]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
UefiCpuPkg/PiSmmCpuDxeSmm: Combine INIT-SIPI-SIPI.
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
CommitLineData
529a5a86
MK
1/** @file\r
2Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.\r
3\r
8491e302 4Copyright (c) 2009 - 2017, Intel Corporation. All rights reserved.<BR>\r
241f9149
LD
5Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>\r
6\r
529a5a86
MK
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#include "PiSmmCpuDxeSmm.h"\r
18\r
19//\r
20// SMM CPU Private Data structure that contains SMM Configuration Protocol\r
21// along its supporting fields.\r
22//\r
23SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {\r
24 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature\r
25 NULL, // SmmCpuHandle\r
26 NULL, // Pointer to ProcessorInfo array\r
27 NULL, // Pointer to Operation array\r
28 NULL, // Pointer to CpuSaveStateSize array\r
29 NULL, // Pointer to CpuSaveState array\r
30 { {0} }, // SmmReservedSmramRegion\r
31 {\r
32 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp\r
33 0, // SmmCoreEntryContext.CurrentlyExecutingCpu\r
34 0, // SmmCoreEntryContext.NumberOfCpus\r
35 NULL, // SmmCoreEntryContext.CpuSaveStateSize\r
36 NULL // SmmCoreEntryContext.CpuSaveState\r
37 },\r
38 NULL, // SmmCoreEntry\r
39 {\r
40 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions\r
41 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry\r
42 },\r
43};\r
44\r
45CPU_HOT_PLUG_DATA mCpuHotPlugData = {\r
46 CPU_HOT_PLUG_DATA_REVISION_1, // Revision\r
47 0, // Array Length of SmBase and APIC ID\r
48 NULL, // Pointer to APIC ID array\r
49 NULL, // Pointer to SMBASE array\r
50 0, // Reserved\r
51 0, // SmrrBase\r
52 0 // SmrrSize\r
53};\r
54\r
55//\r
56// Global pointer used to access mSmmCpuPrivateData from outside and inside SMM\r
57//\r
58SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;\r
59\r
60//\r
61// SMM Relocation variables\r
62//\r
63volatile BOOLEAN *mRebased;\r
64volatile BOOLEAN mIsBsp;\r
65\r
66///\r
67/// Handle for the SMM CPU Protocol\r
68///\r
69EFI_HANDLE mSmmCpuHandle = NULL;\r
70\r
71///\r
72/// SMM CPU Protocol instance\r
73///\r
74EFI_SMM_CPU_PROTOCOL mSmmCpu = {\r
75 SmmReadSaveState,\r
76 SmmWriteSaveState\r
77};\r
78\r
79EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];\r
80\r
529a5a86
MK
81//\r
82// SMM stack information\r
83//\r
84UINTN mSmmStackArrayBase;\r
85UINTN mSmmStackArrayEnd;\r
86UINTN mSmmStackSize;\r
87\r
529a5a86
MK
88UINTN mMaxNumberOfCpus = 1;\r
89UINTN mNumberOfCpus = 1;\r
90\r
91//\r
92// SMM ready to lock flag\r
93//\r
94BOOLEAN mSmmReadyToLock = FALSE;\r
95\r
96//\r
97// Global used to cache PCD for SMM Code Access Check enable\r
98//\r
99BOOLEAN mSmmCodeAccessCheckEnable = FALSE;\r
100\r
241f9149
LD
101//\r
102// Global copy of the PcdPteMemoryEncryptionAddressOrMask\r
103//\r
104UINT64 mAddressEncMask = 0;\r
105\r
529a5a86
MK
106//\r
107// Spin lock used to serialize setting of SMM Code Access Check feature\r
108//\r
fe3a75bc 109SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;\r
529a5a86 110\r
7ed6f781
JF
111//\r
112// Saved SMM ranges information\r
113//\r
114EFI_SMRAM_DESCRIPTOR *mSmmCpuSmramRanges;\r
115UINTN mSmmCpuSmramRangeCount;\r
116\r
51ce27fd
SZ
117UINT8 mPhysicalAddressBits;\r
118\r
529a5a86
MK
119/**\r
120 Initialize IDT to setup exception handlers for SMM.\r
121\r
122**/\r
123VOID\r
124InitializeSmmIdt (\r
125 VOID\r
126 )\r
127{\r
128 EFI_STATUS Status;\r
129 BOOLEAN InterruptState;\r
130 IA32_DESCRIPTOR DxeIdtr;\r
717fb604
JY
131\r
132 //\r
133 // There are 32 (not 255) entries in it since only processor\r
134 // generated exceptions will be handled.\r
135 //\r
136 gcSmiIdtr.Limit = (sizeof(IA32_IDT_GATE_DESCRIPTOR) * 32) - 1;\r
137 //\r
138 // Allocate page aligned IDT, because it might be set as read only.\r
139 //\r
140 gcSmiIdtr.Base = (UINTN)AllocateCodePages (EFI_SIZE_TO_PAGES(gcSmiIdtr.Limit + 1));\r
141 ASSERT (gcSmiIdtr.Base != 0);\r
142 ZeroMem ((VOID *)gcSmiIdtr.Base, gcSmiIdtr.Limit + 1);\r
143\r
529a5a86
MK
144 //\r
145 // Disable Interrupt and save DXE IDT table\r
146 //\r
147 InterruptState = SaveAndDisableInterrupts ();\r
148 AsmReadIdtr (&DxeIdtr);\r
149 //\r
150 // Load SMM temporary IDT table\r
151 //\r
152 AsmWriteIdtr (&gcSmiIdtr);\r
153 //\r
154 // Setup SMM default exception handlers, SMM IDT table\r
155 // will be updated and saved in gcSmiIdtr\r
156 //\r
157 Status = InitializeCpuExceptionHandlers (NULL);\r
158 ASSERT_EFI_ERROR (Status);\r
159 //\r
160 // Restore DXE IDT table and CPU interrupt\r
161 //\r
162 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);\r
163 SetInterruptState (InterruptState);\r
164}\r
165\r
166/**\r
167 Search module name by input IP address and output it.\r
168\r
169 @param CallerIpAddress Caller instruction pointer.\r
170\r
171**/\r
172VOID\r
173DumpModuleInfoByIp (\r
174 IN UINTN CallerIpAddress\r
175 )\r
176{\r
177 UINTN Pe32Data;\r
529a5a86 178 VOID *PdbPointer;\r
529a5a86
MK
179\r
180 //\r
181 // Find Image Base\r
182 //\r
9e981317 183 Pe32Data = PeCoffSearchImageBase (CallerIpAddress);\r
529a5a86 184 if (Pe32Data != 0) {\r
b8caae19 185 DEBUG ((DEBUG_ERROR, "It is invoked from the instruction before IP(0x%p)", (VOID *) CallerIpAddress));\r
529a5a86
MK
186 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);\r
