]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - PcAtChipsetPkg/Library/AcpiTimerLib/AcpiTimerLib.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / PcAtChipsetPkg / Library / AcpiTimerLib / AcpiTimerLib.c
... / ...
CommitLineData
1/** @file\r
2 ACPI Timer implements one instance of Timer Library.\r
3\r
4 Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>\r
5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
6\r
7**/\r
8\r
9#include <Base.h>\r
10#include <Library/TimerLib.h>\r
11#include <Library/BaseLib.h>\r
12#include <Library/PcdLib.h>\r
13#include <Library/PciLib.h>\r
14#include <Library/IoLib.h>\r
15#include <Library/DebugLib.h>\r
16#include <IndustryStandard/Acpi.h>\r
17\r
18GUID mFrequencyHobGuid = {\r
19 0x3fca54f6, 0xe1a2, 0x4b20, { 0xbe, 0x76, 0x92, 0x6b, 0x4b, 0x48, 0xbf, 0xaa }\r
20};\r
21\r
22/**\r
23 Internal function to retrieves the 64-bit frequency in Hz.\r
24\r
25 Internal function to retrieves the 64-bit frequency in Hz.\r
26\r
27 @return The frequency in Hz.\r
28\r
29**/\r
30UINT64\r
31InternalGetPerformanceCounterFrequency (\r
32 VOID\r
33 );\r
34\r
35/**\r
36 The constructor function enables ACPI IO space.\r
37\r
38 If ACPI I/O space not enabled, this function will enable it.\r
39 It will always return RETURN_SUCCESS.\r
40\r
41 @retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS.\r
42\r
43**/\r
44RETURN_STATUS\r
45EFIAPI\r
46AcpiTimerLibConstructor (\r
47 VOID\r
48 )\r
49{\r
50 UINTN Bus;\r
51 UINTN Device;\r
52 UINTN Function;\r
53 UINTN EnableRegister;\r
54 UINT8 EnableMask;\r
55\r
56 //\r
57 // ASSERT for the invalid PCD values. They must be configured to the real value.\r
58 //\r
59 ASSERT (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0xFFFF);\r
60 ASSERT (PcdGet16 (PcdAcpiIoPortBaseAddress) != 0xFFFF);\r
61\r
62 //\r
63 // If the register offset to the BAR for the ACPI I/O Port Base Address is 0x0000, then\r
64 // no PCI register programming is required to enable access to the ACPI registers\r
65 // specified by PcdAcpiIoPortBaseAddress\r
66 //\r
67 if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) == 0x0000) {\r
68 return RETURN_SUCCESS;\r
69 }\r
70\r
71 //\r
72 // ASSERT for the invalid PCD values. They must be configured to the real value.\r
73 //\r
74 ASSERT (PcdGet8 (PcdAcpiIoPciDeviceNumber) != 0xFF);\r
75 ASSERT (PcdGet8 (PcdAcpiIoPciFunctionNumber) != 0xFF);\r
76 ASSERT (PcdGet16 (PcdAcpiIoPciEnableRegisterOffset) != 0xFFFF);\r
77\r
78 //\r
79 // Retrieve the PCD values for the PCI configuration space required to program the ACPI I/O Port Base Address\r
80 //\r
81 Bus = PcdGet8 (PcdAcpiIoPciBusNumber);\r
82 Device = PcdGet8 (PcdAcpiIoPciDeviceNumber);\r
83 Function = PcdGet8 (PcdAcpiIoPciFunctionNumber);\r
84 EnableRegister = PcdGet16 (PcdAcpiIoPciEnableRegisterOffset);\r
85 EnableMask = PcdGet8 (PcdAcpiIoBarEnableMask);\r
86\r
87 //\r
88 // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.\r
89 //\r
90 if ((PciRead8 (PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister)) & EnableMask) != EnableMask) {\r
91 PciWrite16 (\r
92 PCI_LIB_ADDRESS (Bus, Device, Function, PcdGet16 (PcdAcpiIoPciBarRegisterOffset)),\r
93 PcdGet16 (PcdAcpiIoPortBaseAddress)\r
94 );\r
95 PciOr8 (\r
96 PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister),\r
97 EnableMask\r
98 );\r
99 }\r
100\r
101 return RETURN_SUCCESS;\r
102}\r
103\r
104/**\r
105 Internal function to retrieve the ACPI I/O Port Base Address.\r
106\r
107 Internal function to retrieve the ACPI I/O Port Base Address.\r
108\r
109 @return The 16-bit ACPI I/O Port Base Address.\r
110\r
111**/\r
112UINT16\r
113InternalAcpiGetAcpiTimerIoPort (\r
114 VOID\r
115 )\r
116{\r
117 UINT16 Port;\r
118\r
119 Port = PcdGet16 (PcdAcpiIoPortBaseAddress);\r
120\r
121 //\r
122 // If the register offset to the BAR for the ACPI I/O Port Base Address is not 0x0000, then\r
123 // read the PCI register for the ACPI BAR value in case the BAR has been programmed to a\r
124 // value other than PcdAcpiIoPortBaseAddress\r
125 //\r
