]> git.proxmox.com Git - mirror_edk2.git/blame - OvmfPkg/PlatformPei/MemDetect.c
OvmfPkg/PlatformPei: Revert "stop using cmos for memory detection"
[mirror_edk2.git] / OvmfPkg / PlatformPei / MemDetect.c
CommitLineData
49ba9447 1/**@file\r
2 Memory Detection for Virtual Machines.\r
3\r
035ce3b3 4 Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>\r
b26f0cf9 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
49ba9447 6\r
7Module Name:\r
8\r
9 MemDetect.c\r
10\r
11**/\r
12\r
13//\r
14// The package level header files this module uses\r
15//\r
1fceaddb 16#include <IndustryStandard/E820.h>\r
49edde15 17#include <IndustryStandard/I440FxPiix4.h>\r
d5e06444 18#include <IndustryStandard/Q35MchIch9.h>\r
9afcd48a 19#include <IndustryStandard/CloudHv.h>\r
49ba9447 20#include <PiPei.h>\r
adec2bd5 21#include <Register/Intel/SmramSaveStateMap.h>\r
49ba9447 22\r
23//\r
24// The Library classes this module consumes\r
25//\r
d5e06444 26#include <Library/BaseLib.h>\r
6a7cba79 27#include <Library/BaseMemoryLib.h>\r
49ba9447 28#include <Library/DebugLib.h>\r
29#include <Library/HobLib.h>\r
30#include <Library/IoLib.h>\r
0bbed066 31#include <Library/MemEncryptSevLib.h>\r
c1c2669c 32#include <Library/PcdLib.h>\r
d5e06444 33#include <Library/PciLib.h>\r
49ba9447 34#include <Library/PeimEntryPoint.h>\r
35#include <Library/ResourcePublicationLib.h>\r
e8e5cd4a 36#include <Library/MtrrLib.h>\r
7e5b1b67 37#include <Library/QemuFwCfgLib.h>\r
98800cce 38#include <Library/QemuFwCfgSimpleParserLib.h>\r
49ba9447 39\r
40#include "Platform.h"\r
e6ea1464 41#include "Cmos.h"\r
49ba9447 42\r
ac0a286f 43UINT8 mPhysMemAddressWidth;\r
bc89fe48 44\r
ac0a286f
MK
45STATIC UINT32 mS3AcpiReservedMemoryBase;\r
46STATIC UINT32 mS3AcpiReservedMemorySize;\r
45d87081 47\r
ac0a286f 48STATIC UINT16 mQ35TsegMbytes;\r
23bfb5c0 49\r
ac0a286f 50BOOLEAN mQ35SmramAtDefaultSmbase;\r
73974f80 51\r
ac0a286f 52UINT32 mQemuUc32Base;\r
49edde15 53\r
23bfb5c0
LE
54VOID\r
55Q35TsegMbytesInitialization (\r
56 VOID\r
57 )\r
58{\r
ac0a286f
MK
59 UINT16 ExtendedTsegMbytes;\r
60 RETURN_STATUS PcdStatus;\r
d5e06444 61\r
e0ed7a9b 62 ASSERT (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);\r
d5e06444
LE
63\r
64 //\r
65 // Check if QEMU offers an extended TSEG.\r
66 //\r
67 // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB\r
68 // register, and reading back the register.\r
69 //\r
70 // On a QEMU machine type that does not offer an extended TSEG, the initial\r
71 // write overwrites whatever value a malicious guest OS may have placed in\r
72 // the (unimplemented) register, before entering S3 or rebooting.\r
73 // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.\r
74 //\r
75 // On a QEMU machine type that offers an extended TSEG, the initial write\r
76 // triggers an update to the register. Subsequently, the value read back\r
77 // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the\r
78 // number of megabytes.\r
79 //\r
80 PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);\r
81 ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));\r
82 if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {\r
83 mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);\r
84 return;\r
85 }\r
86\r
87 DEBUG ((\r
88 DEBUG_INFO,\r
89 "%a: QEMU offers an extended TSEG (%d MB)\n",\r
90 __FUNCTION__,\r
91 ExtendedTsegMbytes\r
92 ));\r
93 PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);\r
94 ASSERT_RETURN_ERROR (PcdStatus);\r
95 mQ35TsegMbytes = ExtendedTsegMbytes;\r
23bfb5c0
LE
96}\r
97\r
73974f80
LE
98VOID\r
99Q35SmramAtDefaultSmbaseInitialization (\r
100 VOID\r
101 )\r
102{\r
ac0a286f 103 RETURN_STATUS PcdStatus;\r
73974f80
LE
104\r
105 ASSERT (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);\r
106\r
107 mQ35SmramAtDefaultSmbase = FALSE;\r
75839f97 108 if (FeaturePcdGet (PcdCsmEnable)) {\r
ac0a286f
MK
109 DEBUG ((\r
110 DEBUG_INFO,\r
111 "%a: SMRAM at default SMBASE not checked due to CSM\n",\r
112 __FUNCTION__\r
113 ));\r
75839f97 114 } else {\r
ac0a286f
MK
115 UINTN CtlReg;\r
116 UINT8 CtlRegVal;\r
75839f97
LE
117\r
118 CtlReg = DRAMC_REGISTER_Q35 (MCH_DEFAULT_SMBASE_CTL);\r
119 PciWrite8 (CtlReg, MCH_DEFAULT_SMBASE_QUERY);\r
ac0a286f 120 CtlRegVal = PciRead8 (CtlReg);\r
75839f97
LE
121 mQ35SmramAtDefaultSmbase = (BOOLEAN)(CtlRegVal ==\r
122 MCH_DEFAULT_SMBASE_IN_RAM);\r
ac0a286f
MK
123 DEBUG ((\r
124 DEBUG_INFO,\r
125 "%a: SMRAM at default SMBASE %a\n",\r
126 __FUNCTION__,\r
127 mQ35SmramAtDefaultSmbase ? "found" : "not found"\r
