51ebae6b |
1 | /** @file\r |
2 | Provides the basic UNID functions.\r |
3 | \r |
cd417925 |
4 | Copyright (c) 2006 - 2009, Intel Corporation\r |
51ebae6b |
5 | All rights reserved. This program and the accompanying materials\r |
6 | are licensed and made available under the terms and conditions of the BSD License\r |
7 | which accompanies this distribution. The full text of the license may be found at\r |
8 | http://opensource.org/licenses/bsd-license.php\r |
9 | \r |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r |
12 | \r |
13 | **/\r |
14 | \r |
15 | #include "Undi32.h"\r |
16 | \r |
17 | //\r |
18 | // Global variables defined in this file\r |
19 | //\r |
20 | UNDI_CALL_TABLE api_table[PXE_OPCODE_LAST_VALID+1] = { \\r |
21 | {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, (UINT16)(ANY_STATE),UNDI_GetState },\\r |
22 | {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,0,(UINT16)(ANY_STATE),UNDI_Start },\\r |
23 | {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0,MUST_BE_STARTED,UNDI_Stop },\\r |
24 | {PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_INIT_INFO),0,MUST_BE_STARTED, UNDI_GetInitInfo },\\r |
25 | {PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_CONFIG_INFO),0,MUST_BE_STARTED, UNDI_GetConfigInfo },\\r |
26 | {sizeof(PXE_CPB_INITIALIZE),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),MUST_BE_STARTED,UNDI_Initialize },\\r |
27 | {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Reset },\\r |
28 | {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, MUST_BE_INITIALIZED,UNDI_Shutdown },\\r |
29 | {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Interrupt },\\r |
30 | {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_RecFilter },\\r |
31 | {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_StnAddr },\\r |
32 | {PXE_CPBSIZE_NOT_USED, (UINT16)(DONT_CHECK), (UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Statistics },\\r |
33 | {sizeof(PXE_CPB_MCAST_IP_TO_MAC),sizeof(PXE_DB_MCAST_IP_TO_MAC), (UINT16)(DONT_CHECK),MUST_BE_INITIALIZED, UNDI_ip2mac },\\r |
34 | {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_NVData },\\r |
35 | {PXE_CPBSIZE_NOT_USED,(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Status },\\r |
36 | {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_FillHeader },\\r |
37 | {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Transmit },\\r |
38 | {sizeof(PXE_CPB_RECEIVE),sizeof(PXE_DB_RECEIVE),0,MUST_BE_INITIALIZED, UNDI_Receive } \\r |
39 | };\r |
40 | \r |
41 | //\r |
42 | // end of global variables\r |
43 | //\r |
44 | \r |
45 | \r |
46 | /**\r |
47 | This routine determines the operational state of the UNDI. It updates the state flags in the\r |
48 | Command Descriptor Block based on information derived from the AdapterInfo instance data.\r |
49 | To ensure the command has completed successfully, CdbPtr->StatCode will contain the result of\r |
50 | the command execution.\r |
51 | The CdbPtr->StatFlags will contain a STOPPED, STARTED, or INITIALIZED state once the command\r |
52 | has successfully completed.\r |
53 | Keep in mind the AdapterInfo->State is the active state of the adapter (based on software\r |
54 | interrogation), and the CdbPtr->StateFlags is the passed back information that is reflected\r |
55 | to the caller of the UNDI API.\r |
56 | \r |
57 | @param CdbPtr Pointer to the command descriptor block.\r |
58 | @param AdapterInfo Pointer to the NIC data structure information which\r |
59 | the UNDI driver is layering on..\r |
60 | \r |
61 | @return None\r |
62 | \r |
63 | **/\r |
64 | VOID\r |
65 | UNDI_GetState (\r |
66 | IN PXE_CDB *CdbPtr,\r |
67 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
68 | )\r |
69 | {\r |
70 | CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->State);\r |
71 | return ;\r |
72 | }\r |
73 | \r |
74 | \r |
75 | /**\r |
76 | This routine is used to change the operational state of the UNDI from stopped to started.\r |
77 | It will do this as long as the adapter's state is PXE_STATFLAGS_GET_STATE_STOPPED, otherwise\r |
78 | the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the\r |
79 | UNDI as having already been started.\r |
80 | This routine is modified to reflect the undi 1.1 specification changes. The\r |
81 | changes in the spec are mainly in the callback routines, the new spec adds\r |
82 | 3 more callbacks and a unique id.\r |
83 | Since this UNDI supports both old and new undi specifications,\r |
84 | The NIC's data structure is filled in with the callback routines (depending\r |
85 | on the version) pointed to in the caller's CpbPtr. This seeds the Delay,\r |
86 | Virt2Phys, Block, and Mem_IO for old and new versions and Map_Mem, UnMap_Mem\r |
87 | and Sync_Mem routines and a unique id variable for the new version.\r |
88 | This is the function which an external entity (SNP, O/S, etc) would call\r |
89 | to provide it's I/O abstraction to the UNDI.\r |
90 | It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STARTED.\r |
91 | \r |
92 | @param CdbPtr Pointer to the command descriptor block.\r |
93 | @param AdapterInfo Pointer to the NIC data structure information which\r |
94 | the UNDI driver is layering on..\r |
95 | \r |
96 | @return None\r |
97 | \r |
98 | **/\r |
99 | VOID\r |
100 | UNDI_Start (\r |
101 | IN PXE_CDB *CdbPtr,\r |
102 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
103 | )\r |
104 | {\r |
105 | PXE_CPB_START_30 *CpbPtr;\r |
106 | PXE_CPB_START_31 *CpbPtr_31;\r |
107 | \r |
108 | //\r |
109 | // check if it is already started.\r |
110 | //\r |
111 | if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_STOPPED) {\r |
112 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
113 | CdbPtr->StatCode = PXE_STATCODE_ALREADY_STARTED;\r |
114 | return ;\r |
115 | }\r |
116 | \r |
117 | if (CdbPtr->CPBsize != sizeof(PXE_CPB_START_30) &&\r |
118 | CdbPtr->CPBsize != sizeof(PXE_CPB_START_31)) {\r |
119 | \r |
120 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
121 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
122 | return ;\r |
123 | }\r |
124 | \r |
125 | CpbPtr = (PXE_CPB_START_30 *) (UINTN) (CdbPtr->CPBaddr);\r |
126 | CpbPtr_31 = (PXE_CPB_START_31 *) (UINTN) (CdbPtr->CPBaddr);\r |
127 | \r |
128 | if (AdapterInfo->VersionFlag == 0x30) {\r |
129 | AdapterInfo->Delay_30 = (bsptr_30) (UINTN) CpbPtr->Delay;\r |
130 | AdapterInfo->Virt2Phys_30 = (virtphys_30) (UINTN) CpbPtr->Virt2Phys;\r |
131 | AdapterInfo->Block_30 = (block_30) (UINTN) CpbPtr->Block;\r |
132 | //\r |
133 | // patch for old buggy 3.0 code:\r |
134 | // In EFI1.0 undi used to provide the full (absolute) I/O address to the\r |
135 | // i/o calls and SNP used to provide a callback that used GlobalIoFncs and\r |
136 | // everything worked fine! In EFI 1.1, UNDI is not using the full\r |
137 | // i/o or memory address to access the device, The base values for the i/o\r |
138 | // and memory address is abstracted by the device specific PciIoFncs and\r |
139 | // UNDI only uses the offset values. Since UNDI3.0 cannot provide any\r |
140 | // identification to SNP, SNP cannot use nic specific PciIoFncs callback!\r |
141 | //\r |
142 | // To fix this and make undi3.0 work with SNP in EFI1.1 we\r |
