]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdePkg/Library/BaseLib/BaseLibInternals.h
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / MdePkg / Library / BaseLib / BaseLibInternals.h
... / ...
CommitLineData
1/** @file\r
2 Declaration of internal functions in BaseLib.\r
3\r
4 Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>\r
5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
6\r
7**/\r
8\r
9#ifndef __BASE_LIB_INTERNALS__\r
10#define __BASE_LIB_INTERNALS__\r
11\r
12#include <Base.h>\r
13#include <Library/BaseLib.h>\r
14#include <Library/BaseMemoryLib.h>\r
15#include <Library/DebugLib.h>\r
16#include <Library/PcdLib.h>\r
17\r
18//\r
19// Math functions\r
20//\r
21\r
22/**\r
23 Shifts a 64-bit integer left between 0 and 63 bits. The low bits\r
24 are filled with zeros. The shifted value is returned.\r
25\r
26 This function shifts the 64-bit value Operand to the left by Count bits. The\r
27 low Count bits are set to zero. The shifted value is returned.\r
28\r
29 @param Operand The 64-bit operand to shift left.\r
30 @param Count The number of bits to shift left.\r
31\r
32 @return Operand << Count\r
33\r
34**/\r
35UINT64\r
36EFIAPI\r
37InternalMathLShiftU64 (\r
38 IN UINT64 Operand,\r
39 IN UINTN Count\r
40 );\r
41\r
42/**\r
43 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
44 are filled with zeros. The shifted value is returned.\r
45\r
46 This function shifts the 64-bit value Operand to the right by Count bits. The\r
47 high Count bits are set to zero. The shifted value is returned.\r
48\r
49 @param Operand The 64-bit operand to shift right.\r
50 @param Count The number of bits to shift right.\r
51\r
52 @return Operand >> Count\r
53\r
54**/\r
55UINT64\r
56EFIAPI\r
57InternalMathRShiftU64 (\r
58 IN UINT64 Operand,\r
59 IN UINTN Count\r
60 );\r
61\r
62/**\r
63 Shifts a 64-bit integer right between 0 and 63 bits. The high bits\r
64 are filled with original integer's bit 63. The shifted value is returned.\r
65\r
66 This function shifts the 64-bit value Operand to the right by Count bits. The\r
67 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
68\r
69 @param Operand The 64-bit operand to shift right.\r
70 @param Count The number of bits to shift right.\r
71\r
72 @return Operand arithmetically shifted right by Count\r
73\r
74**/\r
75UINT64\r
76EFIAPI\r
77InternalMathARShiftU64 (\r
78 IN UINT64 Operand,\r
79 IN UINTN Count\r
80 );\r
81\r
82/**\r
83 Rotates a 64-bit integer left between 0 and 63 bits, filling\r
84 the low bits with the high bits that were rotated.\r
85\r
86 This function rotates the 64-bit value Operand to the left by Count bits. The\r
87 low Count bits are filled with the high Count bits of Operand. The rotated\r
88 value is returned.\r
89\r
90 @param Operand The 64-bit operand to rotate left.\r
91 @param Count The number of bits to rotate left.\r
92\r
93 @return Operand <<< Count\r
94\r
95**/\r
96UINT64\r
97EFIAPI\r
98InternalMathLRotU64 (\r
99 IN UINT64 Operand,\r
100 IN UINTN Count\r
101 );\r
102\r
103/**\r
104 Rotates a 64-bit integer right between 0 and 63 bits, filling\r
105 the high bits with the high low bits that were rotated.\r
106\r
107 This function rotates the 64-bit value Operand to the right by Count bits.\r
108 The high Count bits are filled with the low Count bits of Operand. The rotated\r
109 value is returned.\r
110\r
111 @param Operand The 64-bit operand to rotate right.\r
112 @param Count The number of bits to rotate right.\r
113\r
114 @return Operand >>> Count\r
115\r
116**/\r
117UINT64\r
118EFIAPI\r
119InternalMathRRotU64 (\r
120 IN UINT64 Operand,\r
121 IN UINTN Count\r
122 );\r
123\r
124/**\r
125 Switches the endianess of a 64-bit integer.\r
126\r
127 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
128 from little endian to big endian or vice versa. The byte swapped value is\r
129 returned.\r