128 ));\r
75839f97
LE
129 }\r
130\r
ac0a286f
MK
131 PcdStatus = PcdSetBoolS (\r
132 PcdQ35SmramAtDefaultSmbase,\r
133 mQ35SmramAtDefaultSmbase\r
134 );\r
73974f80
LE
135 ASSERT_RETURN_ERROR (PcdStatus);\r
136}\r
137\r
49edde15
LE
138VOID\r
139QemuUc32BaseInitialization (\r
140 VOID\r
141 )\r
142{\r
ac0a286f
MK
143 UINT32 LowerMemorySize;\r
144 UINT32 Uc32Size;\r
49edde15 145\r
6a8e9ad2
GH
146 if (mHostBridgeDevId == 0xffff /* microvm */) {\r
147 return;\r
148 }\r
149\r
49edde15
LE
150 if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {\r
151 //\r
152 // On q35, the 32-bit area that we'll mark as UC, through variable MTRRs,\r
153 // starts at PcdPciExpressBaseAddress. The platform DSC is responsible for\r
154 // setting PcdPciExpressBaseAddress such that describing the\r
155 // [PcdPciExpressBaseAddress, 4GB) range require a very small number of\r
156 // variable MTRRs (preferably 1 or 2).\r
157 //\r
158 ASSERT (FixedPcdGet64 (PcdPciExpressBaseAddress) <= MAX_UINT32);\r
159 mQemuUc32Base = (UINT32)FixedPcdGet64 (PcdPciExpressBaseAddress);\r
160 return;\r
161 }\r
162\r
9afcd48a
SB
163 if (mHostBridgeDevId == CLOUDHV_DEVICE_ID) {\r
164 Uc32Size = CLOUDHV_MMIO_HOLE_SIZE;\r
165 mQemuUc32Base = CLOUDHV_MMIO_HOLE_ADDRESS;\r
166 return;\r
167 }\r
168\r
49edde15
LE
169 ASSERT (mHostBridgeDevId == INTEL_82441_DEVICE_ID);\r
170 //\r
171 // On i440fx, start with the [LowerMemorySize, 4GB) range. Make sure one\r
172 // variable MTRR suffices by truncating the size to a whole power of two,\r
173 // while keeping the end affixed to 4GB. This will round the base up.\r
174 //\r
175 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
ac0a286f
MK
176 Uc32Size = GetPowerOfTwo32 ((UINT32)(SIZE_4GB - LowerMemorySize));\r
177 mQemuUc32Base = (UINT32)(SIZE_4GB - Uc32Size);\r
49edde15
LE
178 //\r
179 // Assuming that LowerMemorySize is at least 1 byte, Uc32Size is at most 2GB.\r
180 // Therefore mQemuUc32Base is at least 2GB.\r
181 //\r
182 ASSERT (mQemuUc32Base >= BASE_2GB);\r
183\r
184 if (mQemuUc32Base != LowerMemorySize) {\r
ac0a286f
MK
185 DEBUG ((\r
186 DEBUG_VERBOSE,\r
187 "%a: rounded UC32 base from 0x%x up to 0x%x, for "\r
188 "an UC32 size of 0x%x\n",\r
189 __FUNCTION__,\r
190 LowerMemorySize,\r
191 mQemuUc32Base,\r
192 Uc32Size\r
193 ));\r
49edde15
LE
194 }\r
195}\r
196\r
1fceaddb
LE
197/**\r
198 Iterate over the RAM entries in QEMU's fw_cfg E820 RAM map that start outside\r
199 of the 32-bit address range.\r
200\r
201 Find the highest exclusive >=4GB RAM address, or produce memory resource\r
202 descriptor HOBs for RAM entries that start at or above 4GB.\r
203\r
204 @param[out] MaxAddress If MaxAddress is NULL, then ScanOrAdd64BitE820Ram()\r
205 produces memory resource descriptor HOBs for RAM\r
206 entries that start at or above 4GB.\r
207\r
208 Otherwise, MaxAddress holds the highest exclusive\r
209 >=4GB RAM address on output. If QEMU's fw_cfg E820\r
210 RAM map contains no RAM entry that starts outside of\r
211 the 32-bit address range, then MaxAddress is exactly\r
212 4GB on output.\r
213\r
214 @retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.\r
215\r
216 @retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a\r
217 whole multiple of sizeof(EFI_E820_ENTRY64). No\r
218 RAM entry was processed.\r
219\r
220 @return Error codes from QemuFwCfgFindFile(). No RAM\r
221 entry was processed.\r
222**/\r
223STATIC\r
224EFI_STATUS\r
225ScanOrAdd64BitE820Ram (\r
557dede8
GH
226 IN BOOLEAN AddHighHob,\r
227 OUT UINT64 *LowMemory OPTIONAL,\r
ac0a286f 228 OUT UINT64 *MaxAddress OPTIONAL\r
1fceaddb
LE
229 )\r
230{\r
ac0a286f
MK
231 EFI_STATUS Status;\r
232 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
233 UINTN FwCfgSize;\r
234 EFI_E820_ENTRY64 E820Entry;\r
235 UINTN Processed;\r
1fceaddb
LE
236\r
237 Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);\r
238 if (EFI_ERROR (Status)) {\r
239 return Status;\r
240 }\r
ac0a286f 241\r
1fceaddb
LE
242 if (FwCfgSize % sizeof E820Entry != 0) {\r
243 return EFI_PROTOCOL_ERROR;\r
244 }\r
245\r
557dede8
GH
246 if (LowMemory != NULL) {\r
247 *LowMemory = 0;\r
248 }\r
249\r
1fceaddb
LE
250 if (MaxAddress != NULL) {\r
251 *MaxAddress = BASE_4GB;\r
252 }\r
253\r
254 QemuFwCfgSelectItem (FwCfgItem);\r
255 for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {\r
256 QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);\r
257 DEBUG ((\r
258 DEBUG_VERBOSE,\r
259 "%a: Base=0x%Lx Length=0x%Lx Type=%u\n",\r
260 __FUNCTION__,\r
