsmReadDcr (\r
4083 VOID\r
4084 );\r
4085\r
4086\r
4087/**\r
4088 Reads the current value of Interruption Vector Address Register (IVA).\r
4089 This function is only available on IPF.\r
4090\r
4091 @return The current value of IVA.\r
4092**/\r
4093UINT64\r
4094EFIAPI\r
4095AsmReadIva (\r
4096 VOID\r
4097 );\r
4098\r
4099\r
4100/**\r
4101 Reads the current value of Page Table Address Register (PTA).\r
4102 This function is only available on IPF.\r
4103\r
4104 @return The current value of PTA.\r
4105\r
4106**/\r
4107UINT64\r
4108EFIAPI\r
4109AsmReadPta (\r
4110 VOID\r
4111 );\r
4112\r
4113\r
4114/**\r
4115 Writes the current value of 64-bit Default Control Register (DCR).\r
4116 No parameter checking is performed on Value. All bits of Value corresponding to\r
4117 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
4118 The caller must either guarantee that Value is valid, or the caller must set up\r
4119 fault handlers to catch the faults.\r
4120 This function is only available on IPF.\r
4121\r
ee6c452c 4122 @param Value The 64-bit value to write to DCR.\r
ac644614 4123\r
4124 @return The 64-bit value written to the DCR.\r
4125\r
4126**/\r
4127UINT64\r
4128EFIAPI\r
4129AsmWriteDcr (\r
4130 IN UINT64 Value\r
4131 );\r
4132\r
4133\r
4134/**\r
4135 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
4136 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
4137 the low 15 bits of Value is ignored when written.\r
4138 This function is only available on IPF.\r
4139\r
ee6c452c 4140 @param Value The 64-bit value to write to IVA.\r
ac644614 4141\r
4142 @return The 64-bit value written to the IVA.\r
4143\r
4144**/\r
4145UINT64\r
4146EFIAPI\r
4147AsmWriteIva (\r
4148 IN UINT64 Value\r
4149 );\r
4150\r
4151\r
4152/**\r
4153 Writes the current value of 64-bit Page Table Address Register (PTA).\r
4154 No parameter checking is performed on Value. All bits of Value corresponding to\r
4155 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
4156 The caller must either guarantee that Value is valid, or the caller must set up\r
4157 fault handlers to catch the faults.\r
4158 This function is only available on IPF.\r
4159\r
ee6c452c 4160 @param Value The 64-bit value to write to PTA.\r
ac644614 4161\r
4162 @return The 64-bit value written to the PTA.\r
4163**/\r
4164UINT64\r
4165EFIAPI\r
4166AsmWritePta (\r
4167 IN UINT64 Value\r
4168 );\r
4169\r
4170\r
4171/**\r
4172 Reads the current value of Local Interrupt ID Register (LID).\r
4173 This function is only available on IPF.\r
4174\r
4175 @return The current value of LID.\r
4176\r
4177**/\r
4178UINT64\r
4179EFIAPI\r
4180AsmReadLid (\r
4181 VOID\r
4182 );\r
4183\r
4184\r
4185/**\r
4186 Reads the current value of External Interrupt Vector Register (IVR).\r
4187 This function is only available on IPF.\r
4188\r
4189 @return The current value of IVR.\r
4190\r
4191**/\r
4192UINT64\r
4193EFIAPI\r
4194AsmReadIvr (\r
4195 VOID\r
4196 );\r
4197\r
4198\r
4199/**\r
4200 Reads the current value of Task Priority Register (TPR).\r
4201 This function is only available on IPF.\r
4202\r
4203 @return The current value of TPR.\r
4204\r
4205**/\r
4206UINT64\r
4207EFIAPI\r
4208AsmReadTpr (\r
4209 VOID\r
4210 );\r
4211\r
4212\r
4213/**\r
4214 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
4215 This function is only available on IPF.\r
4216\r
4217 @return The current value of IRR0.\r
4218\r
4219**/\r
4220UINT64\r
4221EFIAPI\r
4222AsmReadIrr0 (\r
4223 VOID\r
4224 );\r
4225\r
4226\r
4227/**\r
4228 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
4229 This function is only available on IPF.\r
4230\r
4231 @return The current value of IRR1.\r
4232\r
4233**/\r
4234UINT64\r
4235EFIAPI\r
4236AsmReadIrr1 (\r
4237 VOID\r
4238 );\r
4239\r
4240\r
4241/**\r
4242 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
4243 This function is only available on IPF.\r
4244\r
4245 @return The current value of IRR2.\r
4246\r
4247**/\r
4248UINT64\r
4249EFIAPI\r
4250AsmReadIrr2 (\r
4251 VOID\r
4252 );\r
4253\r
4254\r
4255/**\r
4256 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
4257 This function is only available on IPF.\r
4258\r
4259 @return The current value of IRR3.\r
4260\r
4261**/\r
4262UINT64\r
4263EFIAPI\r
4264AsmReadIrr3 (\r
4265 VOID\r
4266 );\r
4267\r
4268\r
4269/**\r
4270 Reads the current value of Performance Monitor Vector Register (PMV).\r
4271 This function is only available on IPF.\r
4272\r
4273 @return The current value of PMV.\r
4274\r
4275**/\r
4276UINT64\r
4277EFIAPI\r
4278AsmReadPmv (\r
4279 VOID\r
4280 );\r
4281\r
4282\r
4283/**\r
4284 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
4285 This function is only available on IPF.\r
4286\r
4287 @return The current value of CMCV.\r
4288\r
4289**/\r
4290UINT64\r
4291EFIAPI\r
4292AsmReadCmcv (\r
4293 VOID\r
4294 );\r
4295\r
4296\r
4297/**\r
4298 Reads the current value of Local Redirection Register #0 (LRR0).\r
4299 This function is only available on IPF.\r
4300\r
4301 @return The current value of LRR0.\r
4302\r
4303**/\r
4304UINT64\r
4305EFIAPI\r
4306AsmReadLrr0 (\r
4307 VOID\r
4308 );\r
4309\r
4310\r
4311/**\r
4312 Reads the current value of Local Redirection Register #1 (LRR1).\r
4313 This function is only available on IPF.\r
4314\r
4315 @return The current value of LRR1.\r
4316\r
4317**/\r
4318UINT64\r
4319EFIAPI\r
4320AsmReadLrr1 (\r
4321 VOID\r
4322 );\r
4323\r
4324\r
4325/**\r
4326 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
4327 No parameter checking is performed on Value. All bits of Value corresponding to\r
4328 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
4329 The caller must either guarantee that Value is valid, or the caller must set up\r
4330 fault handlers to catch the faults.\r
4331 This function is only available on IPF.\r
4332\r
ee6c452c 4333 @param Value The 64-bit value to write to LID.\r
ac644614 4334\r
4335 @return The 64-bit value written to the LID.\r
4336\r
4337**/\r
4338UINT64\r
4339EFIAPI\r
4340AsmWriteLid (\r
4341 IN UINT64 Value\r
4342 );\r
4343\r
4344\r
4345/**\r
4346 Writes the current value of 64-bit Task Priority Register (TPR).\r
4347 No parameter checking is performed on Value. All bits of Value corresponding to\r
4348 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
4349 The caller must either guarantee that Value is valid, or the caller must set up\r
4350 fault handlers to catch the faults.\r
4351 This function is only available on IPF.\r
4352\r
ee6c452c 4353 @param Value The 64-bit value to write to TPR.\r
ac644614 4354\r
4355 @return The 64-bit value written to the TPR.\r
4356\r
4357**/\r
4358UINT64\r
4359EFIAPI\r
4360AsmWriteTpr (\r
4361 IN UINT64 Value\r
4362 );\r
4363\r
4364\r
4365/**\r
4366 Performs a write operation on End OF External Interrupt Register (EOI).\r
4367 Writes a value of 0 to the EOI Register. This function is only available on IPF.\r
4368\r
4369**/\r
4370VOID\r
4371EFIAPI\r
4372AsmWriteEoi (\r
4373 VOID\r
4374 );\r
4375\r
4376\r
4377/**\r
4378 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
4379 No parameter checking is performed on Value. All bits of Value corresponding\r
4380 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
4381 The caller must either guarantee that Value is valid, or the caller must set up\r
4382 fault handlers to catch the faults.\r
4383 This function is only available on IPF.\r
4384\r
ee6c452c 4385 @param Value The 64-bit value to write to PMV.\r
ac644614 4386\r
4387 @return The 64-bit value written to the PMV.\r
4388\r
4389**/\r
4390UINT64\r
4391EFIAPI\r
4392AsmWritePmv (\r
4393 IN UINT64 Value\r
4394 );\r
4395\r
4396\r
4397/**\r
4398 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
4399 No parameter checking is performed on Value. All bits of Value corresponding\r
4400 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
4401 The caller must either guarantee that Value is valid, or the caller must set up\r
4402 fault handlers to catch the faults.\r
4403 This function is only available on IPF.\r
4404\r
ee6c452c 4405 @param Value The 64-bit value to write to CMCV.\r
ac644614 4406\r
4407 @return The 64-bit value written to the CMCV.\r
4408\r
4409**/\r
4410UINT64\r
4411EFIAPI\r
4412AsmWriteCmcv (\r
4413 IN UINT64 Value\r
4414 );\r
4415\r
4416\r
4417/**\r
4418 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
4419 No parameter checking is performed on Value. All bits of Value corresponding\r
4420 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
4421 The caller must either guarantee that Value is valid, or the caller must set up\r
4422 fault handlers to catch the faults.\r
4423 This function is only available on IPF.\r
4424\r
ee6c452c 4425 @param Value The 64-bit value to write to LRR0.\r
ac644614 4426\r
4427 @return The 64-bit value written to the LRR0.\r
4428\r
4429**/\r
4430UINT64\r
4431EFIAPI\r
4432AsmWriteLrr0 (\r
4433 IN UINT64 Value\r
4434 );\r
4435\r
4436\r
4437/**\r
4438 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
4439 No parameter checking is performed on Value. All bits of Value corresponding\r
4440 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
4441 The caller must either guarantee that Value is valid, or the caller must\r
4442 set up fault handlers to catch the faults.\r
4443 This function is only available on IPF.\r
4444\r
ee6c452c 4445 @param Value The 64-bit value to write to LRR1.\r
ac644614 4446\r
4447 @return The 64-bit value written to the LRR1.\r
4448\r
4449**/\r
4450UINT64\r
4451EFIAPI\r
4452AsmWriteLrr1 (\r
4453 IN UINT64 Value\r
4454 );\r
4455\r
4456\r
4457/**\r
4458 Reads the current value of Instruction Breakpoint Register (IBR).\r
4459 \r
4460 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4461 registers contain breakpoint addresses, and the odd numbered registers contain\r
4462 breakpoint mask conditions. At least 4 instruction registers pairs are implemented\r
4463 on all processor models. Implemented registers are contiguous starting with\r
4464 register 0. No parameter checking is performed on Index, and if the Index value\r
4465 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4466 occur. The caller must either guarantee that Index is valid, or the caller must\r
4467 set up fault handlers to catch the faults.\r
4468 This function is only available on IPF.\r
4469\r
ee6c452c 4470 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
ac644614 4471\r
4472 @return The current value of Instruction Breakpoint Register specified by Index.\r
4473\r
4474**/\r
4475UINT64\r
4476EFIAPI\r
4477AsmReadIbr (\r
4478 IN UINT8 Index\r
4479 );\r
4480\r
4481\r
4482/**\r
4483 Reads the current value of Data Breakpoint Register (DBR).\r
4484\r
4485 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4486 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4487 mask conditions. At least 4 data registers pairs are implemented on all processor\r
4488 models. Implemented registers are contiguous starting with register 0.\r
4489 No parameter checking is performed on Index. If the Index value is beyond\r
4490 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
4491 The caller must either guarantee that Index is valid, or the caller must set up\r
4492 fault handlers to catch the faults.\r
4493 This function is only available on IPF.\r
4494\r
ee6c452c 4495 @param Index The 8-bit Data Breakpoint Register index to read.\r
ac644614 4496\r
4497 @return The current value of Data Breakpoint Register specified by Index.\r
4498\r
4499**/\r
4500UINT64\r
4501EFIAPI\r
4502AsmReadDbr (\r
4503 IN UINT8 Index\r
4504 );\r
4505\r
4506\r
4507/**\r
4508 Reads the current value of Performance Monitor Configuration Register (PMC).\r
4509\r
4510 All processor implementations provide at least 4 performance counters\r
4511 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
4512 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4513 additional implementation-dependent PMC and PMD to increase the number of\r
4514 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4515 register set is implementation dependent. No parameter checking is performed\r