130\r
131 @param Operand A 64-bit unsigned value.\r
132\r
133 @return The byte swapped Operand.\r
134\r
135**/\r
136UINT64\r
137EFIAPI\r
138InternalMathSwapBytes64 (\r
139 IN UINT64 Operand\r
140 );\r
141\r
142/**\r
143 Multiplies a 64-bit unsigned integer by a 32-bit unsigned integer\r
144 and generates a 64-bit unsigned result.\r
145\r
146 This function multiplies the 64-bit unsigned value Multiplicand by the 32-bit\r
147 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
148 bit unsigned result is returned.\r
149\r
150 @param Multiplicand A 64-bit unsigned value.\r
151 @param Multiplier A 32-bit unsigned value.\r
152\r
153 @return Multiplicand * Multiplier\r
154\r
155**/\r
156UINT64\r
157EFIAPI\r
158InternalMathMultU64x32 (\r
159 IN UINT64 Multiplicand,\r
160 IN UINT32 Multiplier\r
161 );\r
162\r
163/**\r
164 Multiplies a 64-bit unsigned integer by a 64-bit unsigned integer\r
165 and generates a 64-bit unsigned result.\r
166\r
167 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
168 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
169 bit unsigned result is returned.\r
170\r
171 @param Multiplicand A 64-bit unsigned value.\r
172 @param Multiplier A 64-bit unsigned value.\r
173\r
174 @return Multiplicand * Multiplier\r
175\r
176**/\r
177UINT64\r
178EFIAPI\r
179InternalMathMultU64x64 (\r
180 IN UINT64 Multiplicand,\r
181 IN UINT64 Multiplier\r
182 );\r
183\r
184/**\r
185 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
186 generates a 64-bit unsigned result.\r
187\r
188 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
189 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
190 function returns the 64-bit unsigned quotient.\r
191\r
192 @param Dividend A 64-bit unsigned value.\r
193 @param Divisor A 32-bit unsigned value.\r
194\r
195 @return Dividend / Divisor\r
196\r
197**/\r
198UINT64\r
199EFIAPI\r
200InternalMathDivU64x32 (\r
201 IN UINT64 Dividend,\r
202 IN UINT32 Divisor\r
203 );\r
204\r
205/**\r
206 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
207 generates a 32-bit unsigned remainder.\r
208\r
209 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
210 unsigned value Divisor and generates a 32-bit remainder. This function\r
211 returns the 32-bit unsigned remainder.\r
212\r
213 @param Dividend A 64-bit unsigned value.\r
214 @param Divisor A 32-bit unsigned value.\r
215\r
216 @return Dividend % Divisor\r
217\r
218**/\r
219UINT32\r
220EFIAPI\r
221InternalMathModU64x32 (\r
222 IN UINT64 Dividend,\r
223 IN UINT32 Divisor\r
224 );\r
225\r
226/**\r
227 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and\r
228 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
229\r
230 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
231 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
232 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
233 This function returns the 64-bit unsigned quotient.\r
234\r
235 @param Dividend A 64-bit unsigned value.\r
236 @param Divisor A 32-bit unsigned value.\r
237 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
238 optional and may be NULL.\r
239\r
240 @return Dividend / Divisor\r
241\r
242**/\r
243UINT64\r
244EFIAPI\r
245InternalMathDivRemU64x32 (\r
246 IN UINT64 Dividend,\r
247 IN UINT32 Divisor,\r
248 OUT UINT32 *Remainder OPTIONAL\r
249 );\r
250\r
251/**\r
252 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and\r
253 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
254\r
255 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
256 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
257 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
258 This function returns the 64-bit unsigned quotient.\r
259\r
260 @param Dividend A 64-bit unsigned value.\r
261 @param Divisor A 64-bit unsigned value.\r
262 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