261 E820Entry.BaseAddr,\r
262 E820Entry.Length,\r
263 E820Entry.Type\r
264 ));\r
557dede8
GH
265 if (E820Entry.Type == EfiAcpiAddressRangeMemory) {\r
266 if (AddHighHob && (E820Entry.BaseAddr >= BASE_4GB)) {\r
ac0a286f
MK
267 UINT64 Base;\r
268 UINT64 End;\r
1fceaddb
LE
269\r
270 //\r
271 // Round up the start address, and round down the end address.\r
272 //\r
273 Base = ALIGN_VALUE (E820Entry.BaseAddr, (UINT64)EFI_PAGE_SIZE);\r
ac0a286f
MK
274 End = (E820Entry.BaseAddr + E820Entry.Length) &\r
275 ~(UINT64)EFI_PAGE_MASK;\r
1fceaddb
LE
276 if (Base < End) {\r
277 AddMemoryRangeHob (Base, End);\r
278 DEBUG ((\r
279 DEBUG_VERBOSE,\r
280 "%a: AddMemoryRangeHob [0x%Lx, 0x%Lx)\n",\r
281 __FUNCTION__,\r
282 Base,\r
283 End\r
284 ));\r
285 }\r
557dede8
GH
286 }\r
287\r
288 if (MaxAddress || LowMemory) {\r
ac0a286f 289 UINT64 Candidate;\r
1fceaddb
LE
290\r
291 Candidate = E820Entry.BaseAddr + E820Entry.Length;\r
557dede8 292 if (MaxAddress && (Candidate > *MaxAddress)) {\r
1fceaddb
LE
293 *MaxAddress = Candidate;\r
294 DEBUG ((\r
295 DEBUG_VERBOSE,\r
296 "%a: MaxAddress=0x%Lx\n",\r
297 __FUNCTION__,\r
298 *MaxAddress\r
299 ));\r
300 }\r
557dede8
GH
301\r
302 if (LowMemory && (Candidate > *LowMemory) && (Candidate < BASE_4GB)) {\r
303 *LowMemory = Candidate;\r
304 DEBUG ((\r
305 DEBUG_VERBOSE,\r
306 "%a: LowMemory=0x%Lx\n",\r
307 __FUNCTION__,\r
308 *LowMemory\r
309 ));\r
310 }\r
1fceaddb
LE
311 }\r
312 }\r
313 }\r
ac0a286f 314\r
1fceaddb
LE
315 return EFI_SUCCESS;\r
316}\r
317\r
4b455f7b 318UINT32\r
c0e10976 319GetSystemMemorySizeBelow4gb (\r
4b455f7b 320 VOID\r
49ba9447 321 )\r
322{\r
759e3c6d
GH
323 EFI_STATUS Status;\r
324 UINT64 LowerMemorySize = 0;\r
e6ea1464
AB
325 UINT8 Cmos0x34;\r
326 UINT8 Cmos0x35;\r
759e3c6d
GH
327\r
328 Status = ScanOrAdd64BitE820Ram (FALSE, &LowerMemorySize, NULL);\r
e6ea1464
AB
329 if ((Status == EFI_SUCCESS) && (LowerMemorySize > 0)) {\r
330 return (UINT32)LowerMemorySize;\r
331 }\r
332\r
333 //\r
334 // CMOS 0x34/0x35 specifies the system memory above 16 MB.\r
335 // * CMOS(0x35) is the high byte\r
336 // * CMOS(0x34) is the low byte\r
337 // * The size is specified in 64kb chunks\r
338 // * Since this is memory above 16MB, the 16MB must be added\r
339 // into the calculation to get the total memory size.\r
340 //\r
341\r
342 Cmos0x34 = (UINT8)CmosRead8 (0x34);\r
343 Cmos0x35 = (UINT8)CmosRead8 (0x35);\r
344\r
345 return (UINT32)(((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);\r
346}\r
347\r
348STATIC\r
349UINT64\r
350GetSystemMemorySizeAbove4gb (\r
351 )\r
352{\r
353 UINT32 Size;\r
354 UINTN CmosIndex;\r
355\r
356 //\r
357 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.\r
358 // * CMOS(0x5d) is the most significant size byte\r
359 // * CMOS(0x5c) is the middle size byte\r
360 // * CMOS(0x5b) is the least significant size byte\r
361 // * The size is specified in 64kb chunks\r
362 //\r
363\r
364 Size = 0;\r
365 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {\r
366 Size = (UINT32)(Size << 8) + (UINT32)CmosRead8 (CmosIndex);\r
367 }\r
368\r
369 return LShiftU64 (Size, 16);\r
c0e10976 370}\r
371\r
d5371680
LE
372/**\r
373 Return the highest address that DXE could possibly use, plus one.\r
374**/\r
375STATIC\r
376UINT64\r
377GetFirstNonAddress (\r
378 VOID\r
379 )\r
380{\r
ac0a286f
MK
381 UINT64 FirstNonAddress;\r
382 UINT64 Pci64Base, Pci64Size;\r
383 UINT32 FwCfgPciMmio64Mb;\r
384 EFI_STATUS Status;\r
385 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
386 UINTN FwCfgSize;\r
387 UINT64 HotPlugMemoryEnd;\r
388 RETURN_STATUS PcdStatus;\r
d5371680 389\r
1fceaddb
LE
390 //\r
391 // set FirstNonAddress to suppress incorrect compiler/analyzer warnings\r
392 //\r
393 FirstNonAddress = 0;\r
394\r
395 //\r
396 // If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM\r
397 // address from it. This can express an address >= 4GB+1TB.\r
398 //\r
e6ea1464
AB
399 // Otherwise, get the flat size of the memory above 4GB from the CMOS (which\r
400 // can only express a size smaller than 1TB), and add it to 4GB.\r
401 //\r
557dede8 402 Status = ScanOrAdd64BitE820Ram (FALSE, NULL, &FirstNonAddress);\r
1fceaddb 403 if (EFI_ERROR (Status)) {\r
e6ea1464 404 FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();\r
1fceaddb 405 }\r
7e5b1b67
LE
406\r
407 //\r
408 // If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO\r
409 // resources to 32-bit anyway. See DegradeResource() in\r
410 // "PciResourceSupport.c".\r
411 //\r
ac0a286f 412 #ifdef MDE_CPU_IA32\r