4516 on Index. If the Index value is beyond the implemented PMC register range,\r
4517 zero value will be returned.\r
4518 This function is only available on IPF.\r
4519\r
ee6c452c 4520 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
ac644614 4521\r
4522 @return The current value of Performance Monitor Configuration Register\r
4523 specified by Index.\r
4524\r
4525**/\r
4526UINT64\r
4527EFIAPI\r
4528AsmReadPmc (\r
4529 IN UINT8 Index\r
4530 );\r
4531\r
4532\r
4533/**\r
4534 Reads the current value of Performance Monitor Data Register (PMD).\r
4535\r
4536 All processor implementations provide at least 4 performance counters\r
4537 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
4538 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
4539 provide additional implementation-dependent PMC and PMD to increase the number\r
4540 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4541 register set is implementation dependent. No parameter checking is performed\r
4542 on Index. If the Index value is beyond the implemented PMD register range,\r
4543 zero value will be returned.\r
4544 This function is only available on IPF.\r
4545\r
ee6c452c 4546 @param Index The 8-bit Performance Monitor Data Register index to read.\r
ac644614 4547\r
4548 @return The current value of Performance Monitor Data Register specified by Index.\r
4549\r
4550**/\r
4551UINT64\r
4552EFIAPI\r
4553AsmReadPmd (\r
4554 IN UINT8 Index\r
4555 );\r
4556\r
4557\r
4558/**\r
4559 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
4560\r
4561 Writes current value of Instruction Breakpoint Register specified by Index.\r
4562 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4563 registers contain breakpoint addresses, and odd numbered registers contain\r
4564 breakpoint mask conditions. At least 4 instruction registers pairs are implemented\r
4565 on all processor models. Implemented registers are contiguous starting with\r
4566 register 0. No parameter checking is performed on Index. If the Index value\r
4567 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4568 occur. The caller must either guarantee that Index is valid, or the caller must\r
4569 set up fault handlers to catch the faults.\r
4570 This function is only available on IPF.\r
4571\r
ee6c452c 4572 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
4573 @param Value The 64-bit value to write to IBR.\r
ac644614 4574\r
4575 @return The 64-bit value written to the IBR.\r
4576\r
4577**/\r
4578UINT64\r
4579EFIAPI\r
4580AsmWriteIbr (\r
4581 IN UINT8 Index,\r
4582 IN UINT64 Value\r
4583 );\r
4584\r
4585\r
4586/**\r
4587 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
4588\r
4589 Writes current value of Data Breakpoint Register specified by Index.\r
4590 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4591 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4592 mask conditions. At least 4 data registers pairs are implemented on all processor\r
4593 models. Implemented registers are contiguous starting with register 0. No parameter\r
4594 checking is performed on Index. If the Index value is beyond the implemented\r
4595 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
4596 either guarantee that Index is valid, or the caller must set up fault handlers to\r
4597 catch the faults.\r
4598 This function is only available on IPF.\r
4599\r
ee6c452c 4600 @param Index The 8-bit Data Breakpoint Register index to write.\r
4601 @param Value The 64-bit value to write to DBR.\r
ac644614 4602\r
4603 @return The 64-bit value written to the DBR.\r
4604\r
4605**/\r
4606UINT64\r
4607EFIAPI\r
4608AsmWriteDbr (\r
4609 IN UINT8 Index,\r
4610 IN UINT64 Value\r
4611 );\r
4612\r
4613\r
4614/**\r
4615 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
4616\r
4617 Writes current value of Performance Monitor Configuration Register specified by Index.\r
4618 All processor implementations provide at least 4 performance counters\r
4619 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow status\r
4620 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
4621 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
4622 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
4623 dependent. No parameter checking is performed on Index. If the Index value is\r
4624 beyond the implemented PMC register range, the write is ignored.\r
4625 This function is only available on IPF.\r
4626\r
ee6c452c 4627 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
4628 @param Value The 64-bit value to write to PMC.\r
ac644614 4629\r
4630 @return The 64-bit value written to the PMC.\r
4631\r
4632**/\r
4633UINT64\r
4634EFIAPI\r
4635AsmWritePmc (\r
4636 IN UINT8 Index,\r
4637 IN UINT64 Value\r
4638 );\r
4639\r
4640\r
4641/**\r
4642 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
4643\r
4644 Writes current value of Performance Monitor Data Register specified by Index.\r
4645 All processor implementations provide at least 4 performance counters\r
4646 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
4647 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4648 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
4649 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
4650 is implementation dependent. No parameter checking is performed on Index. If the\r
4651 Index value is beyond the implemented PMD register range, the write is ignored.\r
4652 This function is only available on IPF.\r
4653\r
ee6c452c 4654 @param Index The 8-bit Performance Monitor Data Register index to write.\r
4655 @param Value The 64-bit value to write to PMD.\r
ac644614 4656\r
4657 @return The 64-bit value written to the PMD.\r
4658\r
4659**/\r
4660UINT64\r
4661EFIAPI\r
4662AsmWritePmd (\r
4663 IN UINT8 Index,\r
4664 IN UINT64 Value\r
4665 );\r
4666\r
4667\r
4668/**\r
4669 Reads the current value of 64-bit Global Pointer (GP).\r
4670\r
4671 Reads and returns the current value of GP.\r
4672 This function is only available on IPF.\r
4673\r
4674 @return The current value of GP.\r
4675\r
4676**/\r
4677UINT64\r
4678EFIAPI\r
4679AsmReadGp (\r
4680 VOID\r
4681 );\r
4682\r
4683\r
4684/**\r
4685 Write the current value of 64-bit Global Pointer (GP).\r
4686\r
4687 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
4688 No parameter checking is performed on Value.\r
4689 This function is only available on IPF.\r
4690\r
4691 @param Value The 64-bit value to write to GP.\r
4692\r
4693 @return The 64-bit value written to the GP.\r
4694\r
4695**/\r
4696UINT64\r
4697EFIAPI\r
4698AsmWriteGp (\r
4699 IN UINT64 Value\r
4700 );\r
4701\r
4702\r
4703/**\r
4704 Reads the current value of 64-bit Stack Pointer (SP).\r
4705\r
4706 Reads and returns the current value of SP.\r
4707 This function is only available on IPF.\r
4708\r
4709 @return The current value of SP.\r
4710\r
4711**/\r
4712UINT64\r
4713EFIAPI\r
4714AsmReadSp (\r
4715 VOID\r
4716 );\r
4717\r
4718\r
aad6137d 4719///\r
4720/// Valid Index value for AsmReadControlRegister()\r
4721///\r
4722#define IPF_CONTROL_REGISTER_DCR 0\r
4723#define IPF_CONTROL_REGISTER_ITM 1\r
4724#define IPF_CONTROL_REGISTER_IVA 2\r
4725#define IPF_CONTROL_REGISTER_PTA 8\r
4726#define IPF_CONTROL_REGISTER_IPSR 16\r
4727#define IPF_CONTROL_REGISTER_ISR 17\r
4728#define IPF_CONTROL_REGISTER_IIP 19\r
4729#define IPF_CONTROL_REGISTER_IFA 20\r
4730#define IPF_CONTROL_REGISTER_ITIR 21\r
4731#define IPF_CONTROL_REGISTER_IIPA 22\r
4732#define IPF_CONTROL_REGISTER_IFS 23\r
4733#define IPF_CONTROL_REGISTER_IIM 24\r
4734#define IPF_CONTROL_REGISTER_IHA 25\r
4735#define IPF_CONTROL_REGISTER_LID 64\r
4736#define IPF_CONTROL_REGISTER_IVR 65\r
4737#define IPF_CONTROL_REGISTER_TPR 66\r
4738#define IPF_CONTROL_REGISTER_EOI 67\r
4739#define IPF_CONTROL_REGISTER_IRR0 68\r
4740#define IPF_CONTROL_REGISTER_IRR1 69\r
4741#define IPF_CONTROL_REGISTER_IRR2 70\r
4742#define IPF_CONTROL_REGISTER_IRR3 71\r
4743#define IPF_CONTROL_REGISTER_ITV 72\r
4744#define IPF_CONTROL_REGISTER_PMV 73\r
4745#define IPF_CONTROL_REGISTER_CMCV 74\r
4746#define IPF_CONTROL_REGISTER_LRR0 80\r
4747#define IPF_CONTROL_REGISTER_LRR1 81\r
4748\r
4749/**\r
4750 Reads a 64-bit control register.\r
4751\r
4752 Reads and returns the control register specified by Index. The valid Index valued are defined\r
4753 above in "Related Definitions".\r
4754 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on IPF.\r
4755\r
4756 @param Index The index of the control register to read.\r
4757\r
4758 @return The control register specified by Index.\r
4759\r
4760**/\r
4761UINT64\r
4762EFIAPI\r
4763AsmReadControlRegister (\r
4764 IN UINT64 Index\r
4765 );\r
4766\r
4767\r
4768///\r
4769/// Valid Index value for AsmReadApplicationRegister()\r
4770///\r
4771#define IPF_APPLICATION_REGISTER_K0 0\r
4772#define IPF_APPLICATION_REGISTER_K1 1\r
4773#define IPF_APPLICATION_REGISTER_K2 2\r
4774#define IPF_APPLICATION_REGISTER_K3 3\r
4775#define IPF_APPLICATION_REGISTER_K4 4\r
4776#define IPF_APPLICATION_REGISTER_K5 5\r
4777#define IPF_APPLICATION_REGISTER_K6 6\r
4778#define IPF_APPLICATION_REGISTER_K7 7\r
4779#define IPF_APPLICATION_REGISTER_RSC 16\r
4780#define IPF_APPLICATION_REGISTER_BSP 17\r
4781#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
4782#define IPF_APPLICATION_REGISTER_RNAT 19\r
4783#define IPF_APPLICATION_REGISTER_FCR 21\r
4784#define IPF_APPLICATION_REGISTER_EFLAG 24\r
4785#define IPF_APPLICATION_REGISTER_CSD 25\r
4786#define IPF_APPLICATION_REGISTER_SSD 26\r
4787#define IPF_APPLICATION_REGISTER_CFLG 27\r
4788#define IPF_APPLICATION_REGISTER_FSR 28\r
4789#define IPF_APPLICATION_REGISTER_FIR 29\r
4790#define IPF_APPLICATION_REGISTER_FDR 30\r
4791#define IPF_APPLICATION_REGISTER_CCV 32\r
4792#define IPF_APPLICATION_REGISTER_UNAT 36\r
4793#define IPF_APPLICATION_REGISTER_FPSR 40\r
4794#define IPF_APPLICATION_REGISTER_ITC 44\r
4795#define IPF_APPLICATION_REGISTER_PFS 64\r
4796#define IPF_APPLICATION_REGISTER_LC 65\r
4797#define IPF_APPLICATION_REGISTER_EC 66\r
4798\r
4799/**\r
4800 Reads a 64-bit application register.\r
4801\r
4802 Reads and returns the application register specified by Index. The valid Index valued are defined\r
4803 above in "Related Definitions".\r
4804 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on IPF.\r
4805\r
4806 @param Index The index of the application register to read.\r
4807\r
4808 @return The application register specified by Index.\r
4809\r
4810**/\r
4811UINT64\r
4812EFIAPI\r
4813AsmReadApplicationRegister (\r
4814 IN UINT64 Index\r
4815 );\r
4816\r
4817\r
ac644614 4818/**\r
4819 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
4820\r
4821 Determines the current execution mode of the CPU.\r
4822 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
4823 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
4824 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
4825 and -1 is returned.\r
4826 This function is only available on IPF.\r
4827\r
17f695ed 4828 @retval 1 The CPU is in virtual mode.\r
4829 @retval 0 The CPU is in physical mode.\r
4830 @retval -1 The CPU is in mixed mode.\r
ac644614 4831\r
4832**/\r
4833INT64\r
4834EFIAPI\r
4835AsmCpuVirtual (\r
4836 VOID\r
4837 );\r
4838\r
4839\r
4840/**\r
4841 Makes a PAL procedure call.\r
4842\r
4843 This is a wrapper function to make a PAL procedure call. Based on the Index\r
4844 value this API will make static or stacked PAL call. The following table\r
4845 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
4846 may be designated as required or optional. If a PAL procedure is specified\r
4847 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
4848 Status field of the PAL_CALL_RETURN structure.\r
4849 This indicates that the procedure is not present in this PAL implementation.\r
4850 It is the caller's responsibility to check for this return code after calling\r
4851 any optional PAL procedure.\r
4852 No parameter checking is performed on the 5 input parameters, but there are\r
4853 some common rules that the caller should follow when making a PAL call. Any\r