187 if (PdbPointer != NULL) {\r
b8caae19 188 DEBUG ((DEBUG_ERROR, " in module (%a)\n", PdbPointer));\r
529a5a86
MK
189 }\r
190 }\r
191}\r
192\r
193/**\r
194 Read information from the CPU save state.\r
195\r
196 @param This EFI_SMM_CPU_PROTOCOL instance\r
197 @param Width The number of bytes to read from the CPU save state.\r
198 @param Register Specifies the CPU register to read form the save state.\r
199 @param CpuIndex Specifies the zero-based index of the CPU save state.\r
200 @param Buffer Upon return, this holds the CPU register value read from the save state.\r
201\r
202 @retval EFI_SUCCESS The register was read from Save State\r
203 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor\r
204 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.\r
205\r
206**/\r
207EFI_STATUS\r
208EFIAPI\r
209SmmReadSaveState (\r
210 IN CONST EFI_SMM_CPU_PROTOCOL *This,\r
211 IN UINTN Width,\r
212 IN EFI_SMM_SAVE_STATE_REGISTER Register,\r
213 IN UINTN CpuIndex,\r
214 OUT VOID *Buffer\r
215 )\r
216{\r
217 EFI_STATUS Status;\r
218\r
219 //\r
220 // Retrieve pointer to the specified CPU's SMM Save State buffer\r
221 //\r
222 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {\r
223 return EFI_INVALID_PARAMETER;\r
224 }\r
225\r
226 //\r
227 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID\r
228 //\r
229 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {\r
230 //\r
231 // The pseudo-register only supports the 64-bit size specified by Width.\r
232 //\r
233 if (Width != sizeof (UINT64)) {\r
234 return EFI_INVALID_PARAMETER;\r
235 }\r
236 //\r
237 // If the processor is in SMM at the time the SMI occurred,\r
238 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.\r
239 // Otherwise, EFI_NOT_FOUND is returned.\r
240 //\r
ed3d5ecb 241 if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {\r
529a5a86
MK
242 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;\r
243 return EFI_SUCCESS;\r
244 } else {\r
245 return EFI_NOT_FOUND;\r
246 }\r
247 }\r
248\r
ed3d5ecb 249 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {\r
529a5a86
MK
250 return EFI_INVALID_PARAMETER;\r
251 }\r
252\r
253 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
254 if (Status == EFI_UNSUPPORTED) {\r
255 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
256 }\r
257 return Status;\r
258}\r
259\r
260/**\r
261 Write data to the CPU save state.\r
262\r
263 @param This EFI_SMM_CPU_PROTOCOL instance\r
264 @param Width The number of bytes to read from the CPU save state.\r
265 @param Register Specifies the CPU register to write to the save state.\r
266 @param CpuIndex Specifies the zero-based index of the CPU save state\r
267 @param Buffer Upon entry, this holds the new CPU register value.\r
268\r
269 @retval EFI_SUCCESS The register was written from Save State\r
270 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor\r
271 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct\r
272\r
273**/\r
274EFI_STATUS\r
275EFIAPI\r
276SmmWriteSaveState (\r
277 IN CONST EFI_SMM_CPU_PROTOCOL *This,\r
278 IN UINTN Width,\r
279 IN EFI_SMM_SAVE_STATE_REGISTER Register,\r
280 IN UINTN CpuIndex,\r
281 IN CONST VOID *Buffer\r
282 )\r
283{\r
284 EFI_STATUS Status;\r
285\r
286 //\r
287 // Retrieve pointer to the specified CPU's SMM Save State buffer\r
288 //\r
289 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {\r
290 return EFI_INVALID_PARAMETER;\r
291 }\r
292\r
293 //\r
294 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored\r
295 //\r
296 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {\r
297 return EFI_SUCCESS;\r
298 }\r
299\r
300 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {\r
301 return EFI_INVALID_PARAMETER;\r
302 }\r
303\r
304 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
305 if (Status == EFI_UNSUPPORTED) {\r
306 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);\r
307 }\r
308 return Status;\r
309}\r
310\r
311\r
312/**\r
313 C function for SMI handler. To change all processor's SMMBase Register.\r
314\r
315**/\r
316VOID\r
317EFIAPI\r
318SmmInitHandler (\r
319 VOID\r
320 )\r
321{\r
322 UINT32 ApicId;\r
323 UINTN Index;\r
324\r
325 //\r
326 // Update SMM IDT entries' code segment and load IDT\r
327 //\r
328 AsmWriteIdtr (&gcSmiIdtr);\r
329 ApicId = GetApicId ();\r
330\r
bb767506 331 ASSERT (mNumberOfCpus <= mMaxNumberOfCpus);\r
529a5a86
MK
332\r
333 for (Index = 0; Index < mNumberOfCpus; Index++) {\r
334 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {\r
335 //\r
336 // Initialize SMM specific features on the currently executing CPU\r
337 //\r
338 SmmCpuFeaturesInitializeProcessor (\r
339 Index,\r
340 mIsBsp,\r
341 gSmmCpuPrivate->ProcessorInfo,\r
342 &mCpuHotPlugData\r
343 );\r
344\r
a46a4c90
JF
345 if (!mSmmS3Flag) {\r
346 //\r
347 // Check XD and BTS features on each processor on normal boot\r
348 //\r
51773d49 349 CheckFeatureSupported ();\r
a46a4c90
JF
350 }\r
351\r
529a5a86
MK
352 if (mIsBsp) {\r
353 //\r
354 // BSP rebase is already done above.\r
355 // Initialize private data during S3 resume\r
356 //\r
357 InitializeMpSyncData ();\r
358 }\r
359\r
360 //\r
361 // Hook return after RSM to set SMM re-based flag\r
362 //\r
363 SemaphoreHook (Index, &mRebased[Index]);\r
364\r
365 return;\r
366 }\r
367 }\r
368 ASSERT (FALSE);\r
369}\r
370\r
371/**\r