143 | // use a TmpMemIo function that is defined in init.c\r |
144 | // This breaks the runtime driver feature of undi, but what to do\r |
145 | // if we have to provide the 3.0 compatibility (including the 3.0 bugs)\r |
146 | //\r |
147 | // This TmpMemIo function also takes a UniqueId parameter\r |
148 | // (as in undi3.1 design) and so initialize the UniqueId as well here\r |
149 | // Note: AdapterInfo->Mem_Io_30 is just filled for consistency with other\r |
150 | // parameters but never used, we only use Mem_Io field in the In/Out routines\r |
151 | // inside e100b.c.\r |
152 | //\r |
153 | AdapterInfo->Mem_Io_30 = (mem_io_30) (UINTN) CpbPtr->Mem_IO;\r |
154 | AdapterInfo->Mem_Io = (mem_io) (UINTN) TmpMemIo;\r |
155 | AdapterInfo->Unique_ID = (UINT64) (UINTN) AdapterInfo;\r |
156 | \r |
157 | } else {\r |
158 | AdapterInfo->Delay = (bsptr) (UINTN) CpbPtr_31->Delay;\r |
159 | AdapterInfo->Virt2Phys = (virtphys) (UINTN) CpbPtr_31->Virt2Phys;\r |
160 | AdapterInfo->Block = (block) (UINTN) CpbPtr_31->Block;\r |
161 | AdapterInfo->Mem_Io = (mem_io) (UINTN) CpbPtr_31->Mem_IO;\r |
162 | \r |
163 | AdapterInfo->Map_Mem = (map_mem) (UINTN) CpbPtr_31->Map_Mem;\r |
164 | AdapterInfo->UnMap_Mem = (unmap_mem) (UINTN) CpbPtr_31->UnMap_Mem;\r |
165 | AdapterInfo->Sync_Mem = (sync_mem) (UINTN) CpbPtr_31->Sync_Mem;\r |
166 | AdapterInfo->Unique_ID = CpbPtr_31->Unique_ID;\r |
167 | }\r |
168 | \r |
169 | AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;\r |
170 | \r |
171 | return ;\r |
172 | }\r |
173 | \r |
174 | \r |
175 | /**\r |
176 | This routine is used to change the operational state of the UNDI from started to stopped.\r |
177 | It will not do this if the adapter's state is PXE_STATFLAGS_GET_STATE_INITIALIZED, otherwise\r |
178 | the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the\r |
179 | UNDI as having already not been shut down.\r |
180 | The NIC's data structure will have the Delay, Virt2Phys, and Block, pointers zero'd out..\r |
181 | It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STOPPED.\r |
182 | \r |
183 | @param CdbPtr Pointer to the command descriptor block.\r |
184 | @param AdapterInfo Pointer to the NIC data structure information which\r |
185 | the UNDI driver is layering on..\r |
186 | \r |
187 | @return None\r |
188 | \r |
189 | **/\r |
190 | VOID\r |
191 | UNDI_Stop (\r |
192 | IN PXE_CDB *CdbPtr,\r |
193 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
194 | )\r |
195 | {\r |
196 | if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {\r |
197 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
198 | CdbPtr->StatCode = PXE_STATCODE_NOT_SHUTDOWN;\r |
199 | return ;\r |
200 | }\r |
201 | \r |
202 | AdapterInfo->Delay_30 = 0;\r |
203 | AdapterInfo->Virt2Phys_30 = 0;\r |
204 | AdapterInfo->Block_30 = 0;\r |
205 | \r |
206 | AdapterInfo->Delay = 0;\r |
207 | AdapterInfo->Virt2Phys = 0;\r |
208 | AdapterInfo->Block = 0;\r |
209 | \r |
210 | AdapterInfo->Map_Mem = 0;\r |
211 | AdapterInfo->UnMap_Mem = 0;\r |
212 | AdapterInfo->Sync_Mem = 0;\r |
213 | \r |
214 | AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STOPPED;\r |
215 | \r |
216 | return ;\r |
217 | }\r |
218 | \r |
219 | \r |
220 | /**\r |
221 | This routine is used to retrieve the initialization information that is needed by drivers and\r |
222 | applications to initialize the UNDI. This will fill in data in the Data Block structure that is\r |
223 | pointed to by the caller's CdbPtr->DBaddr. The fields filled in are as follows:\r |
224 | MemoryRequired, FrameDataLen, LinkSpeeds[0-3], NvCount, NvWidth, MediaHeaderLen, HWaddrLen,\r |
225 | MCastFilterCnt, TxBufCnt, TxBufSize, RxBufCnt, RxBufSize, IFtype, Duplex, and LoopBack.\r |
226 | In addition, the CdbPtr->StatFlags ORs in that this NIC supports cable detection. (APRIORI knowledge)\r |
227 | \r |
228 | @param CdbPtr Pointer to the command descriptor block.\r |
229 | @param AdapterInfo Pointer to the NIC data structure information which\r |
230 | the UNDI driver is layering on..\r |
231 | \r |
232 | @return None\r |
233 | \r |
234 | **/\r |
235 | VOID\r |
236 | UNDI_GetInitInfo (\r |
237 | IN PXE_CDB *CdbPtr,\r |
238 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
239 | )\r |
240 | {\r |
241 | PXE_DB_GET_INIT_INFO *DbPtr;\r |
242 | \r |
243 | DbPtr = (PXE_DB_GET_INIT_INFO *) (UINTN) (CdbPtr->DBaddr);\r |
244 | \r |
245 | DbPtr->MemoryRequired = MEMORY_NEEDED;\r |
246 | DbPtr->FrameDataLen = PXE_MAX_TXRX_UNIT_ETHER;\r |
247 | DbPtr->LinkSpeeds[0] = 10;\r |
248 | DbPtr->LinkSpeeds[1] = 100;\r |
249 | DbPtr->LinkSpeeds[2] = DbPtr->LinkSpeeds[3] = 0;\r |
250 | DbPtr->NvCount = MAX_EEPROM_LEN;\r |
251 | DbPtr->NvWidth = 4;\r |
252 | DbPtr->MediaHeaderLen = PXE_MAC_HEADER_LEN_ETHER;\r |
253 | DbPtr->HWaddrLen = PXE_HWADDR_LEN_ETHER;\r |
254 | DbPtr->MCastFilterCnt = MAX_MCAST_ADDRESS_CNT;\r |
255 | \r |
256 | DbPtr->TxBufCnt = TX_BUFFER_COUNT;\r |
257 | DbPtr->TxBufSize = sizeof (TxCB);\r |
258 | DbPtr->RxBufCnt = RX_BUFFER_COUNT;\r |
259 | DbPtr->RxBufSize = sizeof (RxFD);\r |
260 | \r |
261 | DbPtr->IFtype = PXE_IFTYPE_ETHERNET;\r |
262 | DbPtr->SupportedDuplexModes = PXE_DUPLEX_ENABLE_FULL_SUPPORTED |\r |
263 | PXE_DUPLEX_FORCE_FULL_SUPPORTED;\r |
264 | DbPtr->SupportedLoopBackModes = PXE_LOOPBACK_INTERNAL_SUPPORTED |\r |
265 | PXE_LOOPBACK_EXTERNAL_SUPPORTED;\r |
266 | \r |
267 | CdbPtr->StatFlags |= PXE_STATFLAGS_CABLE_DETECT_SUPPORTED;\r |
268 | return ;\r |
269 | }\r |
270 | \r |
271 | \r |
272 | /**\r |
273 | This routine is used to retrieve the configuration information about the NIC being controlled by\r |
274 | this driver. This will fill in data in the Data Block structure that is pointed to by the caller's CdbPtr->DBaddr.\r |
275 | The fields filled in are as follows:\r |
276 | DbPtr->pci.BusType, DbPtr->pci.Bus, DbPtr->pci.Device, and DbPtr->pci.\r |
277 | In addition, the DbPtr->pci.Config.Dword[0-63] grabs a copy of this NIC's PCI configuration space.\r |
278 | \r |
279 | @param CdbPtr Pointer to the command descriptor block.\r |
280 | @param AdapterInfo Pointer to the NIC data structure information which\r |
281 | the UNDI driver is layering on..\r |
282 | \r |
283 | @return None\r |
284 | \r |
285 | **/\r |
286 | VOID\r |
287 | UNDI_GetConfigInfo (\r |
288 | IN PXE_CDB *CdbPtr,\r |
289 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
290 | )\r |
291 | {\r |
292 | UINT16 Index;\r |
293 | PXE_DB_GET_CONFIG_INFO *DbPtr;\r |
294 | \r |
295 | DbPtr = (PXE_DB_GET_CONFIG_INFO *) (UINTN) (CdbPtr->DBaddr);\r |
296 | \r |
297 | DbPtr->pci.BusType = PXE_BUSTYPE_PCI;\r |
298 | DbPtr->pci.Bus = AdapterInfo->Bus;\r |
299 | DbPtr->pci.Device = AdapterInfo->Device;\r |
300 | DbPtr->pci.Function = AdapterInfo->Function;\r |
301 | \r |
302 | for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {\r |
303 | DbPtr->pci.Config.Dword[Index] = AdapterInfo->Config[Index];\r |
304 | }\r |
305 | \r |
306 | return ;\r |
307 | }\r |
308 | \r |
309 | \r |
310 | /**\r |
311 | This routine resets the network adapter and initializes the UNDI using the parameters supplied in\r |
312 | the CPB. This command must be issued before the network adapter can be setup to transmit and\r |