4854 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
4855 Unaligned addresses may cause undefined results. For those parameters defined\r
4856 as reserved or some fields defined as reserved must be zero filled or the invalid\r
4857 argument return value may be returned or undefined result may occur during the\r
4858 execution of the procedure. If the PalEntryPoint does not point to a valid\r
4859 PAL entry point then the system behavior is undefined. This function is only\r
4860 available on IPF.\r
4861\r
ee6c452c 4862 @param PalEntryPoint The PAL procedure calls entry point.\r
4863 @param Index The PAL procedure Index number.\r
4864 @param Arg2 The 2nd parameter for PAL procedure calls.\r
4865 @param Arg3 The 3rd parameter for PAL procedure calls.\r
4866 @param Arg4 The 4th parameter for PAL procedure calls.\r
ac644614 4867\r
4868 @return structure returned from the PAL Call procedure, including the status and return value.\r
4869\r
4870**/\r
4871PAL_CALL_RETURN\r
4872EFIAPI\r
4873AsmPalCall (\r
4874 IN UINT64 PalEntryPoint,\r
4875 IN UINT64 Index,\r
4876 IN UINT64 Arg2,\r
4877 IN UINT64 Arg3,\r
4878 IN UINT64 Arg4\r
4879 );\r
4880\r
4881\r
ac644614 4882#elif defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
1106ffe1 4883///\r
4884/// IA32 and X64 Specific Functions\r
4885/// Byte packed structure for 16-bit Real Mode EFLAGS\r
4886///\r
ac644614 4887typedef union {\r
4888 struct {\r
1106ffe1 4889 UINT32 CF:1; /// Carry Flag\r
4890 UINT32 Reserved_0:1; /// Reserved\r
4891 UINT32 PF:1; /// Parity Flag\r
4892 UINT32 Reserved_1:1; /// Reserved\r
4893 UINT32 AF:1; /// Auxiliary Carry Flag\r
4894 UINT32 Reserved_2:1; /// Reserved\r
4895 UINT32 ZF:1; /// Zero Flag\r
4896 UINT32 SF:1; /// Sign Flag\r
4897 UINT32 TF:1; /// Trap Flag\r
4898 UINT32 IF:1; /// Interrupt Enable Flag\r
4899 UINT32 DF:1; /// Direction Flag\r
4900 UINT32 OF:1; /// Overflow Flag\r
4901 UINT32 IOPL:2; /// I/O Privilege Level\r
4902 UINT32 NT:1; /// Nested Task\r
4903 UINT32 Reserved_3:1; /// Reserved\r
ac644614 4904 } Bits;\r
4905 UINT16 Uint16;\r
4906} IA32_FLAGS16;\r
4907\r
1106ffe1 4908///\r
4909/// Byte packed structure for EFLAGS/RFLAGS\r
4910/// 32-bits on IA-32\r
4911/// 64-bits on X64. The upper 32-bits on X64 are reserved\r
4912///\r
ac644614 4913typedef union {\r
4914 struct {\r
1106ffe1 4915 UINT32 CF:1; /// Carry Flag\r
4916 UINT32 Reserved_0:1; /// Reserved\r
4917 UINT32 PF:1; /// Parity Flag\r
4918 UINT32 Reserved_1:1; /// Reserved\r
4919 UINT32 AF:1; /// Auxiliary Carry Flag\r
4920 UINT32 Reserved_2:1; /// Reserved\r
4921 UINT32 ZF:1; /// Zero Flag\r
4922 UINT32 SF:1; /// Sign Flag\r
4923 UINT32 TF:1; /// Trap Flag\r
4924 UINT32 IF:1; /// Interrupt Enable Flag\r
4925 UINT32 DF:1; /// Direction Flag\r
4926 UINT32 OF:1; /// Overflow Flag\r
4927 UINT32 IOPL:2; /// I/O Privilege Level\r
4928 UINT32 NT:1; /// Nested Task\r
4929 UINT32 Reserved_3:1; /// Reserved\r
4930 UINT32 RF:1; /// Resume Flag\r
4931 UINT32 VM:1; /// Virtual 8086 Mode\r
4932 UINT32 AC:1; /// Alignment Check\r
4933 UINT32 VIF:1; /// Virtual Interrupt Flag\r
4934 UINT32 VIP:1; /// Virtual Interrupt Pending\r
4935 UINT32 ID:1; /// ID Flag\r
4936 UINT32 Reserved_4:10; /// Reserved\r
ac644614 4937 } Bits;\r
4938 UINTN UintN;\r
4939} IA32_EFLAGS32;\r
4940\r
1106ffe1 4941///\r
4942/// Byte packed structure for Control Register 0 (CR0)\r
4943/// 32-bits on IA-32\r
4944/// 64-bits on X64. The upper 32-bits on X64 are reserved\r
4945///\r
ac644614 4946typedef union {\r
4947 struct {\r
1106ffe1 4948 UINT32 PE:1; /// Protection Enable\r
4949 UINT32 MP:1; /// Monitor Coprocessor\r
4950 UINT32 EM:1; /// Emulation\r
4951 UINT32 TS:1; /// Task Switched\r
4952 UINT32 ET:1; /// Extension Type\r
4953 UINT32 NE:1; /// Numeric Error\r
4954 UINT32 Reserved_0:10; /// Reserved\r
4955 UINT32 WP:1; /// Write Protect\r
4956 UINT32 Reserved_1:1; /// Reserved\r
4957 UINT32 AM:1; /// Alignment Mask\r
4958 UINT32 Reserved_2:10; /// Reserved\r
4959 UINT32 NW:1; /// Mot Write-through\r
4960 UINT32 CD:1; /// Cache Disable\r
4961 UINT32 PG:1; /// Paging\r
ac644614 4962 } Bits;\r
4963 UINTN UintN;\r
4964} IA32_CR0;\r
4965\r
1106ffe1 4966///\r
4967/// Byte packed structure for Control Register 4 (CR4)\r
4968/// 32-bits on IA-32\r
4969/// 64-bits on X64. The upper 32-bits on X64 are reserved\r
4970///\r
ac644614 4971typedef union {\r
4972 struct {\r
1106ffe1 4973 UINT32 VME:1; /// Virtual-8086 Mode Extensions\r
4974 UINT32 PVI:1; /// Protected-Mode Virtual Interrupts\r
4975 UINT32 TSD:1; /// Time Stamp Disable\r
4976 UINT32 DE:1; /// Debugging Extensions\r
4977 UINT32 PSE:1; /// Page Size Extensions\r
4978 UINT32 PAE:1; /// Physical Address Extension\r
4979 UINT32 MCE:1; /// Machine Check Enable\r
4980 UINT32 PGE:1; /// Page Global Enable\r
4981 UINT32 PCE:1; /// Performance Monitoring Counter\r
4982 /// Enable\r
4983 UINT32 OSFXSR:1; /// Operating System Support for\r
4984 /// FXSAVE and FXRSTOR instructions\r
4985 UINT32 OSXMMEXCPT:1; /// Operating System Support for\r
4986 /// Unmasked SIMD Floating Point\r
4987 /// Exceptions\r
4988 UINT32 Reserved_0:2; /// Reserved\r
4989 UINT32 VMXE:1; /// VMX Enable\r
4990 UINT32 Reserved_1:18; /// Reseved\r
ac644614 4991 } Bits;\r
4992 UINTN UintN;\r
4993} IA32_CR4;\r
4994\r
1106ffe1 4995///\r
4996/// Byte packed structure for an IDTR, GDTR, LDTR descriptor\r
4997/// @todo How to make this structure byte-packed in a compiler independent way?\r
4998///\r
ac644614 4999#pragma pack (1)\r
5000typedef struct {\r
5001 UINT16 Limit;\r
5002 UINTN Base;\r
5003} IA32_DESCRIPTOR;\r
5004#pragma pack ()\r
5005\r
5006#define IA32_IDT_GATE_TYPE_TASK 0x85\r
5007#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
5008#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
5009#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
5010#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
5011\r
1106ffe1 5012///\r
5013/// Byte packed structure for an Interrupt Gate Descriptor\r
5014///\r
dc317713 5015#if defined (MDE_CPU_IA32)\r
5016\r
5017typedef union {\r
5018 struct {\r
5019 UINT32 OffsetLow:16; // Offset bits 15..0\r
5020 UINT32 Selector:16; // Selector\r
5021 UINT32 Reserved_0:8; // Reserved\r
5022 UINT32 GateType:8; // Gate Type. See #defines above\r
5023 UINT32 OffsetHigh:16; // Offset bits 31..16\r
5024 } Bits;\r
5025 UINT64 Uint64;\r
5026} IA32_IDT_GATE_DESCRIPTOR;\r
5027\r
5028#endif\r
5029\r
5030#if defined (MDE_CPU_X64)\r
5031\r
ac644614 5032typedef union {\r
5033 struct {\r
dc317713 5034 UINT32 OffsetLow:16; // Offset bits 15..0\r
5035 UINT32 Selector:16; // Selector\r
5036 UINT32 Reserved_0:8; // Reserved\r
5037 UINT32 GateType:8; // Gate Type. See #defines above\r
5038 UINT32 OffsetHigh:16; // Offset bits 31..16\r
5039 UINT32 OffsetUpper:32; // Offset bits 63..32\r
5040 UINT32 Reserved_1:32; // Reserved\r
ac644614 5041 } Bits;\r
5042 UINT64 Uint64;\r
dc317713 5043 UINT64 Uint64_1;\r
ac644614 5044} IA32_IDT_GATE_DESCRIPTOR;\r
5045\r
dc317713 5046#endif\r
5047\r
1106ffe1 5048///\r
5049/// Byte packed structure for an FP/SSE/SSE2 context\r
5050///\r
ac644614 5051typedef struct {\r
5052 UINT8 Buffer[512];\r
5053} IA32_FX_BUFFER;\r
5054\r
1106ffe1 5055///\r
5056/// Structures for the 16-bit real mode thunks\r
5057///\r
ac644614 5058typedef struct {\r
5059 UINT32 Reserved1;\r
5060 UINT32 Reserved2;\r
5061 UINT32 Reserved3;\r
5062 UINT32 Reserved4;\r
5063 UINT8 BL;\r
5064 UINT8 BH;\r
5065 UINT16 Reserved5;\r
5066 UINT8 DL;\r
5067 UINT8 DH;\r
5068 UINT16 Reserved6;\r
5069 UINT8 CL;\r
5070 UINT8 CH;\r
5071 UINT16 Reserved7;\r
5072 UINT8 AL;\r
5073 UINT8 AH;\r
5074 UINT16 Reserved8;\r
5075} IA32_BYTE_REGS;\r
5076\r
5077typedef struct {\r
5078 UINT16 DI;\r
5079 UINT16 Reserved1;\r
5080 UINT16 SI;\r
5081 UINT16 Reserved2;\r
5082 UINT16 BP;\r
5083 UINT16 Reserved3;\r
5084 UINT16 SP;\r
5085 UINT16 Reserved4;\r
5086 UINT16 BX;\r
5087 UINT16 Reserved5;\r
5088 UINT16 DX;\r
5089 UINT16 Reserved6;\r
5090 UINT16 CX;\r
5091 UINT16 Reserved7;\r
5092 UINT16 AX;\r
5093 UINT16 Reserved8;\r
5094} IA32_WORD_REGS;\r
5095\r
5096typedef struct {\r
5097 UINT32 EDI;\r
5098 UINT32 ESI;\r
5099 UINT32 EBP;\r
5100 UINT32 ESP;\r
5101 UINT32 EBX;\r
5102 UINT32 EDX;\r
5103 UINT32 ECX;\r
5104 UINT32 EAX;\r
5105 UINT16 DS;\r
5106 UINT16 ES;\r
5107 UINT16 FS;\r
5108 UINT16 GS;\r
5109 IA32_EFLAGS32 EFLAGS;\r
5110 UINT32 Eip;\r
5111 UINT16 CS;\r
5112 UINT16 SS;\r
5113} IA32_DWORD_REGS;\r
5114\r
5115typedef union {\r
5116 IA32_DWORD_REGS E;\r
5117 IA32_WORD_REGS X;\r
5118 IA32_BYTE_REGS H;\r
5119} IA32_REGISTER_SET;\r
5120\r
1106ffe1 5121///\r
5122/// Byte packed structure for an 16-bit real mode thunks\r
5123///\r
ac644614 5124typedef struct {\r
5125 IA32_REGISTER_SET *RealModeState;\r
5126 VOID *RealModeBuffer;\r
5127 UINT32 RealModeBufferSize;\r
5128 UINT32 ThunkAttributes;\r
5129} THUNK_CONTEXT;\r
5130\r
5131#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
5132#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
5133#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
5134\r
5135/**\r
5136 Retrieves CPUID information.\r
5137\r
5138 Executes the CPUID instruction with EAX set to the value specified by Index.\r
5139 This function always returns Index.\r
5140 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5141 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5142 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5143 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5144 This function is only available on IA-32 and X64.\r
5145\r
5146 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
5147 instruction.\r
5148 @param Eax Pointer to the 32-bit EAX value returned by the CPUID\r
5149 instruction. This is an optional parameter that may be NULL.\r
5150 @param Ebx Pointer to the 32-bit EBX value returned by the CPUID\r
5151 instruction. This is an optional parameter that may be NULL.\r
5152 @param Ecx Pointer to the 32-bit ECX value returned by the CPUID\r
5153 instruction. This is an optional parameter that may be NULL.\r
5154 @param Edx Pointer to the 32-bit EDX value returned by the CPUID\r
5155 instruction. This is an optional parameter that may be NULL.\r
5156\r
5157 @return Index\r
5158\r
5159**/\r
5160UINT32\r
5161EFIAPI\r
5162AsmCpuid (\r
5163 IN UINT32 Index,\r
5164 OUT UINT32 *Eax, OPTIONAL\r
5165 OUT UINT32 *Ebx, OPTIONAL\r
5166 OUT UINT32 *Ecx, OPTIONAL\r
5167 OUT UINT32 *Edx OPTIONAL\r
5168 );\r
5169\r
5170\r
5171/**\r
5172 Retrieves CPUID information using an extended leaf identifier.\r
5173\r
5174 Executes the CPUID instruction with EAX set to the value specified by Index\r
5175 and ECX set to the value specified by SubIndex. This function always returns\r
5176 Index. This function is only available on IA-32 and x64.\r
5177\r
5178 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5179 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5180 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5181 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5182\r
5183 @param Index The 32-bit value to load into EAX prior to invoking the\r
5184 CPUID instruction.\r
5185 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
5186 CPUID instruction.\r
5187 @param Eax Pointer to the 32-bit EAX value returned by the CPUID\r
5188 instruction. This is an optional parameter that may be\r
5189 NULL.\r
5190 @param Ebx Pointer to the 32-bit EBX value returned by the CPUID\r
5191 instruction. This is an optional parameter that may be\r
5192 NULL.\r
5193 @param Ecx Pointer to the 32-bit ECX value returned by the CPUID\r
5194 instruction. This is an optional parameter that may be\r
5195 NULL.\r
5196 @param Edx Pointer to the 32-bit EDX value returned by the CPUID\r
5197 instruction. This is an optional parameter that may be\r
5198 NULL.\r
5199\r
5200 @return Index\r
5201\r
5202**/\r
5203UINT32\r
5204EFIAPI\r
5205AsmCpuidEx (\r
5206 IN UINT32 Index,\r
5207 IN UINT32 SubIndex,\r
5208 OUT UINT32 *Eax, OPTIONAL\r
5209 OUT UINT32 *Ebx, OPTIONAL\r
5210 OUT UINT32 *Ecx, OPTIONAL\r