372 Relocate SmmBases for each processor.\r
373\r
374 Execute on first boot and all S3 resumes\r
375\r
376**/\r
377VOID\r
378EFIAPI\r
379SmmRelocateBases (\r
380 VOID\r
381 )\r
382{\r
383 UINT8 BakBuf[BACK_BUF_SIZE];\r
384 SMRAM_SAVE_STATE_MAP BakBuf2;\r
385 SMRAM_SAVE_STATE_MAP *CpuStatePtr;\r
386 UINT8 *U8Ptr;\r
387 UINT32 ApicId;\r
388 UINTN Index;\r
389 UINTN BspIndex;\r
390\r
391 //\r
392 // Make sure the reserved size is large enough for procedure SmmInitTemplate.\r
393 //\r
394 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);\r
395\r
396 //\r
397 // Patch ASM code template with current CR0, CR3, and CR4 values\r
398 //\r
399 gSmmCr0 = (UINT32)AsmReadCr0 ();\r
400 gSmmCr3 = (UINT32)AsmReadCr3 ();\r
401 gSmmCr4 = (UINT32)AsmReadCr4 ();\r
402\r
403 //\r
404 // Patch GDTR for SMM base relocation\r
405 //\r
406 gcSmiInitGdtr.Base = gcSmiGdtr.Base;\r
407 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;\r
408\r
409 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);\r
410 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);\r
411\r
412 //\r
413 // Backup original contents at address 0x38000\r
414 //\r
415 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));\r
416 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));\r
417\r
418 //\r
419 // Load image for relocation\r
420 //\r
421 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);\r
422\r
423 //\r
424 // Retrieve the local APIC ID of current processor\r
425 //\r
426 ApicId = GetApicId ();\r
427\r
428 //\r
429 // Relocate SM bases for all APs\r
430 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate\r
431 //\r
432 mIsBsp = FALSE;\r
433 BspIndex = (UINTN)-1;\r
434 for (Index = 0; Index < mNumberOfCpus; Index++) {\r
435 mRebased[Index] = FALSE;\r
436 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {\r
437 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);\r
438 //\r
439 // Wait for this AP to finish its 1st SMI\r
440 //\r
441 while (!mRebased[Index]);\r
442 } else {\r
443 //\r
444 // BSP will be Relocated later\r
445 //\r
446 BspIndex = Index;\r
447 }\r
448 }\r
449\r
450 //\r
451 // Relocate BSP's SMM base\r
452 //\r
453 ASSERT (BspIndex != (UINTN)-1);\r
454 mIsBsp = TRUE;\r
455 SendSmiIpi (ApicId);\r
456 //\r
457 // Wait for the BSP to finish its 1st SMI\r
458 //\r
459 while (!mRebased[BspIndex]);\r
460\r
461 //\r
462 // Restore contents at address 0x38000\r
463 //\r
464 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));\r
465 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));\r
466}\r
467\r
529a5a86
MK
468/**\r
469 SMM Ready To Lock event notification handler.\r
470\r
471 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to\r
472 perform additional lock actions that must be performed from SMM on the next SMI.\r
473\r
474 @param[in] Protocol Points to the protocol's unique identifier.\r
475 @param[in] Interface Points to the interface instance.\r
476 @param[in] Handle The handle on which the interface was installed.\r
477\r
478 @retval EFI_SUCCESS Notification handler runs successfully.\r
479 **/\r
480EFI_STATUS\r
481EFIAPI\r
482SmmReadyToLockEventNotify (\r
483 IN CONST EFI_GUID *Protocol,\r
484 IN VOID *Interface,\r
485 IN EFI_HANDLE Handle\r
486 )\r
487{\r
0bdc9e75 488 GetAcpiCpuData ();\r
529a5a86 489\r
d2fc7711
JY
490 //\r
491 // Cache a copy of UEFI memory map before we start profiling feature.\r
492 //\r
493 GetUefiMemoryMap ();\r
494\r
529a5a86
MK
495 //\r
496 // Set SMM ready to lock flag and return\r
497 //\r
498 mSmmReadyToLock = TRUE;\r
499 return EFI_SUCCESS;\r
500}\r
501\r
502/**\r
503 The module Entry Point of the CPU SMM driver.\r
504\r
505 @param ImageHandle The firmware allocated handle for the EFI image.\r
506 @param SystemTable A pointer to the EFI System Table.\r
507\r
508 @retval EFI_SUCCESS The entry point is executed successfully.\r
509 @retval Other Some error occurs when executing this entry point.\r
510\r
511**/\r
512EFI_STATUS\r
513EFIAPI\r
514PiCpuSmmEntry (\r
515 IN EFI_HANDLE ImageHandle,\r
516 IN EFI_SYSTEM_TABLE *SystemTable\r
517 )\r
518{\r
519 EFI_STATUS Status;\r
520 EFI_MP_SERVICES_PROTOCOL *MpServices;\r
521 UINTN NumberOfEnabledProcessors;\r
522 UINTN Index;\r
523 VOID *Buffer;\r
ae82a30b
JY
524 UINTN BufferPages;\r
525 UINTN TileCodeSize;\r
526 UINTN TileDataSize;\r
529a5a86 527 UINTN TileSize;\r
529a5a86
MK
528 UINT8 *Stacks;\r
529 VOID *Registration;\r
530 UINT32 RegEax;\r
531 UINT32 RegEdx;\r
532 UINTN FamilyId;\r
533 UINTN ModelId;\r
534 UINT32 Cr3;\r
535\r
536 //\r
537 // Initialize Debug Agent to support source level debug in SMM code\r
538 //\r
539 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);\r
540\r
541 //\r
542 // Report the start of CPU SMM initialization.\r
543 //\r
544 REPORT_STATUS_CODE (\r
545 EFI_PROGRESS_CODE,\r
546 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT\r
547 );\r
548\r
549 //\r
550 // Fix segment address of the long-mode-switch jump\r
551 //\r
552 if (sizeof (UINTN) == sizeof (UINT64)) {\r
553 gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;\r
554 }\r
555\r
556 //\r
557 // Find out SMRR Base and SMRR Size\r
558 //\r
559 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);\r
560\r
561 //\r
562 // Get MP Services Protocol\r
563 //\r
564 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);\r
565 ASSERT_EFI_ERROR (Status);\r