7e5b1b67
LE
413 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
414 return FirstNonAddress;\r
415 }\r
ac0a286f
MK
416\r
417 #endif\r
7e5b1b67
LE
418\r
419 //\r
420 // Otherwise, in order to calculate the highest address plus one, we must\r
421 // consider the 64-bit PCI host aperture too. Fetch the default size.\r
422 //\r
423 Pci64Size = PcdGet64 (PcdPciMmio64Size);\r
424\r
425 //\r
426 // See if the user specified the number of megabytes for the 64-bit PCI host\r
98800cce 427 // aperture. Accept an aperture size up to 16TB.\r
7e5b1b67
LE
428 //\r
429 // As signaled by the "X-" prefix, this knob is experimental, and might go\r
430 // away at any time.\r
431 //\r
ac0a286f
MK
432 Status = QemuFwCfgParseUint32 (\r
433 "opt/ovmf/X-PciMmio64Mb",\r
434 FALSE,\r
435 &FwCfgPciMmio64Mb\r
436 );\r
98800cce 437 switch (Status) {\r
ac0a286f
MK
438 case EFI_UNSUPPORTED:\r
439 case EFI_NOT_FOUND:\r
98800cce 440 break;\r
ac0a286f
MK
441 case EFI_SUCCESS:\r
442 if (FwCfgPciMmio64Mb <= 0x1000000) {\r
443 Pci64Size = LShiftU64 (FwCfgPciMmio64Mb, 20);\r
444 break;\r
445 }\r
446\r
98800cce
LE
447 //\r
448 // fall through\r
449 //\r
ac0a286f
MK
450 default:\r
451 DEBUG ((\r
452 DEBUG_WARN,\r
453 "%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",\r
454 __FUNCTION__\r
455 ));\r
456 break;\r
7e5b1b67
LE
457 }\r
458\r
459 if (Pci64Size == 0) {\r
460 if (mBootMode != BOOT_ON_S3_RESUME) {\r
ac0a286f
MK
461 DEBUG ((\r
462 DEBUG_INFO,\r
463 "%a: disabling 64-bit PCI host aperture\n",\r
464 __FUNCTION__\r
465 ));\r
32e083c7
LE
466 PcdStatus = PcdSet64S (PcdPciMmio64Size, 0);\r
467 ASSERT_RETURN_ERROR (PcdStatus);\r
7e5b1b67
LE
468 }\r
469\r
470 //\r
471 // There's nothing more to do; the amount of memory above 4GB fully\r
472 // determines the highest address plus one. The memory hotplug area (see\r
473 // below) plays no role for the firmware in this case.\r
474 //\r
475 return FirstNonAddress;\r
476 }\r
477\r
478 //\r
479 // The "etc/reserved-memory-end" fw_cfg file, when present, contains an\r
480 // absolute, exclusive end address for the memory hotplug area. This area\r
481 // starts right at the end of the memory above 4GB. The 64-bit PCI host\r
482 // aperture must be placed above it.\r
483 //\r
ac0a286f
MK
484 Status = QemuFwCfgFindFile (\r
485 "etc/reserved-memory-end",\r
486 &FwCfgItem,\r
487 &FwCfgSize\r
488 );\r
489 if (!EFI_ERROR (Status) && (FwCfgSize == sizeof HotPlugMemoryEnd)) {\r
7e5b1b67
LE
490 QemuFwCfgSelectItem (FwCfgItem);\r
491 QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);\r
ac0a286f
MK
492 DEBUG ((\r
493 DEBUG_VERBOSE,\r
494 "%a: HotPlugMemoryEnd=0x%Lx\n",\r
495 __FUNCTION__,\r
496 HotPlugMemoryEnd\r
497 ));\r
7e5b1b67
LE
498\r
499 ASSERT (HotPlugMemoryEnd >= FirstNonAddress);\r
500 FirstNonAddress = HotPlugMemoryEnd;\r
501 }\r
502\r
503 //\r
504 // SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so\r
505 // that the host can map it with 1GB hugepages. Follow suit.\r
506 //\r
507 Pci64Base = ALIGN_VALUE (FirstNonAddress, (UINT64)SIZE_1GB);\r
508 Pci64Size = ALIGN_VALUE (Pci64Size, (UINT64)SIZE_1GB);\r
509\r
510 //\r
511 // The 64-bit PCI host aperture should also be "naturally" aligned. The\r
512 // alignment is determined by rounding the size of the aperture down to the\r
513 // next smaller or equal power of two. That is, align the aperture by the\r
514 // largest BAR size that can fit into it.\r
515 //\r
516 Pci64Base = ALIGN_VALUE (Pci64Base, GetPowerOfTwo64 (Pci64Size));\r
517\r
518 if (mBootMode != BOOT_ON_S3_RESUME) {\r
519 //\r
520 // The core PciHostBridgeDxe driver will automatically add this range to\r
521 // the GCD memory space map through our PciHostBridgeLib instance; here we\r
522 // only need to set the PCDs.\r
523 //\r
32e083c7
LE
524 PcdStatus = PcdSet64S (PcdPciMmio64Base, Pci64Base);\r
525 ASSERT_RETURN_ERROR (PcdStatus);\r
526 PcdStatus = PcdSet64S (PcdPciMmio64Size, Pci64Size);\r
527 ASSERT_RETURN_ERROR (PcdStatus);\r
528\r
ac0a286f
MK
529 DEBUG ((\r
530 DEBUG_INFO,\r
531 "%a: Pci64Base=0x%Lx Pci64Size=0x%Lx\n",\r
532 __FUNCTION__,\r
533 Pci64Base,\r
534 Pci64Size\r
535 ));\r
7e5b1b67
LE
536 }\r
537\r
538 //\r
539 // The useful address space ends with the 64-bit PCI host aperture.\r
540 //\r
541 FirstNonAddress = Pci64Base + Pci64Size;\r
d5371680
LE
542 return FirstNonAddress;\r
543}\r
544\r
bc89fe48
LE
545/**\r
546 Initialize the mPhysMemAddressWidth variable, based on guest RAM size.\r
547**/\r
548VOID\r
549AddressWidthInitialization (\r