5211 OUT UINT32 *Edx OPTIONAL\r
5212 );\r
5213\r
5214\r
5215/**\r
5216 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
5217\r
5218 Reads and returns the lower 32-bits of the MSR specified by Index.\r
5219 No parameter checking is performed on Index, and some Index values may cause\r
5220 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
5221 caller must set up exception handlers to catch the exceptions. This function\r
5222 is only available on IA-32 and X64.\r
5223\r
5224 @param Index The 32-bit MSR index to read.\r
5225\r
5226 @return The lower 32 bits of the MSR identified by Index.\r
5227\r
5228**/\r
5229UINT32\r
5230EFIAPI\r
5231AsmReadMsr32 (\r
5232 IN UINT32 Index\r
5233 );\r
5234\r
5235\r
5236/**\r
17f695ed 5237 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
5238 The upper 32-bits of the MSR are set to zero.\r
ac644614 5239\r
5240 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
5241 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
5242 the MSR is returned. No parameter checking is performed on Index or Value,\r
5243 and some of these may cause CPU exceptions. The caller must either guarantee\r
5244 that Index and Value are valid, or the caller must establish proper exception\r
5245 handlers. This function is only available on IA-32 and X64.\r
5246\r
5247 @param Index The 32-bit MSR index to write.\r
5248 @param Value The 32-bit value to write to the MSR.\r
5249\r
5250 @return Value\r
5251\r
5252**/\r
5253UINT32\r
5254EFIAPI\r
5255AsmWriteMsr32 (\r
5256 IN UINT32 Index,\r
5257 IN UINT32 Value\r
5258 );\r
5259\r
5260\r
5261/**\r
5262 Reads a 64-bit MSR, performs a bitwise inclusive OR on the lower 32-bits, and\r
5263 writes the result back to the 64-bit MSR.\r
5264\r
5265 Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR\r
5266 between the lower 32-bits of the read result and the value specified by\r
5267 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
5268 32-bits of the value written to the MSR is returned. No parameter checking is\r
5269 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
5270 caller must either guarantee that Index and OrData are valid, or the caller\r
5271 must establish proper exception handlers. This function is only available on\r
5272 IA-32 and X64.\r
5273\r
5274 @param Index The 32-bit MSR index to write.\r
5275 @param OrData The value to OR with the read value from the MSR.\r
5276\r
5277 @return The lower 32-bit value written to the MSR.\r
5278\r
5279**/\r
5280UINT32\r
5281EFIAPI\r
5282AsmMsrOr32 (\r
5283 IN UINT32 Index,\r
5284 IN UINT32 OrData\r
5285 );\r
5286\r
5287\r
5288/**\r
5289 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
5290 the result back to the 64-bit MSR.\r
5291\r
5292 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5293 lower 32-bits of the read result and the value specified by AndData, and\r
5294 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
5295 the value written to the MSR is returned. No parameter checking is performed\r
5296 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
5297 must either guarantee that Index and AndData are valid, or the caller must\r
5298 establish proper exception handlers. This function is only available on IA-32\r
5299 and X64.\r
5300\r
5301 @param Index The 32-bit MSR index to write.\r
5302 @param AndData The value to AND with the read value from the MSR.\r
5303\r
5304 @return The lower 32-bit value written to the MSR.\r
5305\r
5306**/\r
5307UINT32\r
5308EFIAPI\r
5309AsmMsrAnd32 (\r
5310 IN UINT32 Index,\r
5311 IN UINT32 AndData\r
5312 );\r
5313\r
5314\r
5315/**\r
5316 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise inclusive OR\r
5317 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
5318\r
5319 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5320 lower 32-bits of the read result and the value specified by AndData\r
5321 preserving the upper 32-bits, performs a bitwise inclusive OR between the\r
5322 result of the AND operation and the value specified by OrData, and writes the\r
5323 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
5324 written to the MSR is returned. No parameter checking is performed on Index,\r
5325 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
5326 must either guarantee that Index, AndData, and OrData are valid, or the\r
5327 caller must establish proper exception handlers. This function is only\r
5328 available on IA-32 and X64.\r
5329\r
5330 @param Index The 32-bit MSR index to write.\r
5331 @param AndData The value to AND with the read value from the MSR.\r
5332 @param OrData The value to OR with the result of the AND operation.\r
5333\r
5334 @return The lower 32-bit value written to the MSR.\r
5335\r
5336**/\r
5337UINT32\r
5338EFIAPI\r
5339AsmMsrAndThenOr32 (\r
5340 IN UINT32 Index,\r
5341 IN UINT32 AndData,\r
5342 IN UINT32 OrData\r
5343 );\r
5344\r
5345\r
5346/**\r
5347 Reads a bit field of an MSR.\r
5348\r
5349 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
5350 specified by the StartBit and the EndBit. The value of the bit field is\r
5351 returned. The caller must either guarantee that Index is valid, or the caller\r
5352 must set up exception handlers to catch the exceptions. This function is only\r
5353 available on IA-32 and X64.\r
5354\r
5355 If StartBit is greater than 31, then ASSERT().\r
5356 If EndBit is greater than 31, then ASSERT().\r
5357 If EndBit is less than StartBit, then ASSERT().\r
5358\r
5359 @param Index The 32-bit MSR index to read.\r
5360 @param StartBit The ordinal of the least significant bit in the bit field.\r
5361 Range 0..31.\r
5362 @param EndBit The ordinal of the most significant bit in the bit field.\r
5363 Range 0..31.\r
5364\r
5365 @return The bit field read from the MSR.\r
5366\r
5367**/\r
5368UINT32\r
5369EFIAPI\r
5370AsmMsrBitFieldRead32 (\r
5371 IN UINT32 Index,\r
5372 IN UINTN StartBit,\r
5373 IN UINTN EndBit\r
5374 );\r
5375\r
5376\r
5377/**\r
5378 Writes a bit field to an MSR.\r
5379\r
5380 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
5381 field is specified by the StartBit and the EndBit. All other bits in the\r
5382 destination MSR are preserved. The lower 32-bits of the MSR written is\r
5383 returned. Extra left bits in Value are stripped. The caller must either\r
5384 guarantee that Index and the data written is valid, or the caller must set up\r
5385 exception handlers to catch the exceptions. This function is only available\r
5386 on IA-32 and X64.\r
5387\r
5388 If StartBit is greater than 31, then ASSERT().\r
5389 If EndBit is greater than 31, then ASSERT().\r
5390 If EndBit is less than StartBit, then ASSERT().\r
5391\r
5392 @param Index The 32-bit MSR index to write.\r
5393 @param StartBit The ordinal of the least significant bit in the bit field.\r
5394 Range 0..31.\r
5395 @param EndBit The ordinal of the most significant bit in the bit field.\r
5396 Range 0..31.\r
5397 @param Value New value of the bit field.\r
5398\r
5399 @return The lower 32-bit of the value written to the MSR.\r
5400\r
5401**/\r
5402UINT32\r
5403EFIAPI\r
5404AsmMsrBitFieldWrite32 (\r
5405 IN UINT32 Index,\r
5406 IN UINTN StartBit,\r
5407 IN UINTN EndBit,\r
5408 IN UINT32 Value\r
5409 );\r
5410\r
5411\r
5412/**\r
5413 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
5414 result back to the bit field in the 64-bit MSR.\r
5415\r
5416 Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR\r
5417 between the read result and the value specified by OrData, and writes the\r
5418 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
5419 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
5420 caller must either guarantee that Index and the data written is valid, or\r
5421 the caller must set up exception handlers to catch the exceptions. This\r
5422 function is only available on IA-32 and X64.\r
5423\r
5424 If StartBit is greater than 31, then ASSERT().\r
5425 If EndBit is greater than 31, then ASSERT().\r
5426 If EndBit is less than StartBit, then ASSERT().\r
5427\r
5428 @param Index The 32-bit MSR index to write.\r
5429 @param StartBit The ordinal of the least significant bit in the bit field.\r
5430 Range 0..31.\r
5431 @param EndBit The ordinal of the most significant bit in the bit field.\r
5432 Range 0..31.\r
5433 @param OrData The value to OR with the read value from the MSR.\r
5434\r
5435 @return The lower 32-bit of the value written to the MSR.\r
5436\r
5437**/\r
5438UINT32\r
5439EFIAPI\r
5440AsmMsrBitFieldOr32 (\r
5441 IN UINT32 Index,\r
5442 IN UINTN StartBit,\r
5443 IN UINTN EndBit,\r
5444 IN UINT32 OrData\r
5445 );\r
5446\r
5447\r
5448/**\r
5449 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5450 result back to the bit field in the 64-bit MSR.\r
5451\r
5452 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5453 read result and the value specified by AndData, and writes the result to the\r
5454 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
5455 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
5456 either guarantee that Index and the data written is valid, or the caller must\r
5457 set up exception handlers to catch the exceptions. This function is only\r
5458 available on IA-32 and X64.\r
5459\r
5460 If StartBit is greater than 31, then ASSERT().\r
5461 If EndBit is greater than 31, then ASSERT().\r
5462 If EndBit is less than StartBit, then ASSERT().\r
5463\r
5464 @param Index The 32-bit MSR index to write.\r
5465 @param StartBit The ordinal of the least significant bit in the bit field.\r
5466 Range 0..31.\r
5467 @param EndBit The ordinal of the most significant bit in the bit field.\r
5468 Range 0..31.\r
5469 @param AndData The value to AND with the read value from the MSR.\r
5470\r
5471 @return The lower 32-bit of the value written to the MSR.\r
5472\r
5473**/\r
5474UINT32\r
5475EFIAPI\r
5476AsmMsrBitFieldAnd32 (\r
5477 IN UINT32 Index,\r
5478 IN UINTN StartBit,\r
5479 IN UINTN EndBit,\r
5480 IN UINT32 AndData\r
5481 );\r
5482\r
5483\r
5484/**\r
5485 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
5486 bitwise inclusive OR, and writes the result back to the bit field in the\r
5487 64-bit MSR.\r
5488\r
5489 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
5490 bitwise inclusive OR between the read result and the value specified by\r
5491 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5492 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
5493 in both AndData and OrData are stripped. The caller must either guarantee\r
5494 that Index and the data written is valid, or the caller must set up exception\r
5495 handlers to catch the exceptions. This function is only available on IA-32\r
5496 and X64.\r
5497\r
5498 If StartBit is greater than 31, then ASSERT().\r
5499 If EndBit is greater than 31, then ASSERT().\r
5500 If EndBit is less than StartBit, then ASSERT().\r
5501\r
5502 @param Index The 32-bit MSR index to write.\r
5503 @param StartBit The ordinal of the least significant bit in the bit field.\r
5504 Range 0..31.\r
5505 @param EndBit The ordinal of the most significant bit in the bit field.\r
5506 Range 0..31.\r
5507 @param AndData The value to AND with the read value from the MSR.\r
5508 @param OrData The value to OR with the result of the AND operation.\r
5509\r
5510 @return The lower 32-bit of the value written to the MSR.\r
5511\r
5512**/\r
5513UINT32\r
5514EFIAPI\r
5515AsmMsrBitFieldAndThenOr32 (\r
5516 IN UINT32 Index,\r
5517 IN UINTN StartBit,\r
5518 IN UINTN EndBit,\r
5519 IN UINT32 AndData,\r
5520 IN UINT32 OrData\r
5521 );\r
5522\r
5523\r
5524/**\r
5525 Returns a 64-bit Machine Specific Register(MSR).\r
5526\r
5527 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
5528 performed on Index, and some Index values may cause CPU exceptions. The\r
5529 caller must either guarantee that Index is valid, or the caller must set up\r
5530 exception handlers to catch the exceptions. This function is only available\r
5531 on IA-32 and X64.\r
5532\r
5533 @param Index The 32-bit MSR index to read.\r
5534\r