263 optional and may be NULL.\r
264\r
265 @return Dividend / Divisor\r
266\r
267**/\r
268UINT64\r
269EFIAPI\r
270InternalMathDivRemU64x64 (\r
271 IN UINT64 Dividend,\r
272 IN UINT64 Divisor,\r
273 OUT UINT64 *Remainder OPTIONAL\r
274 );\r
275\r
276/**\r
277 Divides a 64-bit signed integer by a 64-bit signed integer and\r
278 generates a 64-bit signed result and an optional 64-bit signed remainder.\r
279\r
280 This function divides the 64-bit signed value Dividend by the 64-bit\r
281 signed value Divisor and generates a 64-bit signed quotient. If Remainder\r
282 is not NULL, then the 64-bit signed remainder is returned in Remainder.\r
283 This function returns the 64-bit signed quotient.\r
284\r
285 @param Dividend A 64-bit signed value.\r
286 @param Divisor A 64-bit signed value.\r
287 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
288 optional and may be NULL.\r
289\r
290 @return Dividend / Divisor\r
291\r
292**/\r
293INT64\r
294EFIAPI\r
295InternalMathDivRemS64x64 (\r
296 IN INT64 Dividend,\r
297 IN INT64 Divisor,\r
298 OUT INT64 *Remainder OPTIONAL\r
299 );\r
300\r
301/**\r
302 Transfers control to a function starting with a new stack.\r
303\r
304 Transfers control to the function specified by EntryPoint using the\r
305 new stack specified by NewStack and passing in the parameters specified\r
306 by Context1 and Context2. Context1 and Context2 are optional and may\r
307 be NULL. The function EntryPoint must never return.\r
308 Marker will be ignored on IA-32, x64, and EBC.\r
309 IPF CPUs expect one additional parameter of type VOID * that specifies\r
310 the new backing store pointer.\r
311\r
312 If EntryPoint is NULL, then ASSERT().\r
313 If NewStack is NULL, then ASSERT().\r
314\r
315 @param EntryPoint A pointer to function to call with the new stack.\r
316 @param Context1 A pointer to the context to pass into the EntryPoint\r
317 function.\r
318 @param Context2 A pointer to the context to pass into the EntryPoint\r
319 function.\r
320 @param NewStack A pointer to the new stack to use for the EntryPoint\r
321 function.\r
322 @param Marker VA_LIST marker for the variable argument list.\r
323\r
324**/\r
325VOID\r
326EFIAPI\r
327InternalSwitchStack (\r
328 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
329 IN VOID *Context1 OPTIONAL,\r
330 IN VOID *Context2 OPTIONAL,\r
331 IN VOID *NewStack,\r
332 IN VA_LIST Marker\r
333 );\r
334\r
335/**\r
336 Worker function that returns a bit field from Operand.\r
337\r
338 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
339\r
340 @param Operand Operand on which to perform the bitfield operation.\r
341 @param StartBit The ordinal of the least significant bit in the bit field.\r
342 @param EndBit The ordinal of the most significant bit in the bit field.\r
343\r
344 @return The bit field read.\r
345\r
346**/\r
347UINTN\r
348EFIAPI\r
349BitFieldReadUint (\r
350 IN UINTN Operand,\r
351 IN UINTN StartBit,\r
352 IN UINTN EndBit\r
353 );\r
354\r
355/**\r
356 Worker function that reads a bit field from Operand, performs a bitwise OR,\r
357 and returns the result.\r
358\r
359 Performs a bitwise OR between the bit field specified by StartBit and EndBit\r
360 in Operand and the value specified by AndData. All other bits in Operand are\r
361 preserved. The new value is returned.\r
362\r
363 @param Operand Operand on which to perform the bitfield operation.\r
364 @param StartBit The ordinal of the least significant bit in the bit field.\r
365 @param EndBit The ordinal of the most significant bit in the bit field.\r
366 @param OrData The value to OR with the read value from the value\r
367\r
368 @return The new value.\r
369\r
370**/\r
371UINTN\r
372EFIAPI\r
373BitFieldOrUint (\r
374 IN UINTN Operand,\r
375 IN UINTN StartBit,\r
376 IN UINTN EndBit,\r
377 IN UINTN OrData\r
378 );\r
379\r
380/**\r