566\r
567 //\r
568 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors\r
569 //\r
570 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);\r
571 ASSERT_EFI_ERROR (Status);\r
572 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
573\r
574 //\r
575 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.\r
576 // A constant BSP index makes no sense because it may be hot removed.\r
577 //\r
578 DEBUG_CODE (\r
579 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
580\r
581 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));\r
582 }\r
583 );\r
584\r
585 //\r
586 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.\r
587 //\r
588 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);\r
589 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));\r
590\r
241f9149
LD
591 //\r
592 // Save the PcdPteMemoryEncryptionAddressOrMask value into a global variable.\r
593 // Make sure AddressEncMask is contained to smallest supported address field.\r
594 //\r
595 mAddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;\r
596 DEBUG ((EFI_D_INFO, "mAddressEncMask = 0x%lx\n", mAddressEncMask));\r
597\r
529a5a86
MK
598 //\r
599 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors\r
600 //\r
601 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
602 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);\r
603 } else {\r
604 mMaxNumberOfCpus = mNumberOfCpus;\r
605 }\r
606 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;\r
607\r
608 //\r
609 // The CPU save state and code for the SMI entry point are tiled within an SMRAM\r
610 // allocated buffer. The minimum size of this buffer for a uniprocessor system\r
611 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area\r
612 // just below SMBASE + 64KB. If more than one CPU is present in the platform,\r
613 // then the SMI entry point and the CPU save state areas can be tiles to minimize\r
614 // the total amount SMRAM required for all the CPUs. The tile size can be computed\r
615 // by adding the // CPU save state size, any extra CPU specific context, and\r
616 // the size of code that must be placed at the SMI entry point to transfer\r
617 // control to a C function in the native SMM execution mode. This size is\r
618 // rounded up to the nearest power of 2 to give the tile size for a each CPU.\r
619 // The total amount of memory required is the maximum number of CPUs that\r
620 // platform supports times the tile size. The picture below shows the tiling,\r
621 // where m is the number of tiles that fit in 32KB.\r
622 //\r
623 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer\r
624 // | CPU m+1 Save State |\r
625 // +-----------------------------+\r
626 // | CPU m+1 Extra Data |\r
627 // +-----------------------------+\r
628 // | Padding |\r
629 // +-----------------------------+\r
630 // | CPU 2m SMI Entry |\r
631 // +#############################+ <-- Base of allocated buffer + 64 KB\r
632 // | CPU m-1 Save State |\r
633 // +-----------------------------+\r
634 // | CPU m-1 Extra Data |\r
635 // +-----------------------------+\r
636 // | Padding |\r
637 // +-----------------------------+\r
638 // | CPU 2m-1 SMI Entry |\r
639 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
640 // | . . . . . . . . . . . . |\r
641 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
642 // | CPU 2 Save State |\r
643 // +-----------------------------+\r
644 // | CPU 2 Extra Data |\r
645 // +-----------------------------+\r
646 // | Padding |\r
647 // +-----------------------------+\r
648 // | CPU m+1 SMI Entry |\r
649 // +=============================+ <-- Base of allocated buffer + 32 KB\r
650 // | CPU 1 Save State |\r
651 // +-----------------------------+\r
652 // | CPU 1 Extra Data |\r
653 // +-----------------------------+\r
654 // | Padding |\r
655 // +-----------------------------+\r
656 // | CPU m SMI Entry |\r
657 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB\r
658 // | CPU 0 Save State |\r
659 // +-----------------------------+\r
660 // | CPU 0 Extra Data |\r
661 // +-----------------------------+\r
662 // | Padding |\r
663 // +-----------------------------+\r
664 // | CPU m-1 SMI Entry |\r
665 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
666 // | . . . . . . . . . . . . |\r
667 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
668 // | Padding |\r
669 // +-----------------------------+\r
670 // | CPU 1 SMI Entry |\r
671 // +=============================+ <-- 2^n offset from Base of allocated buffer\r
672 // | Padding |\r
673 // +-----------------------------+\r
674 // | CPU 0 SMI Entry |\r
675 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB\r
676 //\r
677\r
678 //\r
679 // Retrieve CPU Family\r
680 //\r
e9b3a6c9 681 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);\r
529a5a86
MK
682 FamilyId = (RegEax >> 8) & 0xf;\r
683 ModelId = (RegEax >> 4) & 0xf;\r
684 if (FamilyId == 0x06 || FamilyId == 0x0f) {\r
685 ModelId = ModelId | ((RegEax >> 12) & 0xf0);\r
686 }\r
687\r
e9b3a6c9
MK
688 RegEdx = 0;\r
689 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);\r
690 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {\r
691 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);\r
692 }\r
529a5a86
MK
693 //\r
694 // Determine the mode of the CPU at the time an SMI occurs\r
695 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual\r