5535 @return The value of the MSR identified by Index.\r
5536\r
5537**/\r
5538UINT64\r
5539EFIAPI\r
5540AsmReadMsr64 (\r
5541 IN UINT32 Index\r
5542 );\r
5543\r
5544\r
5545/**\r
5546 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
5547 value.\r
5548\r
5549 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
5550 64-bit value written to the MSR is returned. No parameter checking is\r
5551 performed on Index or Value, and some of these may cause CPU exceptions. The\r
5552 caller must either guarantee that Index and Value are valid, or the caller\r
5553 must establish proper exception handlers. This function is only available on\r
5554 IA-32 and X64.\r
5555\r
5556 @param Index The 32-bit MSR index to write.\r
5557 @param Value The 64-bit value to write to the MSR.\r
5558\r
5559 @return Value\r
5560\r
5561**/\r
5562UINT64\r
5563EFIAPI\r
5564AsmWriteMsr64 (\r
5565 IN UINT32 Index,\r
5566 IN UINT64 Value\r
5567 );\r
5568\r
5569\r
5570/**\r
5571 Reads a 64-bit MSR, performs a bitwise inclusive OR, and writes the result\r
5572 back to the 64-bit MSR.\r
5573\r
5574 Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR\r
5575 between the read result and the value specified by OrData, and writes the\r
5576 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5577 returned. No parameter checking is performed on Index or OrData, and some of\r
5578 these may cause CPU exceptions. The caller must either guarantee that Index\r
5579 and OrData are valid, or the caller must establish proper exception handlers.\r
5580 This function is only available on IA-32 and X64.\r
5581\r
5582 @param Index The 32-bit MSR index to write.\r
5583 @param OrData The value to OR with the read value from the MSR.\r
5584\r
5585 @return The value written back to the MSR.\r
5586\r
5587**/\r
5588UINT64\r
5589EFIAPI\r
5590AsmMsrOr64 (\r
5591 IN UINT32 Index,\r
5592 IN UINT64 OrData\r
5593 );\r
5594\r
5595\r
5596/**\r
5597 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
5598 64-bit MSR.\r
5599\r
5600 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5601 read result and the value specified by OrData, and writes the result to the\r
5602 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
5603 parameter checking is performed on Index or OrData, and some of these may\r
5604 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
5605 are valid, or the caller must establish proper exception handlers. This\r
5606 function is only available on IA-32 and X64.\r
5607\r
5608 @param Index The 32-bit MSR index to write.\r
5609 @param AndData The value to AND with the read value from the MSR.\r
5610\r
5611 @return The value written back to the MSR.\r
5612\r
5613**/\r
5614UINT64\r
5615EFIAPI\r
5616AsmMsrAnd64 (\r
5617 IN UINT32 Index,\r
5618 IN UINT64 AndData\r
5619 );\r
5620\r
5621\r
5622/**\r
5623 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise inclusive\r
5624 OR, and writes the result back to the 64-bit MSR.\r
5625\r
5626 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
5627 result and the value specified by AndData, performs a bitwise inclusive OR\r
5628 between the result of the AND operation and the value specified by OrData,\r
5629 and writes the result to the 64-bit MSR specified by Index. The value written\r
5630 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
5631 or OrData, and some of these may cause CPU exceptions. The caller must either\r
5632 guarantee that Index, AndData, and OrData are valid, or the caller must\r
5633 establish proper exception handlers. This function is only available on IA-32\r
5634 and X64.\r
5635\r
5636 @param Index The 32-bit MSR index to write.\r
5637 @param AndData The value to AND with the read value from the MSR.\r
5638 @param OrData The value to OR with the result of the AND operation.\r
5639\r
5640 @return The value written back to the MSR.\r
5641\r
5642**/\r
5643UINT64\r
5644EFIAPI\r
5645AsmMsrAndThenOr64 (\r
5646 IN UINT32 Index,\r
5647 IN UINT64 AndData,\r
5648 IN UINT64 OrData\r
5649 );\r
5650\r
5651\r
5652/**\r
5653 Reads a bit field of an MSR.\r
5654\r
5655 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
5656 StartBit and the EndBit. The value of the bit field is returned. The caller\r
5657 must either guarantee that Index is valid, or the caller must set up\r
5658 exception handlers to catch the exceptions. This function is only available\r
5659 on IA-32 and X64.\r
5660\r
5661 If StartBit is greater than 63, then ASSERT().\r
5662 If EndBit is greater than 63, then ASSERT().\r
5663 If EndBit is less than StartBit, then ASSERT().\r
5664\r
5665 @param Index The 32-bit MSR index to read.\r
5666 @param StartBit The ordinal of the least significant bit in the bit field.\r
5667 Range 0..63.\r
5668 @param EndBit The ordinal of the most significant bit in the bit field.\r
5669 Range 0..63.\r
5670\r
5671 @return The value read from the MSR.\r
5672\r
5673**/\r
5674UINT64\r
5675EFIAPI\r
5676AsmMsrBitFieldRead64 (\r
5677 IN UINT32 Index,\r
5678 IN UINTN StartBit,\r
5679 IN UINTN EndBit\r
5680 );\r
5681\r
5682\r
5683/**\r
5684 Writes a bit field to an MSR.\r
5685\r
5686 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
5687 the StartBit and the EndBit. All other bits in the destination MSR are\r
5688 preserved. The MSR written is returned. Extra left bits in Value are\r
5689 stripped. The caller must either guarantee that Index and the data written is\r
5690 valid, or the caller must set up exception handlers to catch the exceptions.\r
5691 This function is only available on IA-32 and X64.\r
5692\r
5693 If StartBit is greater than 63, then ASSERT().\r
5694 If EndBit is greater than 63, then ASSERT().\r
5695 If EndBit is less than StartBit, then ASSERT().\r
5696\r
5697 @param Index The 32-bit MSR index to write.\r
5698 @param StartBit The ordinal of the least significant bit in the bit field.\r
5699 Range 0..63.\r
5700 @param EndBit The ordinal of the most significant bit in the bit field.\r
5701 Range 0..63.\r
5702 @param Value New value of the bit field.\r
5703\r
5704 @return The value written back to the MSR.\r
5705\r
5706**/\r
5707UINT64\r
5708EFIAPI\r
5709AsmMsrBitFieldWrite64 (\r
5710 IN UINT32 Index,\r
5711 IN UINTN StartBit,\r
5712 IN UINTN EndBit,\r
5713 IN UINT64 Value\r
5714 );\r
5715\r
5716\r
5717/**\r
5718 Reads a bit field in a 64-bit MSR, performs a bitwise inclusive OR, and\r
5719 writes the result back to the bit field in the 64-bit MSR.\r
5720\r
5721 Reads the 64-bit MSR specified by Index, performs a bitwise inclusive OR\r
5722 between the read result and the value specified by OrData, and writes the\r
5723 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5724 returned. Extra left bits in OrData are stripped. The caller must either\r
5725 guarantee that Index and the data written is valid, or the caller must set up\r
5726 exception handlers to catch the exceptions. This function is only available\r
5727 on IA-32 and X64.\r
5728\r
5729 If StartBit is greater than 63, then ASSERT().\r
5730 If EndBit is greater than 63, then ASSERT().\r
5731 If EndBit is less than StartBit, then ASSERT().\r
5732\r
5733 @param Index The 32-bit MSR index to write.\r
5734 @param StartBit The ordinal of the least significant bit in the bit field.\r
5735 Range 0..63.\r
5736 @param EndBit The ordinal of the most significant bit in the bit field.\r
5737 Range 0..63.\r
5738 @param OrData The value to OR with the read value from the bit field.\r
5739\r
5740 @return The value written back to the MSR.\r
5741\r
5742**/\r
5743UINT64\r
5744EFIAPI\r
5745AsmMsrBitFieldOr64 (\r
5746 IN UINT32 Index,\r
5747 IN UINTN StartBit,\r
5748 IN UINTN EndBit,\r
5749 IN UINT64 OrData\r
5750 );\r
5751\r
5752\r
5753/**\r
5754 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5755 result back to the bit field in the 64-bit MSR.\r
5756\r
5757 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5758 read result and the value specified by AndData, and writes the result to the\r
5759 64-bit MSR specified by Index. The value written to the MSR is returned.\r
5760 Extra left bits in AndData are stripped. The caller must either guarantee\r
5761 that Index and the data written is valid, or the caller must set up exception\r
5762 handlers to catch the exceptions. This function is only available on IA-32\r
5763 and X64.\r
5764\r
5765 If StartBit is greater than 63, then ASSERT().\r
5766 If EndBit is greater than 63, then ASSERT().\r
5767 If EndBit is less than StartBit, then ASSERT().\r
5768\r
5769 @param Index The 32-bit MSR index to write.\r
5770 @param StartBit The ordinal of the least significant bit in the bit field.\r
5771 Range 0..63.\r
5772 @param EndBit The ordinal of the most significant bit in the bit field.\r
5773 Range 0..63.\r
5774 @param AndData The value to AND with the read value from the bit field.\r
5775\r
5776 @return The value written back to the MSR.\r
5777\r
5778**/\r
5779UINT64\r
5780EFIAPI\r
5781AsmMsrBitFieldAnd64 (\r
5782 IN UINT32 Index,\r
5783 IN UINTN StartBit,\r
5784 IN UINTN EndBit,\r
5785 IN UINT64 AndData\r
5786 );\r
5787\r
5788\r
5789/**\r
5790 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
5791 bitwise inclusive OR, and writes the result back to the bit field in the\r
5792 64-bit MSR.\r
5793\r
5794 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
5795 a bitwise inclusive OR between the read result and the value specified by\r
5796 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5797 value written to the MSR is returned. Extra left bits in both AndData and\r
5798 OrData are stripped. The caller must either guarantee that Index and the data\r
5799 written is valid, or the caller must set up exception handlers to catch the\r
5800 exceptions. This function is only available on IA-32 and X64.\r
5801\r
5802 If StartBit is greater than 63, then ASSERT().\r
5803 If EndBit is greater than 63, then ASSERT().\r
5804 If EndBit is less than StartBit, then ASSERT().\r
5805\r
5806 @param Index The 32-bit MSR index to write.\r
5807 @param StartBit The ordinal of the least significant bit in the bit field.\r
5808 Range 0..63.\r
5809 @param EndBit The ordinal of the most significant bit in the bit field.\r
5810 Range 0..63.\r
5811 @param AndData The value to AND with the read value from the bit field.\r
5812 @param OrData The value to OR with the result of the AND operation.\r
5813\r
5814 @return The value written back to the MSR.\r
5815\r
5816**/\r
5817UINT64\r
5818EFIAPI\r
5819AsmMsrBitFieldAndThenOr64 (\r
5820 IN UINT32 Index,\r
5821 IN UINTN StartBit,\r
5822 IN UINTN EndBit,\r
5823 IN UINT64 AndData,\r
5824 IN UINT64 OrData\r
5825 );\r
5826\r
5827\r
5828/**\r
5829 Reads the current value of the EFLAGS register.\r
5830\r
5831 Reads and returns the current value of the EFLAGS register. This function is\r
5832 only available on IA-32 and X64. This returns a 32-bit value on IA-32 and a\r
5833 64-bit value on X64.\r
5834\r
5835 @return EFLAGS on IA-32 or RFLAGS on X64.\r
5836\r
5837**/\r
5838UINTN\r
5839EFIAPI\r
5840AsmReadEflags (\r
5841 VOID\r
5842 );\r
5843\r
5844\r
5845/**\r
5846 Reads the current value of the Control Register 0 (CR0).\r
5847\r
5848 Reads and returns the current value of CR0. This function is only available\r
5849 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5850 X64.\r
5851\r
5852 @return The value of the Control Register 0 (CR0).\r
5853\r
5854**/\r
5855UINTN\r
5856EFIAPI\r
5857AsmReadCr0 (\r
5858 VOID\r
5859 );\r
5860\r
5861\r
5862/**\r
5863 Reads the current value of the Control Register 2 (CR2).\r
5864\r
5865 Reads and returns the current value of CR2. This function is only available\r
5866 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5867 X64.\r
5868\r
5869 @return The value of the Control Register 2 (CR2).\r
5870\r
5871**/\r
5872UINTN\r
5873EFIAPI\r
5874AsmReadCr2 (\r
5875 VOID\r
5876 );\r
5877\r
5878\r
5879/**\r
5880 Reads the current value of the Control Register 3 (CR3).\r
5881\r
5882 Reads and returns the current value of CR3. This function is only available\r
