]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: fix incorrect stack top init for cpu0
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
... / ...
CommitLineData
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
39 IA32_CR0 Cr0;\r
40\r
41 Enabled = FALSE;\r
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
44 //\r
45 // If CR0 Paging bit is set\r
46 //\r
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
50 //\r
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
53 //\r
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
121\r
122/**\r
123 Save BSP's local APIC timer setting.\r
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
198\r
199 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
200 AsmReadIdtr (&VolatileRegisters->Idtr);\r
201 VolatileRegisters->Tr = AsmReadTr ();\r
202}\r
203\r
204/**\r
205 Restore the volatile registers following INIT IPI.\r
206\r
207 @param[in] VolatileRegisters Pointer to volatile resisters\r
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
209 FALSE: Do not restore DRx\r
210**/\r
211VOID\r
212RestoreVolatileRegisters (\r
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
214 IN BOOLEAN IsRestoreDr\r
215 )\r
216{\r
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
218 IA32_TSS_DESCRIPTOR *Tss;\r
219\r
220 AsmWriteCr0 (VolatileRegisters->Cr0);\r
221 AsmWriteCr3 (VolatileRegisters->Cr3);\r
222 AsmWriteCr4 (VolatileRegisters->Cr4);\r
223\r
224 if (IsRestoreDr) {\r
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
226 if (VersionInfoEdx.Bits.DE != 0) {\r
227 //\r
228 // If processor supports Debugging Extensions feature\r
229 // by CPUID.[EAX=01H]:EDX.BIT2\r
230 //\r
231 AsmWriteDr0 (VolatileRegisters->Dr0);\r
232 AsmWriteDr1 (VolatileRegisters->Dr1);\r
233 AsmWriteDr2 (VolatileRegisters->Dr2);\r
234 AsmWriteDr3 (VolatileRegisters->Dr3);\r
235 AsmWriteDr6 (VolatileRegisters->Dr6);\r
236 AsmWriteDr7 (VolatileRegisters->Dr7);\r
237 }\r
238 }\r
239\r
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
241 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
242 if (VolatileRegisters->Tr != 0 &&\r
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
245 VolatileRegisters->Tr);\r
246 if (Tss->Bits.P == 1) {\r
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
248 AsmWriteTr (VolatileRegisters->Tr);\r
249 }\r
250 }\r
251}\r
252\r
253/**\r
254 Detect whether Mwait-monitor feature is supported.\r
255\r
256 @retval TRUE Mwait-monitor feature is supported.\r
257 @retval FALSE Mwait-monitor feature is not supported.\r
258**/\r
259BOOLEAN\r
260IsMwaitSupport (\r
261 VOID\r
262 )\r
263{\r
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
265\r
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
268}\r
269\r
270/**\r
271 Get AP loop mode.\r
272\r
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
274\r
275 @return The AP loop mode.\r
276**/\r
277UINT8\r
278GetApLoopMode (\r
279 OUT UINT32 *MonitorFilterSize\r
280 )\r
281{\r
282 UINT8 ApLoopMode;\r
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
284\r
285 ASSERT (MonitorFilterSize != NULL);\r
286\r
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
289 if (ApLoopMode == ApInMwaitLoop) {\r
290 if (!IsMwaitSupport ()) {\r
291 //\r
292 // If processor does not support MONITOR/MWAIT feature,\r
293 // force AP in Hlt-loop mode\r
294 //\r
295 ApLoopMode = ApInHltLoop;\r
296 }\r
297 }\r
298\r
299 if (ApLoopMode != ApInMwaitLoop) {\r
300 *MonitorFilterSize = sizeof (UINT32);\r
301 } else {\r
302 //\r
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
305 //\r
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
308 }\r
309\r
310 return ApLoopMode;\r
311}\r
312\r
313/**\r
314 Sort the APIC ID of all processors.\r
315\r
316 This function sorts the APIC ID of all processors so that processor number is\r
317 assigned in the ascending order of APIC ID which eases MP debugging.\r
318\r
319 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
320**/\r
321VOID\r
322SortApicId (\r
323 IN CPU_MP_DATA *CpuMpData\r
324 )\r
325{\r
326 UINTN Index1;\r
327 UINTN Index2;\r
328 UINTN Index3;\r
329 UINT32 ApicId;\r
330 CPU_INFO_IN_HOB CpuInfo;\r
331 UINT32 ApCount;\r
332 CPU_INFO_IN_HOB *CpuInfoInHob;\r
333\r
334 ApCount = CpuMpData->CpuCount - 1;\r
335 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
336 if (ApCount != 0) {\r
337 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
338 Index3 = Index1;\r
339 //\r
340 // Sort key is the hardware default APIC ID\r
341 //\r
342 ApicId = CpuInfoInHob[Index1].ApicId;\r
343 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
344 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
345 Index3 = Index2;\r
346 ApicId = CpuInfoInHob[Index2].ApicId;\r
347 }\r
348 }\r
349 if (Index3 != Index1) {\r
350 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
351 CopyMem (\r
352 &CpuInfoInHob[Index3],\r
353 &CpuInfoInHob[Index1],\r
354 sizeof (CPU_INFO_IN_HOB)\r
355 );\r
356 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
357 }\r
358 }\r
359\r
360 //\r
361 // Get the processor number for the BSP\r
362 //\r
363 ApicId = GetInitialApicId ();\r
364 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
365 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
366 CpuMpData->BspNumber = (UINT32) Index1;\r
367 break;\r
368 }\r
369 }\r
370 }\r
371}\r
372\r
373/**\r
374 Enable x2APIC mode on APs.\r
375\r
376 @param[in, out] Buffer Pointer to private data buffer.\r
377**/\r
378VOID\r
379EFIAPI\r
380ApFuncEnableX2Apic (\r
381 IN OUT VOID *Buffer\r
382 )\r
383{\r
384 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
385}\r
386\r
387/**\r
388 Do sync on APs.\r
389\r
390 @param[in, out] Buffer Pointer to private data buffer.\r
391**/\r
392VOID\r
393EFIAPI\r
394ApInitializeSync (\r
395 IN OUT VOID *Buffer\r
396 )\r
397{\r
398 CPU_MP_DATA *CpuMpData;\r
399\r
400 CpuMpData = (CPU_MP_DATA *) Buffer;\r
401 //\r
402 // Load microcode on AP\r
403 //\r
404 MicrocodeDetect (CpuMpData);\r
405 //\r
406 // Sync BSP's MTRR table to AP\r
407 //\r
408 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
409}\r
410\r
411/**\r
412 Find the current Processor number by APIC ID.\r
413\r
414 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
415 @param[out] ProcessorNumber Return the pocessor number found\r
416\r
417 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
418 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
419**/\r
420EFI_STATUS\r
421GetProcessorNumber (\r
422 IN CPU_MP_DATA *CpuMpData,\r
423 OUT UINTN *ProcessorNumber\r
424 )\r
425{\r
426 UINTN TotalProcessorNumber;\r
427 UINTN Index;\r
428 CPU_INFO_IN_HOB *CpuInfoInHob;\r
429\r
430 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
431\r
432 TotalProcessorNumber = CpuMpData->CpuCount;\r
433 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
434 if (CpuInfoInHob[Index].ApicId == GetApicId ()) {\r
435 *ProcessorNumber = Index;\r
436 return EFI_SUCCESS;\r
437 }\r
438 }\r
439 return EFI_NOT_FOUND;\r
440}\r
441\r
442/**\r
443 This function will get CPU count in the system.\r
444\r
445 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
446\r
447 @return CPU count detected\r
448**/\r
449UINTN\r
450CollectProcessorCount (\r
451 IN CPU_MP_DATA *CpuMpData\r
452 )\r
453{\r
454 UINTN Index;\r
455\r
456 //\r
457 // Send 1st broadcast IPI to APs to wakeup APs\r
458 //\r
459 CpuMpData->InitFlag = ApInitConfig;\r
460 CpuMpData->X2ApicEnable = FALSE;\r
461 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
462 CpuMpData->InitFlag = ApInitDone;\r
463 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
464 //\r
465 // Wait for all APs finished the initialization\r
466 //\r