313 | receive packets.\r |
314 | Once the memory requirements of the UNDI are obtained by using the GetInitInfo command, a block\r |
315 | of non-swappable memory may need to be allocated. The address of this memory must be passed to\r |
316 | UNDI during the Initialize in the CPB. This memory is used primarily for transmit and receive buffers.\r |
317 | The fields CableDetect, LinkSpeed, Duplex, LoopBack, MemoryPtr, and MemoryLength are set with information\r |
318 | that was passed in the CPB and the NIC is initialized.\r |
319 | If the NIC initialization fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED\r |
320 | Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_INITIALIZED showing the state of\r |
321 | the UNDI is now initialized.\r |
322 | \r |
323 | @param CdbPtr Pointer to the command descriptor block.\r |
324 | @param AdapterInfo Pointer to the NIC data structure information which\r |
325 | the UNDI driver is layering on..\r |
326 | \r |
327 | @return None\r |
328 | \r |
329 | **/\r |
330 | VOID\r |
331 | UNDI_Initialize (\r |
332 | IN PXE_CDB *CdbPtr,\r |
333 | NIC_DATA_INSTANCE *AdapterInfo\r |
334 | )\r |
335 | {\r |
336 | PXE_CPB_INITIALIZE *CpbPtr;\r |
337 | \r |
338 | if ((CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DETECT_CABLE) &&\r |
339 | (CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE)) {\r |
340 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
341 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
342 | return ;\r |
343 | }\r |
344 | \r |
345 | //\r |
346 | // check if it is already initialized\r |
347 | //\r |
348 | if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {\r |
349 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
350 | CdbPtr->StatCode = PXE_STATCODE_ALREADY_INITIALIZED;\r |
351 | return ;\r |
352 | }\r |
353 | \r |
354 | CpbPtr = (PXE_CPB_INITIALIZE *) (UINTN) CdbPtr->CPBaddr;\r |
355 | \r |
356 | if (CpbPtr->MemoryLength < (UINT32) MEMORY_NEEDED) {\r |
357 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
358 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;\r |
359 | return ;\r |
360 | }\r |
361 | \r |
362 | //\r |
363 | // default behaviour is to detect the cable, if the 3rd param is 1,\r |
364 | // do not do that\r |
365 | //\r |
366 | AdapterInfo->CableDetect = (UINT8) ((CdbPtr->OpFlags == (UINT16) PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE) ? (UINT8) 0 : (UINT8) 1);\r |
367 | AdapterInfo->LinkSpeedReq = (UINT16) CpbPtr->LinkSpeed;\r |
368 | AdapterInfo->DuplexReq = CpbPtr->DuplexMode;\r |
369 | AdapterInfo->LoopBack = CpbPtr->LoopBackMode;\r |
370 | AdapterInfo->MemoryPtr = CpbPtr->MemoryAddr;\r |
371 | AdapterInfo->MemoryLength = CpbPtr->MemoryLength;\r |
372 | \r |
373 | CdbPtr->StatCode = (PXE_STATCODE) E100bInit (AdapterInfo);\r |
374 | \r |
375 | if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r |
376 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
377 | } else {\r |
378 | AdapterInfo->State = PXE_STATFLAGS_GET_STATE_INITIALIZED;\r |
379 | }\r |
380 | \r |
381 | return ;\r |
382 | }\r |
383 | \r |
384 | \r |
385 | /**\r |
386 | This routine resets the network adapter and initializes the UNDI using the parameters supplied in\r |
387 | the CPB. The transmit and receive queues are emptied and any pending interrupts are cleared.\r |
388 | If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED\r |
389 | \r |
390 | @param CdbPtr Pointer to the command descriptor block.\r |
391 | @param AdapterInfo Pointer to the NIC data structure information which\r |
392 | the UNDI driver is layering on..\r |
393 | \r |
394 | @return None\r |
395 | \r |
396 | **/\r |
397 | VOID\r |
398 | UNDI_Reset (\r |
399 | IN PXE_CDB *CdbPtr,\r |
400 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
401 | )\r |
402 | {\r |
403 | if (CdbPtr->OpFlags != PXE_OPFLAGS_NOT_USED &&\r |
404 | CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS &&\r |
405 | CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_FILTERS ) {\r |
406 | \r |
407 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
408 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
409 | return ;\r |
410 | }\r |
411 | \r |
412 | CdbPtr->StatCode = (UINT16) E100bReset (AdapterInfo, CdbPtr->OpFlags);\r |
413 | \r |
414 | if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r |
415 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
416 | }\r |
417 | }\r |
418 | \r |
419 | \r |
420 | /**\r |
421 | This routine resets the network adapter and leaves it in a safe state for another driver to\r |
422 | initialize. Any pending transmits or receives are lost. Receive filters and external\r |
423 | interrupt enables are disabled. Once the UNDI has been shutdown, it can then be stopped\r |
424 | or initialized again.\r |
425 | If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED\r |
426 | Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_STARTED showing the state of\r |
427 | the NIC as being started.\r |
428 | \r |
429 | @param CdbPtr Pointer to the command descriptor block.\r |
430 | @param AdapterInfo Pointer to the NIC data structure information which\r |
431 | the UNDI driver is layering on..\r |
432 | \r |
433 | @return None\r |
434 | \r |
435 | **/\r |
436 | VOID\r |
437 | UNDI_Shutdown (\r |
438 | IN PXE_CDB *CdbPtr,\r |
439 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
440 | )\r |
441 | {\r |
442 | //\r |
443 | // do the shutdown stuff here\r |
444 | //\r |
445 | CdbPtr->StatCode = (UINT16) E100bShutdown (AdapterInfo);\r |
446 | \r |
447 | if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r |
448 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
449 | } else {\r |
450 | AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;\r |
451 | }\r |
452 | \r |
453 | return ;\r |
454 | }\r |
455 | \r |
456 | \r |
457 | /**\r |
458 | This routine can be used to read and/or change the current external interrupt enable\r |
459 | settings. Disabling an external interrupt enable prevents and external (hardware)\r |
460 | interrupt from being signaled by the network device. Internally the interrupt events\r |
461 | can still be polled by using the UNDI_GetState command.\r |
462 | The resulting information on the interrupt state will be passed back in the CdbPtr->StatFlags.\r |
463 | \r |
464 | @param CdbPtr Pointer to the command descriptor block.\r |
465 | @param AdapterInfo Pointer to the NIC data structure information which\r |
466 | the UNDI driver is layering on..\r |
467 | \r |
468 | @return None\r |
469 | \r |
470 | **/\r |
471 | VOID\r |
472 | UNDI_Interrupt (\r |
473 | IN PXE_CDB *CdbPtr,\r |
474 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
475 | )\r |
476 | {\r |
477 | UINT8 IntMask;\r |
478 | \r |
479 | IntMask = (UINT8)(UINTN)(CdbPtr->OpFlags & (PXE_OPFLAGS_INTERRUPT_RECEIVE |\r |
480 | PXE_OPFLAGS_INTERRUPT_TRANSMIT |\r |
481 | PXE_OPFLAGS_INTERRUPT_COMMAND |\r |
482 | PXE_OPFLAGS_INTERRUPT_SOFTWARE));\r |
483 | \r |
484 | switch (CdbPtr->OpFlags & PXE_OPFLAGS_INTERRUPT_OPMASK) {\r |
485 | case PXE_OPFLAGS_INTERRUPT_READ:\r |
486 | break;\r |
487 | \r |
488 | case PXE_OPFLAGS_INTERRUPT_ENABLE:\r |
489 | if (IntMask == 0) {\r |