126 if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0x0000) {\r
127 Port = PciRead16 (\r
128 PCI_LIB_ADDRESS (\r
129 PcdGet8 (PcdAcpiIoPciBusNumber),\r
130 PcdGet8 (PcdAcpiIoPciDeviceNumber),\r
131 PcdGet8 (PcdAcpiIoPciFunctionNumber),\r
132 PcdGet16 (PcdAcpiIoPciBarRegisterOffset)\r
133 )\r
134 );\r
135 }\r
136\r
137 return (Port & PcdGet16 (PcdAcpiIoPortBaseAddressMask)) + PcdGet16 (PcdAcpiPm1TmrOffset);\r
138}\r
139\r
140/**\r
141 Stalls the CPU for at least the given number of ticks.\r
142\r
143 Stalls the CPU for at least the given number of ticks. It's invoked by\r
144 MicroSecondDelay() and NanoSecondDelay().\r
145\r
146 @param Delay A period of time to delay in ticks.\r
147\r
148**/\r
149VOID\r
150InternalAcpiDelay (\r
151 IN UINT32 Delay\r
152 )\r
153{\r
154 UINT16 Port;\r
155 UINT32 Ticks;\r
156 UINT32 Times;\r
157\r
158 Port = InternalAcpiGetAcpiTimerIoPort ();\r
159 Times = Delay >> 22;\r
160 Delay &= BIT22 - 1;\r
161 do {\r
162 //\r
163 // The target timer count is calculated here\r
164 //\r
165 Ticks = IoBitFieldRead32 (Port, 0, 23) + Delay;\r
166 Delay = BIT22;\r
167 //\r
168 // Wait until time out\r
169 // Delay >= 2^23 could not be handled by this function\r
170 // Timer wrap-arounds are handled correctly by this function\r
171 //\r
172 while (((Ticks - IoBitFieldRead32 (Port, 0, 23)) & BIT23) == 0) {\r
173 CpuPause ();\r
174 }\r
175 } while (Times-- > 0);\r
176}\r
177\r
178/**\r
179 Stalls the CPU for at least the given number of microseconds.\r
180\r
181 Stalls the CPU for the number of microseconds specified by MicroSeconds.\r
182\r
183 @param MicroSeconds The minimum number of microseconds to delay.\r
184\r
185 @return MicroSeconds\r
186\r
187**/\r
188UINTN\r
189EFIAPI\r
190MicroSecondDelay (\r
191 IN UINTN MicroSeconds\r
192 )\r
193{\r
194 InternalAcpiDelay (\r
195 (UINT32)DivU64x32 (\r
196 MultU64x32 (\r
197 MicroSeconds,\r
198 ACPI_TIMER_FREQUENCY\r
199 ),\r
200 1000000u\r
201 )\r
202 );\r
203 return MicroSeconds;\r
204}\r
205\r
206/**\r
207 Stalls the CPU for at least the given number of nanoseconds.\r
208\r
209 Stalls the CPU for the number of nanoseconds specified by NanoSeconds.\r
210\r
211 @param NanoSeconds The minimum number of nanoseconds to delay.\r
212\r
213 @return NanoSeconds\r
214\r
215**/\r
216UINTN\r
217EFIAPI\r
218NanoSecondDelay (\r
219 IN UINTN NanoSeconds\r
220 )\r
221{\r
222 InternalAcpiDelay (\r
223 (UINT32)DivU64x32 (\r
224 MultU64x32 (\r
225 NanoSeconds,\r
226 ACPI_TIMER_FREQUENCY\r
227 ),\r
228 1000000000u\r
229 )\r
230 );\r
231 return NanoSeconds;\r
232}\r
233\r
234/**\r
235 Retrieves the current value of a 64-bit free running performance counter.\r
236\r
237 Retrieves the current value of a 64-bit free running performance counter. The\r
238 counter can either count up by 1 or count down by 1. If the physical\r
239 performance counter counts by a larger increment, then the counter values\r
240 must be translated. The properties of the counter can be retrieved from\r
241 GetPerformanceCounterProperties().\r
242\r
243 @return The current value of the free running performance counter.\r
244\r
245**/\r
246UINT64\r
247EFIAPI\r
248GetPerformanceCounter (\r
249 VOID\r
250 )\r
251{\r
252 return AsmReadTsc ();\r
253}\r
254\r
255/**\r
256 Retrieves the 64-bit frequency in Hz and the range of performance counter\r
257 values.\r
258\r
259 If StartValue is not NULL, then the value that the performance counter starts\r
260 with immediately after is it rolls over is returned in StartValue. If\r
261 EndValue is not NULL, then the value that the performance counter end with\r
262 immediately before it rolls over is returned in EndValue. The 64-bit\r
263 frequency of the performance counter in Hz is always returned. If StartValue\r
264 is less than EndValue, then the performance counter counts up. If StartValue\r
265 is greater than EndValue, then the performance counter counts down. For\r
266 example, a 64-bit free running counter that counts up would have a StartValue\r