550 VOID\r
551 )\r
552{\r
ac0a286f 553 UINT64 FirstNonAddress;\r
bc89fe48
LE
554\r
555 //\r
556 // As guest-physical memory size grows, the permanent PEI RAM requirements\r
557 // are dominated by the identity-mapping page tables built by the DXE IPL.\r
558 // The DXL IPL keys off of the physical address bits advertized in the CPU\r
559 // HOB. To conserve memory, we calculate the minimum address width here.\r
560 //\r
d5371680 561 FirstNonAddress = GetFirstNonAddress ();\r
bc89fe48
LE
562 mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);\r
563\r
564 //\r
565 // If FirstNonAddress is not an integral power of two, then we need an\r
566 // additional bit.\r
567 //\r
568 if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {\r
569 ++mPhysMemAddressWidth;\r
570 }\r
571\r
572 //\r
573 // The minimum address width is 36 (covers up to and excluding 64 GB, which\r
574 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for\r
575 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We\r
576 // can simply assert that here, since 48 bits are good enough for 256 TB.\r
577 //\r
578 if (mPhysMemAddressWidth <= 36) {\r
579 mPhysMemAddressWidth = 36;\r
580 }\r
ac0a286f 581\r
bc89fe48
LE
582 ASSERT (mPhysMemAddressWidth <= 48);\r
583}\r
584\r
bc89fe48
LE
585/**\r
586 Calculate the cap for the permanent PEI memory.\r
587**/\r
588STATIC\r
589UINT32\r
590GetPeiMemoryCap (\r
591 VOID\r
592 )\r
593{\r
ac0a286f
MK
594 BOOLEAN Page1GSupport;\r
595 UINT32 RegEax;\r
596 UINT32 RegEdx;\r
597 UINT32 Pml4Entries;\r
598 UINT32 PdpEntries;\r
599 UINTN TotalPages;\r
bc89fe48
LE
600\r
601 //\r
602 // If DXE is 32-bit, then just return the traditional 64 MB cap.\r
603 //\r
ac0a286f 604 #ifdef MDE_CPU_IA32\r
bc89fe48
LE
605 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
606 return SIZE_64MB;\r
607 }\r
ac0a286f
MK
608\r
609 #endif\r
bc89fe48
LE
610\r
611 //\r
612 // Dependent on physical address width, PEI memory allocations can be\r
613 // dominated by the page tables built for 64-bit DXE. So we key the cap off\r
614 // of those. The code below is based on CreateIdentityMappingPageTables() in\r
615 // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".\r
616 //\r
617 Page1GSupport = FALSE;\r
618 if (PcdGetBool (PcdUse1GPageTable)) {\r
619 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
620 if (RegEax >= 0x80000001) {\r
621 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
622 if ((RegEdx & BIT26) != 0) {\r
623 Page1GSupport = TRUE;\r
624 }\r
625 }\r
626 }\r
627\r
628 if (mPhysMemAddressWidth <= 39) {\r
629 Pml4Entries = 1;\r
ac0a286f 630 PdpEntries = 1 << (mPhysMemAddressWidth - 30);\r
bc89fe48
LE
631 ASSERT (PdpEntries <= 0x200);\r
632 } else {\r
633 Pml4Entries = 1 << (mPhysMemAddressWidth - 39);\r
634 ASSERT (Pml4Entries <= 0x200);\r
635 PdpEntries = 512;\r
636 }\r
637\r
638 TotalPages = Page1GSupport ? Pml4Entries + 1 :\r
ac0a286f 639 (PdpEntries + 1) * Pml4Entries + 1;\r
bc89fe48
LE
640 ASSERT (TotalPages <= 0x40201);\r
641\r
642 //\r
643 // Add 64 MB for miscellaneous allocations. Note that for\r
644 // mPhysMemAddressWidth values close to 36, the cap will actually be\r
645 // dominated by this increment.\r
646 //\r
647 return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);\r
648}\r
649\r
36658fff
WL
650/**\r
651 Publish PEI core memory\r
652\r
653 @return EFI_SUCCESS The PEIM initialized successfully.\r
654\r
655**/\r
656EFI_STATUS\r
657PublishPeiMemory (\r
658 VOID\r
659 )\r
660{\r
ac0a286f
MK
661 EFI_STATUS Status;\r
662 EFI_PHYSICAL_ADDRESS MemoryBase;\r
663 UINT64 MemorySize;\r
664 UINT32 LowerMemorySize;\r
665 UINT32 PeiMemoryCap;\r
36658fff 666\r
45d87081
LE
667 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
668 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
669 //\r
670 // TSEG is chipped from the end of low RAM\r
671 //\r
23bfb5c0 672 LowerMemorySize -= mQ35TsegMbytes * SIZE_1MB;\r
45d87081
LE
673 }\r
674\r
675 //\r
676 // If S3 is supported, then the S3 permanent PEI memory is placed next,\r
677 // downwards. Its size is primarily dictated by CpuMpPei. The formula below\r
678 // is an approximation.\r
679 //\r
680 if (mS3Supported) {\r
681 mS3AcpiReservedMemorySize = SIZE_512KB +\r
ac0a286f
MK
682 mMaxCpuCount *\r
683 PcdGet32 (PcdCpuApStackSize);\r
45d87081 684 mS3AcpiReservedMemoryBase = LowerMemorySize - mS3AcpiReservedMemorySize;\r
ac0a286f 685 LowerMemorySize = mS3AcpiReservedMemoryBase;\r
45d87081
LE
686 }\r
687\r