490 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
491 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
492 | return ;\r |
493 | }\r |
494 | \r |
495 | AdapterInfo->int_mask = IntMask;\r |
496 | E100bSetInterruptState (AdapterInfo);\r |
497 | break;\r |
498 | \r |
499 | case PXE_OPFLAGS_INTERRUPT_DISABLE:\r |
500 | if (IntMask != 0) {\r |
501 | AdapterInfo->int_mask = (UINT16) (AdapterInfo->int_mask & ~(IntMask));\r |
502 | E100bSetInterruptState (AdapterInfo);\r |
503 | break;\r |
504 | }\r |
505 | \r |
506 | //\r |
507 | // else fall thru.\r |
508 | //\r |
509 | default:\r |
510 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
511 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
512 | return ;\r |
513 | }\r |
514 | \r |
515 | if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_RECEIVE) != 0) {\r |
516 | CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_RECEIVE;\r |
517 | \r |
518 | }\r |
519 | \r |
520 | if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_TRANSMIT) != 0) {\r |
521 | CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_TRANSMIT;\r |
522 | \r |
523 | }\r |
524 | \r |
525 | if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_COMMAND) != 0) {\r |
526 | CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_COMMAND;\r |
527 | \r |
528 | }\r |
529 | \r |
530 | return ;\r |
531 | }\r |
532 | \r |
533 | \r |
534 | /**\r |
535 | This routine is used to read and change receive filters and, if supported, read\r |
536 | and change multicast MAC address filter list.\r |
537 | \r |
538 | @param CdbPtr Pointer to the command descriptor block.\r |
539 | @param AdapterInfo Pointer to the NIC data structure information which\r |
540 | the UNDI driver is layering on..\r |
541 | \r |
542 | @return None\r |
543 | \r |
544 | **/\r |
545 | VOID\r |
546 | UNDI_RecFilter (\r |
547 | IN PXE_CDB *CdbPtr,\r |
548 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
549 | )\r |
550 | {\r |
551 | UINT16 NewFilter;\r |
552 | UINT16 OpFlags;\r |
553 | PXE_DB_RECEIVE_FILTERS *DbPtr;\r |
554 | UINT8 *MacAddr;\r |
555 | UINTN MacCount;\r |
556 | UINT16 Index;\r |
557 | UINT16 copy_len;\r |
558 | UINT8 *ptr1;\r |
559 | UINT8 *ptr2;\r |
cd417925 |
560 | BOOLEAN InvalidMacAddr;\r |
561 | \r |
51ebae6b |
562 | OpFlags = CdbPtr->OpFlags;\r |
563 | NewFilter = (UINT16) (OpFlags & 0x1F);\r |
564 | \r |
565 | switch (OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_OPMASK) {\r |
566 | case PXE_OPFLAGS_RECEIVE_FILTER_READ:\r |
567 | \r |
568 | //\r |
569 | // not expecting a cpb, not expecting any filter bits\r |
570 | //\r |
571 | if ((NewFilter != 0) || (CdbPtr->CPBsize != 0)) {\r |
572 | goto BadCdb;\r |
573 | \r |
574 | }\r |
575 | \r |
576 | if ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) == 0) {\r |
577 | goto JustRead;\r |
578 | \r |
579 | }\r |
580 | \r |
581 | NewFilter = (UINT16) (NewFilter | AdapterInfo->Rx_Filter);\r |
582 | //\r |
583 | // all other flags are ignored except mcast_reset\r |
584 | //\r |
585 | break;\r |
586 | \r |
587 | case PXE_OPFLAGS_RECEIVE_FILTER_ENABLE:\r |
588 | //\r |
589 | // there should be atleast one other filter bit set.\r |
590 | //\r |
591 | if (NewFilter == 0) {\r |
592 | //\r |
593 | // nothing to enable\r |
594 | //\r |
595 | goto BadCdb;\r |
596 | }\r |
597 | \r |
598 | if (CdbPtr->CPBsize != 0) {\r |
599 | //\r |
600 | // this must be a multicast address list!\r |
601 | // don't accept the list unless selective_mcast is set\r |
602 | // don't accept confusing mcast settings with this\r |
603 | //\r |
604 | if (((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) == 0) ||\r |
605 | ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||\r |
606 | ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ||\r |
607 | ((CdbPtr->CPBsize % sizeof (PXE_MAC_ADDR)) != 0) ) {\r |
608 | goto BadCdb;\r |
609 | }\r |
610 | \r |
611 | MacAddr = (UINT8 *) ((UINTN) (CdbPtr->CPBaddr));\r |
612 | MacCount = CdbPtr->CPBsize / sizeof (PXE_MAC_ADDR);\r |
613 | \r |
cd417925 |
614 | //\r |
615 | // The format of Ethernet multicast address for IPv6 is defined in RFC2464,\r |
616 | // for IPv4 is defined in RFC1112. Check whether the address is valid.\r |
617 | //\r |
618 | InvalidMacAddr = FALSE;\r |
619 | \r |
51ebae6b |
620 | for (; MacCount-- != 0; MacAddr += sizeof (PXE_MAC_ADDR)) {\r |
cd417925 |
621 | if (MacAddr[0] == 0x01) {\r |
622 | //\r |
623 | // This multicast MAC address is mapped from IPv4 address.\r |
624 | //\r |
625 | if (MacAddr[1] != 0x00 || MacAddr[2] != 0x5E || (MacAddr[3] & 0x80) != 0) {\r |
626 | InvalidMacAddr = TRUE;\r |
627 | } \r |
628 | } else if (MacAddr[0] == 0x33) {\r |
629 | //\r |
630 | // This multicast MAC address is mapped from IPv6 address.\r |
631 | //\r |
632 | if (MacAddr[1] != 0x33) {\r |
633 | InvalidMacAddr = TRUE;\r |
634 | }\r |
635 | } else {\r |
636 | InvalidMacAddr = TRUE;\r |
637 | }\r |
638 | \r |
639 | if (InvalidMacAddr) {\r |
51ebae6b |
640 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
641 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;\r |
642 | return ;\r |
643 | }\r |
644 | }\r |
645 | }\r |
646 | \r |
647 | //\r |
648 | // check selective mcast case enable case\r |
649 | //\r |
650 | if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != 0) {\r |
651 | if (((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||\r |
652 | ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ) {\r |
653 | goto BadCdb;\r |
654 | \r |
655 | }\r |
656 | //\r |
657 | // if no cpb, make sure we have an old list\r |
658 | //\r |
659 | if ((CdbPtr->CPBsize == 0) && (AdapterInfo->mcast_list.list_len == 0)) {\r |
660 | goto BadCdb;\r |
661 | }\r |
662 | }\r |
663 | //\r |
664 | // if you want to enable anything, you got to have unicast\r |
665 | // and you have what you already enabled!\r |
666 | //\r |
667 | NewFilter = (UINT16) (NewFilter | (PXE_OPFLAGS_RECEIVE_FILTER_UNICAST | AdapterInfo->Rx_Filter));\r |
668 | \r |
669 | break;\r |
670 | \r |
671 | case PXE_OPFLAGS_RECEIVE_FILTER_DISABLE:\r |
672 | \r |
673 | //\r |
674 | // mcast list not expected, i.e. no cpb here!\r |
675 | //\r |
676 | if (CdbPtr->CPBsize != PXE_CPBSIZE_NOT_USED) {\r |
677 | goto BadCdb;\r |
678 | }\r |
679 | \r |
680 | NewFilter = (UINT16) ((~(CdbPtr->OpFlags & 0x1F)) & AdapterInfo->Rx_Filter);\r |
681 | \r |
682 | break;\r |
683 | \r |
684 | default:\r |
685 | goto BadCdb;\r |
686 | }\r |
687 | \r |
688 | if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) {\r |
689 | AdapterInfo->mcast_list.list_len = 0;\r |
690 | NewFilter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST);\r |
691 | }\r |
692 | \r |
693 | E100bSetfilter (AdapterInfo, NewFilter, CdbPtr->CPBaddr, CdbPtr->CPBsize);\r |
694 | \r |
695 | JustRead:\r |
696 | //\r |
697 | // give the current mcast list\r |
698 | //\r |
699 | if ((CdbPtr->DBsize != 0) && (AdapterInfo->mcast_list.list_len != 0)) {\r |
700 | //\r |
701 | // copy the mc list to db\r |
702 | //\r |
703 | \r |
704 | DbPtr = (PXE_DB_RECEIVE_FILTERS *) (UINTN) CdbPtr->DBaddr;\r |
705 | ptr1 = (UINT8 *) (&DbPtr->MCastList[0]);\r |
706 | \r |
707 | //\r |
708 | // DbPtr->mc_count = AdapterInfo->mcast_list.list_len;\r |