5883 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5884 X64.\r
5885\r
5886 @return The value of the Control Register 3 (CR3).\r
5887\r
5888**/\r
5889UINTN\r
5890EFIAPI\r
5891AsmReadCr3 (\r
5892 VOID\r
5893 );\r
5894\r
5895\r
5896/**\r
5897 Reads the current value of the Control Register 4 (CR4).\r
5898\r
5899 Reads and returns the current value of CR4. This function is only available\r
5900 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5901 X64.\r
5902\r
5903 @return The value of the Control Register 4 (CR4).\r
5904\r
5905**/\r
5906UINTN\r
5907EFIAPI\r
5908AsmReadCr4 (\r
5909 VOID\r
5910 );\r
5911\r
5912\r
5913/**\r
5914 Writes a value to Control Register 0 (CR0).\r
5915\r
5916 Writes and returns a new value to CR0. This function is only available on\r
5917 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
5918\r
5919 @param Cr0 The value to write to CR0.\r
5920\r
5921 @return The value written to CR0.\r
5922\r
5923**/\r
5924UINTN\r
5925EFIAPI\r
5926AsmWriteCr0 (\r
5927 UINTN Cr0\r
5928 );\r
5929\r
5930\r
5931/**\r
5932 Writes a value to Control Register 2 (CR2).\r
5933\r
5934 Writes and returns a new value to CR2. This function is only available on\r
5935 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
5936\r
5937 @param Cr2 The value to write to CR2.\r
5938\r
5939 @return The value written to CR2.\r
5940\r
5941**/\r
5942UINTN\r
5943EFIAPI\r
5944AsmWriteCr2 (\r
5945 UINTN Cr2\r
5946 );\r
5947\r
5948\r
5949/**\r
5950 Writes a value to Control Register 3 (CR3).\r
5951\r
5952 Writes and returns a new value to CR3. This function is only available on\r
5953 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
5954\r
5955 @param Cr3 The value to write to CR3.\r
5956\r
5957 @return The value written to CR3.\r
5958\r
5959**/\r
5960UINTN\r
5961EFIAPI\r
5962AsmWriteCr3 (\r
5963 UINTN Cr3\r
5964 );\r
5965\r
5966\r
5967/**\r
5968 Writes a value to Control Register 4 (CR4).\r
5969\r
5970 Writes and returns a new value to CR4. This function is only available on\r
5971 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
5972\r
5973 @param Cr4 The value to write to CR4.\r
5974\r
5975 @return The value written to CR4.\r
5976\r
5977**/\r
5978UINTN\r
5979EFIAPI\r
5980AsmWriteCr4 (\r
5981 UINTN Cr4\r
5982 );\r
5983\r
5984\r
5985/**\r
5986 Reads the current value of Debug Register 0 (DR0).\r
5987\r
5988 Reads and returns the current value of DR0. This function is only available\r
5989 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5990 X64.\r
5991\r
5992 @return The value of Debug Register 0 (DR0).\r
5993\r
5994**/\r
5995UINTN\r
5996EFIAPI\r
5997AsmReadDr0 (\r
5998 VOID\r
5999 );\r
6000\r
6001\r
6002/**\r
6003 Reads the current value of Debug Register 1 (DR1).\r
6004\r
6005 Reads and returns the current value of DR1. This function is only available\r
6006 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6007 X64.\r
6008\r
6009 @return The value of Debug Register 1 (DR1).\r
6010\r
6011**/\r
6012UINTN\r
6013EFIAPI\r
6014AsmReadDr1 (\r
6015 VOID\r
6016 );\r
6017\r
6018\r
6019/**\r
6020 Reads the current value of Debug Register 2 (DR2).\r
6021\r
6022 Reads and returns the current value of DR2. This function is only available\r
6023 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6024 X64.\r
6025\r
6026 @return The value of Debug Register 2 (DR2).\r
6027\r
6028**/\r
6029UINTN\r
6030EFIAPI\r
6031AsmReadDr2 (\r
6032 VOID\r
6033 );\r
6034\r
6035\r
6036/**\r
6037 Reads the current value of Debug Register 3 (DR3).\r
6038\r
6039 Reads and returns the current value of DR3. This function is only available\r
6040 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6041 X64.\r
6042\r
6043 @return The value of Debug Register 3 (DR3).\r
6044\r
6045**/\r
6046UINTN\r
6047EFIAPI\r
6048AsmReadDr3 (\r
6049 VOID\r
6050 );\r
6051\r
6052\r
6053/**\r
6054 Reads the current value of Debug Register 4 (DR4).\r
6055\r
6056 Reads and returns the current value of DR4. This function is only available\r
6057 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6058 X64.\r
6059\r
6060 @return The value of Debug Register 4 (DR4).\r
6061\r
6062**/\r
6063UINTN\r
6064EFIAPI\r
6065AsmReadDr4 (\r
6066 VOID\r
6067 );\r
6068\r
6069\r
6070/**\r
6071 Reads the current value of Debug Register 5 (DR5).\r
6072\r
6073 Reads and returns the current value of DR5. This function is only available\r
6074 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6075 X64.\r
6076\r
6077 @return The value of Debug Register 5 (DR5).\r
6078\r
6079**/\r
6080UINTN\r
6081EFIAPI\r
6082AsmReadDr5 (\r
6083 VOID\r
6084 );\r
6085\r
6086\r
6087/**\r
6088 Reads the current value of Debug Register 6 (DR6).\r
6089\r
6090 Reads and returns the current value of DR6. This function is only available\r
6091 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6092 X64.\r
6093\r
6094 @return The value of Debug Register 6 (DR6).\r
6095\r
6096**/\r
6097UINTN\r
6098EFIAPI\r
6099AsmReadDr6 (\r
6100 VOID\r
6101 );\r
6102\r
6103\r
6104/**\r
6105 Reads the current value of Debug Register 7 (DR7).\r
6106\r
6107 Reads and returns the current value of DR7. This function is only available\r
6108 on IA-32 and X64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6109 X64.\r
6110\r
6111 @return The value of Debug Register 7 (DR7).\r
6112\r
6113**/\r
6114UINTN\r
6115EFIAPI\r
6116AsmReadDr7 (\r
6117 VOID\r
6118 );\r
6119\r
6120\r
6121/**\r
6122 Writes a value to Debug Register 0 (DR0).\r
6123\r
6124 Writes and returns a new value to DR0. This function is only available on\r
6125 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6126\r
6127 @param Dr0 The value to write to Dr0.\r
6128\r
6129 @return The value written to Debug Register 0 (DR0).\r
6130\r
6131**/\r
6132UINTN\r
6133EFIAPI\r
6134AsmWriteDr0 (\r
6135 UINTN Dr0\r
6136 );\r
6137\r
6138\r
6139/**\r
6140 Writes a value to Debug Register 1 (DR1).\r
6141\r
6142 Writes and returns a new value to DR1. This function is only available on\r
6143 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6144\r
6145 @param Dr1 The value to write to Dr1.\r
6146\r
6147 @return The value written to Debug Register 1 (DR1).\r
6148\r
6149**/\r
6150UINTN\r
6151EFIAPI\r
6152AsmWriteDr1 (\r
6153 UINTN Dr1\r
6154 );\r
6155\r
6156\r
6157/**\r
6158 Writes a value to Debug Register 2 (DR2).\r
6159\r
6160 Writes and returns a new value to DR2. This function is only available on\r
6161 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6162\r
6163 @param Dr2 The value to write to Dr2.\r
6164\r
6165 @return The value written to Debug Register 2 (DR2).\r
6166\r
6167**/\r
6168UINTN\r
6169EFIAPI\r
6170AsmWriteDr2 (\r
6171 UINTN Dr2\r
6172 );\r
6173\r
6174\r
6175/**\r
6176 Writes a value to Debug Register 3 (DR3).\r
6177\r
6178 Writes and returns a new value to DR3. This function is only available on\r
6179 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6180\r
6181 @param Dr3 The value to write to Dr3.\r
6182\r
6183 @return The value written to Debug Register 3 (DR3).\r
6184\r
6185**/\r
6186UINTN\r
6187EFIAPI\r
6188AsmWriteDr3 (\r
6189 UINTN Dr3\r
6190 );\r
6191\r
6192\r
6193/**\r
6194 Writes a value to Debug Register 4 (DR4).\r
6195\r
6196 Writes and returns a new value to DR4. This function is only available on\r
6197 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6198\r
6199 @param Dr4 The value to write to Dr4.\r
6200\r
6201 @return The value written to Debug Register 4 (DR4).\r
6202\r
6203**/\r
6204UINTN\r
6205EFIAPI\r
6206AsmWriteDr4 (\r
6207 UINTN Dr4\r
6208 );\r
6209\r
6210\r
6211/**\r
6212 Writes a value to Debug Register 5 (DR5).\r
6213\r
6214 Writes and returns a new value to DR5. This function is only available on\r
6215 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6216\r
6217 @param Dr5 The value to write to Dr5.\r
6218\r
6219 @return The value written to Debug Register 5 (DR5).\r
6220\r
6221**/\r
6222UINTN\r
6223EFIAPI\r
6224AsmWriteDr5 (\r
6225 UINTN Dr5\r
6226 );\r
6227\r
6228\r
6229/**\r
6230 Writes a value to Debug Register 6 (DR6).\r
6231\r
6232 Writes and returns a new value to DR6. This function is only available on\r
6233 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6234\r
6235 @param Dr6 The value to write to Dr6.\r
6236\r
6237 @return The value written to Debug Register 6 (DR6).\r
6238\r
6239**/\r
6240UINTN\r
6241EFIAPI\r
6242AsmWriteDr6 (\r
6243 UINTN Dr6\r
6244 );\r
6245\r
6246\r
6247/**\r
6248 Writes a value to Debug Register 7 (DR7).\r
6249\r
6250 Writes and returns a new value to DR7. This function is only available on\r
6251 IA-32 and X64. This writes a 32-bit value on IA-32 and a 64-bit value on X64.\r
6252\r
6253 @param Dr7 The value to write to Dr7.\r
6254\r
6255 @return The value written to Debug Register 7 (DR7).\r
6256\r
6257**/\r
6258UINTN\r
6259EFIAPI\r
6260AsmWriteDr7 (\r
6261 UINTN Dr7\r
6262 );\r
6263\r
6264\r
6265/**\r
6266 Reads the current value of Code Segment Register (CS).\r
6267\r
6268 Reads and returns the current value of CS. This function is only available on\r
6269 IA-32 and X64.\r
6270\r
6271 @return The current value of CS.\r
6272\r
6273**/\r
6274UINT16\r
6275EFIAPI\r
6276AsmReadCs (\r
6277 VOID\r
6278 );\r
6279\r
6280\r
6281/**\r
6282 Reads the current value of Data Segment Register (DS).\r
6283\r
6284 Reads and returns the current value of DS. This function is only available on\r
6285 IA-32 and X64.\r
6286\r
6287 @return The current value of DS.\r
6288\r
6289**/\r
6290UINT16\r
6291EFIAPI\r
6292AsmReadDs (\r
6293 VOID\r
6294 );\r
6295\r
6296\r
6297/**\r
6298 Reads the current value of Extra Segment Register (ES).\r
6299\r
6300 Reads and returns the current value of ES. This function is only available on\r
6301 IA-32 and X64.\r
6302\r
6303 @return The current value of ES.\r
6304\r
6305**/\r
6306UINT16\r
6307EFIAPI\r
6308AsmReadEs (\r
6309 VOID\r
6310 );\r
6311\r
6312\r
6313/**\r
6314 Reads the current value of FS Data Segment Register (FS).\r
6315\r
6316 Reads and returns the current value of FS. This function is only available on\r
6317 IA-32 and X64.\r
6318\r
6319 @return The current value of FS.\r
6320\r
6321**/\r
6322UINT16\r
6323EFIAPI\r
6324AsmReadFs (\r
6325 VOID\r
6326 );\r
6327\r
6328\r
6329/**\r
6330 Reads the current value of GS Data Segment Register (GS).\r
6331\r
6332 Reads and returns the current value of GS. This function is only available on\r
6333 IA-32 and X64.\r
6334\r
6335 @return The current value of GS.\r
6336\r
6337**/\r
6338UINT16\r
6339EFIAPI\r
6340AsmReadGs (\r
6341 VOID\r
6342 );\r
6343\r
6344\r
6345/**\r
6346 Reads the current value of Stack Segment Register (SS).\r
6347\r
6348 Reads and returns the current value of SS. This function is only available on\r
6349 IA-32 and X64.\r
6350\r
6351 @return The current value of SS.\r
6352\r
6353**/\r
6354UINT16\r
6355EFIAPI\r
6356AsmReadSs (\r
6357 VOID\r
6358 );\r
6359\r
6360\r
6361/**\r
6362 Reads the current value of Task Register (TR).\r
6363\r
6364 Reads and returns the current value of TR. This function is only available on\r
6365 IA-32 and X64.\r
6366\r
6367 @return The current value of TR.\r
6368\r
6369**/\r
6370UINT16\r
6371EFIAPI\r
6372AsmReadTr (\r
6373 VOID\r
6374 );\r
6375\r
6376\r
6377/**\r
6378 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
6379\r
6380 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
6381 function is only available on IA-32 and X64.\r
6382\r
6383 If Gdtr is NULL, then ASSERT().\r
6384\r
6385 @param Gdtr Pointer to a GDTR descriptor.\r
6386\r
6387**/\r
6388VOID\r
6389EFIAPI\r
6390AsmReadGdtr (\r
6391 OUT IA32_DESCRIPTOR *Gdtr\r
6392 );\r
6393\r
6394\r
6395/**\r
6396 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
6397\r
6398 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
6399 only available on IA-32 and X64.\r
6400\r
6401 If Gdtr is NULL, then ASSERT().\r
6402\r
6403 @param Gdtr Pointer to a GDTR descriptor.\r
6404\r
6405**/\r
6406VOID\r
6407EFIAPI\r
6408AsmWriteGdtr (\r
6409 IN CONST IA32_DESCRIPTOR *Gdtr\r
6410 );\r
6411\r
6412\r
6413/**\r
