]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c
UefiCpuPkg/PiSmmCpuDxeSmm: Add logic to support semaphore type.
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / CpuS3.c
CommitLineData
529a5a86
MK
1/** @file\r
2Code for Processor S3 restoration\r
3\r
e21e355e 4Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>\r
529a5a86
MK
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "PiSmmCpuDxeSmm.h"\r
16\r
e21e355e 17#pragma pack(1)\r
529a5a86
MK
18typedef struct {\r
19 UINTN Lock;\r
20 VOID *StackStart;\r
21 UINTN StackSize;\r
22 VOID *ApFunction;\r
23 IA32_DESCRIPTOR GdtrProfile;\r
24 IA32_DESCRIPTOR IdtrProfile;\r
25 UINT32 BufferStart;\r
26 UINT32 Cr3;\r
e21e355e 27 UINTN InitializeFloatingPointUnitsAddress;\r
529a5a86 28} MP_CPU_EXCHANGE_INFO;\r
e21e355e 29#pragma pack()\r
529a5a86
MK
30\r
31typedef struct {\r
32 UINT8 *RendezvousFunnelAddress;\r
33 UINTN PModeEntryOffset;\r
34 UINTN FlatJumpOffset;\r
35 UINTN Size;\r
36 UINTN LModeEntryOffset;\r
37 UINTN LongJumpOffset;\r
38} MP_ASSEMBLY_ADDRESS_MAP;\r
39\r
6c4c15fa 40//\r
93324390 41// Flags used when program the register.\r
6c4c15fa 42//\r
93324390
ED
43typedef struct {\r
44 volatile UINTN ConsoleLogLock; // Spinlock used to control console.\r
45 volatile UINTN MemoryMappedLock; // Spinlock used to program mmio\r
46 volatile UINT32 *SemaphoreCount; // Semaphore used to program semaphore.\r
47} PROGRAM_CPU_REGISTER_FLAGS;\r
6c4c15fa 48\r
7677b4db
ED
49//\r
50// Signal that SMM BASE relocation is complete.\r
51//\r
52volatile BOOLEAN mInitApsAfterSmmBaseReloc;\r
53\r
529a5a86
MK
54/**\r
55 Get starting address and size of the rendezvous entry for APs.\r
56 Information for fixing a jump instruction in the code is also returned.\r
57\r
58 @param AddressMap Output buffer for address map information.\r
59**/\r
60VOID *\r
61EFIAPI\r
62AsmGetAddressMap (\r
63 MP_ASSEMBLY_ADDRESS_MAP *AddressMap\r
64 );\r
65\r
66#define LEGACY_REGION_SIZE (2 * 0x1000)\r
67#define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE)\r
529a5a86 68\r
93324390 69PROGRAM_CPU_REGISTER_FLAGS mCpuFlags;\r
529a5a86 70ACPI_CPU_DATA mAcpiCpuData;\r
c773514d 71volatile UINT32 mNumberToFinish;\r
529a5a86
MK
72MP_CPU_EXCHANGE_INFO *mExchangeInfo;\r
73BOOLEAN mRestoreSmmConfigurationInS3 = FALSE;\r
529a5a86 74\r
0bdc9e75
SZ
75//\r
76// S3 boot flag\r
77//\r
78BOOLEAN mSmmS3Flag = FALSE;\r
79\r
80//\r
81// Pointer to structure used during S3 Resume\r
82//\r
83SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;\r
84\r
b10d5ddc
SZ
85BOOLEAN mAcpiS3Enable = TRUE;\r
86\r
4a0f88dd
JF
87UINT8 *mApHltLoopCode = NULL;\r
88UINT8 mApHltLoopCodeTemplate[] = {\r
ec8a3877
JF
89 0x8B, 0x44, 0x24, 0x04, // mov eax, dword ptr [esp+4]\r
90 0xF0, 0xFF, 0x08, // lock dec dword ptr [eax]\r
91 0xFA, // cli\r
92 0xF4, // hlt\r
93 0xEB, 0xFC // jmp $-2\r
4a0f88dd
JF
94 };\r
95\r
93324390 96CHAR16 *mRegisterTypeStr[] = {L"MSR", L"CR", L"MMIO", L"CACHE", L"SEMAP", L"INVALID" };\r
529a5a86
MK
97\r
98/**\r
99 Sync up the MTRR values for all processors.\r
100\r
101 @param MtrrTable Table holding fixed/variable MTRR values to be loaded.\r
102**/\r
103VOID\r
104EFIAPI\r
105LoadMtrrData (\r
106 EFI_PHYSICAL_ADDRESS MtrrTable\r
107 )\r
108/*++\r
109\r
110Routine Description:\r
111\r
112 Sync up the MTRR values for all processors.\r
113\r
114Arguments:\r
115\r
116Returns:\r
117 None\r
118\r
119--*/\r
120{\r
121 MTRR_SETTINGS *MtrrSettings;\r
122\r
123 MtrrSettings = (MTRR_SETTINGS *) (UINTN) MtrrTable;\r
124 MtrrSetAllMtrrs (MtrrSettings);\r
125}\r
126\r
127/**\r
93324390 128 Increment semaphore by 1.\r
529a5a86 129\r
93324390 130 @param Sem IN: 32-bit unsigned integer\r
529a5a86 131\r
93324390
ED
132**/\r
133VOID\r
134S3ReleaseSemaphore (\r
135 IN OUT volatile UINT32 *Sem\r
136 )\r
137{\r
138 InterlockedIncrement (Sem);\r
139}\r
140\r
141/**\r
142 Decrement the semaphore by 1 if it is not zero.\r
529a5a86 143\r
93324390
ED
144 Performs an atomic decrement operation for semaphore.\r
145 The compare exchange operation must be performed using\r
146 MP safe mechanisms.\r
147\r
148 @param Sem IN: 32-bit unsigned integer\r
149\r
150**/\r
151VOID\r
152S3WaitForSemaphore (\r
153 IN OUT volatile UINT32 *Sem\r
154 )\r
155{\r
156 UINT32 Value;\r