467 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
468 CpuPause ();\r
469 }\r
470\r
471 if (CpuMpData->CpuCount > 255) {\r
472 //\r
473 // If there are more than 255 processor found, force to enable X2APIC\r
474 //\r
475 CpuMpData->X2ApicEnable = TRUE;\r
476 }\r
477 if (CpuMpData->X2ApicEnable) {\r
478 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
479 //\r
480 // Wakeup all APs to enable x2APIC mode\r
481 //\r
482 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r
483 //\r
484 // Wait for all known APs finished\r
485 //\r
486 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
487 CpuPause ();\r
488 }\r
489 //\r
490 // Enable x2APIC on BSP\r
491 //\r
492 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
493 //\r
494 // Set BSP/Aps state to IDLE\r
495 //\r
496 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
497 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
498 }\r
499 }\r
500 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
501 //\r
502 // Sort BSP/Aps by CPU APIC ID in ascending order\r
503 //\r
504 SortApicId (CpuMpData);\r
505\r
506 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
507\r
508 return CpuMpData->CpuCount;\r
509}\r
510\r
511/**\r
512 Initialize CPU AP Data when AP is wakeup at the first time.\r
513\r
514 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
515 @param[in] ProcessorNumber The handle number of processor\r
516 @param[in] BistData Processor BIST data\r
517 @param[in] ApTopOfStack Top of AP stack\r
518\r
519**/\r
520VOID\r
521InitializeApData (\r
522 IN OUT CPU_MP_DATA *CpuMpData,\r
523 IN UINTN ProcessorNumber,\r
524 IN UINT32 BistData,\r
525 IN UINT64 ApTopOfStack\r
526 )\r
527{\r
528 CPU_INFO_IN_HOB *CpuInfoInHob;\r
529\r
530 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
531 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
532 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
533 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
534 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
535\r
536 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
537 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
538 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
539 //\r
540 // Set x2APIC mode if there are any logical processor reporting\r
541 // an Initial APIC ID of 255 or greater.\r
542 //\r
543 AcquireSpinLock(&CpuMpData->MpLock);\r
544 CpuMpData->X2ApicEnable = TRUE;\r
545 ReleaseSpinLock(&CpuMpData->MpLock);\r
546 }\r
547\r
548 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
549 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
550}\r
551\r
552/**\r
553 This function will be called from AP reset code if BSP uses WakeUpAP.\r
554\r
555 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
556 @param[in] ApIndex Number of current executing AP\r
557**/\r
558VOID\r
559EFIAPI\r
560ApWakeupFunction (\r
561 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
562 IN UINTN ApIndex\r
563 )\r
564{\r
565 CPU_MP_DATA *CpuMpData;\r
566 UINTN ProcessorNumber;\r
567 EFI_AP_PROCEDURE Procedure;\r
568 VOID *Parameter;\r
569 UINT32 BistData;\r
570 volatile UINT32 *ApStartupSignalBuffer;\r
571 CPU_INFO_IN_HOB *CpuInfoInHob;\r
572 UINT64 ApTopOfStack;\r
573 UINTN CurrentApicMode;\r
574\r
575 //\r
576 // AP finished assembly code and begin to execute C code\r
577 //\r
578 CpuMpData = ExchangeInfo->CpuMpData;\r
579\r
580 //\r
581 // AP's local APIC settings will be lost after received INIT IPI\r
582 // We need to re-initialize them at here\r
583 //\r
584 ProgramVirtualWireMode ();\r
585 //\r
586 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
587 //\r
588 DisableLvtInterrupts ();\r
589 SyncLocalApicTimerSetting (CpuMpData);\r
590\r
591 CurrentApicMode = GetApicMode ();\r
592 while (TRUE) {\r
593 if (CpuMpData->InitFlag == ApInitConfig) {\r
594 //\r
595 // Add CPU number\r
596 //\r
597 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
598 ProcessorNumber = ApIndex;\r
599 //\r
600 // This is first time AP wakeup, get BIST information from AP stack\r
601 //\r
602 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
603 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
604 //\r
605 // Do some AP initialize sync\r
606 //\r
607 ApInitializeSync (CpuMpData);\r
608 //\r
609 // Sync BSP's Control registers to APs\r
610 //\r
611 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
612 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
613 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
614 } else {\r
615 //\r
616 // Execute AP function if AP is ready\r
617 //\r
618 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
619 //\r
620 // Clear AP start-up signal when AP waken up\r
621 //\r
622 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
623 InterlockedCompareExchange32 (\r
624 (UINT32 *) ApStartupSignalBuffer,\r
625 WAKEUP_AP_SIGNAL,\r
626 0\r
627 );\r
628 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
629 //\r
630 // Restore AP's volatile registers saved\r
631 //\r
632 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
633 }\r
634\r
635 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
636 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
637 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
638 if (Procedure != NULL) {\r
639 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
640 //\r
641 // Enable source debugging on AP function\r
642 // \r
643 EnableDebugAgent ();\r
644 //\r
645 // Invoke AP function here\r
646 //\r
647 Procedure (Parameter);\r
648 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
649 if (CpuMpData->SwitchBspFlag) {\r
650 //\r
651 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
652 //\r
653 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
654 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
655 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
656 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
657 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
658 } else {\r
659 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
660 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
661 if (CurrentApicMode != GetApicMode ()) {\r
662 //\r
663 // If APIC mode change happened during AP function execution,\r
664 // we do not support APIC ID value changed.\r
665 //\r
666 ASSERT (FALSE);\r
667 CpuDeadLoop ();\r
668 } else {\r
669 //\r
670 // Re-get the CPU APICID and Initial APICID if they are changed\r
671 //\r
672 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
673 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
674 }\r
675 }\r
676 }\r
677 }\r
678 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
679 }\r
680 }\r
681\r
682 //\r
683 // AP finished executing C code\r
684 //\r
685 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
686 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
687\r
688 //\r
689 // Place AP is specified loop mode\r
690 //\r
691 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
692 //\r
693 // Save AP volatile registers\r
694 //\r
695 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
696 //\r
697 // Place AP in HLT-loop\r
698 //\r
699 while (TRUE) {\r
700 DisableInterrupts ();\r
701 CpuSleep ();\r
702 CpuPause ();\r
703 }\r
704 }\r
705 while (TRUE) {\r
706 DisableInterrupts ();\r
707 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
708 //\r
709 // Place AP in MWAIT-loop\r
710 //\r
711 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
712 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
713 //\r
714 // Check AP start-up signal again.\r
715 // If AP start-up signal is not set, place AP into\r
716 // the specified C-state\r
717 //\r