709 | //\r |
710 | copy_len = (UINT16) (AdapterInfo->mcast_list.list_len * PXE_MAC_LENGTH);\r |
711 | \r |
712 | if (copy_len > CdbPtr->DBsize) {\r |
713 | copy_len = CdbPtr->DBsize;\r |
714 | \r |
715 | }\r |
716 | \r |
717 | ptr2 = (UINT8 *) (&AdapterInfo->mcast_list.mc_list[0]);\r |
718 | for (Index = 0; Index < copy_len; Index++) {\r |
719 | ptr1[Index] = ptr2[Index];\r |
720 | }\r |
721 | }\r |
722 | //\r |
723 | // give the stat flags here\r |
724 | //\r |
725 | if (AdapterInfo->Receive_Started) {\r |
726 | CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->Rx_Filter);\r |
727 | \r |
728 | }\r |
729 | \r |
730 | return ;\r |
731 | \r |
732 | BadCdb:\r |
733 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
734 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
735 | }\r |
736 | \r |
737 | \r |
738 | /**\r |
739 | This routine is used to get the current station and broadcast MAC addresses, and to change the\r |
740 | current station MAC address.\r |
741 | \r |
742 | @param CdbPtr Pointer to the command descriptor block.\r |
743 | @param AdapterInfo Pointer to the NIC data structure information which\r |
744 | the UNDI driver is layering on..\r |
745 | \r |
746 | @return None\r |
747 | \r |
748 | **/\r |
749 | VOID\r |
750 | UNDI_StnAddr (\r |
751 | IN PXE_CDB *CdbPtr,\r |
752 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
753 | )\r |
754 | {\r |
755 | PXE_CPB_STATION_ADDRESS *CpbPtr;\r |
756 | PXE_DB_STATION_ADDRESS *DbPtr;\r |
757 | UINT16 Index;\r |
758 | \r |
759 | if (CdbPtr->OpFlags == PXE_OPFLAGS_STATION_ADDRESS_RESET) {\r |
760 | //\r |
761 | // configure the permanent address.\r |
762 | // change the AdapterInfo->CurrentNodeAddress field.\r |
763 | //\r |
764 | if (CompareMem (\r |
765 | &AdapterInfo->CurrentNodeAddress[0],\r |
766 | &AdapterInfo->PermNodeAddress[0],\r |
767 | PXE_MAC_LENGTH\r |
768 | ) != 0) {\r |
769 | for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {\r |
770 | AdapterInfo->CurrentNodeAddress[Index] = AdapterInfo->PermNodeAddress[Index];\r |
771 | }\r |
772 | \r |
773 | E100bSetupIAAddr (AdapterInfo);\r |
774 | }\r |
775 | }\r |
776 | \r |
777 | if (CdbPtr->CPBaddr != (UINT64) 0) {\r |
778 | CpbPtr = (PXE_CPB_STATION_ADDRESS *) (UINTN) (CdbPtr->CPBaddr);\r |
779 | //\r |
780 | // configure the new address\r |
781 | //\r |
782 | for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {\r |
783 | AdapterInfo->CurrentNodeAddress[Index] = CpbPtr->StationAddr[Index];\r |
784 | }\r |
785 | \r |
786 | E100bSetupIAAddr (AdapterInfo);\r |
787 | }\r |
788 | \r |
789 | if (CdbPtr->DBaddr != (UINT64) 0) {\r |
790 | DbPtr = (PXE_DB_STATION_ADDRESS *) (UINTN) (CdbPtr->DBaddr);\r |
791 | //\r |
792 | // fill it with the new values\r |
793 | //\r |
794 | for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {\r |
795 | DbPtr->StationAddr[Index] = AdapterInfo->CurrentNodeAddress[Index];\r |
796 | DbPtr->BroadcastAddr[Index] = AdapterInfo->BroadcastNodeAddress[Index];\r |
797 | DbPtr->PermanentAddr[Index] = AdapterInfo->PermNodeAddress[Index];\r |
798 | }\r |
799 | }\r |
800 | \r |
801 | return ;\r |
802 | }\r |
803 | \r |
804 | \r |
805 | /**\r |
806 | This routine is used to read and clear the NIC traffic statistics. This command is supported only\r |
807 | if the !PXE structure's Implementation flags say so.\r |
808 | Results will be parsed out in the following manner:\r |
809 | CdbPtr->DBaddr.Data[0] R Total Frames (Including frames with errors and dropped frames)\r |
810 | CdbPtr->DBaddr.Data[1] R Good Frames (All frames copied into receive buffer)\r |
811 | CdbPtr->DBaddr.Data[2] R Undersize Frames (Frames below minimum length for media <64 for ethernet)\r |
812 | CdbPtr->DBaddr.Data[4] R Dropped Frames (Frames that were dropped because receive buffers were full)\r |
813 | CdbPtr->DBaddr.Data[8] R CRC Error Frames (Frames with alignment or CRC errors)\r |
814 | CdbPtr->DBaddr.Data[A] T Total Frames (Including frames with errors and dropped frames)\r |
815 | CdbPtr->DBaddr.Data[B] T Good Frames (All frames copied into transmit buffer)\r |
816 | CdbPtr->DBaddr.Data[C] T Undersize Frames (Frames below minimum length for media <64 for ethernet)\r |
817 | CdbPtr->DBaddr.Data[E] T Dropped Frames (Frames that were dropped because of collisions)\r |
818 | CdbPtr->DBaddr.Data[14] T Total Collision Frames (Total collisions on this subnet)\r |
819 | \r |
820 | @param CdbPtr Pointer to the command descriptor block.\r |
821 | @param AdapterInfo Pointer to the NIC data structure information which\r |
822 | the UNDI driver is layering on..\r |
823 | \r |
824 | @return None\r |
825 | \r |
826 | **/\r |
827 | VOID\r |
828 | UNDI_Statistics (\r |
829 | IN PXE_CDB *CdbPtr,\r |
830 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
831 | )\r |
832 | {\r |
833 | if ((CdbPtr->OpFlags &~(PXE_OPFLAGS_STATISTICS_RESET)) != 0) {\r |
834 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
835 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
836 | return ;\r |
837 | }\r |
838 | \r |
839 | if ((CdbPtr->OpFlags & PXE_OPFLAGS_STATISTICS_RESET) != 0) {\r |
840 | //\r |
841 | // Reset the statistics\r |
842 | //\r |
843 | CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, 0, 0);\r |
844 | } else {\r |
845 | CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, CdbPtr->DBaddr, CdbPtr->DBsize);\r |
846 | }\r |
847 | \r |
848 | return ;\r |
849 | }\r |
850 | \r |
851 | \r |
852 | /**\r |
853 | This routine is used to translate a multicast IP address to a multicast MAC address.\r |
854 | This results in a MAC address composed of 25 bits of fixed data with the upper 23 bits of the IP\r |
855 | address being appended to it. Results passed back in the equivalent of CdbPtr->DBaddr->MAC[0-5].\r |
856 | \r |
857 | @param CdbPtr Pointer to the command descriptor block.\r |
858 | @param AdapterInfo Pointer to the NIC data structure information which\r |
859 | the UNDI driver is layering on..\r |
860 | \r |
861 | @return None\r |
862 | \r |
863 | **/\r |
864 | VOID\r |
865 | UNDI_ip2mac (\r |
866 | IN PXE_CDB *CdbPtr,\r |
867 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
868 | )\r |
869 | {\r |
870 | PXE_CPB_MCAST_IP_TO_MAC *CpbPtr;\r |
871 | PXE_DB_MCAST_IP_TO_MAC *DbPtr;\r |
872 | UINT8 *TmpPtr;\r |
873 | \r |
874 | CpbPtr = (PXE_CPB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->CPBaddr;\r |
875 | DbPtr = (PXE_DB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->DBaddr;\r |
876 | \r |
877 | if ((CdbPtr->OpFlags & PXE_OPFLAGS_MCAST_IPV6_TO_MAC) != 0) {\r |
878 | //\r |
879 | // for now this is not supported\r |
880 | //\r |
881 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
882 | CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;\r |
883 | return ;\r |
884 | }\r |
885 | \r |
886 | TmpPtr = (UINT8 *) (&CpbPtr->IP.IPv4);\r |
887 | //\r |
888 | // check if the ip given is a mcast IP\r |
889 | //\r |
890 | if ((TmpPtr[0] & 0xF0) != 0xE0) {\r |
891 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
892 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;\r |
893 | }\r |
894 | //\r |
895 | // take the last 23 bits in IP.\r |