157\r
158 do {\r
159 Value = *Sem;\r
160 } while (Value == 0 ||\r
161 InterlockedCompareExchange32 (\r
162 Sem,\r
163 Value,\r
164 Value - 1\r
165 ) != Value);\r
166}\r
167\r
168/**\r
169 Initialize the CPU registers from a register table.\r
170\r
171 @param[in] RegisterTable The register table for this AP.\r
172 @param[in] ApLocation AP location info for this ap.\r
173 @param[in] CpuStatus CPU status info for this CPU.\r
174 @param[in] CpuFlags Flags data structure used when program the register.\r
175\r
176 @note This service could be called by BSP/APs.\r
529a5a86
MK
177**/\r
178VOID\r
93324390
ED
179ProgramProcessorRegister (\r
180 IN CPU_REGISTER_TABLE *RegisterTable,\r
181 IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,\r
182 IN CPU_STATUS_INFORMATION *CpuStatus,\r
183 IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags\r
529a5a86
MK
184 )\r
185{\r
186 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;\r
187 UINTN Index;\r
188 UINTN Value;\r
93324390
ED
189 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;\r
190 volatile UINT32 *SemaphorePtr;\r
191 UINT32 FirstThread;\r
192 UINT32 PackageThreadsCount;\r
193 UINT32 CurrentThread;\r
194 UINTN ProcessorIndex;\r
195 UINTN ThreadIndex;\r
196 UINTN ValidThreadCount;\r
197 UINT32 *ValidCoreCountPerPackage;\r
529a5a86
MK
198\r
199 //\r
200 // Traverse Register Table of this logical processor\r
201 //\r
93324390
ED
202 RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;\r
203\r
204 for (Index = 0; Index < RegisterTable->TableLength; Index++) {\r
205\r
206 RegisterTableEntry = &RegisterTableEntryHead[Index];\r
207\r
208 DEBUG_CODE_BEGIN ();\r
209 if (ApLocation != NULL) {\r
210 AcquireSpinLock (&CpuFlags->ConsoleLogLock);\r
211 ThreadIndex = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount +\r
212 ApLocation->Core * CpuStatus->MaxThreadCount +\r
213 ApLocation->Thread;\r
214 DEBUG ((\r
215 DEBUG_INFO,\r
216 "Processor = %lu, Entry Index %lu, Type = %s!\n",\r
217 (UINT64)ThreadIndex,\r
218 (UINT64)Index,\r
219 mRegisterTypeStr[MIN ((REGISTER_TYPE)RegisterTableEntry->RegisterType, InvalidReg)]\r
220 ));\r
221 ReleaseSpinLock (&CpuFlags->ConsoleLogLock);\r
222 }\r
223 DEBUG_CODE_END ();\r
224\r
529a5a86
MK
225 //\r
226 // Check the type of specified register\r
227 //\r
228 switch (RegisterTableEntry->RegisterType) {\r
229 //\r
230 // The specified register is Control Register\r
231 //\r
232 case ControlRegister:\r
233 switch (RegisterTableEntry->Index) {\r
234 case 0:\r
235 Value = AsmReadCr0 ();\r
236 Value = (UINTN) BitFieldWrite64 (\r
237 Value,\r
238 RegisterTableEntry->ValidBitStart,\r
239 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,\r
240 (UINTN) RegisterTableEntry->Value\r
241 );\r
242 AsmWriteCr0 (Value);\r
243 break;\r
244 case 2:\r
245 Value = AsmReadCr2 ();\r
246 Value = (UINTN) BitFieldWrite64 (\r
247 Value,\r
248 RegisterTableEntry->ValidBitStart,\r
249 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,\r
250 (UINTN) RegisterTableEntry->Value\r
251 );\r
252 AsmWriteCr2 (Value);\r
253 break;\r
254 case 3:\r
255 Value = AsmReadCr3 ();\r
256 Value = (UINTN) BitFieldWrite64 (\r
257 Value,\r
258 RegisterTableEntry->ValidBitStart,\r
259 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,\r
260 (UINTN) RegisterTableEntry->Value\r
261 );\r
262 AsmWriteCr3 (Value);\r
263 break;\r
264 case 4:\r
265 Value = AsmReadCr4 ();\r
266 Value = (UINTN) BitFieldWrite64 (\r
267 Value,\r
268 RegisterTableEntry->ValidBitStart,\r
269 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,\r
270 (UINTN) RegisterTableEntry->Value\r
271 );\r
272 AsmWriteCr4 (Value);\r
273 break;\r
274 default:\r
275 break;\r
276 }\r
277 break;\r
278 //\r
279 // The specified register is Model Specific Register\r
280 //\r
281 case Msr:\r
282 //\r
283 // If this function is called to restore register setting after INIT signal,\r
284 // there is no need to restore MSRs in register table.\r
285 //\r
286 if (RegisterTableEntry->ValidBitLength >= 64) {\r
287 //\r
288 // If length is not less than 64 bits, then directly write without reading\r
289 //\r
290 AsmWriteMsr64 (\r
291 RegisterTableEntry->Index,\r
292 RegisterTableEntry->Value\r
293 );\r
294 } else {\r
529a5a86
MK
295 //\r