718 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
719 }\r
720 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
721 //\r
722 // Place AP in Run-loop\r
723 //\r
724 CpuPause ();\r
725 } else {\r
726 ASSERT (FALSE);\r
727 }\r
728\r
729 //\r
730 // If AP start-up signal is written, AP is waken up\r
731 // otherwise place AP in loop again\r
732 //\r
733 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
734 break;\r
735 }\r
736 }\r
737 }\r
738}\r
739\r
740/**\r
741 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
742\r
743 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
744**/\r
745VOID\r
746WaitApWakeup (\r
747 IN volatile UINT32 *ApStartupSignalBuffer\r
748 )\r
749{\r
750 //\r
751 // If AP is waken up, StartupApSignal should be cleared.\r
752 // Otherwise, write StartupApSignal again till AP waken up.\r
753 //\r
754 while (InterlockedCompareExchange32 (\r
755 (UINT32 *) ApStartupSignalBuffer,\r
756 WAKEUP_AP_SIGNAL,\r
757 WAKEUP_AP_SIGNAL\r
758 ) != 0) {\r
759 CpuPause ();\r
760 }\r
761}\r
762\r
763/**\r
764 This function will fill the exchange info structure.\r
765\r
766 @param[in] CpuMpData Pointer to CPU MP Data\r
767\r
768**/\r
769VOID\r
770FillExchangeInfoData (\r
771 IN CPU_MP_DATA *CpuMpData\r
772 )\r
773{\r
774 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
775\r
776 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
777 ExchangeInfo->Lock = 0;\r
778 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
779 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
780 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
781 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
782\r
783 ExchangeInfo->CodeSegment = AsmReadCs ();\r
784 ExchangeInfo->DataSegment = AsmReadDs ();\r
785\r
786 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
787\r
788 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
789 ExchangeInfo->ApIndex = 0;\r
790 ExchangeInfo->NumApsExecuting = 0;\r
791 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
792 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
793 ExchangeInfo->CpuMpData = CpuMpData;\r
794\r
795 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
796\r
797 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
798\r
799 //\r
800 // Get the BSP's data of GDT and IDT\r
801 //\r
802 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
803 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
804}\r
805\r
806/**\r
807 Helper function that waits until the finished AP count reaches the specified\r
808 limit, or the specified timeout elapses (whichever comes first).\r
809\r
810 @param[in] CpuMpData Pointer to CPU MP Data.\r
811 @param[in] FinishedApLimit The number of finished APs to wait for.\r
812 @param[in] TimeLimit The number of microseconds to wait for.\r
813**/\r
814VOID\r
815TimedWaitForApFinish (\r
816 IN CPU_MP_DATA *CpuMpData,\r
817 IN UINT32 FinishedApLimit,\r
818 IN UINT32 TimeLimit\r
819 );\r
820\r
821/**\r
822 Get available system memory below 1MB by specified size.\r
823\r
824 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
825**/\r
826VOID\r
827BackupAndPrepareWakeupBuffer(\r
828 IN CPU_MP_DATA *CpuMpData\r
829 )\r
830{\r
831 CopyMem (\r
832 (VOID *) CpuMpData->BackupBuffer,\r
833 (VOID *) CpuMpData->WakeupBuffer,\r
834 CpuMpData->BackupBufferSize\r
835 );\r
836 CopyMem (\r
837 (VOID *) CpuMpData->WakeupBuffer,\r
838 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
839 CpuMpData->AddressMap.RendezvousFunnelSize\r
840 );\r
841}\r
842\r
843/**\r
844 Restore wakeup buffer data.\r
845\r
846 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
847**/\r
848VOID\r
849RestoreWakeupBuffer(\r
850 IN CPU_MP_DATA *CpuMpData\r
851 )\r
852{\r
853 CopyMem (\r
854 (VOID *) CpuMpData->WakeupBuffer,\r
855 (VOID *) CpuMpData->BackupBuffer,\r
856 CpuMpData->BackupBufferSize\r
857 );\r
858}\r
859\r
860/**\r
861 Allocate reset vector buffer.\r
862\r
863 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
864**/\r
865VOID\r
866AllocateResetVector (\r
867 IN OUT CPU_MP_DATA *CpuMpData\r
868 )\r
869{\r
870 UINTN ApResetVectorSize;\r
871\r
872 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
873 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
874 sizeof (MP_CPU_EXCHANGE_INFO);\r
875\r
876 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
877 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
878 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
879 }\r
880 BackupAndPrepareWakeupBuffer (CpuMpData);\r
881}\r
882\r
883/**\r
884 Free AP reset vector buffer.\r
885\r
886 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
887**/\r
888VOID\r
889FreeResetVector (\r
890 IN CPU_MP_DATA *CpuMpData\r
891 )\r
892{\r
893 RestoreWakeupBuffer (CpuMpData);\r
894}\r
895\r
896/**\r
897 This function will be called by BSP to wakeup AP.\r
898\r
899 @param[in] CpuMpData Pointer to CPU MP Data\r
900 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
901 FALSE: Send IPI to AP by ApicId\r
902 @param[in] ProcessorNumber The handle number of specified processor\r
903 @param[in] Procedure The function to be invoked by AP\r
904 @param[in] ProcedureArgument The argument to be passed into AP function\r
905**/\r
906VOID\r
907WakeUpAP (\r
908 IN CPU_MP_DATA *CpuMpData,\r
909 IN BOOLEAN Broadcast,\r
910 IN UINTN ProcessorNumber,\r
911 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
912 IN VOID *ProcedureArgument OPTIONAL\r
913 )\r
914{\r
915 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
916 UINTN Index;\r
917 CPU_AP_DATA *CpuData;\r
918 BOOLEAN ResetVectorRequired;\r
919 CPU_INFO_IN_HOB *CpuInfoInHob;\r
920\r
921 CpuMpData->FinishedCount = 0;\r
922 ResetVectorRequired = FALSE;\r
923\r
924 if (CpuMpData->ApLoopMode == ApInHltLoop ||\r
925 CpuMpData->InitFlag != ApInitDone) {\r
926 ResetVectorRequired = TRUE;\r
927 AllocateResetVector (CpuMpData);\r
928 FillExchangeInfoData (CpuMpData);\r
929 SaveLocalApicTimerSetting (CpuMpData);\r
930 } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
931 //\r
932 // Get AP target C-state each time when waking up AP,\r
933 // for it maybe updated by platform again\r
934 //\r
935 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
936 }\r
937\r
938 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
939\r
940 if (Broadcast) {\r
941 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
942 if (Index != CpuMpData->BspNumber) {\r
943 CpuData = &CpuMpData->CpuData[Index];\r
944 CpuData->ApFunction = (UINTN) Procedure;\r
945 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
946 SetApState (CpuData, CpuStateReady);\r
947 if (CpuMpData->InitFlag != ApInitConfig) {\r
948 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
949 }\r
950 }\r
951 }\r
952 if (ResetVectorRequired) {\r
953 //\r
954 // Wakeup all APs\r
955 //\r
956 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
957 }\r
958 if (CpuMpData->InitFlag == ApInitConfig) {\r
959 //\r
960 // Here support two methods to collect AP count through adjust\r
961 // PcdCpuApInitTimeOutInMicroSeconds values.\r
962 //\r
963 // one way is set a value to just let the first AP to start the\r
964 // initialization, then through the later while loop to wait all Aps\r
965 // finsh the initialization.\r
966 // The other way is set a value to let all APs finished the initialzation.\r
967 // In this case, the later while loop is useless.\r
968 //\r
969 TimedWaitForApFinish (\r
970 CpuMpData,\r
971 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
972 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
973 );\r
974\r
975 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
976 CpuPause();\r
977 }\r
978 } else {\r
979 //\r