896 | // be very careful. accessing word on a non-word boundary will hang motherboard codenamed Big Sur\r |
897 | // casting the mac array (in the middle) to a UINT32 pointer and accessing\r |
898 | // the UINT32 content hung the system...\r |
899 | //\r |
900 | DbPtr->MAC[0] = 0x01;\r |
901 | DbPtr->MAC[1] = 0x00;\r |
902 | DbPtr->MAC[2] = 0x5e;\r |
903 | DbPtr->MAC[3] = (UINT8) (TmpPtr[1] & 0x7f);\r |
904 | DbPtr->MAC[4] = (UINT8) TmpPtr[2];\r |
905 | DbPtr->MAC[5] = (UINT8) TmpPtr[3];\r |
906 | \r |
907 | return ;\r |
908 | }\r |
909 | \r |
910 | \r |
911 | /**\r |
912 | This routine is used to read and write non-volatile storage on the NIC (if supported). The NVRAM\r |
913 | could be EEPROM, FLASH, or battery backed RAM.\r |
914 | This is an optional function according to the UNDI specification (or will be......)\r |
915 | \r |
916 | @param CdbPtr Pointer to the command descriptor block.\r |
917 | @param AdapterInfo Pointer to the NIC data structure information which\r |
918 | the UNDI driver is layering on..\r |
919 | \r |
920 | @return None\r |
921 | \r |
922 | **/\r |
923 | VOID\r |
924 | UNDI_NVData (\r |
925 | IN PXE_CDB *CdbPtr,\r |
926 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
927 | )\r |
928 | {\r |
929 | PXE_DB_NVDATA *DbPtr;\r |
930 | UINT16 Index;\r |
931 | \r |
932 | if ((CdbPtr->OpFlags == PXE_OPFLAGS_NVDATA_READ) != 0) {\r |
933 | \r |
934 | if ((CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) != 0) {\r |
935 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
936 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
937 | return ;\r |
938 | }\r |
939 | \r |
940 | DbPtr = (PXE_DB_NVDATA *) (UINTN) CdbPtr->DBaddr;\r |
941 | \r |
942 | for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {\r |
943 | DbPtr->Data.Dword[Index] = AdapterInfo->NVData[Index];\r |
944 | \r |
945 | }\r |
946 | \r |
947 | } else {\r |
948 | //\r |
949 | // no write for now\r |
950 | //\r |
951 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
952 | CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;\r |
953 | }\r |
954 | \r |
955 | return ;\r |
956 | }\r |
957 | \r |
958 | \r |
959 | /**\r |
960 | This routine returns the current interrupt status and/or the transmitted buffer addresses.\r |
961 | If the current interrupt status is returned, pending interrupts will be acknowledged by this\r |
962 | command. Transmitted buffer addresses that are written to the DB are removed from the transmit\r |
963 | buffer queue.\r |
964 | Normally, this command would be polled with interrupts disabled.\r |
965 | The transmit buffers are returned in CdbPtr->DBaddr->TxBufer[0 - NumEntries].\r |
966 | The interrupt status is returned in CdbPtr->StatFlags.\r |
967 | \r |
968 | @param CdbPtr Pointer to the command descriptor block.\r |
969 | @param AdapterInfo Pointer to the NIC data structure information which\r |
970 | the UNDI driver is layering on..\r |
971 | \r |
972 | @return None\r |
973 | \r |
974 | **/\r |
975 | VOID\r |
976 | UNDI_Status (\r |
977 | IN PXE_CDB *CdbPtr,\r |
978 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
979 | )\r |
980 | {\r |
981 | PXE_DB_GET_STATUS *DbPtr;\r |
982 | PXE_DB_GET_STATUS TmpGetStatus;\r |
983 | UINT16 Index;\r |
984 | UINT16 Status;\r |
985 | UINT16 NumEntries;\r |
986 | RxFD *RxPtr;\r |
987 | \r |
988 | //\r |
989 | // Fill in temporary GetStatus storage.\r |
990 | //\r |
991 | RxPtr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind];\r |
992 | \r |
993 | if ((RxPtr->cb_header.status & RX_COMPLETE) != 0) {\r |
994 | TmpGetStatus.RxFrameLen = RxPtr->ActualCount & 0x3fff;\r |
995 | } else {\r |
996 | TmpGetStatus.RxFrameLen = 0;\r |
997 | }\r |
998 | \r |
999 | TmpGetStatus.reserved = 0;\r |
1000 | \r |
1001 | //\r |
1002 | // Fill in size of next available receive packet and\r |
1003 | // reserved field in caller's DB storage.\r |
1004 | //\r |
1005 | DbPtr = (PXE_DB_GET_STATUS *) (UINTN) CdbPtr->DBaddr;\r |
1006 | \r |
1007 | if (CdbPtr->DBsize > 0 && CdbPtr->DBsize < sizeof (UINT32) * 2) {\r |
1008 | CopyMem (DbPtr, &TmpGetStatus, CdbPtr->DBsize);\r |
1009 | } else {\r |
1010 | CopyMem (DbPtr, &TmpGetStatus, sizeof (UINT32) * 2);\r |
1011 | }\r |
1012 | \r |
1013 | //\r |
1014 | //\r |
1015 | //\r |
1016 | if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS) != 0) {\r |
1017 | //\r |
1018 | // DBsize of zero is invalid if Tx buffers are requested.\r |
1019 | //\r |
1020 | if (CdbPtr->DBsize == 0) {\r |
1021 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1022 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
1023 | return ;\r |
1024 | }\r |
1025 | \r |
1026 | //\r |
1027 | // remember this b4 we overwrite\r |
1028 | //\r |
1029 | NumEntries = (UINT16) (CdbPtr->DBsize - sizeof (UINT64));\r |
1030 | \r |
1031 | //\r |
1032 | // We already filled in 2 UINT32s.\r |
1033 | //\r |
1034 | CdbPtr->DBsize = sizeof (UINT32) * 2;\r |
1035 | \r |
1036 | //\r |
1037 | // will claim any hanging free CBs\r |
1038 | //\r |
1039 | CheckCBList (AdapterInfo);\r |
1040 | \r |
1041 | if (AdapterInfo->xmit_done_head == AdapterInfo->xmit_done_tail) {\r |
1042 | CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY;\r |
1043 | } else {\r |
1044 | for (Index = 0; NumEntries >= sizeof (UINT64); Index++, NumEntries -= sizeof (UINT64)) {\r |
1045 | if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {\r |
1046 | DbPtr->TxBuffer[Index] = AdapterInfo->xmit_done[AdapterInfo->xmit_done_head];\r |
1047 | AdapterInfo->xmit_done_head = next (AdapterInfo->xmit_done_head);\r |
1048 | CdbPtr->DBsize += sizeof (UINT64);\r |
1049 | } else {\r |
1050 | break;\r |
1051 | }\r |
1052 | }\r |
1053 | }\r |
1054 | \r |
1055 | if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {\r |
1056 | CdbPtr->StatFlags |= PXE_STATFLAGS_DB_WRITE_TRUNCATED;\r |
1057 | \r |
1058 | }\r |
1059 | //\r |
1060 | // check for a receive buffer and give it's size in db\r |
1061 | //\r |
1062 | }\r |
1063 | //\r |
1064 | //\r |
1065 | //\r |
1066 | if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_INTERRUPT_STATUS) != 0) {\r |
1067 | \r |
1068 | Status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus);\r |
1069 | AdapterInfo->Int_Status = (UINT16) (AdapterInfo->Int_Status | Status);\r |
1070 | \r |
1071 | //\r |
1072 | // acknoledge the interrupts\r |
1073 | //\r |
1074 | OutWord (AdapterInfo, (UINT16) (Status & 0xfc00), (UINT32) (AdapterInfo->ioaddr + SCBStatus));\r |
1075 | \r |
1076 | //\r |
1077 | // report all the outstanding interrupts\r |
1078 | //\r |
1079 | Status = AdapterInfo->Int_Status;\r |
1080 | if ((Status & SCB_STATUS_FR) != 0) {\r |
1081 | CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_RECEIVE;\r |
1082 | }\r |
1083 | \r |
1084 | if ((Status & SCB_STATUS_SWI) != 0) {\r |
1085 | CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_SOFTWARE;\r |
1086 | }\r |
1087 | }\r |
1088 | \r |
1089 | return ;\r |
1090 | }\r |
1091 | \r |
1092 | \r |
1093 | /**\r |
1094 | This routine is used to fill media header(s) in transmit packet(s).\r |
1095 | Copies the MAC address into the media header whether it is dealing\r |
1096 | with fragmented or non-fragmented packets.\r |
1097 | \r |
1098 | @param CdbPtr Pointer to the command descriptor block.\r |