296 // Set the bit section according to bit start and length\r
297 //\r
298 AsmMsrBitFieldWrite64 (\r
299 RegisterTableEntry->Index,\r
300 RegisterTableEntry->ValidBitStart,\r
301 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,\r
302 RegisterTableEntry->Value\r
303 );\r
529a5a86
MK
304 }\r
305 break;\r
306 //\r
6c4c15fa
JF
307 // MemoryMapped operations\r
308 //\r
309 case MemoryMapped:\r
93324390 310 AcquireSpinLock (&CpuFlags->MemoryMappedLock);\r
6c4c15fa 311 MmioBitFieldWrite32 (\r
30b7a50b 312 (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),\r
6c4c15fa
JF
313 RegisterTableEntry->ValidBitStart,\r
314 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,\r
315 (UINT32)RegisterTableEntry->Value\r
316 );\r
93324390 317 ReleaseSpinLock (&CpuFlags->MemoryMappedLock);\r
6c4c15fa
JF
318 break;\r
319 //\r
529a5a86
MK
320 // Enable or disable cache\r
321 //\r
322 case CacheControl:\r
323 //\r
324 // If value of the entry is 0, then disable cache. Otherwise, enable cache.\r
325 //\r
326 if (RegisterTableEntry->Value == 0) {\r
327 AsmDisableCache ();\r
328 } else {\r
329 AsmEnableCache ();\r
330 }\r
331 break;\r
332\r
93324390
ED
333 case Semaphore:\r
334 // Semaphore works logic like below:\r
335 //\r
336 // V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);\r
337 // P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);\r
338 //\r
339 // All threads (T0...Tn) waits in P() line and continues running\r
340 // together.\r
341 //\r
342 //\r
343 // T0 T1 ... Tn\r
344 //\r
345 // V(0...n) V(0...n) ... V(0...n)\r
346 // n * P(0) n * P(1) ... n * P(n)\r
347 //\r
348 ASSERT (\r
349 (ApLocation != NULL) && \r
350 (CpuStatus->ValidCoreCountPerPackage != 0) &&\r
351 (CpuFlags->SemaphoreCount) != NULL\r
352 );\r
353 SemaphorePtr = CpuFlags->SemaphoreCount;\r
354 switch (RegisterTableEntry->Value) {\r
355 case CoreDepType:\r
356 //\r
357 // Get Offset info for the first thread in the core which current thread belongs to.\r
358 //\r
359 FirstThread = (ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core) * CpuStatus->MaxThreadCount;\r
360 CurrentThread = FirstThread + ApLocation->Thread;\r
361 //\r
362 // First Notify all threads in current Core that this thread has ready.\r
363 //\r
364 for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {\r
365 S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);\r
366 }\r
367 //\r
368 // Second, check whether all valid threads in current core have ready.\r
369 //\r
370 for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {\r
371 S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);\r
372 }\r
373 break;\r
374\r
375 case PackageDepType:\r
376 ValidCoreCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ValidCoreCountPerPackage;\r
377 //\r
378 // Get Offset info for the first thread in the package which current thread belongs to.\r
379 //\r
380 FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;\r
381 //\r
382 // Get the possible threads count for current package.\r
383 //\r
384 PackageThreadsCount = CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount;\r
385 CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;\r
386 //\r
387 // Get the valid thread count for current package.\r
388 //\r
389 ValidThreadCount = CpuStatus->MaxThreadCount * ValidCoreCountPerPackage[ApLocation->Package];\r
390\r
391 //\r
392 // Different packages may have different valid cores in them. If driver maintail clearly\r
393 // cores number in different packages, the logic will be much complicated.\r
394 // Here driver just simply records the max core number in all packages and use it as expect\r
395 // core number for all packages.\r
396 // In below two steps logic, first current thread will Release semaphore for each thread\r
397 // in current package. Maybe some threads are not valid in this package, but driver don't\r
398 // care. Second, driver will let current thread wait semaphore for all valid threads in\r
399 // current package. Because only the valid threads will do release semaphore for this\r
400 // thread, driver here only need to wait the valid thread count.\r
401 //\r
402\r
403 //\r
404 // First Notify all threads in current package that this thread has ready.\r
405 //\r