980 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
981 //\r
982 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
983 CpuData = &CpuMpData->CpuData[Index];\r
984 if (Index != CpuMpData->BspNumber) {\r
985 WaitApWakeup (CpuData->StartupApSignal);\r
986 }\r
987 }\r
988 }\r
989 } else {\r
990 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
991 CpuData->ApFunction = (UINTN) Procedure;\r
992 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
993 SetApState (CpuData, CpuStateReady);\r
994 //\r
995 // Wakeup specified AP\r
996 //\r
997 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
998 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
999 if (ResetVectorRequired) {\r
1000 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
1001 SendInitSipiSipi (\r
1002 CpuInfoInHob[ProcessorNumber].ApicId,\r
1003 (UINT32) ExchangeInfo->BufferStart\r
1004 );\r
1005 }\r
1006 //\r
1007 // Wait specified AP waken up\r
1008 //\r
1009 WaitApWakeup (CpuData->StartupApSignal);\r
1010 }\r
1011\r
1012 if (ResetVectorRequired) {\r
1013 FreeResetVector (CpuMpData);\r
1014 }\r
1015}\r
1016\r
1017/**\r
1018 Calculate timeout value and return the current performance counter value.\r
1019\r
1020 Calculate the number of performance counter ticks required for a timeout.\r
1021 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1022 as infinity.\r
1023\r
1024 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1025 @param[out] CurrentTime Returns the current value of the performance counter.\r
1026\r
1027 @return Expected time stamp counter for timeout.\r
1028 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1029 as infinity.\r
1030\r
1031**/\r
1032UINT64\r
1033CalculateTimeout (\r
1034 IN UINTN TimeoutInMicroseconds,\r
1035 OUT UINT64 *CurrentTime\r
1036 )\r
1037{\r
1038 UINT64 TimeoutInSeconds;\r
1039 UINT64 TimestampCounterFreq;\r
1040\r
1041 //\r
1042 // Read the current value of the performance counter\r
1043 //\r
1044 *CurrentTime = GetPerformanceCounter ();\r
1045\r
1046 //\r
1047 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1048 // as infinity.\r
1049 //\r
1050 if (TimeoutInMicroseconds == 0) {\r
1051 return 0;\r
1052 }\r
1053\r
1054 //\r
1055 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
1056 // in Hz. \r
1057 //\r
1058 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1059\r
1060 //\r
1061 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1062 //\r
1063 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1064 //\r
1065 // Convert microseconds into seconds if direct multiplication overflows\r
1066 //\r
1067 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1068 //\r
1069 // Assertion if the final tick count exceeds MAX_UINT64\r
1070 //\r
1071 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1072 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1073 } else {\r
1074 //\r
1075 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1076 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1077 //\r
1078 return DivU64x32 (\r
1079 MultU64x64 (\r
1080 TimestampCounterFreq,\r
1081 TimeoutInMicroseconds\r
1082 ),\r
1083 1000000\r
1084 );\r
1085 }\r
1086}\r
1087\r
1088/**\r
1089 Checks whether timeout expires.\r
1090\r
1091 Check whether the number of elapsed performance counter ticks required for\r
1092 a timeout condition has been reached.\r
1093 If Timeout is zero, which means infinity, return value is always FALSE.\r
1094\r
1095 @param[in, out] PreviousTime On input, the value of the performance counter\r
1096 when it was last read.\r
1097 On output, the current value of the performance\r
1098 counter\r
1099 @param[in] TotalTime The total amount of elapsed time in performance\r
1100 counter ticks.\r
1101 @param[in] Timeout The number of performance counter ticks required\r
1102 to reach a timeout condition.\r
1103\r
1104 @retval TRUE A timeout condition has been reached.\r
1105 @retval FALSE A timeout condition has not been reached.\r
1106\r
1107**/\r
1108BOOLEAN\r
1109CheckTimeout (\r
1110 IN OUT UINT64 *PreviousTime,\r
1111 IN UINT64 *TotalTime,\r
1112 IN UINT64 Timeout\r
1113 )\r
1114{\r
1115 UINT64 Start;\r
1116 UINT64 End;\r
1117 UINT64 CurrentTime;\r
1118 INT64 Delta;\r
1119 INT64 Cycle;\r
1120\r
1121 if (Timeout == 0) {\r
1122 return FALSE;\r
1123 }\r
1124 GetPerformanceCounterProperties (&Start, &End);\r
1125 Cycle = End - Start;\r
1126 if (Cycle < 0) {\r
1127 Cycle = -Cycle;\r
1128 }\r
1129 Cycle++;\r
1130 CurrentTime = GetPerformanceCounter();\r
1131 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1132 if (Start > End) {\r
1133 Delta = -Delta;\r
1134 }\r
1135 if (Delta < 0) {\r
1136 Delta += Cycle;\r
1137 }\r
1138 *TotalTime += Delta;\r
1139 *PreviousTime = CurrentTime;\r
1140 if (*TotalTime > Timeout) {\r
1141 return TRUE;\r
1142 }\r
1143 return FALSE;\r
1144}\r
1145\r
1146/**\r
1147 Helper function that waits until the finished AP count reaches the specified\r
1148 limit, or the specified timeout elapses (whichever comes first).\r
1149\r
1150 @param[in] CpuMpData Pointer to CPU MP Data.\r
1151 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1152 @param[in] TimeLimit The number of microseconds to wait for.\r
1153**/\r
1154VOID\r
1155TimedWaitForApFinish (\r
1156 IN CPU_MP_DATA *CpuMpData,\r
1157 IN UINT32 FinishedApLimit,\r
1158 IN UINT32 TimeLimit\r
1159 )\r
1160{\r
1161 //\r
1162 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1163 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1164 //\r
1165 if (TimeLimit == 0) {\r
1166 return;\r
1167 }\r
1168\r
1169 CpuMpData->TotalTime = 0;\r
1170 CpuMpData->ExpectedTime = CalculateTimeout (\r
1171 TimeLimit,\r
1172 &CpuMpData->CurrentTime\r
1173 );\r
1174 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1175 !CheckTimeout (\r
1176 &CpuMpData->CurrentTime,\r
1177 &CpuMpData->TotalTime,\r
1178 CpuMpData->ExpectedTime\r
1179 )) {\r
1180 CpuPause ();\r
1181 }\r
1182\r
1183 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1184 DEBUG ((\r
1185 DEBUG_VERBOSE,\r
1186 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1187 __FUNCTION__,\r
1188 FinishedApLimit,\r
1189 DivU64x64Remainder (\r
1190 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1191 GetPerformanceCounterProperties (NULL, NULL),\r
1192 NULL\r
1193 )\r
1194 ));\r
1195 }\r
1196}\r
1197\r
1198/**\r
1199 Reset an AP to Idle state.\r
1200\r
1201 Any task being executed by the AP will be aborted and the AP\r
1202 will be waiting for a new task in Wait-For-SIPI state.\r
1203\r
1204 @param[in] ProcessorNumber The handle number of processor.\r
1205**/\r
1206VOID\r
1207ResetProcessorToIdleState (\r
1208 IN UINTN ProcessorNumber\r
1209 )\r
1210{\r
1211 CPU_MP_DATA *CpuMpData;\r
1212\r
1213 CpuMpData = GetCpuMpData ();\r
1214\r
1215 CpuMpData->InitFlag = ApInitReconfig;\r
1216 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
1217 while (CpuMpData->FinishedCount < 1) {\r
1218 CpuPause ();\r
1219 }\r
1220 CpuMpData->InitFlag = ApInitDone;\r
1221\r
1222 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1223}\r
1224\r
1225/**\r
1226 Searches for the next waiting AP.\r
1227\r
1228 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1229\r
1230 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1231\r
1232 @retval EFI_SUCCESS The next waiting AP has been found.\r
1233 @retval EFI_NOT_FOUND No waiting AP exists.\r
1234\r
1235**/\r
1236EFI_STATUS\r
1237GetNextWaitingProcessorNumber (\r
1238 OUT UINTN *NextProcessorNumber\r
1239 )\r
1240{\r
1241 UINTN ProcessorNumber;\r
1242 CPU_MP_DATA *CpuMpData;\r
1243\r
1244 CpuMpData = GetCpuMpData ();\r
1245\r
1246 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1247 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1248 *NextProcessorNumber = ProcessorNumber;\r