1099 | @param AdapterInfo Pointer to the NIC data structure information which\r |
1100 | the UNDI driver is layering on..\r |
1101 | \r |
1102 | @return None\r |
1103 | \r |
1104 | **/\r |
1105 | VOID\r |
1106 | UNDI_FillHeader (\r |
1107 | IN PXE_CDB *CdbPtr,\r |
1108 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
1109 | )\r |
1110 | {\r |
1111 | PXE_CPB_FILL_HEADER *Cpb;\r |
1112 | PXE_CPB_FILL_HEADER_FRAGMENTED *Cpbf;\r |
1113 | EtherHeader *MacHeader;\r |
1114 | UINTN Index;\r |
1115 | \r |
1116 | if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {\r |
1117 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1118 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
1119 | return ;\r |
1120 | }\r |
1121 | \r |
1122 | if ((CdbPtr->OpFlags & PXE_OPFLAGS_FILL_HEADER_FRAGMENTED) != 0) {\r |
1123 | Cpbf = (PXE_CPB_FILL_HEADER_FRAGMENTED *) (UINTN) CdbPtr->CPBaddr;\r |
1124 | \r |
1125 | //\r |
1126 | // assume 1st fragment is big enough for the mac header\r |
1127 | //\r |
1128 | if ((Cpbf->FragCnt == 0) || (Cpbf->FragDesc[0].FragLen < PXE_MAC_HEADER_LEN_ETHER)) {\r |
1129 | //\r |
1130 | // no buffers given\r |
1131 | //\r |
1132 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1133 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
1134 | return ;\r |
1135 | }\r |
1136 | \r |
1137 | MacHeader = (EtherHeader *) (UINTN) Cpbf->FragDesc[0].FragAddr;\r |
1138 | //\r |
1139 | // we don't swap the protocol bytes\r |
1140 | //\r |
1141 | MacHeader->type = Cpbf->Protocol;\r |
1142 | \r |
1143 | for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {\r |
1144 | MacHeader->dest_addr[Index] = Cpbf->DestAddr[Index];\r |
1145 | MacHeader->src_addr[Index] = Cpbf->SrcAddr[Index];\r |
1146 | }\r |
1147 | } else {\r |
1148 | Cpb = (PXE_CPB_FILL_HEADER *) (UINTN) CdbPtr->CPBaddr;\r |
1149 | \r |
1150 | MacHeader = (EtherHeader *) (UINTN) Cpb->MediaHeader;\r |
1151 | //\r |
1152 | // we don't swap the protocol bytes\r |
1153 | //\r |
1154 | MacHeader->type = Cpb->Protocol;\r |
1155 | \r |
1156 | for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {\r |
1157 | MacHeader->dest_addr[Index] = Cpb->DestAddr[Index];\r |
1158 | MacHeader->src_addr[Index] = Cpb->SrcAddr[Index];\r |
1159 | }\r |
1160 | }\r |
1161 | \r |
1162 | return ;\r |
1163 | }\r |
1164 | \r |
1165 | \r |
1166 | /**\r |
1167 | This routine is used to place a packet into the transmit queue. The data buffers given to\r |
1168 | this command are to be considered locked and the application or network driver loses\r |
1169 | ownership of these buffers and must not free or relocate them until the ownership returns.\r |
1170 | When the packets are transmitted, a transmit complete interrupt is generated (if interrupts\r |
1171 | are disabled, the transmit interrupt status is still set and can be checked using the UNDI_Status\r |
1172 | command.\r |
1173 | Some implementations and adapters support transmitting multiple packets with one transmit\r |
1174 | command. If this feature is supported, the transmit CPBs can be linked in one transmit\r |
1175 | command.\r |
1176 | All UNDIs support fragmented frames, now all network devices or protocols do. If a fragmented\r |
1177 | frame CPB is given to UNDI and the network device does not support fragmented frames\r |
1178 | (see !PXE.Implementation flag), the UNDI will have to copy the fragments into a local buffer\r |
1179 | before transmitting.\r |
1180 | \r |
1181 | @param CdbPtr Pointer to the command descriptor block.\r |
1182 | @param AdapterInfo Pointer to the NIC data structure information which\r |
1183 | the UNDI driver is layering on..\r |
1184 | \r |
1185 | @return None\r |
1186 | \r |
1187 | **/\r |
1188 | VOID\r |
1189 | UNDI_Transmit (\r |
1190 | IN PXE_CDB *CdbPtr,\r |
1191 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
1192 | )\r |
1193 | {\r |
1194 | \r |
1195 | if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {\r |
1196 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1197 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
1198 | return ;\r |
1199 | }\r |
1200 | \r |
1201 | CdbPtr->StatCode = (PXE_STATCODE) E100bTransmit (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->OpFlags);\r |
1202 | \r |
1203 | if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r |
1204 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1205 | }\r |
1206 | \r |
1207 | return ;\r |
1208 | }\r |
1209 | \r |
1210 | \r |
1211 | /**\r |
1212 | When the network adapter has received a frame, this command is used to copy the frame\r |
1213 | into the driver/application storage location. Once a frame has been copied, it is\r |
1214 | removed from the receive queue.\r |
1215 | \r |
1216 | @param CdbPtr Pointer to the command descriptor block.\r |
1217 | @param AdapterInfo Pointer to the NIC data structure information which\r |
1218 | the UNDI driver is layering on..\r |
1219 | \r |
1220 | @return None\r |
1221 | \r |
1222 | **/\r |
1223 | VOID\r |
1224 | UNDI_Receive (\r |
1225 | IN PXE_CDB *CdbPtr,\r |
1226 | IN NIC_DATA_INSTANCE *AdapterInfo\r |
1227 | )\r |
1228 | {\r |
1229 | \r |
1230 | //\r |
1231 | // check if RU has started...\r |
1232 | //\r |
1233 | if (!AdapterInfo->Receive_Started) {\r |
1234 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1235 | CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;\r |
1236 | return ;\r |
1237 | }\r |
1238 | \r |
1239 | \r |
1240 | CdbPtr->StatCode = (UINT16) E100bReceive (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->DBaddr);\r |
1241 | if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {\r |
1242 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1243 | \r |
1244 | }\r |
1245 | \r |
1246 | return ;\r |
1247 | }\r |
1248 | \r |
1249 | \r |
1250 | \r |
1251 | /**\r |
1252 | This is the main SW UNDI API entry using the newer nii protocol.\r |
1253 | The parameter passed in is a 64 bit flat model virtual\r |
1254 | address of the cdb. We then jump into the common routine for both old and\r |
1255 | new nii protocol entries.\r |
1256 | \r |
1257 | @param CdbPtr Pointer to the command descriptor block.\r |
1258 | @param AdapterInfo Pointer to the NIC data structure information which\r |
1259 | the UNDI driver is layering on..\r |
1260 | \r |
1261 | @return None\r |
1262 | \r |
1263 | **/\r |
1264 | // TODO: cdb - add argument and description to function comment\r |
1265 | VOID\r |
1266 | UNDI_APIEntry_new (\r |
1267 | IN UINT64 cdb\r |
1268 | )\r |
1269 | {\r |
1270 | PXE_CDB *CdbPtr;\r |
1271 | NIC_DATA_INSTANCE *AdapterInfo;\r |
1272 | \r |
1273 | if (cdb == (UINT64) 0) {\r |
1274 | return ;\r |
1275 | \r |
1276 | }\r |
1277 | \r |
1278 | CdbPtr = (PXE_CDB *) (UINTN) cdb;\r |
1279 | \r |
1280 | if (CdbPtr->IFnum >= pxe_31->IFcnt) {\r |
1281 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1282 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
1283 | return ;\r |
1284 | }\r |
1285 | \r |
1286 | AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);\r |
1287 | //\r |
1288 | // entering from older entry point\r |
1289 | //\r |
1290 | AdapterInfo->VersionFlag = 0x31;\r |
1291 | UNDI_APIEntry_Common (cdb);\r |
1292 | }\r |