17f695ed 6414 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 6415\r
6416 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
6417 function is only available on IA-32 and X64.\r
6418\r
6419 If Idtr is NULL, then ASSERT().\r
6420\r
6421 @param Idtr Pointer to a IDTR descriptor.\r
6422\r
6423**/\r
6424VOID\r
6425EFIAPI\r
6426AsmReadIdtr (\r
6427 OUT IA32_DESCRIPTOR *Idtr\r
6428 );\r
6429\r
6430\r
6431/**\r
17f695ed 6432 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 6433\r
6434 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
6435 only available on IA-32 and X64.\r
6436\r
6437 If Idtr is NULL, then ASSERT().\r
6438\r
6439 @param Idtr Pointer to a IDTR descriptor.\r
6440\r
6441**/\r
6442VOID\r
6443EFIAPI\r
6444AsmWriteIdtr (\r
6445 IN CONST IA32_DESCRIPTOR *Idtr\r
6446 );\r
6447\r
6448\r
6449/**\r
6450 Reads the current Local Descriptor Table Register(LDTR) selector.\r
6451\r
6452 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
6453 only available on IA-32 and X64.\r
6454\r
6455 @return The current selector of LDT.\r
6456\r
6457**/\r
6458UINT16\r
6459EFIAPI\r
6460AsmReadLdtr (\r
6461 VOID\r
6462 );\r
6463\r
6464\r
6465/**\r
17f695ed 6466 Writes the current Local Descriptor Table Register (LDTR) selector.\r
ac644614 6467\r
6468 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
6469 only available on IA-32 and X64.\r
6470\r
6471 @param Ldtr 16-bit LDTR selector value.\r
6472\r
6473**/\r
6474VOID\r
6475EFIAPI\r
6476AsmWriteLdtr (\r
6477 IN UINT16 Ldtr\r
6478 );\r
6479\r
6480\r
6481/**\r
6482 Save the current floating point/SSE/SSE2 context to a buffer.\r
6483\r
6484 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
6485 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
6486 available on IA-32 and X64.\r
6487\r
6488 If Buffer is NULL, then ASSERT().\r
6489 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6490\r
6491 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6492\r
6493**/\r
6494VOID\r
6495EFIAPI\r
6496AsmFxSave (\r
6497 OUT IA32_FX_BUFFER *Buffer\r
6498 );\r
6499\r
6500\r
6501/**\r
6502 Restores the current floating point/SSE/SSE2 context from a buffer.\r
6503\r
6504 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
6505 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
6506 only available on IA-32 and X64.\r
6507\r
6508 If Buffer is NULL, then ASSERT().\r
6509 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6510 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
6511\r
6512 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6513\r
6514**/\r
6515VOID\r
6516EFIAPI\r
6517AsmFxRestore (\r
6518 IN CONST IA32_FX_BUFFER *Buffer\r
6519 );\r
6520\r
6521\r
6522/**\r
6523 Reads the current value of 64-bit MMX Register #0 (MM0).\r
6524\r
6525 Reads and returns the current value of MM0. This function is only available\r
6526 on IA-32 and X64.\r
6527\r
6528 @return The current value of MM0.\r
6529\r
6530**/\r
6531UINT64\r
6532EFIAPI\r
6533AsmReadMm0 (\r
6534 VOID\r
6535 );\r
6536\r
6537\r
6538/**\r
6539 Reads the current value of 64-bit MMX Register #1 (MM1).\r
6540\r
6541 Reads and returns the current value of MM1. This function is only available\r
6542 on IA-32 and X64.\r
6543\r
6544 @return The current value of MM1.\r
6545\r
6546**/\r
6547UINT64\r
6548EFIAPI\r
6549AsmReadMm1 (\r
6550 VOID\r
6551 );\r
6552\r
6553\r
6554/**\r
6555 Reads the current value of 64-bit MMX Register #2 (MM2).\r
6556\r
6557 Reads and returns the current value of MM2. This function is only available\r
6558 on IA-32 and X64.\r
6559\r
6560 @return The current value of MM2.\r
6561\r
6562**/\r
6563UINT64\r
6564EFIAPI\r
6565AsmReadMm2 (\r
6566 VOID\r
6567 );\r
6568\r
6569\r
6570/**\r
6571 Reads the current value of 64-bit MMX Register #3 (MM3).\r
6572\r
6573 Reads and returns the current value of MM3. This function is only available\r
6574 on IA-32 and X64.\r
6575\r
6576 @return The current value of MM3.\r
6577\r
6578**/\r
6579UINT64\r
6580EFIAPI\r
6581AsmReadMm3 (\r
6582 VOID\r
6583 );\r
6584\r
6585\r
6586/**\r
6587 Reads the current value of 64-bit MMX Register #4 (MM4).\r
6588\r
6589 Reads and returns the current value of MM4. This function is only available\r
6590 on IA-32 and X64.\r
6591\r
6592 @return The current value of MM4.\r
6593\r
6594**/\r
6595UINT64\r
6596EFIAPI\r
6597AsmReadMm4 (\r
6598 VOID\r
6599 );\r
6600\r
6601\r
6602/**\r
6603 Reads the current value of 64-bit MMX Register #5 (MM5).\r
6604\r
6605 Reads and returns the current value of MM5. This function is only available\r
6606 on IA-32 and X64.\r
6607\r
6608 @return The current value of MM5.\r
6609\r
6610**/\r
6611UINT64\r
6612EFIAPI\r
6613AsmReadMm5 (\r
6614 VOID\r
6615 );\r
6616\r
6617\r
6618/**\r
6619 Reads the current value of 64-bit MMX Register #6 (MM6).\r
6620\r
6621 Reads and returns the current value of MM6. This function is only available\r
6622 on IA-32 and X64.\r
6623\r
6624 @return The current value of MM6.\r
6625\r
6626**/\r
6627UINT64\r
6628EFIAPI\r
6629AsmReadMm6 (\r
6630 VOID\r
6631 );\r
6632\r
6633\r
6634/**\r
6635 Reads the current value of 64-bit MMX Register #7 (MM7).\r
6636\r
6637 Reads and returns the current value of MM7. This function is only available\r
6638 on IA-32 and X64.\r
6639\r
6640 @return The current value of MM7.\r
6641\r
6642**/\r
6643UINT64\r
6644EFIAPI\r
6645AsmReadMm7 (\r
6646 VOID\r
6647 );\r
6648\r
6649\r
6650/**\r
6651 Writes the current value of 64-bit MMX Register #0 (MM0).\r
6652\r
6653 Writes the current value of MM0. This function is only available on IA32 and\r
6654 X64.\r
6655\r
6656 @param Value The 64-bit value to write to MM0.\r
6657\r
6658**/\r
6659VOID\r
6660EFIAPI\r
6661AsmWriteMm0 (\r
6662 IN UINT64 Value\r
6663 );\r
6664\r
6665\r
6666/**\r
6667 Writes the current value of 64-bit MMX Register #1 (MM1).\r
6668\r
6669 Writes the current value of MM1. This function is only available on IA32 and\r
6670 X64.\r
6671\r
6672 @param Value The 64-bit value to write to MM1.\r
6673\r
6674**/\r
6675VOID\r
6676EFIAPI\r
6677AsmWriteMm1 (\r
6678 IN UINT64 Value\r
6679 );\r
6680\r
6681\r
6682/**\r
6683 Writes the current value of 64-bit MMX Register #2 (MM2).\r
6684\r
6685 Writes the current value of MM2. This function is only available on IA32 and\r
6686 X64.\r
6687\r
6688 @param Value The 64-bit value to write to MM2.\r
6689\r
6690**/\r
6691VOID\r
6692EFIAPI\r
6693AsmWriteMm2 (\r
6694 IN UINT64 Value\r
6695 );\r
6696\r
6697\r
6698/**\r
6699 Writes the current value of 64-bit MMX Register #3 (MM3).\r
6700\r
6701 Writes the current value of MM3. This function is only available on IA32 and\r
6702 X64.\r
6703\r
6704 @param Value The 64-bit value to write to MM3.\r
6705\r
6706**/\r
6707VOID\r
6708EFIAPI\r
6709AsmWriteMm3 (\r
6710 IN UINT64 Value\r
6711 );\r
6712\r
6713\r
6714/**\r
6715 Writes the current value of 64-bit MMX Register #4 (MM4).\r
6716\r
6717 Writes the current value of MM4. This function is only available on IA32 and\r
6718 X64.\r
6719\r
6720 @param Value The 64-bit value to write to MM4.\r
6721\r
6722**/\r
6723VOID\r
6724EFIAPI\r
6725AsmWriteMm4 (\r
6726 IN UINT64 Value\r
6727 );\r
6728\r
6729\r
6730/**\r
6731 Writes the current value of 64-bit MMX Register #5 (MM5).\r
6732\r
6733 Writes the current value of MM5. This function is only available on IA32 and\r
6734 X64.\r
6735\r
6736 @param Value The 64-bit value to write to MM5.\r
6737\r
6738**/\r
6739VOID\r
6740EFIAPI\r
6741AsmWriteMm5 (\r
6742 IN UINT64 Value\r
6743 );\r
6744\r
6745\r
6746/**\r
6747 Writes the current value of 64-bit MMX Register #6 (MM6).\r
6748\r
6749 Writes the current value of MM6. This function is only available on IA32 and\r
6750 X64.\r
6751\r
6752 @param Value The 64-bit value to write to MM6.\r
6753\r
6754**/\r
6755VOID\r
6756EFIAPI\r
6757AsmWriteMm6 (\r
6758 IN UINT64 Value\r
6759 );\r
6760\r
6761\r
6762/**\r
6763 Writes the current value of 64-bit MMX Register #7 (MM7).\r
6764\r
6765 Writes the current value of MM7. This function is only available on IA32 and\r
6766 X64.\r
6767\r
6768 @param Value The 64-bit value to write to MM7.\r
6769\r
6770**/\r
6771VOID\r
6772EFIAPI\r
6773AsmWriteMm7 (\r
6774 IN UINT64 Value\r
6775 );\r
6776\r
6777\r
6778/**\r
6779 Reads the current value of Time Stamp Counter (TSC).\r
6780\r
6781 Reads and returns the current value of TSC. This function is only available\r
6782 on IA-32 and X64.\r
6783\r
6784 @return The current value of TSC\r
6785\r
6786**/\r
6787UINT64\r
6788EFIAPI\r
6789AsmReadTsc (\r
6790 VOID\r
6791 );\r
6792\r
6793\r
6794/**\r
6795 Reads the current value of a Performance Counter (PMC).\r
6796\r
6797 Reads and returns the current value of performance counter specified by\r
6798 Index. This function is only available on IA-32 and X64.\r
6799\r
6800 @param Index The 32-bit Performance Counter index to read.\r
6801\r
6802 @return The value of the PMC specified by Index.\r
6803\r
6804**/\r
6805UINT64\r
6806EFIAPI\r
6807AsmReadPmc (\r
6808 IN UINT32 Index\r
6809 );\r
6810\r
6811\r
6812/**\r
6813 Sets up a monitor buffer that is used by AsmMwait().\r
6814\r
6815 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
6816 and Edx. Returns Eax. This function is only available on IA-32 and X64.\r
6817\r
6818 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6819 instruction.\r
6820 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6821 instruction.\r
6822 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
6823 instruction.\r
6824\r
6825 @return Eax\r
6826\r
6827**/\r
6828UINTN\r
6829EFIAPI\r
6830AsmMonitor (\r
6831 IN UINTN Eax,\r
6832 IN UINTN Ecx,\r
6833 IN UINTN Edx\r
6834 );\r
6835\r
6836\r
6837/**\r
6838 Executes an MWAIT instruction.\r
6839\r
6840 Executes an MWAIT instruction with the register state specified by Eax and\r
6841 Ecx. Returns Eax. This function is only available on IA-32 and X64.\r
6842\r
6843 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6844 instruction.\r
6845 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6846 instruction.\r
6847\r
6848 @return Eax\r
6849\r
6850**/\r
6851UINTN\r
6852EFIAPI\r
6853AsmMwait (\r
6854 IN UINTN Eax,\r
6855 IN UINTN Ecx\r
6856 );\r
6857\r
6858\r
6859/**\r
6860 Executes a WBINVD instruction.\r
6861\r
6862 Executes a WBINVD instruction. This function is only available on IA-32 and\r
6863 X64.\r
6864\r
6865**/\r
6866VOID\r
6867EFIAPI\r
6868AsmWbinvd (\r
6869 VOID\r
6870 );\r
6871\r
6872\r
6873/**\r
6874 Executes a INVD instruction.\r
6875\r
6876 Executes a INVD instruction. This function is only available on IA-32 and\r
6877 X64.\r
6878\r
6879**/\r
6880VOID\r
6881EFIAPI\r
6882AsmInvd (\r
6883 VOID\r
6884 );\r
6885\r
6886\r
6887/**\r
6888 Flushes a cache line from all the instruction and data caches within the\r
6889 coherency domain of the CPU.\r
6890\r
6891 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
6892 This function is only available on IA-32 and X64.\r
6893\r
6894 @param LinearAddress The address of the cache line to flush. If the CPU is\r
6895 in a physical addressing mode, then LinearAddress is a\r
6896 physical address. If the CPU is in a virtual\r
6897 addressing mode, then LinearAddress is a virtual\r
6898 address.\r
6899\r
6900 @return LinearAddress\r
6901**/\r
6902VOID *\r
6903EFIAPI\r
6904AsmFlushCacheLine (\r
6905 IN VOID *LinearAddress\r
6906 );\r
6907\r
6908\r
6909/**\r
6910 Enables the 32-bit paging mode on the CPU.\r
6911\r
6912 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6913 must be properly initialized prior to calling this service. This function\r
6914 assumes the current execution mode is 32-bit protected mode. This function is\r
6915 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
6916 transferred to the function specified by EntryPoint using the new stack\r
6917 specified by NewStack and passing in the parameters specified by Context1 and\r
6918 Context2. Context1 and Context2 are optional and may be NULL. The function\r
6919 EntryPoint must never return.\r
6920\r
6921 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
6922 If EntryPoint is NULL, then ASSERT().\r