8e54500f 688 if (mBootMode == BOOT_ON_S3_RESUME) {\r
45d87081
LE
689 MemoryBase = mS3AcpiReservedMemoryBase;\r
690 MemorySize = mS3AcpiReservedMemorySize;\r
8e54500f 691 } else {\r
bc89fe48 692 PeiMemoryCap = GetPeiMemoryCap ();\r
ac0a286f
MK
693 DEBUG ((\r
694 DEBUG_INFO,\r
695 "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",\r
696 __FUNCTION__,\r
697 mPhysMemAddressWidth,\r
698 PeiMemoryCap >> 10\r
699 ));\r
bc89fe48 700\r
8e54500f
JJ
701 //\r
702 // Determine the range of memory to use during PEI\r
703 //\r
efb0f16e
LE
704 // Technically we could lay the permanent PEI RAM over SEC's temporary\r
705 // decompression and scratch buffer even if "secure S3" is needed, since\r
706 // their lifetimes don't overlap. However, PeiFvInitialization() will cover\r
707 // RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory\r
708 // allocation HOB, and other allocations served from the permanent PEI RAM\r
709 // shouldn't overlap with that HOB.\r
710 //\r
711 MemoryBase = mS3Supported && FeaturePcdGet (PcdSmmSmramRequire) ?\r
ac0a286f
MK
712 PcdGet32 (PcdOvmfDecompressionScratchEnd) :\r
713 PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);\r
8e54500f 714 MemorySize = LowerMemorySize - MemoryBase;\r
bc89fe48
LE
715 if (MemorySize > PeiMemoryCap) {\r
716 MemoryBase = LowerMemorySize - PeiMemoryCap;\r
717 MemorySize = PeiMemoryCap;\r
8e54500f 718 }\r
36658fff
WL
719 }\r
720\r
adec2bd5
LE
721 //\r
722 // MEMFD_BASE_ADDRESS separates the SMRAM at the default SMBASE from the\r
723 // normal boot permanent PEI RAM. Regarding the S3 boot path, the S3\r
724 // permanent PEI RAM is located even higher.\r
725 //\r
726 if (FeaturePcdGet (PcdSmmSmramRequire) && mQ35SmramAtDefaultSmbase) {\r
727 ASSERT (SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE <= MemoryBase);\r
728 }\r
729\r
36658fff
WL
730 //\r
731 // Publish this memory to the PEI Core\r
732 //\r
ac0a286f 733 Status = PublishSystemMemory (MemoryBase, MemorySize);\r
36658fff
WL
734 ASSERT_EFI_ERROR (Status);\r
735\r
736 return Status;\r
737}\r
738\r
84b223c1
LE
739STATIC\r
740VOID\r
741QemuInitializeRamBelow1gb (\r
742 VOID\r
743 )\r
744{\r
745 if (FeaturePcdGet (PcdSmmSmramRequire) && mQ35SmramAtDefaultSmbase) {\r
746 AddMemoryRangeHob (0, SMM_DEFAULT_SMBASE);\r
ac0a286f
MK
747 AddReservedMemoryBaseSizeHob (\r
748 SMM_DEFAULT_SMBASE,\r
749 MCH_DEFAULT_SMBASE_SIZE,\r
750 TRUE /* Cacheable */\r
751 );\r
84b223c1
LE
752 STATIC_ASSERT (\r
753 SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE < BASE_512KB + BASE_128KB,\r
754 "end of SMRAM at default SMBASE ends at, or exceeds, 640KB"\r
755 );\r
ac0a286f
MK
756 AddMemoryRangeHob (\r
757 SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE,\r
758 BASE_512KB + BASE_128KB\r
759 );\r
84b223c1
LE
760 } else {\r
761 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
762 }\r
763}\r
764\r
49ba9447 765/**\r
c034906e 766 Peform Memory Detection for QEMU / KVM\r
49ba9447 767\r
768**/\r
c034906e
JJ
769STATIC\r
770VOID\r
771QemuInitializeRam (\r
772 VOID\r
49ba9447 773 )\r
774{\r
ac0a286f 775 UINT64 LowerMemorySize;\r
e6ea1464 776 UINT64 UpperMemorySize;\r
ac0a286f
MK
777 MTRR_SETTINGS MtrrSettings;\r
778 EFI_STATUS Status;\r
49ba9447 779\r
70d5086c 780 DEBUG ((DEBUG_INFO, "%a called\n", __FUNCTION__));\r
49ba9447 781\r
782 //\r
783 // Determine total memory size available\r
784 //\r
c0e10976 785 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
49ba9447 786\r
e3e3090a
LE
787 if (mBootMode == BOOT_ON_S3_RESUME) {\r
788 //\r
789 // Create the following memory HOB as an exception on the S3 boot path.\r
790 //\r
791 // Normally we'd create memory HOBs only on the normal boot path. However,\r
792 // CpuMpPei specifically needs such a low-memory HOB on the S3 path as\r
793 // well, for "borrowing" a subset of it temporarily, for the AP startup\r
794 // vector.\r
795 //\r
796 // CpuMpPei saves the original contents of the borrowed area in permanent\r
797 // PEI RAM, in a backup buffer allocated with the normal PEI services.\r
798 // CpuMpPei restores the original contents ("returns" the borrowed area) at\r
799 // End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before\r
8c0b0b34 800 // transferring control to the OS's wakeup vector in the FACS.\r
e3e3090a
LE
801 //\r
802 // We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to\r
803 // restore the original contents. Furthermore, we expect all such PEIMs\r
804 // (CpuMpPei included) to claim the borrowed areas by producing memory\r