1249 return EFI_SUCCESS;\r
1250 }\r
1251 }\r
1252\r
1253 return EFI_NOT_FOUND;\r
1254}\r
1255\r
1256/** Checks status of specified AP.\r
1257\r
1258 This function checks whether the specified AP has finished the task assigned\r
1259 by StartupThisAP(), and whether timeout expires.\r
1260\r
1261 @param[in] ProcessorNumber The handle number of processor.\r
1262\r
1263 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1264 @retval EFI_TIMEOUT The timeout expires.\r
1265 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1266**/\r
1267EFI_STATUS\r
1268CheckThisAP (\r
1269 IN UINTN ProcessorNumber\r
1270 )\r
1271{\r
1272 CPU_MP_DATA *CpuMpData;\r
1273 CPU_AP_DATA *CpuData;\r
1274\r
1275 CpuMpData = GetCpuMpData ();\r
1276 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1277\r
1278 //\r
1279 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1280 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1281 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1282 //\r
1283 //\r
1284 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1285 //\r
1286 if (GetApState(CpuData) == CpuStateFinished) {\r
1287 if (CpuData->Finished != NULL) {\r
1288 *(CpuData->Finished) = TRUE;\r
1289 }\r
1290 SetApState (CpuData, CpuStateIdle);\r
1291 return EFI_SUCCESS;\r
1292 } else {\r
1293 //\r
1294 // If timeout expires for StartupThisAP(), report timeout.\r
1295 //\r
1296 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1297 if (CpuData->Finished != NULL) {\r
1298 *(CpuData->Finished) = FALSE;\r
1299 }\r
1300 //\r
1301 // Reset failed AP to idle state\r
1302 //\r
1303 ResetProcessorToIdleState (ProcessorNumber);\r
1304\r
1305 return EFI_TIMEOUT;\r
1306 }\r
1307 }\r
1308 return EFI_NOT_READY;\r
1309}\r
1310\r
1311/**\r
1312 Checks status of all APs.\r
1313\r
1314 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1315 and whether timeout expires.\r
1316\r
1317 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1318 @retval EFI_TIMEOUT The timeout expires.\r
1319 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1320**/\r
1321EFI_STATUS\r
1322CheckAllAPs (\r
1323 VOID\r
1324 )\r
1325{\r
1326 UINTN ProcessorNumber;\r
1327 UINTN NextProcessorNumber;\r
1328 UINTN ListIndex;\r
1329 EFI_STATUS Status;\r
1330 CPU_MP_DATA *CpuMpData;\r
1331 CPU_AP_DATA *CpuData;\r
1332\r
1333 CpuMpData = GetCpuMpData ();\r
1334\r
1335 NextProcessorNumber = 0;\r
1336\r
1337 //\r
1338 // Go through all APs that are responsible for the StartupAllAPs().\r
1339 //\r
1340 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1341 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1342 continue;\r
1343 }\r
1344\r
1345 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1346 //\r
1347 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1348 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1349 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1350 //\r
1351 if (GetApState(CpuData) == CpuStateFinished) {\r
1352 CpuMpData->RunningCount ++;\r
1353 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1354 SetApState(CpuData, CpuStateIdle);\r
1355\r
1356 //\r
1357 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1358 //\r
1359 if (CpuMpData->SingleThread) {\r
1360 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1361\r
1362 if (!EFI_ERROR (Status)) {\r
1363 WakeUpAP (\r
1364 CpuMpData,\r
1365 FALSE,\r
1366 (UINT32) NextProcessorNumber,\r
1367 CpuMpData->Procedure,\r
1368 CpuMpData->ProcArguments\r
1369 );\r
1370 }\r
1371 }\r
1372 }\r
1373 }\r
1374\r
1375 //\r
1376 // If all APs finish, return EFI_SUCCESS.\r
1377 //\r
1378 if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
1379 return EFI_SUCCESS;\r
1380 }\r
1381\r
1382 //\r
1383 // If timeout expires, report timeout.\r
1384 //\r
1385 if (CheckTimeout (\r
1386 &CpuMpData->CurrentTime,\r
1387 &CpuMpData->TotalTime,\r
1388 CpuMpData->ExpectedTime)\r
1389 ) {\r
1390 //\r
1391 // If FailedCpuList is not NULL, record all failed APs in it.\r
1392 //\r
1393 if (CpuMpData->FailedCpuList != NULL) {\r
1394 *CpuMpData->FailedCpuList =\r
1395 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
1396 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1397 }\r
1398 ListIndex = 0;\r
1399\r
1400 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1401 //\r
1402 // Check whether this processor is responsible for StartupAllAPs().\r
1403 //\r
1404 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1405 //\r
1406 // Reset failed APs to idle state\r
1407 //\r
1408 ResetProcessorToIdleState (ProcessorNumber);\r
1409 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1410 if (CpuMpData->FailedCpuList != NULL) {\r
1411 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1412 }\r
1413 }\r
1414 }\r
1415 if (CpuMpData->FailedCpuList != NULL) {\r
1416 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1417 }\r
1418 return EFI_TIMEOUT;\r
1419 }\r
1420 return EFI_NOT_READY;\r
1421}\r
1422\r
1423/**\r
1424 MP Initialize Library initialization.\r
1425\r
1426 This service will allocate AP reset vector and wakeup all APs to do APs\r
1427 initialization.\r
1428\r
1429 This service must be invoked before all other MP Initialize Library\r
1430 service are invoked.\r
1431\r
1432 @retval EFI_SUCCESS MP initialization succeeds.\r
1433 @retval Others MP initialization fails.\r
1434\r
1435**/\r
1436EFI_STATUS\r
1437EFIAPI\r
1438MpInitLibInitialize (\r
1439 VOID\r
1440 )\r
1441{\r
1442 CPU_MP_DATA *OldCpuMpData;\r
1443 CPU_INFO_IN_HOB *CpuInfoInHob;\r
1444 UINT32 MaxLogicalProcessorNumber;\r
1445 UINT32 ApStackSize;\r
1446 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
1447 UINTN BufferSize;\r
1448 UINT32 MonitorFilterSize;\r
1449 VOID *MpBuffer;\r
1450 UINTN Buffer;\r
1451 CPU_MP_DATA *CpuMpData;\r
1452 UINT8 ApLoopMode;\r
1453 UINT8 *MonitorBuffer;\r
1454 UINTN Index;\r
1455 UINTN ApResetVectorSize;\r
1456 UINTN BackupBufferAddr;\r
1457\r
1458 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1459 if (OldCpuMpData == NULL) {\r
1460 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1461 } else {\r
1462 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1463 }\r
1464 ASSERT (MaxLogicalProcessorNumber != 0);\r
1465\r
1466 AsmGetAddressMap (&AddressMap);\r
1467 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
1468 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
1469 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1470\r
1471 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1472 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
1473 BufferSize += sizeof (CPU_MP_DATA);\r
1474 BufferSize += ApResetVectorSize;\r
1475 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1476 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1477 ASSERT (MpBuffer != NULL);\r
1478 ZeroMem (MpBuffer, BufferSize);\r
1479 Buffer = (UINTN) MpBuffer;\r
1480\r
1481 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1482 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
1483 CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);\r
1484 CpuMpData->Buffer = Buffer;\r
1485 CpuMpData->CpuApStackSize = ApStackSize;\r
1486 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1487 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
1488 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1489 CpuMpData->CpuCount = 1;\r
1490 CpuMpData->BspNumber = 0;\r
1491 CpuMpData->WaitEvent = NULL;\r
1492 CpuMpData->SwitchBspFlag = FALSE;\r
1493 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1494 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1495 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1496 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