406 for (ProcessorIndex = 0; ProcessorIndex < PackageThreadsCount ; ProcessorIndex ++) {\r
407 S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);\r
408 }\r
409 //\r
410 // Second, check whether all valid threads in current package have ready.\r
411 //\r
412 for (ProcessorIndex = 0; ProcessorIndex < ValidThreadCount; ProcessorIndex ++) {\r
413 S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);\r
414 }\r
415 break;\r
416\r
417 default:\r
418 break;\r
419 }\r
420 break;\r
421\r
529a5a86
MK
422 default:\r
423 break;\r
424 }\r
425 }\r
426}\r
427\r
93324390
ED
428/**\r
429\r
430 Set Processor register for one AP.\r
431 \r
432 @param PreSmmRegisterTable Use pre Smm register table or register table.\r
433\r
434**/\r
435VOID\r
436SetRegister (\r
437 IN BOOLEAN PreSmmRegisterTable\r
438 )\r
439{\r
440 CPU_REGISTER_TABLE *RegisterTable;\r
441 CPU_REGISTER_TABLE *RegisterTables;\r
442 UINT32 InitApicId;\r
443 UINTN ProcIndex;\r
444 UINTN Index;\r
445\r
446 if (PreSmmRegisterTable) {\r
447 RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable;\r
448 } else {\r
449 RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable;\r
450 }\r
451\r
452 InitApicId = GetInitialApicId ();\r
453 RegisterTable = NULL;\r
454 for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {\r
455 if (RegisterTables[Index].InitialApicId == InitApicId) {\r
456 RegisterTable = &RegisterTables[Index];\r
457 ProcIndex = Index;\r
458 break;\r
459 }\r
460 }\r
461 ASSERT (RegisterTable != NULL);\r
462\r
463 if (mAcpiCpuData.ApLocation != 0) {\r
464 ProgramProcessorRegister (\r
465 RegisterTable,\r
466 (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)mAcpiCpuData.ApLocation + ProcIndex,\r
467 &mAcpiCpuData.CpuStatus,\r
468 &mCpuFlags\r
469 );\r
470 } else {\r
471 ProgramProcessorRegister (\r
472 RegisterTable,\r
473 NULL,\r
474 &mAcpiCpuData.CpuStatus,\r
475 &mCpuFlags\r
476 );\r
477 }\r
478}\r
479\r
529a5a86 480/**\r
7677b4db 481 AP initialization before then after SMBASE relocation in the S3 boot path.\r
529a5a86
MK
482**/\r
483VOID\r
94744aa2 484InitializeAp (\r
529a5a86
MK
485 VOID\r
486 )\r
487{\r
7677b4db
ED
488 UINTN TopOfStack;\r
489 UINT8 Stack[128];\r
529a5a86
MK
490\r
491 LoadMtrrData (mAcpiCpuData.MtrrTable);\r
492\r
93324390 493 SetRegister (TRUE);\r
7677b4db 494\r
529a5a86
MK
495 //\r
496 // Count down the number with lock mechanism.\r
497 //\r
498 InterlockedDecrement (&mNumberToFinish);\r
529a5a86 499\r
7677b4db
ED
500 //\r
501 // Wait for BSP to signal SMM Base relocation done.\r
502 //\r
503 while (!mInitApsAfterSmmBaseReloc) {\r
504 CpuPause ();\r
505 }\r
529a5a86
MK
506\r
507 ProgramVirtualWireMode ();\r
508 DisableLvtInterrupts ();\r
509\r
93324390 510 SetRegister (FALSE);\r
529a5a86
MK
511\r
512 //\r
ec8a3877 513 // Place AP into the safe code, count down the number with lock mechanism in the safe code.\r
4a0f88dd 514 //\r
672b80c8
MK
515 TopOfStack = (UINTN) Stack + sizeof (Stack);\r
516 TopOfStack &= ~(UINTN) (CPU_STACK_ALIGNMENT - 1);\r
4a0f88dd 517 CopyMem ((VOID *) (UINTN) mApHltLoopCode, mApHltLoopCodeTemplate, sizeof (mApHltLoopCodeTemplate));\r
672b80c8 518 TransferApToSafeState ((UINTN)mApHltLoopCode, TopOfStack, (UINTN)&mNumberToFinish);\r
529a5a86
MK
519}\r
520\r
521/**\r
522 Prepares startup vector for APs.\r
523\r
524 This function prepares startup vector for APs.\r
525\r
526 @param WorkingBuffer The address of the work buffer.\r
527**/\r
528VOID\r
529PrepareApStartupVector (\r
530 EFI_PHYSICAL_ADDRESS WorkingBuffer\r
531 )\r
532{\r
533 EFI_PHYSICAL_ADDRESS StartupVector;\r
534 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
535\r
536 //\r
537 // Get the address map of startup code for AP,\r
538 // including code size, and offset of long jump instructions to redirect.\r
539 //\r
540 ZeroMem (&AddressMap, sizeof (AddressMap));\r
541 AsmGetAddressMap (&AddressMap);\r
542\r
543 StartupVector = WorkingBuffer;\r
544\r
545 //\r
546 // Copy AP startup code to startup vector, and then redirect the long jump\r
547 // instructions for mode switching.\r
548 //\r
549 CopyMem ((VOID *) (UINTN) StartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);\r
550 *(UINT32 *) (UINTN) (StartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (StartupVector + AddressMap.PModeEntryOffset);\r