381 Worker function that reads a bit field from Operand, performs a bitwise AND,\r
382 and returns the result.\r
383\r
384 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
385 in Operand and the value specified by AndData. All other bits in Operand are\r
386 preserved. The new value is returned.\r
387\r
388 @param Operand Operand on which to perform the bitfield operation.\r
389 @param StartBit The ordinal of the least significant bit in the bit field.\r
390 @param EndBit The ordinal of the most significant bit in the bit field.\r
391 @param AndData The value to And with the read value from the value\r
392\r
393 @return The new value.\r
394\r
395**/\r
396UINTN\r
397EFIAPI\r
398BitFieldAndUint (\r
399 IN UINTN Operand,\r
400 IN UINTN StartBit,\r
401 IN UINTN EndBit,\r
402 IN UINTN AndData\r
403 );\r
404\r
405/**\r
406 Worker function that checks ASSERT condition for JumpBuffer\r
407\r
408 Checks ASSERT condition for JumpBuffer.\r
409\r
410 If JumpBuffer is NULL, then ASSERT().\r
411 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
412\r
413 @param JumpBuffer A pointer to CPU context buffer.\r
414\r
415**/\r
416VOID\r
417EFIAPI\r
418InternalAssertJumpBuffer (\r
419 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
420 );\r
421\r
422/**\r
423 Restores the CPU context that was saved with SetJump().\r
424\r
425 Restores the CPU context from the buffer specified by JumpBuffer.\r
426 This function never returns to the caller.\r
427 Instead is resumes execution based on the state of JumpBuffer.\r
428\r
429 @param JumpBuffer A pointer to CPU context buffer.\r
430 @param Value The value to return when the SetJump() context is restored.\r
431\r
432**/\r
433VOID\r
434EFIAPI\r
435InternalLongJump (\r
436 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
437 IN UINTN Value\r
438 );\r
439\r
440/**\r
441 Check if a Unicode character is a decimal character.\r
442\r
443 This internal function checks if a Unicode character is a\r
444 decimal character. The valid decimal character is from\r
445 L'0' to L'9'.\r
446\r
447 @param Char The character to check against.\r
448\r
449 @retval TRUE If the Char is a decmial character.\r
450 @retval FALSE If the Char is not a decmial character.\r
451\r
452**/\r
453BOOLEAN\r
454EFIAPI\r
455InternalIsDecimalDigitCharacter (\r
456 IN CHAR16 Char\r
457 );\r
458\r
459/**\r
460 Convert a Unicode character to numerical value.\r
461\r
462 This internal function only deal with Unicode character\r
463 which maps to a valid hexadecimal ASII character, i.e.\r
464 L'0' to L'9', L'a' to L'f' or L'A' to L'F'. For other\r
465 Unicode character, the value returned does not make sense.\r
466\r
467 @param Char The character to convert.\r
468\r
469 @return The numerical value converted.\r
470\r
471**/\r
472UINTN\r
473EFIAPI\r
474InternalHexCharToUintn (\r
475 IN CHAR16 Char\r
476 );\r
477\r
478/**\r
479 Check if a Unicode character is a hexadecimal character.\r
480\r
481 This internal function checks if a Unicode character is a\r
482 decimal character. The valid hexadecimal character is\r
483 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.\r
484\r
485\r
486 @param Char The character to check against.\r
487\r
488 @retval TRUE If the Char is a hexadecmial character.\r
489 @retval FALSE If the Char is not a hexadecmial character.\r
490\r
491**/\r
492BOOLEAN\r
493EFIAPI\r
494InternalIsHexaDecimalDigitCharacter (\r
495 IN CHAR16 Char\r
496 );\r
497\r
498/**\r
499 Check if a ASCII character is a decimal character.\r
500\r
501 This internal function checks if a Unicode character is a\r
502 decimal character. The valid decimal character is from\r
503 '0' to '9'.\r
504\r
505 @param Char The character to check against.\r
506\r
507 @retval TRUE If the Char is a decmial character.\r
508 @retval FALSE If the Char is not a decmial character.\r
509\r
510**/\r
511BOOLEAN\r
512EFIAPI\r