1497 InitializeSpinLock(&CpuMpData->MpLock);\r
1498 //\r
1499 // Save BSP's Control registers to APs\r
1500 //\r
1501 SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);\r
1502 //\r
1503 // Set BSP basic information\r
1504 //\r
1505 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
1506 //\r
1507 // Save assembly code information\r
1508 //\r
1509 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1510 //\r
1511 // Finally set AP loop mode\r
1512 //\r
1513 CpuMpData->ApLoopMode = ApLoopMode;\r
1514 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
1515 //\r
1516 // Set up APs wakeup signal buffer\r
1517 //\r
1518 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1519 CpuMpData->CpuData[Index].StartupApSignal =\r
1520 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1521 }\r
1522 //\r
1523 // Load Microcode on BSP\r
1524 //\r
1525 MicrocodeDetect (CpuMpData);\r
1526 //\r
1527 // Store BSP's MTRR setting\r
1528 //\r
1529 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
1530 //\r
1531 // Enable the local APIC for Virtual Wire Mode.\r
1532 //\r
1533 ProgramVirtualWireMode ();\r
1534\r
1535 if (OldCpuMpData == NULL) {\r
1536 if (MaxLogicalProcessorNumber > 1) {\r
1537 //\r
1538 // Wakeup all APs and calculate the processor count in system\r
1539 //\r
1540 CollectProcessorCount (CpuMpData);\r
1541 }\r
1542 } else {\r
1543 //\r
1544 // APs have been wakeup before, just get the CPU Information\r
1545 // from HOB\r
1546 //\r
1547 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1548 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1549 CpuMpData->InitFlag = ApInitReconfig;\r
1550 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1551 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
1552 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1553 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
1554 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
1555 CpuMpData->X2ApicEnable = TRUE;\r
1556 }\r
1557 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
1558 CpuMpData->CpuData[Index].ApFunction = 0;\r
1559 CopyMem (\r
1560 &CpuMpData->CpuData[Index].VolatileRegisters,\r
1561 &CpuMpData->CpuData[0].VolatileRegisters,\r
1562 sizeof (CPU_VOLATILE_REGISTERS)\r
1563 );\r
1564 }\r
1565 if (MaxLogicalProcessorNumber > 1) {\r
1566 //\r
1567 // Wakeup APs to do some AP initialize sync\r
1568 //\r
1569 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
1570 //\r
1571 // Wait for all APs finished initialization\r
1572 //\r
1573 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1574 CpuPause ();\r
1575 }\r
1576 CpuMpData->InitFlag = ApInitDone;\r
1577 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1578 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1579 }\r
1580 }\r
1581 }\r
1582\r
1583 //\r
1584 // Initialize global data for MP support\r
1585 //\r
1586 InitMpGlobalData (CpuMpData);\r
1587\r
1588 return EFI_SUCCESS;\r
1589}\r
1590\r
1591/**\r
1592 Gets detailed MP-related information on the requested processor at the\r
1593 instant this call is made. This service may only be called from the BSP.\r
1594\r
1595 @param[in] ProcessorNumber The handle number of processor.\r
1596 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1597 the requested processor is deposited.\r
1598 @param[out] HealthData Return processor health data.\r
1599\r
1600 @retval EFI_SUCCESS Processor information was returned.\r
1601 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1602 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1603 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1604 ProcessorNumber does not exist in the platform.\r
1605 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1606\r
1607**/\r
1608EFI_STATUS\r
1609EFIAPI\r
1610MpInitLibGetProcessorInfo (\r
1611 IN UINTN ProcessorNumber,\r
1612 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1613 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1614 )\r
1615{\r
1616 CPU_MP_DATA *CpuMpData;\r
1617 UINTN CallerNumber;\r
1618 CPU_INFO_IN_HOB *CpuInfoInHob;\r
1619\r
1620 CpuMpData = GetCpuMpData ();\r
1621 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
1622\r
1623 //\r
1624 // Check whether caller processor is BSP\r
1625 //\r
1626 MpInitLibWhoAmI (&CallerNumber);\r
1627 if (CallerNumber != CpuMpData->BspNumber) {\r
1628 return EFI_DEVICE_ERROR;\r
1629 }\r
1630\r
1631 if (ProcessorInfoBuffer == NULL) {\r
1632 return EFI_INVALID_PARAMETER;\r
1633 }\r
1634\r
1635 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1636 return EFI_NOT_FOUND;\r
1637 }\r
1638\r
1639 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
1640 ProcessorInfoBuffer->StatusFlag = 0;\r
1641 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1642 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1643 }\r
1644 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1645 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1646 }\r
1647 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1648 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1649 } else {\r
1650 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1651 }\r
1652\r
1653 //\r
1654 // Get processor location information\r
1655 //\r
1656 GetProcessorLocationByApicId (\r
1657 CpuInfoInHob[ProcessorNumber].ApicId,\r
1658 &ProcessorInfoBuffer->Location.Package,\r
1659 &ProcessorInfoBuffer->Location.Core,\r
1660 &ProcessorInfoBuffer->Location.Thread\r
1661 );\r
1662\r
1663 if (HealthData != NULL) {\r
1664 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
1665 }\r
1666\r
1667 return EFI_SUCCESS;\r
1668}\r
1669\r
1670/**\r
1671 Worker function to switch the requested AP to be the BSP from that point onward.\r
1672\r
1673 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1674 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1675 enabled AP. Otherwise, it will be disabled.\r
1676\r
1677 @retval EFI_SUCCESS BSP successfully switched.\r
1678 @retval others Failed to switch BSP. \r
1679\r
1680**/\r
1681EFI_STATUS\r
1682SwitchBSPWorker (\r
1683 IN UINTN ProcessorNumber,\r
1684 IN BOOLEAN EnableOldBSP\r
1685 )\r
1686{\r
1687 CPU_MP_DATA *CpuMpData;\r
1688 UINTN CallerNumber;\r
1689 CPU_STATE State;\r
1690 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
1691 BOOLEAN OldInterruptState;\r
1692 BOOLEAN OldTimerInterruptState;\r
1693\r
1694 //\r
1695 // Save and Disable Local APIC timer interrupt\r
1696 //\r
1697 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1698 DisableApicTimerInterrupt ();\r
1699 //\r
1700 // Before send both BSP and AP to a procedure to exchange their roles,\r
1701 // interrupt must be disabled. This is because during the exchange role\r
1702 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1703 // be corrupted, since interrupt return address will be pushed to stack\r
1704 // by hardware.\r
1705 //\r
1706 OldInterruptState = SaveAndDisableInterrupts ();\r
1707\r
1708 //\r
1709 // Mask LINT0 & LINT1 for the old BSP\r
1710 //\r
1711 DisableLvtInterrupts ();\r
1712\r
1713 CpuMpData = GetCpuMpData ();\r
1714\r
1715 //\r
1716 // Check whether caller processor is BSP\r
1717 //\r
1718 MpInitLibWhoAmI (&CallerNumber);\r
1719 if (CallerNumber != CpuMpData->BspNumber) {\r
1720 return EFI_DEVICE_ERROR;\r
1721 }\r
1722\r
1723 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1724 return EFI_NOT_FOUND;\r
1725 }\r
1726\r
1727 //\r
1728 // Check whether specified AP is disabled\r
1729 //\r
1730 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1731 if (State == CpuStateDisabled) {\r
1732 return EFI_INVALID_PARAMETER;\r
1733 }\r
1734\r
1735 //\r