551 if (AddressMap.LongJumpOffset != 0) {\r
552 *(UINT32 *) (UINTN) (StartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (StartupVector + AddressMap.LModeEntryOffset);\r
553 }\r
554\r
555 //\r
556 // Get the start address of exchange data between BSP and AP.\r
557 //\r
558 mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (StartupVector + AddressMap.Size);\r
559 ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));\r
560\r
561 CopyMem ((VOID *) (UINTN) &mExchangeInfo->GdtrProfile, (VOID *) (UINTN) mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));\r
562 CopyMem ((VOID *) (UINTN) &mExchangeInfo->IdtrProfile, (VOID *) (UINTN) mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));\r
563\r
529a5a86
MK
564 mExchangeInfo->StackStart = (VOID *) (UINTN) mAcpiCpuData.StackAddress;\r
565 mExchangeInfo->StackSize = mAcpiCpuData.StackSize;\r
566 mExchangeInfo->BufferStart = (UINT32) StartupVector;\r
567 mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());\r
e21e355e 568 mExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
529a5a86
MK
569}\r
570\r
571/**\r
572 The function is invoked before SMBASE relocation in S3 path to restores CPU status.\r
573\r
574 The function is invoked before SMBASE relocation in S3 path. It does first time microcode load\r
575 and restores MTRRs for both BSP and APs.\r
576\r
577**/\r
578VOID\r
94744aa2 579InitializeCpuBeforeRebase (\r
529a5a86
MK
580 VOID\r
581 )\r
582{\r
529a5a86
MK
583 LoadMtrrData (mAcpiCpuData.MtrrTable);\r
584\r
93324390 585 SetRegister (TRUE);\r
529a5a86
MK
586\r
587 ProgramVirtualWireMode ();\r
588\r
589 PrepareApStartupVector (mAcpiCpuData.StartupVector);\r
590\r
591 mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;\r
94744aa2 592 mExchangeInfo->ApFunction = (VOID *) (UINTN) InitializeAp;\r
7677b4db
ED
593\r
594 //\r
595 // Execute code for before SmmBaseReloc. Note: This flag is maintained across S3 boots.\r
596 //\r
597 mInitApsAfterSmmBaseReloc = FALSE;\r
529a5a86
MK
598\r
599 //\r
600 // Send INIT IPI - SIPI to all APs\r
601 //\r
602 SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);\r
603\r
604 while (mNumberToFinish > 0) {\r
605 CpuPause ();\r
606 }\r
607}\r
608\r
609/**\r
610 The function is invoked after SMBASE relocation in S3 path to restores CPU status.\r
611\r
612 The function is invoked after SMBASE relocation in S3 path. It restores configuration according to\r
613 data saved by normal boot path for both BSP and APs.\r
614\r
615**/\r
616VOID\r
94744aa2 617InitializeCpuAfterRebase (\r
529a5a86
MK
618 VOID\r
619 )\r
620{\r
529a5a86 621 mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;\r
529a5a86
MK
622\r
623 //\r
93324390 624 // Signal that SMM base relocation is complete and to continue initialization for all APs.\r
529a5a86 625 //\r
7677b4db 626 mInitApsAfterSmmBaseReloc = TRUE;\r
529a5a86 627\r
93324390
ED
628 //\r
629 // Must begin set register after all APs have continue their initialization.\r
630 // This is a requirement to support semaphore mechanism in register table.\r
631 // Because if semaphore's dependence type is package type, semaphore will wait\r
632 // for all Aps in one package finishing their tasks before set next register\r
633 // for all APs. If the Aps not begin its task during BSP doing its task, the\r
634 // BSP thread will hang because it is waiting for other Aps in the same\r
635 // package finishing their task.\r
636 //\r
637 SetRegister (FALSE);\r
638\r
529a5a86
MK
639 while (mNumberToFinish > 0) {\r
640 CpuPause ();\r
641 }\r
642}\r
0bdc9e75
SZ
643\r
644/**\r
645 Restore SMM Configuration in S3 boot path.\r
646\r
647**/\r
648VOID\r
649RestoreSmmConfigurationInS3 (\r
650 VOID\r
651 )\r
652{\r
b10d5ddc
SZ
653 if (!mAcpiS3Enable) {\r
654 return;\r
655 }\r
656\r
0bdc9e75
SZ
657 //\r
658 // Restore SMM Configuration in S3 boot path.\r
659 //\r
660 if (mRestoreSmmConfigurationInS3) {\r
661 //\r
662 // Need make sure gSmst is correct because below function may use them.\r
663 //\r
664 gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;\r
665 gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;\r
666 gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;\r