513InternalAsciiIsDecimalDigitCharacter (\r
514 IN CHAR8 Char\r
515 );\r
516\r
517/**\r
518 Check if a ASCII character is a hexadecimal character.\r
519\r
520 This internal function checks if a ASCII character is a\r
521 decimal character. The valid hexadecimal character is\r
522 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.\r
523\r
524\r
525 @param Char The character to check against.\r
526\r
527 @retval TRUE If the Char is a hexadecmial character.\r
528 @retval FALSE If the Char is not a hexadecmial character.\r
529\r
530**/\r
531BOOLEAN\r
532EFIAPI\r
533InternalAsciiIsHexaDecimalDigitCharacter (\r
534 IN CHAR8 Char\r
535 );\r
536\r
537/**\r
538 Convert a ASCII character to numerical value.\r
539\r
540 This internal function only deal with Unicode character\r
541 which maps to a valid hexadecimal ASII character, i.e.\r
542 '0' to '9', 'a' to 'f' or 'A' to 'F'. For other\r
543 ASCII character, the value returned does not make sense.\r
544\r
545 @param Char The character to convert.\r
546\r
547 @return The numerical value converted.\r
548\r
549**/\r
550UINTN\r
551EFIAPI\r
552InternalAsciiHexCharToUintn (\r
553 IN CHAR8 Char\r
554 );\r
555\r
556//\r
557// Ia32 and x64 specific functions\r
558//\r
559#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
560\r
561/**\r
562 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
563\r
564 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
565 function is only available on IA-32 and x64.\r
566\r
567 @param Gdtr The pointer to a GDTR descriptor.\r
568\r
569**/\r
570VOID\r
571EFIAPI\r
572InternalX86ReadGdtr (\r
573 OUT IA32_DESCRIPTOR *Gdtr\r
574 );\r
575\r
576/**\r
577 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
578\r
579 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
580 only available on IA-32 and x64.\r
581\r
582 @param Gdtr The pointer to a GDTR descriptor.\r
583\r
584**/\r
585VOID\r
586EFIAPI\r
587InternalX86WriteGdtr (\r
588 IN CONST IA32_DESCRIPTOR *Gdtr\r
589 );\r
590\r
591/**\r
592 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
593\r
594 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
595 function is only available on IA-32 and x64.\r
596\r
597 @param Idtr The pointer to an IDTR descriptor.\r
598\r
599**/\r
600VOID\r
601EFIAPI\r
602InternalX86ReadIdtr (\r
603 OUT IA32_DESCRIPTOR *Idtr\r
604 );\r
605\r
606/**\r
607 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.\r
608\r
609 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
610 only available on IA-32 and x64.\r
611\r
612 @param Idtr The pointer to an IDTR descriptor.\r
613\r
614**/\r
615VOID\r
616EFIAPI\r
617InternalX86WriteIdtr (\r
618 IN CONST IA32_DESCRIPTOR *Idtr\r
619 );\r
620\r
621/**\r
622 Save the current floating point/SSE/SSE2 context to a buffer.\r
623\r
624 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
625 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
626 available on IA-32 and x64.\r
627\r
628 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
629\r
630**/\r
631VOID\r
632EFIAPI\r
633InternalX86FxSave (\r
634 OUT IA32_FX_BUFFER *Buffer\r
635 );\r
636\r
637/**\r
638 Restores the current floating point/SSE/SSE2 context from a buffer.\r
639\r
640 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
641 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
642 only available on IA-32 and x64.\r
643\r
644 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
645\r
646**/\r
647VOID\r
648EFIAPI\r
649InternalX86FxRestore (\r
650 IN CONST IA32_FX_BUFFER *Buffer\r
651 );\r
652\r
653/**\r
654 Enables the 32-bit paging mode on the CPU.\r
655\r
656 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
657 must be properly initialized prior to calling this service. This function\r
658 assumes the current execution mode is 32-bit protected mode. This function is\r
659 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