805 // allocation HOBs, and to honor preexistent memory allocation HOBs when\r
806 // looking for an area to borrow.\r
807 //\r
84b223c1 808 QemuInitializeRamBelow1gb ();\r
e3e3090a 809 } else {\r
bd386eaf
JJ
810 //\r
811 // Create memory HOBs\r
812 //\r
84b223c1 813 QemuInitializeRamBelow1gb ();\r
b09c1c6f
LE
814\r
815 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
ac0a286f 816 UINT32 TsegSize;\r
b09c1c6f 817\r
23bfb5c0 818 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f 819 AddMemoryRangeHob (BASE_1MB, LowerMemorySize - TsegSize);\r
ac0a286f
MK
820 AddReservedMemoryBaseSizeHob (\r
821 LowerMemorySize - TsegSize,\r
822 TsegSize,\r
823 TRUE\r
824 );\r
b09c1c6f
LE
825 } else {\r
826 AddMemoryRangeHob (BASE_1MB, LowerMemorySize);\r
827 }\r
828\r
1fceaddb
LE
829 //\r
830 // If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM\r
831 // entries. Otherwise, create a single memory HOB with the flat >=4GB\r
832 // memory size read from the CMOS.\r
833 //\r
557dede8 834 Status = ScanOrAdd64BitE820Ram (TRUE, NULL, NULL);\r
e6ea1464
AB
835 if (EFI_ERROR (Status)) {\r
836 UpperMemorySize = GetSystemMemorySizeAbove4gb ();\r
837 if (UpperMemorySize != 0) {\r
838 AddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);\r
839 }\r
840 }\r
bd386eaf 841 }\r
49ba9447 842\r
79d274b8
LE
843 //\r
844 // We'd like to keep the following ranges uncached:\r
845 // - [640 KB, 1 MB)\r
846 // - [LowerMemorySize, 4 GB)\r
847 //\r
848 // Everything else should be WB. Unfortunately, programming the inverse (ie.\r
849 // keeping the default UC, and configuring the complement set of the above as\r
850 // WB) is not reliable in general, because the end of the upper RAM can have\r
851 // practically any alignment, and we may not have enough variable MTRRs to\r
852 // cover it exactly.\r
853 //\r
9afcd48a 854 if (IsMtrrSupported () && (mHostBridgeDevId != CLOUDHV_DEVICE_ID)) {\r
79d274b8
LE
855 MtrrGetAllMtrrs (&MtrrSettings);\r
856\r
857 //\r
858 // MTRRs disabled, fixed MTRRs disabled, default type is uncached\r
859 //\r
860 ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);\r
861 ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);\r
862 ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);\r
863\r
864 //\r
865 // flip default type to writeback\r
866 //\r
867 SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);\r
868 ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);\r
869 MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;\r
870 MtrrSetAllMtrrs (&MtrrSettings);\r
e8e5cd4a 871\r
79d274b8
LE
872 //\r
873 // Set memory range from 640KB to 1MB to uncacheable\r
874 //\r
ac0a286f
MK
875 Status = MtrrSetMemoryAttribute (\r
876 BASE_512KB + BASE_128KB,\r
877 BASE_1MB - (BASE_512KB + BASE_128KB),\r
878 CacheUncacheable\r
879 );\r
79d274b8 880 ASSERT_EFI_ERROR (Status);\r
e8e5cd4a 881\r
79d274b8 882 //\r
49edde15
LE
883 // Set the memory range from the start of the 32-bit MMIO area (32-bit PCI\r
884 // MMIO aperture on i440fx, PCIEXBAR on q35) to 4GB as uncacheable.\r
79d274b8 885 //\r
ac0a286f
MK
886 Status = MtrrSetMemoryAttribute (\r
887 mQemuUc32Base,\r
888 SIZE_4GB - mQemuUc32Base,\r
889 CacheUncacheable\r
890 );\r
79d274b8 891 ASSERT_EFI_ERROR (Status);\r
c0e10976 892 }\r
49ba9447 893}\r
894\r
c034906e
JJ
895/**\r
896 Publish system RAM and reserve memory regions\r
897\r
898**/\r
899VOID\r
900InitializeRamRegions (\r
901 VOID\r
902 )\r
903{\r
d06eb2d1 904 QemuInitializeRam ();\r
8e54500f 905\r
ea3a12d9
BS
906 SevInitializeRam ();\r
907\r
ac0a286f 908 if (mS3Supported && (mBootMode != BOOT_ON_S3_RESUME)) {\r
8e54500f
JJ
909 //\r
910 // This is the memory range that will be used for PEI on S3 resume\r
911 //\r
912 BuildMemoryAllocationHob (\r
45d87081
LE
913 mS3AcpiReservedMemoryBase,\r
914 mS3AcpiReservedMemorySize,\r
8e54500f
JJ
915 EfiACPIMemoryNVS\r
916 );\r
e249f906
LE
917\r
918 //\r
919 // Cover the initial RAM area used as stack and temporary PEI heap.\r
920 //\r
921 // This is reserved as ACPI NVS so it can be used on S3 resume.\r
922 //\r
923 BuildMemoryAllocationHob (\r
924 PcdGet32 (PcdOvmfSecPeiTempRamBase),\r
925 PcdGet32 (PcdOvmfSecPeiTempRamSize),\r
926 EfiACPIMemoryNVS\r
927 );\r
78a38b73 928\r
ad43bc6b
LE
929 //\r
930 // SEC stores its table of GUIDed section handlers here.\r
931 //\r
932 BuildMemoryAllocationHob (\r
933 PcdGet64 (PcdGuidedExtractHandlerTableAddress),\r
934 PcdGet32 (PcdGuidedExtractHandlerTableSize),\r
935 EfiACPIMemoryNVS\r
936 );\r
937\r