667 gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;\r
668 gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;\r
669\r
670 //\r
671 // Configure SMM Code Access Check feature if available.\r
672 //\r
673 ConfigSmmCodeAccessCheck ();\r
674\r
675 SmmCpuFeaturesCompleteSmmReadyToLock ();\r
676\r
677 mRestoreSmmConfigurationInS3 = FALSE;\r
678 }\r
679}\r
680\r
681/**\r
682 Perform SMM initialization for all processors in the S3 boot path.\r
683\r
684 For a native platform, MP initialization in the S3 boot path is also performed in this function.\r
685**/\r
686VOID\r
687EFIAPI\r
688SmmRestoreCpu (\r
689 VOID\r
690 )\r
691{\r
692 SMM_S3_RESUME_STATE *SmmS3ResumeState;\r
693 IA32_DESCRIPTOR Ia32Idtr;\r
694 IA32_DESCRIPTOR X64Idtr;\r
695 IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];\r
696 EFI_STATUS Status;\r
697\r
698 DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));\r
699\r
700 mSmmS3Flag = TRUE;\r
701\r
0bdc9e75
SZ
702 //\r
703 // See if there is enough context to resume PEI Phase\r
704 //\r
705 if (mSmmS3ResumeState == NULL) {\r
706 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));\r
707 CpuDeadLoop ();\r
708 }\r
709\r
710 SmmS3ResumeState = mSmmS3ResumeState;\r
711 ASSERT (SmmS3ResumeState != NULL);\r
712\r
713 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {\r
714 //\r
715 // Save the IA32 IDT Descriptor\r
716 //\r
717 AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);\r
718\r
719 //\r
720 // Setup X64 IDT table\r
721 //\r
722 ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);\r
723 X64Idtr.Base = (UINTN) IdtEntryTable;\r
724 X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);\r
725 AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);\r
726\r
727 //\r
728 // Setup the default exception handler\r
729 //\r
730 Status = InitializeCpuExceptionHandlers (NULL);\r
731 ASSERT_EFI_ERROR (Status);\r
732\r
733 //\r
734 // Initialize Debug Agent to support source level debug\r
735 //\r
736 InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);\r
737 }\r
738\r
739 //\r
740 // Skip initialization if mAcpiCpuData is not valid\r
741 //\r
742 if (mAcpiCpuData.NumberOfCpus > 0) {\r
743 //\r
744 // First time microcode load and restore MTRRs\r
745 //\r
94744aa2 746 InitializeCpuBeforeRebase ();\r
0bdc9e75
SZ
747 }\r
748\r
749 //\r
750 // Restore SMBASE for BSP and all APs\r
751 //\r
752 SmmRelocateBases ();\r
753\r
754 //\r
755 // Skip initialization if mAcpiCpuData is not valid\r
756 //\r
757 if (mAcpiCpuData.NumberOfCpus > 0) {\r
758 //\r
759 // Restore MSRs for BSP and all APs\r
760 //\r
94744aa2 761 InitializeCpuAfterRebase ();\r
0bdc9e75
SZ
762 }\r
763\r
764 //\r
765 // Set a flag to restore SMM configuration in S3 path.\r
766 //\r
767 mRestoreSmmConfigurationInS3 = TRUE;\r
768\r
769 DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));\r
770 DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));\r
771 DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));\r
772 DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));\r
773 DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));\r
774\r
775 //\r
776 // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase\r
777 //\r
778 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {\r
779 DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));\r
780\r
781 SwitchStack (\r
782 (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,\r
783 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,\r
784 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,\r
785 (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer\r
786 );\r
787 }\r
788\r
789 //\r
790 // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase\r
791 //\r
792 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {\r
793 DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));\r
794 //\r
795 // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.\r
796 //\r
797 SaveAndSetDebugTimerInterrupt (FALSE);\r
798 //\r
799 // Restore IA32 IDT table\r
800 //\r
801 AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);\r
802 AsmDisablePaging64 (\r
803 SmmS3ResumeState->ReturnCs,\r
804 (UINT32)SmmS3ResumeState->ReturnEntryPoint,\r
805 (UINT32)SmmS3ResumeState->ReturnContext1,\r