660 transferred to the function specified by EntryPoint using the new stack\r
661 specified by NewStack and passing in the parameters specified by Context1 and\r
662 Context2. Context1 and Context2 are optional and may be NULL. The function\r
663 EntryPoint must never return.\r
664\r
665 There are a number of constraints that must be followed before calling this\r
666 function:\r
667 1) Interrupts must be disabled.\r
668 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
669 means all descriptors must have a base of 0 and a limit of 4GB.\r
670 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
671 descriptors.\r
672 4) CR3 must point to valid page tables that will be used once the transition\r
673 is complete, and those page tables must guarantee that the pages for this\r
674 function and the stack are identity mapped.\r
675\r
676 @param EntryPoint A pointer to function to call with the new stack after\r
677 paging is enabled.\r
678 @param Context1 A pointer to the context to pass into the EntryPoint\r
679 function as the first parameter after paging is enabled.\r
680 @param Context2 A pointer to the context to pass into the EntryPoint\r
681 function as the second parameter after paging is enabled.\r
682 @param NewStack A pointer to the new stack to use for the EntryPoint\r
683 function after paging is enabled.\r
684\r
685**/\r
686VOID\r
687EFIAPI\r
688InternalX86EnablePaging32 (\r
689 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
690 IN VOID *Context1 OPTIONAL,\r
691 IN VOID *Context2 OPTIONAL,\r
692 IN VOID *NewStack\r
693 );\r
694\r
695/**\r
696 Disables the 32-bit paging mode on the CPU.\r
697\r
698 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
699 mode. This function assumes the current execution mode is 32-paged protected\r
700 mode. This function is only available on IA-32. After the 32-bit paging mode\r
701 is disabled, control is transferred to the function specified by EntryPoint\r
702 using the new stack specified by NewStack and passing in the parameters\r
703 specified by Context1 and Context2. Context1 and Context2 are optional and\r
704 may be NULL. The function EntryPoint must never return.\r
705\r
706 There are a number of constraints that must be followed before calling this\r
707 function:\r
708 1) Interrupts must be disabled.\r
709 2) The caller must be in 32-bit paged mode.\r
710 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
711 4) CR3 must point to valid page tables that guarantee that the pages for\r
712 this function and the stack are identity mapped.\r
713\r
714 @param EntryPoint A pointer to function to call with the new stack after\r
715 paging is disabled.\r
716 @param Context1 A pointer to the context to pass into the EntryPoint\r
717 function as the first parameter after paging is disabled.\r
718 @param Context2 A pointer to the context to pass into the EntryPoint\r
719 function as the second parameter after paging is\r
720 disabled.\r
721 @param NewStack A pointer to the new stack to use for the EntryPoint\r
722 function after paging is disabled.\r
723\r
724**/\r
725VOID\r
726EFIAPI\r
727InternalX86DisablePaging32 (\r
728 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
729 IN VOID *Context1 OPTIONAL,\r
730 IN VOID *Context2 OPTIONAL,\r
731 IN VOID *NewStack\r
732 );\r
733\r
734/**\r
735 Enables the 64-bit paging mode on the CPU.\r
736\r
737 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
738 must be properly initialized prior to calling this service. This function\r
739 assumes the current execution mode is 32-bit protected mode with flat\r
740 descriptors. This function is only available on IA-32. After the 64-bit\r
741 paging mode is enabled, control is transferred to the function specified by\r
742 EntryPoint using the new stack specified by NewStack and passing in the\r