267 of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter\r
268 that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.\r
269\r
270 @param StartValue The value the performance counter starts with when it\r
271 rolls over.\r
272 @param EndValue The value that the performance counter ends with before\r
273 it rolls over.\r
274\r
275 @return The frequency in Hz.\r
276\r
277**/\r
278UINT64\r
279EFIAPI\r
280GetPerformanceCounterProperties (\r
281 OUT UINT64 *StartValue OPTIONAL,\r
282 OUT UINT64 *EndValue OPTIONAL\r
283 )\r
284{\r
285 if (StartValue != NULL) {\r
286 *StartValue = 0;\r
287 }\r
288\r
289 if (EndValue != NULL) {\r
290 *EndValue = 0xffffffffffffffffULL;\r
291 }\r
292\r
293 return InternalGetPerformanceCounterFrequency ();\r
294}\r
295\r
296/**\r
297 Converts elapsed ticks of performance counter to time in nanoseconds.\r
298\r
299 This function converts the elapsed ticks of running performance counter to\r
300 time value in unit of nanoseconds.\r
301\r
302 @param Ticks The number of elapsed ticks of running performance counter.\r
303\r
304 @return The elapsed time in nanoseconds.\r
305\r
306**/\r
307UINT64\r
308EFIAPI\r
309GetTimeInNanoSecond (\r
310 IN UINT64 Ticks\r
311 )\r
312{\r
313 UINT64 Frequency;\r
314 UINT64 NanoSeconds;\r
315 UINT64 Remainder;\r
316 INTN Shift;\r
317\r
318 Frequency = GetPerformanceCounterProperties (NULL, NULL);\r
319\r
320 //\r
321 // Ticks\r
322 // Time = --------- x 1,000,000,000\r
323 // Frequency\r
324 //\r
325 NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);\r
326\r
327 //\r
328 // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.\r
329 // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,\r
330 // i.e. highest bit set in Remainder should <= 33.\r
331 //\r
332 Shift = MAX (0, HighBitSet64 (Remainder) - 33);\r
333 Remainder = RShiftU64 (Remainder, (UINTN)Shift);\r
334 Frequency = RShiftU64 (Frequency, (UINTN)Shift);\r
335 NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);\r
336\r
337 return NanoSeconds;\r
338}\r
339\r
340/**\r
341 Calculate TSC frequency.\r
342\r
343 The TSC counting frequency is determined by comparing how far it counts\r
344 during a 101.4 us period as determined by the ACPI timer.\r
345 The ACPI timer is used because it counts at a known frequency.\r
346 The TSC is sampled, followed by waiting 363 counts of the ACPI timer,\r
347 or 101.4 us. The TSC is then sampled again. The difference multiplied by\r
348 9861 is the TSC frequency. There will be a small error because of the\r
349 overhead of reading the ACPI timer. An attempt is made to determine and\r
350 compensate for this error.\r
351\r
352 @return The number of TSC counts per second.\r
353\r
354**/\r
355UINT64\r
356InternalCalculateTscFrequency (\r
357 VOID\r
358 )\r
359{\r
360 UINT64 StartTSC;\r
361 UINT64 EndTSC;\r
362 UINT16 TimerAddr;\r
363 UINT32 Ticks;\r
364 UINT64 TscFrequency;\r
365 BOOLEAN InterruptState;\r
366\r
367 InterruptState = SaveAndDisableInterrupts ();\r
368\r
369 TimerAddr = InternalAcpiGetAcpiTimerIoPort ();\r
370 //\r
371 // Compute the number of ticks to wait to measure TSC frequency.\r
372 // Use 363 * 9861 = 3579543 Hz which is within 2 Hz of ACPI_TIMER_FREQUENCY.\r
373 // 363 counts is a calibration time of 101.4 uS.\r
374 //\r
375 Ticks = IoBitFieldRead32 (TimerAddr, 0, 23) + 363;\r
376\r
377 StartTSC = AsmReadTsc (); // Get base value for the TSC\r
378 //\r
379 // Wait until the ACPI timer has counted 101.4 us.\r
380 // Timer wrap-arounds are handled correctly by this function.\r
381 // When the current ACPI timer value is greater than 'Ticks',\r
382 // the while loop will exit.\r
383 //\r
384 while (((Ticks - IoBitFieldRead32 (TimerAddr, 0, 23)) & BIT23) == 0) {\r
385 CpuPause ();\r
386 }\r
387\r
388 EndTSC = AsmReadTsc (); // TSC value 101.4 us later\r
389\r
390 TscFrequency = MultU64x32 (\r
391 (EndTSC - StartTSC), // Number of TSC counts in 101.4 us\r
392 9861 // Number of 101.4 us in a second\r
393 );\r
394\r
395 SetInterruptState (InterruptState);\r
396\r
397 return TscFrequency;\r
398}\r