6923 If NewStack is NULL, then ASSERT().\r
6924\r
6925 There are a number of constraints that must be followed before calling this\r
6926 function:\r
6927 1) Interrupts must be disabled.\r
6928 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
6929 means all descriptors must have a base of 0 and a limit of 4GB.\r
6930 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
6931 descriptors.\r
6932 4) CR3 must point to valid page tables that will be used once the transition\r
6933 is complete, and those page tables must guarantee that the pages for this\r
6934 function and the stack are identity mapped.\r
6935\r
6936 @param EntryPoint A pointer to function to call with the new stack after\r
6937 paging is enabled.\r
6938 @param Context1 A pointer to the context to pass into the EntryPoint\r
6939 function as the first parameter after paging is enabled.\r
6940 @param Context2 A pointer to the context to pass into the EntryPoint\r
6941 function as the second parameter after paging is enabled.\r
6942 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6943 function after paging is enabled.\r
6944\r
6945**/\r
6946VOID\r
6947EFIAPI\r
6948AsmEnablePaging32 (\r
6949 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6950 IN VOID *Context1, OPTIONAL\r
6951 IN VOID *Context2, OPTIONAL\r
6952 IN VOID *NewStack\r
6953 );\r
6954\r
6955\r
6956/**\r
6957 Disables the 32-bit paging mode on the CPU.\r
6958\r
6959 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
6960 mode. This function assumes the current execution mode is 32-paged protected\r
6961 mode. This function is only available on IA-32. After the 32-bit paging mode\r
6962 is disabled, control is transferred to the function specified by EntryPoint\r
6963 using the new stack specified by NewStack and passing in the parameters\r
6964 specified by Context1 and Context2. Context1 and Context2 are optional and\r
6965 may be NULL. The function EntryPoint must never return.\r
6966\r
6967 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
6968 If EntryPoint is NULL, then ASSERT().\r
6969 If NewStack is NULL, then ASSERT().\r
6970\r
6971 There are a number of constraints that must be followed before calling this\r
6972 function:\r
6973 1) Interrupts must be disabled.\r
6974 2) The caller must be in 32-bit paged mode.\r
6975 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
6976 4) CR3 must point to valid page tables that guarantee that the pages for\r
6977 this function and the stack are identity mapped.\r
6978\r
6979 @param EntryPoint A pointer to function to call with the new stack after\r
6980 paging is disabled.\r
6981 @param Context1 A pointer to the context to pass into the EntryPoint\r
6982 function as the first parameter after paging is disabled.\r
6983 @param Context2 A pointer to the context to pass into the EntryPoint\r
6984 function as the second parameter after paging is\r
6985 disabled.\r
6986 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6987 function after paging is disabled.\r
6988\r
6989**/\r
6990VOID\r
6991EFIAPI\r
6992AsmDisablePaging32 (\r
6993 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6994 IN VOID *Context1, OPTIONAL\r
6995 IN VOID *Context2, OPTIONAL\r
6996 IN VOID *NewStack\r
6997 );\r
6998\r
6999\r
7000/**\r
7001 Enables the 64-bit paging mode on the CPU.\r
7002\r
7003 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
7004 must be properly initialized prior to calling this service. This function\r
7005 assumes the current execution mode is 32-bit protected mode with flat\r
7006 descriptors. This function is only available on IA-32. After the 64-bit\r
7007 paging mode is enabled, control is transferred to the function specified by\r
7008 EntryPoint using the new stack specified by NewStack and passing in the\r
7009 parameters specified by Context1 and Context2. Context1 and Context2 are\r
7010 optional and may be 0. The function EntryPoint must never return.\r
7011\r
7012 If the current execution mode is not 32-bit protected mode with flat\r
7013 descriptors, then ASSERT().\r
7014 If EntryPoint is 0, then ASSERT().\r
7015 If NewStack is 0, then ASSERT().\r
7016\r
17f695ed 7017 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 7018 is called. The descriptor in the GDT that this selector\r
7019 references must be setup for long mode.\r
7020 @param EntryPoint The 64-bit virtual address of the function to call with\r
7021 the new stack after paging is enabled.\r
7022 @param Context1 The 64-bit virtual address of the context to pass into\r
7023 the EntryPoint function as the first parameter after\r
7024 paging is enabled.\r
7025 @param Context2 The 64-bit virtual address of the context to pass into\r
7026 the EntryPoint function as the second parameter after\r
7027 paging is enabled.\r
7028 @param NewStack The 64-bit virtual address of the new stack to use for\r
7029 the EntryPoint function after paging is enabled.\r
7030\r
7031**/\r
7032VOID\r
7033EFIAPI\r
7034AsmEnablePaging64 (\r
17f695ed 7035 IN UINT16 Cs,\r
ac644614 7036 IN UINT64 EntryPoint,\r
7037 IN UINT64 Context1, OPTIONAL\r
7038 IN UINT64 Context2, OPTIONAL\r
7039 IN UINT64 NewStack\r
7040 );\r
7041\r
7042\r
7043/**\r
7044 Disables the 64-bit paging mode on the CPU.\r
7045\r
7046 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
7047 mode. This function assumes the current execution mode is 64-paging mode.\r
7048 This function is only available on X64. After the 64-bit paging mode is\r
7049 disabled, control is transferred to the function specified by EntryPoint\r
7050 using the new stack specified by NewStack and passing in the parameters\r
7051 specified by Context1 and Context2. Context1 and Context2 are optional and\r
7052 may be 0. The function EntryPoint must never return.\r
7053\r
7054 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
7055 If EntryPoint is 0, then ASSERT().\r
7056 If NewStack is 0, then ASSERT().\r
7057\r
17f695ed 7058 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 7059 is called. The descriptor in the GDT that this selector\r
7060 references must be setup for 32-bit protected mode.\r
7061 @param EntryPoint The 64-bit virtual address of the function to call with\r
7062 the new stack after paging is disabled.\r
7063 @param Context1 The 64-bit virtual address of the context to pass into\r
7064 the EntryPoint function as the first parameter after\r
7065 paging is disabled.\r
7066 @param Context2 The 64-bit virtual address of the context to pass into\r
7067 the EntryPoint function as the second parameter after\r
7068 paging is disabled.\r
7069 @param NewStack The 64-bit virtual address of the new stack to use for\r
7070 the EntryPoint function after paging is disabled.\r
7071\r
7072**/\r
7073VOID\r
7074EFIAPI\r
7075AsmDisablePaging64 (\r
17f695ed 7076 IN UINT16 Cs,\r
ac644614 7077 IN UINT32 EntryPoint,\r
7078 IN UINT32 Context1, OPTIONAL\r
7079 IN UINT32 Context2, OPTIONAL\r
7080 IN UINT32 NewStack\r
7081 );\r
7082\r
7083\r
7084//\r
7085// 16-bit thunking services\r
7086//\r
7087\r
7088/**\r
7089 Retrieves the properties for 16-bit thunk functions.\r
7090\r
7091 Computes the size of the buffer and stack below 1MB required to use the\r
7092 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
7093 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
7094 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
7095 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
7096 of bytes that need to be passed to the 16-bit real mode code.\r
7097\r
7098 If RealModeBufferSize is NULL, then ASSERT().\r
7099 If ExtraStackSize is NULL, then ASSERT().\r
7100\r
7101 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
7102 required to use the 16-bit thunk functions.\r
7103 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
7104 that the 16-bit thunk functions require for\r
7105 temporary storage in the transition to and from\r
7106 16-bit real mode.\r
7107\r
7108**/\r
7109VOID\r
7110EFIAPI\r
7111AsmGetThunk16Properties (\r
7112 OUT UINT32 *RealModeBufferSize,\r
7113 OUT UINT32 *ExtraStackSize\r
7114 );\r
7115\r
7116\r
7117/**\r
7118 Prepares all structures a code required to use AsmThunk16().\r
7119\r
7120 Prepares all structures and code required to use AsmThunk16().\r
7121\r
7122 If ThunkContext is NULL, then ASSERT().\r
7123\r
7124 @param ThunkContext A pointer to the context structure that describes the\r
7125 16-bit real mode code to call.\r
7126\r
7127**/\r
7128VOID\r
7129EFIAPI\r
7130AsmPrepareThunk16 (\r
7131 OUT THUNK_CONTEXT *ThunkContext\r
7132 );\r
7133\r
7134\r
7135/**\r
7136 Transfers control to a 16-bit real mode entry point and returns the results.\r
7137\r
7138 Transfers control to a 16-bit real mode entry point and returns the results.\r
17f695ed 7139 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
7140 This function must be called with interrupts disabled.\r
7141\r
7142 The register state from the RealModeState field of ThunkContext is restored just prior \r
7143 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
7144 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
7145 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
7146 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
7147 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
7148 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
7149 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
7150 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
7151 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
7152 after the RETF instruction is executed.\r
7153 \r
7154 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7155 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
7156 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
7157 \r
7158 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7159 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
7160 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
7161 \r
7162 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
7163 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
7164 \r
7165 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7166 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
7167 disable the A20 mask.\r
7168 \r
7169 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
7170 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
7171 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7172 \r
7173 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
7174 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7175 \r
ac644614 7176 If ThunkContext is NULL, then ASSERT().\r
7177 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
17f695ed 7178 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7179 ThunkAttributes, then ASSERT().\r
ac644614 7180\r
7181 @param ThunkContext A pointer to the context structure that describes the\r
7182 16-bit real mode code to call.\r
7183\r
7184**/\r
7185VOID\r
7186EFIAPI\r
7187AsmThunk16 (\r
7188 IN OUT THUNK_CONTEXT *ThunkContext\r
7189 );\r
7190\r
7191\r
7192/**\r
7193 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7194 control to a 16-bit real mode entry point, and returns the results.\r
7195\r
7196 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7197 control to a 16-bit real mode entry point, and returns the results. If the\r
7198 caller only need to perform a single 16-bit real mode thunk, then this\r
7199 service should be used. If the caller intends to make more than one 16-bit\r
7200 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
7201 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
7202\r
17f695ed 7203 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
ac644614 7204\r
7205 @param ThunkContext A pointer to the context structure that describes the\r
7206 16-bit real mode code to call.\r
7207\r
7208**/\r
7209VOID\r
7210EFIAPI\r
7211AsmPrepareAndThunk16 (\r
7212 IN OUT THUNK_CONTEXT *ThunkContext\r
7213 );\r
7214\r
ac644614 7215#endif\r
e3a7917f 7216#endif\r
ac644614 7217\r
7218\r