743 parameters specified by Context1 and Context2. Context1 and Context2 are\r
744 optional and may be 0. The function EntryPoint must never return.\r
745\r
746 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
747 is called. The descriptor in the GDT that this selector\r
748 references must be setup for long mode.\r
749 @param EntryPoint The 64-bit virtual address of the function to call with\r
750 the new stack after paging is enabled.\r
751 @param Context1 The 64-bit virtual address of the context to pass into\r
752 the EntryPoint function as the first parameter after\r
753 paging is enabled.\r
754 @param Context2 The 64-bit virtual address of the context to pass into\r
755 the EntryPoint function as the second parameter after\r
756 paging is enabled.\r
757 @param NewStack The 64-bit virtual address of the new stack to use for\r
758 the EntryPoint function after paging is enabled.\r
759\r
760**/\r
761VOID\r
762EFIAPI\r
763InternalX86EnablePaging64 (\r
764 IN UINT16 Cs,\r
765 IN UINT64 EntryPoint,\r
766 IN UINT64 Context1 OPTIONAL,\r
767 IN UINT64 Context2 OPTIONAL,\r
768 IN UINT64 NewStack\r
769 );\r
770\r
771/**\r
772 Disables the 64-bit paging mode on the CPU.\r
773\r
774 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
775 mode. This function assumes the current execution mode is 64-paging mode.\r
776 This function is only available on x64. After the 64-bit paging mode is\r
777 disabled, control is transferred to the function specified by EntryPoint\r
778 using the new stack specified by NewStack and passing in the parameters\r
779 specified by Context1 and Context2. Context1 and Context2 are optional and\r
780 may be 0. The function EntryPoint must never return.\r
781\r
782 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
783 is called. The descriptor in the GDT that this selector\r
784 references must be setup for 32-bit protected mode.\r
785 @param EntryPoint The 64-bit virtual address of the function to call with\r
786 the new stack after paging is disabled.\r
787 @param Context1 The 64-bit virtual address of the context to pass into\r
788 the EntryPoint function as the first parameter after\r
789 paging is disabled.\r
790 @param Context2 The 64-bit virtual address of the context to pass into\r
791 the EntryPoint function as the second parameter after\r
792 paging is disabled.\r
793 @param NewStack The 64-bit virtual address of the new stack to use for\r
794 the EntryPoint function after paging is disabled.\r
795\r
796**/\r
797VOID\r
798EFIAPI\r
799InternalX86DisablePaging64 (\r
800 IN UINT16 Cs,\r
801 IN UINT32 EntryPoint,\r
802 IN UINT32 Context1 OPTIONAL,\r
803 IN UINT32 Context2 OPTIONAL,\r
804 IN UINT32 NewStack\r
805 );\r
806\r
807/**\r
808 Generates a 16-bit random number through RDRAND instruction.\r
809\r
810 @param[out] Rand Buffer pointer to store the random result.\r
811\r
812 @retval TRUE RDRAND call was successful.\r
813 @retval FALSE Failed attempts to call RDRAND.\r
814\r
815 **/\r
816BOOLEAN\r
817EFIAPI\r
818InternalX86RdRand16 (\r
819 OUT UINT16 *Rand\r
820 );\r
821\r
822/**\r
823 Generates a 32-bit random number through RDRAND instruction.\r
824\r
825 @param[out] Rand Buffer pointer to store the random result.\r
826\r
827 @retval TRUE RDRAND call was successful.\r
828 @retval FALSE Failed attempts to call RDRAND.\r
829\r
830**/\r
831BOOLEAN\r
832EFIAPI\r
833InternalX86RdRand32 (\r
834 OUT UINT32 *Rand\r
835 );\r
836\r
837/**\r
838 Generates a 64-bit random number through RDRAND instruction.\r
839\r
840\r
841 @param[out] Rand Buffer pointer to store the random result.\r
842\r
843 @retval TRUE RDRAND call was successful.\r
844 @retval FALSE Failed attempts to call RDRAND.\r
845\r
846**/\r
847BOOLEAN\r
848EFIAPI\r
849InternalX86RdRand64 (\r
850 OUT UINT64 *Rand\r
851 );\r
852\r
853#else\r
854\r
855#endif\r
856\r
857#endif\r