ac0a286f 938 #ifdef MDE_CPU_X64\r
78a38b73
LE
939 //\r
940 // Reserve the initial page tables built by the reset vector code.\r
941 //\r
942 // Since this memory range will be used by the Reset Vector on S3\r
943 // resume, it must be reserved as ACPI NVS.\r
944 //\r
945 BuildMemoryAllocationHob (\r
ac0a286f
MK
946 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecPageTablesBase),\r
947 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecPageTablesSize),\r
78a38b73
LE
948 EfiACPIMemoryNVS\r
949 );\r
0bbed066
TL
950\r
951 if (MemEncryptSevEsIsEnabled ()) {\r
952 //\r
953 // If SEV-ES is enabled, reserve the GHCB-related memory area. This\r
954 // includes the extra page table used to break down the 2MB page\r
955 // mapping into 4KB page entries where the GHCB resides and the\r
956 // GHCB area itself.\r
957 //\r
958 // Since this memory range will be used by the Reset Vector on S3\r
959 // resume, it must be reserved as ACPI NVS.\r
960 //\r
961 BuildMemoryAllocationHob (\r
ac0a286f
MK
962 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableBase),\r
963 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableSize),\r
0bbed066
TL
964 EfiACPIMemoryNVS\r
965 );\r
966 BuildMemoryAllocationHob (\r
ac0a286f
MK
967 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBase),\r
968 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbSize),\r
0bbed066
TL
969 EfiACPIMemoryNVS\r
970 );\r
36265424 971 BuildMemoryAllocationHob (\r
ac0a286f
MK
972 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupBase),\r
973 (UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupSize),\r
36265424
TL
974 EfiACPIMemoryNVS\r
975 );\r
0bbed066 976 }\r
ac0a286f
MK
977\r
978 #endif\r
0e8a31f5 979 }\r
6a7cba79 980\r
0e8a31f5 981 if (mBootMode != BOOT_ON_S3_RESUME) {\r
1a7edbbc
LE
982 if (!FeaturePcdGet (PcdSmmSmramRequire)) {\r
983 //\r
984 // Reserve the lock box storage area\r
985 //\r
986 // Since this memory range will be used on S3 resume, it must be\r
987 // reserved as ACPI NVS.\r
988 //\r
989 // If S3 is unsupported, then various drivers might still write to the\r
990 // LockBox area. We ought to prevent DXE from serving allocation requests\r
991 // such that they would overlap the LockBox storage.\r
992 //\r
993 ZeroMem (\r
ac0a286f
MK
994 (VOID *)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),\r
995 (UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize)\r
1a7edbbc
LE
996 );\r
997 BuildMemoryAllocationHob (\r
ac0a286f
MK
998 (EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),\r
999 (UINT64)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize),\r
1a7edbbc
LE
1000 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
1001 );\r
1002 }\r
b09c1c6f
LE
1003\r
1004 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
ac0a286f 1005 UINT32 TsegSize;\r
b09c1c6f
LE
1006\r
1007 //\r
1008 // Make sure the TSEG area that we reported as a reserved memory resource\r
1009 // cannot be used for reserved memory allocations.\r
1010 //\r
23bfb5c0 1011 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f 1012 BuildMemoryAllocationHob (\r
ac0a286f 1013 GetSystemMemorySizeBelow4gb () - TsegSize,\r
b09c1c6f
LE
1014 TsegSize,\r
1015 EfiReservedMemoryType\r
1016 );\r
84b223c1
LE
1017 //\r
1018 // Similarly, allocate away the (already reserved) SMRAM at the default\r
1019 // SMBASE, if it exists.\r
1020 //\r
1021 if (mQ35SmramAtDefaultSmbase) {\r
1022 BuildMemoryAllocationHob (\r
1023 SMM_DEFAULT_SMBASE,\r
1024 MCH_DEFAULT_SMBASE_SIZE,\r
1025 EfiReservedMemoryType\r
1026 );\r
1027 }\r
b09c1c6f 1028 }\r
0731236f 1029\r
ac0a286f 1030 #ifdef MDE_CPU_X64\r
80e67af9 1031 if (FixedPcdGet32 (PcdOvmfWorkAreaSize) != 0) {\r
0731236f 1032 //\r
80e67af9 1033 // Reserve the work area.\r
0731236f
TL
1034 //\r
1035 // Since this memory range will be used by the Reset Vector on S3\r
1036 // resume, it must be reserved as ACPI NVS.\r
1037 //\r
1038 // If S3 is unsupported, then various drivers might still write to the\r
1039 // work area. We ought to prevent DXE from serving allocation requests\r
1040 // such that they would overlap the work area.\r
1041 //\r
1042 BuildMemoryAllocationHob (\r
ac0a286f
MK
1043 (EFI_PHYSICAL_ADDRESS)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaBase),\r
1044 (UINT64)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaSize),\r
0731236f
TL
1045 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
1046 );\r
1047 }\r
ac0a286f
MK
1048\r
1049 #endif\r
8e54500f 1050 }\r
c034906e 1051}\r