696 // Volume 3C, Section 34.4.1.1\r
697 //\r
698 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;\r
699 if ((RegEdx & BIT29) != 0) {\r
700 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;\r
701 }\r
702 if (FamilyId == 0x06) {\r
703 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {\r
704 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;\r
705 }\r
706 }\r
707\r
708 //\r
709 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU\r
f12367a0
MK
710 // specific context start starts at SMBASE + SMM_PSD_OFFSET, and the SMI entry point.\r
711 // This size is rounded up to nearest power of 2.\r
529a5a86 712 //\r
ae82a30b
JY
713 TileCodeSize = GetSmiHandlerSize ();\r
714 TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);\r
f12367a0 715 TileDataSize = (SMRAM_SAVE_STATE_MAP_OFFSET - SMM_PSD_OFFSET) + sizeof (SMRAM_SAVE_STATE_MAP);\r
ae82a30b
JY
716 TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);\r
717 TileSize = TileDataSize + TileCodeSize - 1;\r
529a5a86 718 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);\r
ae82a30b 719 DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));\r
529a5a86
MK
720\r
721 //\r
f12367a0
MK
722 // If the TileSize is larger than space available for the SMI Handler of\r
723 // CPU[i], the extra CPU specific context of CPU[i+1], and the SMRAM Save\r
724 // State Map of CPU[i+1], then ASSERT(). If this ASSERT() is triggered, then\r
725 // the SMI Handler size must be reduced or the size of the extra CPU specific\r
726 // context must be reduced.\r
529a5a86
MK
727 //\r
728 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));\r
729\r
730 //\r
731 // Allocate buffer for all of the tiles.\r
732 //\r
733 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual\r
734 // Volume 3C, Section 34.11 SMBASE Relocation\r
735 // For Pentium and Intel486 processors, the SMBASE values must be\r
736 // aligned on a 32-KByte boundary or the processor will enter shutdown\r
737 // state during the execution of a RSM instruction.\r
738 //\r
739 // Intel486 processors: FamilyId is 4\r
740 // Pentium processors : FamilyId is 5\r
741 //\r
ae82a30b 742 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));\r
529a5a86 743 if ((FamilyId == 4) || (FamilyId == 5)) {\r
717fb604 744 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_32KB);\r
529a5a86 745 } else {\r
717fb604 746 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_4KB);\r
529a5a86
MK
747 }\r
748 ASSERT (Buffer != NULL);\r
ae82a30b 749 DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));\r
529a5a86
MK
750\r
751 //\r
752 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.\r
753 //\r
754 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);\r
755 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);\r
756\r
757 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);\r
758 ASSERT (gSmmCpuPrivate->Operation != NULL);\r
759\r
760 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);\r
761 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);\r
762\r
763 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);\r
764 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);\r
765\r
766 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;\r
767 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;\r
529a5a86
MK
768\r
769 //\r
770 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.\r
771 //\r
772 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);\r
773 ASSERT (mCpuHotPlugData.ApicId != NULL);\r
774 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);\r
775 ASSERT (mCpuHotPlugData.SmBase != NULL);\r
776 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;\r
777\r
778 //\r
779 // Retrieve APIC ID of each enabled processor from the MP Services protocol.\r
780 // Also compute the SMBASE address, CPU Save State address, and CPU Save state\r
781 // size for each CPU in the platform\r
782 //\r
783 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {\r
784 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;\r
785 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);\r
786 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);\r
787 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;\r
788\r
789 if (Index < mNumberOfCpus) {\r
790 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);\r
791 ASSERT_EFI_ERROR (Status);\r
792 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;\r
793\r
794 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",\r
795 Index,\r
796 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,\r
797 mCpuHotPlugData.SmBase[Index],\r
798 gSmmCpuPrivate->CpuSaveState[Index],\r
799 gSmmCpuPrivate->CpuSaveStateSize[Index]\r
800 ));\r
801 } else {\r
802 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;\r
803 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;\r
804 }\r
805 }\r
806\r
807 //\r
808 // Allocate SMI stacks for all processors.\r
809 //\r
810 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {\r
811 //\r
812 // 2 more pages is allocated for each processor.\r
813 // one is guard page and the other is known good stack.\r
814 //\r
815 // +-------------------------------------------+-----+-------------------------------------------+\r
816 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |\r