806 (UINT32)SmmS3ResumeState->ReturnContext2,\r
807 (UINT32)SmmS3ResumeState->ReturnStackPointer\r
808 );\r
809 }\r
810\r
811 //\r
812 // Can not resume PEI Phase\r
813 //\r
814 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));\r
815 CpuDeadLoop ();\r
816}\r
817\r
818/**\r
819 Initialize SMM S3 resume state structure used during S3 Resume.\r
820\r
821 @param[in] Cr3 The base address of the page tables to use in SMM.\r
822\r
823**/\r
824VOID\r
825InitSmmS3ResumeState (\r
826 IN UINT32 Cr3\r
827 )\r
828{\r
829 VOID *GuidHob;\r
830 EFI_SMRAM_DESCRIPTOR *SmramDescriptor;\r
831 SMM_S3_RESUME_STATE *SmmS3ResumeState;\r
4a0f88dd
JF
832 EFI_PHYSICAL_ADDRESS Address;\r
833 EFI_STATUS Status;\r
0bdc9e75 834\r
b10d5ddc
SZ
835 if (!mAcpiS3Enable) {\r
836 return;\r
837 }\r
838\r
0bdc9e75 839 GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);\r
a95c9cfd
JW
840 if (GuidHob == NULL) {\r
841 DEBUG ((\r
842 DEBUG_ERROR,\r
843 "ERROR:%a(): HOB(gEfiAcpiVariableGuid=%g) needed by S3 resume doesn't exist!\n",\r
844 __FUNCTION__,\r
845 &gEfiAcpiVariableGuid\r
846 ));\r
847 CpuDeadLoop ();\r
848 } else {\r
0bdc9e75
SZ
849 SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);\r
850\r
851 DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));\r
852 DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));\r
853\r
854 SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;\r
855 ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));\r
856\r
857 mSmmS3ResumeState = SmmS3ResumeState;\r
858 SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;\r
859\r
860 SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;\r
861\r
862 SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;\r
863 SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));\r
864 if (SmmS3ResumeState->SmmS3StackBase == 0) {\r
865 SmmS3ResumeState->SmmS3StackSize = 0;\r
866 }\r
867\r
f0053e83 868 SmmS3ResumeState->SmmS3Cr0 = mSmmCr0;\r
0bdc9e75 869 SmmS3ResumeState->SmmS3Cr3 = Cr3;\r
351b49c1 870 SmmS3ResumeState->SmmS3Cr4 = mSmmCr4;\r
0bdc9e75
SZ
871\r
872 if (sizeof (UINTN) == sizeof (UINT64)) {\r
873 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;\r
874 }\r
875 if (sizeof (UINTN) == sizeof (UINT32)) {\r
876 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;\r
877 }\r
0bdc9e75 878\r
16d84657
JW
879 //\r
880 // Patch SmmS3ResumeState->SmmS3Cr3\r
881 //\r
882 InitSmmS3Cr3 ();\r
883 }\r
4a0f88dd
JF
884\r
885 //\r
886 // Allocate safe memory in ACPI NVS for AP to execute hlt loop in\r
887 // protected mode on S3 path\r
888 //\r
889 Address = BASE_4GB - 1;\r
890 Status = gBS->AllocatePages (\r
891 AllocateMaxAddress,\r
892 EfiACPIMemoryNVS,\r
893 EFI_SIZE_TO_PAGES (sizeof (mApHltLoopCodeTemplate)),\r
894 &Address\r
895 );\r
896 ASSERT_EFI_ERROR (Status);\r
897 mApHltLoopCode = (UINT8 *) (UINTN) Address;\r
0bdc9e75
SZ
898}\r
899\r
900/**\r
901 Copy register table from ACPI NVS memory into SMRAM.\r
902\r
903 @param[in] DestinationRegisterTableList Points to destination register table.\r
904 @param[in] SourceRegisterTableList Points to source register table.\r
905 @param[in] NumberOfCpus Number of CPUs.\r
906\r
907**/\r
908VOID\r
909CopyRegisterTable (\r
910 IN CPU_REGISTER_TABLE *DestinationRegisterTableList,\r
911 IN CPU_REGISTER_TABLE *SourceRegisterTableList,\r
912 IN UINT32 NumberOfCpus\r
913 )\r
914{\r
915 UINTN Index;\r
0bdc9e75
SZ
916 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;\r
917\r
918 CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));\r
919 for (Index = 0; Index < NumberOfCpus; Index++) {\r
30d995ee
JF
920 if (DestinationRegisterTableList[Index].AllocatedSize != 0) {\r
921 RegisterTableEntry = AllocateCopyPool (\r
922 DestinationRegisterTableList[Index].AllocatedSize,\r
923 (VOID *)(UINTN)SourceRegisterTableList[Index].RegisterTableEntry\r
924 );\r
925 ASSERT (RegisterTableEntry != NULL);\r
926 DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry;\r
0bdc9e75
SZ
927 }\r
928 }\r
929}\r
930\r
931/**\r
932 Get ACPI CPU data.\r
933\r
934**/\r
935VOID\r
936GetAcpiCpuData (\r
937 VOID\r
938 )\r
939{\r
940 ACPI_CPU_DATA *AcpiCpuData;\r
941 IA32_DESCRIPTOR *Gdtr;\r
942 IA32_DESCRIPTOR *Idtr;\r
293f8766
ED
943 VOID *GdtForAp;\r
944 VOID *IdtForAp;\r