1293 | \r |
1294 | \r |
1295 | /**\r |
1296 | This is the common routine for both old and new entry point procedures.\r |
1297 | The parameter passed in is a 64 bit flat model virtual\r |
1298 | address of the cdb. We then jump into the service routine pointed to by the\r |
1299 | Api_Table[OpCode].\r |
1300 | \r |
1301 | @param CdbPtr Pointer to the command descriptor block.\r |
1302 | @param AdapterInfo Pointer to the NIC data structure information which\r |
1303 | the UNDI driver is layering on..\r |
1304 | \r |
1305 | @return None\r |
1306 | \r |
1307 | **/\r |
1308 | // TODO: cdb - add argument and description to function comment\r |
1309 | VOID\r |
1310 | UNDI_APIEntry_Common (\r |
1311 | IN UINT64 cdb\r |
1312 | )\r |
1313 | {\r |
1314 | PXE_CDB *CdbPtr;\r |
1315 | NIC_DATA_INSTANCE *AdapterInfo;\r |
1316 | UNDI_CALL_TABLE *tab_ptr;\r |
1317 | \r |
1318 | CdbPtr = (PXE_CDB *) (UINTN) cdb;\r |
1319 | \r |
1320 | //\r |
1321 | // check the OPCODE range\r |
1322 | //\r |
1323 | if ((CdbPtr->OpCode > PXE_OPCODE_LAST_VALID) ||\r |
1324 | (CdbPtr->StatCode != PXE_STATCODE_INITIALIZE) ||\r |
1325 | (CdbPtr->StatFlags != PXE_STATFLAGS_INITIALIZE) ||\r |
1326 | (CdbPtr->IFnum >= pxe_31->IFcnt) ) {\r |
1327 | goto badcdb;\r |
1328 | \r |
1329 | }\r |
1330 | \r |
1331 | if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {\r |
1332 | if (CdbPtr->CPBaddr != PXE_CPBADDR_NOT_USED) {\r |
1333 | goto badcdb;\r |
1334 | }\r |
1335 | } else if (CdbPtr->CPBaddr == PXE_CPBADDR_NOT_USED) {\r |
1336 | goto badcdb;\r |
1337 | }\r |
1338 | \r |
1339 | if (CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) {\r |
1340 | if (CdbPtr->DBaddr != PXE_DBADDR_NOT_USED) {\r |
1341 | goto badcdb;\r |
1342 | }\r |
1343 | } else if (CdbPtr->DBaddr == PXE_DBADDR_NOT_USED) {\r |
1344 | goto badcdb;\r |
1345 | }\r |
1346 | \r |
1347 | //\r |
1348 | // check if cpbsize and dbsize are as needed\r |
1349 | // check if opflags are as expected\r |
1350 | //\r |
1351 | tab_ptr = &api_table[CdbPtr->OpCode];\r |
1352 | \r |
1353 | if (tab_ptr->cpbsize != (UINT16) (DONT_CHECK) && tab_ptr->cpbsize != CdbPtr->CPBsize) {\r |
1354 | goto badcdb;\r |
1355 | }\r |
1356 | \r |
1357 | if (tab_ptr->dbsize != (UINT16) (DONT_CHECK) && tab_ptr->dbsize != CdbPtr->DBsize) {\r |
1358 | goto badcdb;\r |
1359 | }\r |
1360 | \r |
1361 | if (tab_ptr->opflags != (UINT16) (DONT_CHECK) && tab_ptr->opflags != CdbPtr->OpFlags) {\r |
1362 | goto badcdb;\r |
1363 | \r |
1364 | }\r |
1365 | \r |
1366 | AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);\r |
1367 | \r |
1368 | //\r |
1369 | // check if UNDI_State is valid for this call\r |
1370 | //\r |
1371 | if (tab_ptr->state != (UINT16) (-1)) {\r |
1372 | //\r |
1373 | // should atleast be started\r |
1374 | //\r |
1375 | if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_STOPPED) {\r |
1376 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1377 | CdbPtr->StatCode = PXE_STATCODE_NOT_STARTED;\r |
1378 | return ;\r |
1379 | }\r |
1380 | //\r |
1381 | // check if it should be initialized\r |
1382 | //\r |
1383 | if (tab_ptr->state == 2) {\r |
1384 | if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_INITIALIZED) {\r |
1385 | CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;\r |
1386 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1387 | return ;\r |
1388 | }\r |
1389 | }\r |
1390 | }\r |
1391 | //\r |
1392 | // set the return variable for success case here\r |
1393 | //\r |
1394 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_COMPLETE;\r |
1395 | CdbPtr->StatCode = PXE_STATCODE_SUCCESS;\r |
1396 | \r |
1397 | tab_ptr->api_ptr (CdbPtr, AdapterInfo);\r |
1398 | return ;\r |
1399 | //\r |
1400 | // %% AVL - check for command linking\r |
1401 | //\r |
1402 | badcdb:\r |
1403 | CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;\r |
1404 | CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;\r |
1405 | return ;\r |
1406 | }\r |
1407 | \r |
1408 | \r |
1409 | /**\r |
1410 | When called with a null NicPtr, this routine decrements the number of NICs\r |
1411 | this UNDI is supporting and removes the NIC_DATA_POINTER from the array.\r |
1412 | Otherwise, it increments the number of NICs this UNDI is supported and\r |
1413 | updates the pxe.Fudge to ensure a proper check sum results.\r |
1414 | \r |
1415 | @param NicPtr Pointer to the NIC data structure.\r |
1416 | \r |
1417 | @return None\r |
1418 | \r |
1419 | **/\r |
1420 | VOID\r |
1421 | PxeUpdate (\r |
1422 | IN NIC_DATA_INSTANCE *NicPtr,\r |
1423 | IN PXE_SW_UNDI *PxePtr\r |
1424 | )\r |
1425 | {\r |
1426 | if (NicPtr == NULL) {\r |
1427 | if (PxePtr->IFcnt > 0) {\r |
1428 | //\r |
1429 | // number of NICs this undi supports\r |
1430 | //\r |
1431 | PxePtr->IFcnt--;\r |
1432 | }\r |
1433 | \r |
1434 | PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));\r |
1435 | return ;\r |
1436 | }\r |
1437 | \r |
1438 | //\r |
1439 | // number of NICs this undi supports\r |
1440 | //\r |
1441 | PxePtr->IFcnt++;\r |
1442 | PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));\r |
1443 | \r |
1444 | return ;\r |
1445 | }\r |
1446 | \r |
1447 | \r |
1448 | /**\r |
1449 | Initialize the !PXE structure\r |
1450 | \r |
1451 | @param PxePtr Pointer to SW_UNDI data structure.\r |
1452 | \r |
1453 | @retval EFI_SUCCESS This driver is added to Controller.\r |
1454 | @retval other This driver does not support this device.\r |
1455 | \r |
1456 | **/\r |
1457 | VOID\r |
1458 | PxeStructInit (\r |
1459 | IN PXE_SW_UNDI *PxePtr\r |
1460 | )\r |
1461 | {\r |
1462 | //\r |
1463 | // Initialize the !PXE structure\r |
1464 | //\r |
1465 | PxePtr->Signature = PXE_ROMID_SIGNATURE;\r |
1466 | PxePtr->Len = sizeof (PXE_SW_UNDI);\r |
1467 | //\r |
1468 | // cksum\r |
1469 | //\r |
1470 | PxePtr->Fudge = 0;\r |
1471 | //\r |
1472 | // number of NICs this undi supports\r |
1473 | //\r |
1474 | PxePtr->IFcnt = 0;\r |
1475 | PxePtr->Rev = PXE_ROMID_REV;\r |
1476 | PxePtr->MajorVer = PXE_ROMID_MAJORVER;\r |
1477 | PxePtr->MinorVer = PXE_ROMID_MINORVER;\r |
1478 | PxePtr->reserved1 = 0;\r |
1479 | \r |
1480 | PxePtr->Implementation = PXE_ROMID_IMP_SW_VIRT_ADDR |\r |
1481 | PXE_ROMID_IMP_FRAG_SUPPORTED |\r |
1482 | PXE_ROMID_IMP_CMD_LINK_SUPPORTED |\r |
1483 | PXE_ROMID_IMP_NVDATA_READ_ONLY |\r |
1484 | PXE_ROMID_IMP_STATION_ADDR_SETTABLE |\r |
1485 | PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED |\r |
1486 | PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED |\r |
1487 | PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED |\r |
1488 | PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED |\r |
1489 | PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED |\r |
1490 | PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED;\r |
1491 | \r |
1492 | PxePtr->EntryPoint = (UINT64) (UINTN) UNDI_APIEntry_new;\r |
1493 | PxePtr->MinorVer = PXE_ROMID_MINORVER_31;\r |
1494 | \r |
1495 | PxePtr->reserved2[0] = 0;\r |
1496 | PxePtr->reserved2[1] = 0;\r |
1497 | PxePtr->reserved2[2] = 0;\r |
1498 | PxePtr->BusCnt = 1;\r |
1499 | PxePtr->BusType[0] = PXE_BUSTYPE_PCI;\r |
1500 | \r |
1501 | PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));\r |
1502 | }\r |
1503 | \r |