817 // +-------------------------------------------+-----+-------------------------------------------+\r
818 // | | | |\r
819 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|\r
820 //\r
821 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);\r
822 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));\r
823 ASSERT (Stacks != NULL);\r
824 mSmmStackArrayBase = (UINTN)Stacks;\r
825 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;\r
826 } else {\r
827 mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);\r
828 Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));\r
829 ASSERT (Stacks != NULL);\r
830 }\r
831\r
832 //\r
833 // Set SMI stack for SMM base relocation\r
834 //\r
835 gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));\r
836\r
837 //\r
838 // Initialize IDT\r
839 //\r
840 InitializeSmmIdt ();\r
841\r
842 //\r
843 // Relocate SMM Base addresses to the ones allocated from SMRAM\r
844 //\r
845 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);\r
846 ASSERT (mRebased != NULL);\r
847 SmmRelocateBases ();\r
848\r
849 //\r
850 // Call hook for BSP to perform extra actions in normal mode after all\r
851 // SMM base addresses have been relocated on all CPUs\r
852 //\r
853 SmmCpuFeaturesSmmRelocationComplete ();\r
854\r
717fb604
JY
855 DEBUG ((DEBUG_INFO, "mXdSupported - 0x%x\n", mXdSupported));\r
856\r
529a5a86
MK
857 //\r
858 // SMM Time initialization\r
859 //\r
860 InitializeSmmTimer ();\r
861\r
862 //\r
863 // Initialize MP globals\r
864 //\r
865 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);\r
866\r
867 //\r
868 // Fill in SMM Reserved Regions\r
869 //\r
870 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;\r
871 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;\r
872\r
873 //\r
874 // Install the SMM Configuration Protocol onto a new handle on the handle database.\r
875 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer\r
876 // to an SMRAM address will be present in the handle database\r
877 //\r
878 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (\r
879 &gSmmCpuPrivate->SmmCpuHandle,\r
880 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,\r
881 NULL\r
882 );\r
883 ASSERT_EFI_ERROR (Status);\r
884\r
885 //\r
886 // Install the SMM CPU Protocol into SMM protocol database\r
887 //\r
888 Status = gSmst->SmmInstallProtocolInterface (\r
889 &mSmmCpuHandle,\r
890 &gEfiSmmCpuProtocolGuid,\r
891 EFI_NATIVE_INTERFACE,\r
892 &mSmmCpu\r
893 );\r
894 ASSERT_EFI_ERROR (Status);\r
895\r
896 //\r
897 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.\r
898 //\r
899 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {\r
9838b016
MK
900 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);\r
901 ASSERT_EFI_ERROR (Status);\r
529a5a86
MK
902 }\r
903\r
904 //\r
905 // Initialize SMM CPU Services Support\r
906 //\r
907 Status = InitializeSmmCpuServices (mSmmCpuHandle);\r
908 ASSERT_EFI_ERROR (Status);\r
909\r
529a5a86
MK
910 //\r
911 // register SMM Ready To Lock Protocol notification\r
912 //\r
913 Status = gSmst->SmmRegisterProtocolNotify (\r
914 &gEfiSmmReadyToLockProtocolGuid,\r
915 SmmReadyToLockEventNotify,\r
916 &Registration\r
917 );\r
918 ASSERT_EFI_ERROR (Status);\r
919\r
529a5a86
MK
920 //\r
921 // Initialize SMM Profile feature\r
922 //\r
923 InitSmmProfile (Cr3);\r
924\r
b10d5ddc 925 GetAcpiS3EnableFlag ();\r
0bdc9e75 926 InitSmmS3ResumeState (Cr3);\r
529a5a86
MK
927\r
928 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));\r
929\r
930 return EFI_SUCCESS;\r
931}\r
932\r
933/**\r
934\r
935 Find out SMRAM information including SMRR base and SMRR size.\r
936\r
937 @param SmrrBase SMRR base\r
938 @param SmrrSize SMRR size\r
939\r
940**/\r
941VOID\r
942FindSmramInfo (\r
943 OUT UINT32 *SmrrBase,\r
944 OUT UINT32 *SmrrSize\r
945 )\r
946{\r
947 EFI_STATUS Status;\r
948 UINTN Size;\r
949 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;\r
950 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;\r
529a5a86
MK
951 UINTN Index;\r
952 UINT64 MaxSize;\r
953 BOOLEAN Found;\r
954\r
955 //\r
956 // Get SMM Access Protocol\r
957 //\r
958 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);\r
959 ASSERT_EFI_ERROR (Status);\r
960\r
961 //\r
962 // Get SMRAM information\r
963 //\r
964 Size = 0;\r
965 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);\r
966 ASSERT (Status == EFI_BUFFER_TOO_SMALL);\r
967\r
7ed6f781
JF
968 mSmmCpuSmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);\r
969 ASSERT (mSmmCpuSmramRanges != NULL);\r
529a5a86 970\r
7ed6f781 971 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, mSmmCpuSmramRanges);\r
529a5a86
MK
972 ASSERT_EFI_ERROR (Status);\r
973\r
7ed6f781 974 mSmmCpuSmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);\r
529a5a86
MK
975\r
976 //\r
977 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size\r
978 //\r
979 CurrentSmramRange = NULL;\r
7ed6f781 980 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < mSmmCpuSmramRangeCount; Index++) {\r
529a5a86
MK
981 //\r
982 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization\r
983 //\r
7ed6f781 984 if ((mSmmCpuSmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {\r
529a5a86
MK
985 continue;\r
986 }\r
987\r
7ed6f781
JF
988 if (mSmmCpuSmramRanges[Index].CpuStart >= BASE_1MB) {\r
989 if ((mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize) <= SMRR_MAX_ADDRESS) {\r