1736 // Check whether ProcessorNumber specifies the current BSP\r
1737 //\r
1738 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1739 return EFI_INVALID_PARAMETER;\r
1740 }\r
1741\r
1742 //\r
1743 // Check whether specified AP is busy\r
1744 //\r
1745 if (State == CpuStateBusy) {\r
1746 return EFI_NOT_READY;\r
1747 }\r
1748\r
1749 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1750 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1751 CpuMpData->SwitchBspFlag = TRUE;\r
1752 CpuMpData->NewBspNumber = ProcessorNumber;\r
1753\r
1754 //\r
1755 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1756 //\r
1757 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1758 ApicBaseMsr.Bits.BSP = 0;\r
1759 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1760\r
1761 //\r
1762 // Need to wakeUp AP (future BSP).\r
1763 //\r
1764 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r
1765\r
1766 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1767\r
1768 //\r
1769 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1770 //\r
1771 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1772 ApicBaseMsr.Bits.BSP = 1;\r
1773 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1774\r
1775 //\r
1776 // Wait for old BSP finished AP task\r
1777 //\r
1778 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
1779 CpuPause ();\r
1780 }\r
1781\r
1782 CpuMpData->SwitchBspFlag = FALSE;\r
1783 //\r
1784 // Set old BSP enable state\r
1785 //\r
1786 if (!EnableOldBSP) {\r
1787 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
1788 } else {\r
1789 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
1790 }\r
1791 //\r
1792 // Save new BSP number\r
1793 //\r
1794 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1795\r
1796 //\r
1797 // Restore interrupt state.\r
1798 //\r
1799 SetInterruptState (OldInterruptState);\r
1800\r
1801 if (OldTimerInterruptState) {\r
1802 EnableApicTimerInterrupt ();\r
1803 }\r
1804\r
1805 return EFI_SUCCESS;\r
1806}\r
1807\r
1808/**\r
1809 Worker function to let the caller enable or disable an AP from this point onward.\r
1810 This service may only be called from the BSP.\r
1811\r
1812 @param[in] ProcessorNumber The handle number of AP.\r
1813 @param[in] EnableAP Specifies the new state for the processor for\r
1814 enabled, FALSE for disabled.\r
1815 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1816 the new health status of the AP.\r
1817\r
1818 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1819 @retval others Failed to Enable/Disable AP.\r
1820\r
1821**/\r
1822EFI_STATUS\r
1823EnableDisableApWorker (\r
1824 IN UINTN ProcessorNumber,\r
1825 IN BOOLEAN EnableAP,\r
1826 IN UINT32 *HealthFlag OPTIONAL\r
1827 )\r
1828{\r
1829 CPU_MP_DATA *CpuMpData;\r
1830 UINTN CallerNumber;\r
1831\r
1832 CpuMpData = GetCpuMpData ();\r
1833\r
1834 //\r
1835 // Check whether caller processor is BSP\r
1836 //\r
1837 MpInitLibWhoAmI (&CallerNumber);\r
1838 if (CallerNumber != CpuMpData->BspNumber) {\r
1839 return EFI_DEVICE_ERROR;\r
1840 }\r
1841\r
1842 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1843 return EFI_INVALID_PARAMETER;\r
1844 }\r
1845\r
1846 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1847 return EFI_NOT_FOUND;\r
1848 }\r
1849\r
1850 if (!EnableAP) {\r
1851 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
1852 } else {\r
1853 ResetProcessorToIdleState (ProcessorNumber);\r
1854 }\r
1855\r
1856 if (HealthFlag != NULL) {\r
1857 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
1858 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
1859 }\r
1860\r
1861 return EFI_SUCCESS;\r
1862}\r
1863\r
1864/**\r
1865 This return the handle number for the calling processor. This service may be\r
1866 called from the BSP and APs.\r
1867\r
1868 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
1869 The range is from 0 to the total number of\r
1870 logical processors minus 1. The total number of\r
1871 logical processors can be retrieved by\r
1872 MpInitLibGetNumberOfProcessors().\r
1873\r
1874 @retval EFI_SUCCESS The current processor handle number was returned\r
1875 in ProcessorNumber.\r
1876 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
1877 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1878\r
1879**/\r
1880EFI_STATUS\r
1881EFIAPI\r
1882MpInitLibWhoAmI (\r
1883 OUT UINTN *ProcessorNumber\r
1884 )\r
1885{\r
1886 CPU_MP_DATA *CpuMpData;\r
1887\r
1888 if (ProcessorNumber == NULL) {\r
1889 return EFI_INVALID_PARAMETER;\r
1890 }\r
1891\r
1892 CpuMpData = GetCpuMpData ();\r
1893\r
1894 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
1895}\r
1896\r
1897/**\r
1898 Retrieves the number of logical processor in the platform and the number of\r
1899 those logical processors that are enabled on this boot. This service may only\r
1900 be called from the BSP.\r
1901\r
1902 @param[out] NumberOfProcessors Pointer to the total number of logical\r
1903 processors in the system, including the BSP\r
1904 and disabled APs.\r
1905 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
1906 processors that exist in system, including\r
1907 the BSP.\r
1908\r
1909 @retval EFI_SUCCESS The number of logical processors and enabled\r
1910 logical processors was retrieved.\r
1911 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1912 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
1913 is NULL.\r
1914 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1915\r
1916**/\r
1917EFI_STATUS\r
1918EFIAPI\r
1919MpInitLibGetNumberOfProcessors (\r
1920 OUT UINTN *NumberOfProcessors, OPTIONAL\r
1921 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
1922 )\r
1923{\r
1924 CPU_MP_DATA *CpuMpData;\r
1925 UINTN CallerNumber;\r
1926 UINTN ProcessorNumber;\r
1927 UINTN EnabledProcessorNumber;\r
1928 UINTN Index;\r
1929\r
1930 CpuMpData = GetCpuMpData ();\r
1931\r
1932 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
1933 return EFI_INVALID_PARAMETER;\r
1934 }\r
1935\r
1936 //\r
1937 // Check whether caller processor is BSP\r
1938 //\r
1939 MpInitLibWhoAmI (&CallerNumber);\r
1940 if (CallerNumber != CpuMpData->BspNumber) {\r
1941 return EFI_DEVICE_ERROR;\r
1942 }\r
1943\r
1944 ProcessorNumber = CpuMpData->CpuCount;\r
1945 EnabledProcessorNumber = 0;\r
1946 for (Index = 0; Index < ProcessorNumber; Index++) {\r
1947 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
1948 EnabledProcessorNumber ++;\r
1949 }\r
1950 }\r
1951\r
1952 if (NumberOfProcessors != NULL) {\r
1953 *NumberOfProcessors = ProcessorNumber;\r
1954 }\r
1955 if (NumberOfEnabledProcessors != NULL) {\r
1956 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
1957 }\r
1958\r
1959 return EFI_SUCCESS;\r
1960}\r
1961\r
1962\r
1963/**\r
1964 Worker function to execute a caller provided function on all enabled APs.\r
1965\r
1966 @param[in] Procedure A pointer to the function to be run on\r
1967 enabled APs of the system.\r
1968 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
1969 the function specified by Procedure one by\r
1970 one, in ascending order of processor handle\r
1971 number. If FALSE, then all the enabled APs\r
1972 execute the function specified by Procedure\r
1973 simultaneously.\r
1974 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
1975 service.\r
1976 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
1977 APs to return from Procedure, either for\r
1978 blocking or non-blocking mode.\r
1979 @param[in] ProcedureArgument The parameter passed into Procedure for\r
1980 all APs.\r
1981 @param[out] FailedCpuList If all APs finish successfully, then its\r
1982 content is set to NULL. If not all APs\r
1983 finish before timeout expires, then its\r
1984 content is set to address of the buffer\r