945 VOID *MachineCheckHandlerForAp;\r
93324390 946 CPU_STATUS_INFORMATION *CpuStatus;\r
0bdc9e75 947\r
b10d5ddc
SZ
948 if (!mAcpiS3Enable) {\r
949 return;\r
950 }\r
951\r
0bdc9e75
SZ
952 //\r
953 // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0\r
954 //\r
955 mAcpiCpuData.NumberOfCpus = 0;\r
956\r
957 //\r
958 // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM\r
959 //\r
960 AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);\r
961 if (AcpiCpuData == 0) {\r
962 return;\r
963 }\r
964\r
965 //\r
966 // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.\r
967 //\r
968 CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));\r
969\r
970 mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));\r
971 ASSERT (mAcpiCpuData.MtrrTable != 0);\r
972\r
973 CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));\r
974\r
975 mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));\r
976 ASSERT (mAcpiCpuData.GdtrProfile != 0);\r
977\r
978 CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));\r
979\r
980 mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));\r
981 ASSERT (mAcpiCpuData.IdtrProfile != 0);\r
982\r
983 CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));\r
984\r
985 mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));\r
986 ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);\r
987\r
988 CopyRegisterTable (\r
989 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,\r
990 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,\r
991 mAcpiCpuData.NumberOfCpus\r
992 );\r
993\r
994 mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));\r
995 ASSERT (mAcpiCpuData.RegisterTable != 0);\r
996\r
997 CopyRegisterTable (\r
998 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,\r
999 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,\r
1000 mAcpiCpuData.NumberOfCpus\r
1001 );\r
1002\r
1003 //\r
1004 // Copy AP's GDT, IDT and Machine Check handler into SMRAM.\r
1005 //\r
1006 Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;\r
1007 Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;\r
1008\r
293f8766
ED
1009 GdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);\r
1010 ASSERT (GdtForAp != NULL);\r
1011 IdtForAp = (VOID *) ((UINTN)GdtForAp + (Gdtr->Limit + 1));\r
1012 MachineCheckHandlerForAp = (VOID *) ((UINTN)IdtForAp + (Idtr->Limit + 1));\r
1013\r
1014 CopyMem (GdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);\r
1015 CopyMem (IdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);\r
1016 CopyMem (MachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);\r
0bdc9e75 1017\r
293f8766
ED
1018 Gdtr->Base = (UINTN)GdtForAp;\r
1019 Idtr->Base = (UINTN)IdtForAp;\r
1020 mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp;\r
93324390
ED
1021\r
1022 CpuStatus = &mAcpiCpuData.CpuStatus;\r
1023 CopyMem (CpuStatus, &AcpiCpuData->CpuStatus, sizeof (CPU_STATUS_INFORMATION));\r
1024 if (AcpiCpuData->CpuStatus.ValidCoreCountPerPackage != 0) {\r
1025 CpuStatus->ValidCoreCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (\r
1026 sizeof (UINT32) * CpuStatus->PackageCount,\r
1027 (UINT32 *)(UINTN)AcpiCpuData->CpuStatus.ValidCoreCountPerPackage\r
1028 );\r
1029 ASSERT (CpuStatus->ValidCoreCountPerPackage != 0);\r
1030 }\r
1031 if (AcpiCpuData->ApLocation != 0) {\r
1032 mAcpiCpuData.ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (\r
1033 mAcpiCpuData.NumberOfCpus * sizeof (EFI_CPU_PHYSICAL_LOCATION),\r
1034 (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)AcpiCpuData->ApLocation\r
1035 );\r
1036 ASSERT (mAcpiCpuData.ApLocation != 0);\r
1037 }\r
1038 if (CpuStatus->PackageCount != 0) {\r
1039 mCpuFlags.SemaphoreCount = AllocateZeroPool (\r
1040 sizeof (UINT32) * CpuStatus->PackageCount *\r
1041 CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);\r
1042 ASSERT (mCpuFlags.SemaphoreCount != NULL);\r
1043 }\r
1044 InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.MemoryMappedLock);\r
1045 InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.ConsoleLogLock);\r
0bdc9e75 1046}\r
b10d5ddc
SZ
1047\r
1048/**\r
1049 Get ACPI S3 enable flag.\r
1050\r
1051**/\r
1052VOID\r
1053GetAcpiS3EnableFlag (\r
1054 VOID\r
1055 )\r
1056{\r
1057 mAcpiS3Enable = PcdGetBool (PcdAcpiS3Enable);\r
1058}\r