990 if (mSmmCpuSmramRanges[Index].PhysicalSize >= MaxSize) {\r
991 MaxSize = mSmmCpuSmramRanges[Index].PhysicalSize;\r
992 CurrentSmramRange = &mSmmCpuSmramRanges[Index];\r
529a5a86
MK
993 }\r
994 }\r
995 }\r
996 }\r
997\r
998 ASSERT (CurrentSmramRange != NULL);\r
999\r
1000 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;\r
1001 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;\r
1002\r
1003 do {\r
1004 Found = FALSE;\r
7ed6f781
JF
1005 for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {\r
1006 if (mSmmCpuSmramRanges[Index].CpuStart < *SmrrBase &&\r
1007 *SmrrBase == (mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize)) {\r
1008 *SmrrBase = (UINT32)mSmmCpuSmramRanges[Index].CpuStart;\r
1009 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);\r
529a5a86 1010 Found = TRUE;\r
7ed6f781
JF
1011 } else if ((*SmrrBase + *SmrrSize) == mSmmCpuSmramRanges[Index].CpuStart && mSmmCpuSmramRanges[Index].PhysicalSize > 0) {\r
1012 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);\r
529a5a86
MK
1013 Found = TRUE;\r
1014 }\r
1015 }\r
1016 } while (Found);\r
1017\r
1018 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));\r
1019}\r
1020\r
1021/**\r
1022Configure SMM Code Access Check feature on an AP.\r
1023SMM Feature Control MSR will be locked after configuration.\r
1024\r
1025@param[in,out] Buffer Pointer to private data buffer.\r
1026**/\r
1027VOID\r
1028EFIAPI\r
1029ConfigSmmCodeAccessCheckOnCurrentProcessor (\r
1030 IN OUT VOID *Buffer\r
1031 )\r
1032{\r
1033 UINTN CpuIndex;\r
1034 UINT64 SmmFeatureControlMsr;\r
1035 UINT64 NewSmmFeatureControlMsr;\r
1036\r
1037 //\r
1038 // Retrieve the CPU Index from the context passed in\r
1039 //\r
1040 CpuIndex = *(UINTN *)Buffer;\r
1041\r
1042 //\r
1043 // Get the current SMM Feature Control MSR value\r
1044 //\r
1045 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);\r
1046\r
1047 //\r
1048 // Compute the new SMM Feature Control MSR value\r
1049 //\r
1050 NewSmmFeatureControlMsr = SmmFeatureControlMsr;\r
1051 if (mSmmCodeAccessCheckEnable) {\r
1052 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;\r
f6bc3a6d
JF
1053 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {\r
1054 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;\r
1055 }\r
529a5a86
MK
1056 }\r
1057\r
1058 //\r
1059 // Only set the SMM Feature Control MSR value if the new value is different than the current value\r
1060 //\r
1061 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {\r
1062 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);\r
1063 }\r
1064\r
1065 //\r
1066 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR\r
1067 //\r
fe3a75bc 1068 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);\r
529a5a86
MK
1069}\r
1070\r
1071/**\r
1072Configure SMM Code Access Check feature for all processors.\r
1073SMM Feature Control MSR will be locked after configuration.\r
1074**/\r
1075VOID\r
1076ConfigSmmCodeAccessCheck (\r
1077 VOID\r
1078 )\r
1079{\r
1080 UINTN Index;\r
1081 EFI_STATUS Status;\r
1082\r
1083 //\r
1084 // Check to see if the Feature Control MSR is supported on this CPU\r
1085 //\r
f6b0cb17 1086 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;\r
529a5a86
MK
1087 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {\r
1088 mSmmCodeAccessCheckEnable = FALSE;\r
1089 return;\r
1090 }\r
1091\r
1092 //\r
1093 // Check to see if the CPU supports the SMM Code Access Check feature\r
1094 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl\r
1095 //\r
1096 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {\r
1097 mSmmCodeAccessCheckEnable = FALSE;\r
529a5a86
MK
1098 return;\r
1099 }\r
1100\r
1101 //\r
1102 // Initialize the lock used to serialize the MSR programming in BSP and all APs\r
1103 //\r
fe3a75bc 1104 InitializeSpinLock (mConfigSmmCodeAccessCheckLock);\r
529a5a86
MK
1105\r
1106 //\r
1107 // Acquire Config SMM Code Access Check spin lock. The BSP will release the\r
1108 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().\r
1109 //\r
fe3a75bc 1110 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);\r
529a5a86
MK
1111\r
1112 //\r
1113 // Enable SMM Code Access Check feature on the BSP.\r
1114 //\r
1115 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);\r
1116\r
1117 //\r
1118 // Enable SMM Code Access Check feature for the APs.\r
1119 //\r
1120 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {\r
f6b0cb17 1121 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {\r
b7025df8
JF
1122 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == INVALID_APIC_ID) {\r
1123 //\r
1124 // If this processor does not exist\r
1125 //\r
1126 continue;\r
1127 }\r
529a5a86
MK
1128 //\r
1129 // Acquire Config SMM Code Access Check spin lock. The AP will release the\r
1130 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().\r
1131 //\r
fe3a75bc 1132 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);\r
529a5a86
MK
1133\r
1134 //\r
1135 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.\r
1136 //\r
1137 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);\r
1138 ASSERT_EFI_ERROR (Status);\r
1139\r
1140 //\r
1141 // Wait for the AP to release the Config SMM Code Access Check spin lock.\r
1142 //\r
fe3a75bc 1143 while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {\r
529a5a86
MK
1144 CpuPause ();\r
1145 }\r