1985 holding handle numbers of the failed APs.\r
1986\r
1987 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
1988 the timeout expired.\r
1989 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
1990 to all enabled APs.\r
1991 @retval others Failed to Startup all APs.\r
1992\r
1993**/\r
1994EFI_STATUS\r
1995StartupAllAPsWorker (\r
1996 IN EFI_AP_PROCEDURE Procedure,\r
1997 IN BOOLEAN SingleThread,\r
1998 IN EFI_EVENT WaitEvent OPTIONAL,\r
1999 IN UINTN TimeoutInMicroseconds,\r
2000 IN VOID *ProcedureArgument OPTIONAL,\r
2001 OUT UINTN **FailedCpuList OPTIONAL\r
2002 )\r
2003{\r
2004 EFI_STATUS Status;\r
2005 CPU_MP_DATA *CpuMpData;\r
2006 UINTN ProcessorCount;\r
2007 UINTN ProcessorNumber;\r
2008 UINTN CallerNumber;\r
2009 CPU_AP_DATA *CpuData;\r
2010 BOOLEAN HasEnabledAp;\r
2011 CPU_STATE ApState;\r
2012\r
2013 CpuMpData = GetCpuMpData ();\r
2014\r
2015 if (FailedCpuList != NULL) {\r
2016 *FailedCpuList = NULL;\r
2017 }\r
2018\r
2019 if (CpuMpData->CpuCount == 1) {\r
2020 return EFI_NOT_STARTED;\r
2021 }\r
2022\r
2023 if (Procedure == NULL) {\r
2024 return EFI_INVALID_PARAMETER;\r
2025 }\r
2026\r
2027 //\r
2028 // Check whether caller processor is BSP\r
2029 //\r
2030 MpInitLibWhoAmI (&CallerNumber);\r
2031 if (CallerNumber != CpuMpData->BspNumber) {\r
2032 return EFI_DEVICE_ERROR;\r
2033 }\r
2034\r
2035 //\r
2036 // Update AP state\r
2037 //\r
2038 CheckAndUpdateApsStatus ();\r
2039\r
2040 ProcessorCount = CpuMpData->CpuCount;\r
2041 HasEnabledAp = FALSE;\r
2042 //\r
2043 // Check whether all enabled APs are idle.\r
2044 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2045 //\r
2046 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2047 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2048 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2049 ApState = GetApState (CpuData);\r
2050 if (ApState != CpuStateDisabled) {\r
2051 HasEnabledAp = TRUE;\r
2052 if (ApState != CpuStateIdle) {\r
2053 //\r
2054 // If any enabled APs are busy, return EFI_NOT_READY.\r
2055 //\r
2056 return EFI_NOT_READY;\r
2057 }\r
2058 }\r
2059 }\r
2060 }\r
2061\r
2062 if (!HasEnabledAp) {\r
2063 //\r
2064 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2065 //\r
2066 return EFI_NOT_STARTED;\r
2067 }\r
2068\r
2069 CpuMpData->StartCount = 0;\r
2070 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2071 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2072 CpuData->Waiting = FALSE;\r
2073 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2074 if (CpuData->State == CpuStateIdle) {\r
2075 //\r
2076 // Mark this processor as responsible for current calling.\r
2077 //\r
2078 CpuData->Waiting = TRUE;\r
2079 CpuMpData->StartCount++;\r
2080 }\r
2081 }\r
2082 }\r
2083\r
2084 CpuMpData->Procedure = Procedure;\r
2085 CpuMpData->ProcArguments = ProcedureArgument;\r
2086 CpuMpData->SingleThread = SingleThread;\r
2087 CpuMpData->FinishedCount = 0;\r
2088 CpuMpData->RunningCount = 0;\r
2089 CpuMpData->FailedCpuList = FailedCpuList;\r
2090 CpuMpData->ExpectedTime = CalculateTimeout (\r
2091 TimeoutInMicroseconds,\r
2092 &CpuMpData->CurrentTime\r
2093 );\r
2094 CpuMpData->TotalTime = 0;\r
2095 CpuMpData->WaitEvent = WaitEvent;\r
2096\r
2097 if (!SingleThread) {\r
2098 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
2099 } else {\r
2100 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2101 if (ProcessorNumber == CallerNumber) {\r
2102 continue;\r
2103 }\r
2104 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
2105 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2106 break;\r
2107 }\r
2108 }\r
2109 }\r
2110\r
2111 Status = EFI_SUCCESS;\r
2112 if (WaitEvent == NULL) {\r
2113 do {\r
2114 Status = CheckAllAPs ();\r
2115 } while (Status == EFI_NOT_READY);\r
2116 }\r
2117\r
2118 return Status;\r
2119}\r
2120\r
2121/**\r
2122 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2123 function.\r
2124\r
2125 @param[in] Procedure A pointer to the function to be run on\r
2126 enabled APs of the system.\r
2127 @param[in] ProcessorNumber The handle number of the AP.\r
2128 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2129 service.\r
2130 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2131 APs to return from Procedure, either for\r
2132 blocking or non-blocking mode.\r
2133 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2134 all APs.\r
2135 @param[out] Finished If AP returns from Procedure before the\r
2136 timeout expires, its content is set to TRUE.\r
2137 Otherwise, the value is set to FALSE.\r
2138\r
2139 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2140 the timeout expires.\r
2141 @retval others Failed to Startup AP.\r
2142\r
2143**/\r
2144EFI_STATUS\r
2145StartupThisAPWorker (\r
2146 IN EFI_AP_PROCEDURE Procedure,\r
2147 IN UINTN ProcessorNumber,\r
2148 IN EFI_EVENT WaitEvent OPTIONAL,\r
2149 IN UINTN TimeoutInMicroseconds,\r
2150 IN VOID *ProcedureArgument OPTIONAL,\r
2151 OUT BOOLEAN *Finished OPTIONAL\r
2152 )\r
2153{\r
2154 EFI_STATUS Status;\r
2155 CPU_MP_DATA *CpuMpData;\r
2156 CPU_AP_DATA *CpuData;\r
2157 UINTN CallerNumber;\r
2158\r
2159 CpuMpData = GetCpuMpData ();\r
2160\r
2161 if (Finished != NULL) {\r
2162 *Finished = FALSE;\r
2163 }\r
2164\r
2165 //\r
2166 // Check whether caller processor is BSP\r
2167 //\r
2168 MpInitLibWhoAmI (&CallerNumber);\r
2169 if (CallerNumber != CpuMpData->BspNumber) {\r
2170 return EFI_DEVICE_ERROR;\r
2171 }\r
2172\r
2173 //\r
2174 // Check whether processor with the handle specified by ProcessorNumber exists\r
2175 //\r
2176 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2177 return EFI_NOT_FOUND;\r
2178 }\r
2179\r
2180 //\r
2181 // Check whether specified processor is BSP\r
2182 //\r
2183 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2184 return EFI_INVALID_PARAMETER;\r
2185 }\r
2186\r
2187 //\r
2188 // Check parameter Procedure\r
2189 //\r
2190 if (Procedure == NULL) {\r
2191 return EFI_INVALID_PARAMETER;\r
2192 }\r
2193\r
2194 //\r
2195 // Update AP state\r
2196 //\r
2197 CheckAndUpdateApsStatus ();\r
2198\r
2199 //\r
2200 // Check whether specified AP is disabled\r
2201 //\r
2202 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2203 return EFI_INVALID_PARAMETER;\r
2204 }\r
2205\r
2206 //\r
2207 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2208 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2209 // CheckAPsStatus() will check completion and timeout periodically.\r
2210 //\r
2211 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2212 CpuData->WaitEvent = WaitEvent;\r
2213 CpuData->Finished = Finished;\r
2214 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2215 CpuData->TotalTime = 0;\r
2216\r
2217 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2218\r
2219 //\r
2220 // If WaitEvent is NULL, execute in blocking mode.\r
2221 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2222 //\r
2223 Status = EFI_SUCCESS;\r
2224 if (WaitEvent == NULL) {\r
2225 do {\r
2226 Status = CheckThisAP (ProcessorNumber);\r
2227 } while (Status == EFI_NOT_READY);\r
2228 }\r
2229\r
2230 return Status;\r
2231}\r
2232\r
2233/**\r
2234 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2235\r
2236 @return The pointer to CPU MP Data structure.\r
2237**/\r
2238CPU_MP_DATA *\r
2239GetCpuMpDataFromGuidedHob (\r
2240 VOID\r
2241 )\r
2242{\r
2243 EFI_HOB_GUID_TYPE *GuidHob;\r
2244 VOID *DataInHob;\r
2245 CPU_MP_DATA *CpuMpData;\r
2246\r
2247 CpuMpData = NULL;\r
2248 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2249 if (GuidHob != NULL) {\r
2250 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2251 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2252 }\r
2253 return CpuMpData;\r
2254}\r
2255\r