1146\r
1147 //\r
1148 // Release the Config SMM Code Access Check spin lock.\r
1149 //\r
fe3a75bc 1150 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);\r
529a5a86
MK
1151 }\r
1152 }\r
1153}\r
1154\r
21c17193
JY
1155/**\r
1156 This API provides a way to allocate memory for page table.\r
1157\r
1158 This API can be called more once to allocate memory for page tables.\r
1159\r
1160 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the\r
1161 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL\r
1162 is returned. If there is not enough memory remaining to satisfy the request, then NULL is\r
1163 returned.\r
1164\r
1165 @param Pages The number of 4 KB pages to allocate.\r
1166\r
1167 @return A pointer to the allocated buffer or NULL if allocation fails.\r
1168\r
1169**/\r
1170VOID *\r
1171AllocatePageTableMemory (\r
1172 IN UINTN Pages\r
1173 )\r
1174{\r
1175 VOID *Buffer;\r
1176\r
1177 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);\r
1178 if (Buffer != NULL) {\r
1179 return Buffer;\r
1180 }\r
1181 return AllocatePages (Pages);\r
1182}\r
1183\r
717fb604
JY
1184/**\r
1185 Allocate pages for code.\r
1186\r
1187 @param[in] Pages Number of pages to be allocated.\r
1188\r
1189 @return Allocated memory.\r
1190**/\r
1191VOID *\r
1192AllocateCodePages (\r
1193 IN UINTN Pages\r
1194 )\r
1195{\r
1196 EFI_STATUS Status;\r
1197 EFI_PHYSICAL_ADDRESS Memory;\r
1198\r
1199 if (Pages == 0) {\r
1200 return NULL;\r
1201 }\r
1202\r
1203 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);\r
1204 if (EFI_ERROR (Status)) {\r
1205 return NULL;\r
1206 }\r
1207 return (VOID *) (UINTN) Memory;\r
1208}\r
1209\r
1210/**\r
1211 Allocate aligned pages for code.\r
1212\r
1213 @param[in] Pages Number of pages to be allocated.\r
1214 @param[in] Alignment The requested alignment of the allocation.\r
1215 Must be a power of two.\r
1216 If Alignment is zero, then byte alignment is used.\r
1217\r
1218 @return Allocated memory.\r
1219**/\r
1220VOID *\r
1221AllocateAlignedCodePages (\r
1222 IN UINTN Pages,\r
1223 IN UINTN Alignment\r
1224 )\r
1225{\r
1226 EFI_STATUS Status;\r
1227 EFI_PHYSICAL_ADDRESS Memory;\r
1228 UINTN AlignedMemory;\r
1229 UINTN AlignmentMask;\r
1230 UINTN UnalignedPages;\r
1231 UINTN RealPages;\r
1232\r
1233 //\r
1234 // Alignment must be a power of two or zero.\r
1235 //\r
1236 ASSERT ((Alignment & (Alignment - 1)) == 0);\r
1237\r
1238 if (Pages == 0) {\r
1239 return NULL;\r
1240 }\r
1241 if (Alignment > EFI_PAGE_SIZE) {\r
1242 //\r
1243 // Calculate the total number of pages since alignment is larger than page size.\r
1244 //\r
1245 AlignmentMask = Alignment - 1;\r
1246 RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);\r
1247 //\r
1248 // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.\r
1249 //\r
1250 ASSERT (RealPages > Pages);\r
1251\r
1252 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, RealPages, &Memory);\r
1253 if (EFI_ERROR (Status)) {\r
1254 return NULL;\r
1255 }\r
1256 AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;\r
1257 UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);\r
1258 if (UnalignedPages > 0) {\r
1259 //\r
1260 // Free first unaligned page(s).\r
1261 //\r
1262 Status = gSmst->SmmFreePages (Memory, UnalignedPages);\r
1263 ASSERT_EFI_ERROR (Status);\r
1264 }\r
8491e302 1265 Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages);\r
717fb604
JY
1266 UnalignedPages = RealPages - Pages - UnalignedPages;\r
1267 if (UnalignedPages > 0) {\r
1268 //\r
1269 // Free last unaligned page(s).\r
1270 //\r
1271 Status = gSmst->SmmFreePages (Memory, UnalignedPages);\r
1272 ASSERT_EFI_ERROR (Status);\r
1273 }\r
1274 } else {\r
1275 //\r
1276 // Do not over-allocate pages in this case.\r
1277 //\r
1278 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);\r
1279 if (EFI_ERROR (Status)) {\r
1280 return NULL;\r
1281 }\r
1282 AlignedMemory = (UINTN) Memory;\r
1283 }\r
1284 return (VOID *) AlignedMemory;\r
1285}\r
1286\r
529a5a86
MK
1287/**\r
1288 Perform the remaining tasks.\r
1289\r
1290**/\r
1291VOID\r
1292PerformRemainingTasks (\r
1293 VOID\r
1294 )\r
1295{\r
1296 if (mSmmReadyToLock) {\r
1297 //\r
1298 // Start SMM Profile feature\r
1299 //\r
1300 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {\r
1301 SmmProfileStart ();\r
1302 }\r
1303 //\r
1304 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.\r
1305 //\r
1306 InitPaging ();\r
717fb604
JY
1307\r
1308 //\r
1309 // Mark critical region to be read-only in page table\r
1310 //\r
d2fc7711
JY
1311 SetMemMapAttributes ();\r
1312\r
1313 //\r
1314 // For outside SMRAM, we only map SMM communication buffer or MMIO.\r
1315 //\r
1316 SetUefiMemMapAttributes ();\r
717fb604
JY
1317\r
1318 //\r
1319 // Set page table itself to be read-only\r
1320 //\r
1321 SetPageTableAttributes ();\r
1322\r
529a5a86
MK
1323 //\r
1324 // Configure SMM Code Access Check feature if available.\r
1325 //\r
1326 ConfigSmmCodeAccessCheck ();\r
1327\r
21c17193
JY
1328 SmmCpuFeaturesCompleteSmmReadyToLock ();\r
1329\r
529a5a86
MK
1330 //\r
1331 // Clean SMM ready to lock flag\r
1332 //\r
1333 mSmmReadyToLock = FALSE;\r
1334 }\r
1335}\r
9f419739
JY
1336\r
1337/**\r
1338 Perform the pre tasks.\r
1339\r
1340**/\r
1341VOID\r
1342PerformPreTasks (\r
1343 VOID\r
1344 )\r
1345{\r
0bdc9e75 1346 RestoreSmmConfigurationInS3 ();\r
9f419739 1347}\r