]> git.proxmox.com Git - mirror_edk2.git/blob - ArmPkg/Library/ArmArchTimerLib/ArmArchTimerLib.c
ArmPkg/ArmArchTimerLib: correct typos
[mirror_edk2.git] / ArmPkg / Library / ArmArchTimerLib / ArmArchTimerLib.c
1 /** @file
2 Generic ARM implementation of TimerLib.h
3
4 Copyright (c) 2011-2016, ARM Limited. All rights reserved.
5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16
17 #include <Base.h>
18 #include <Library/ArmLib.h>
19 #include <Library/BaseLib.h>
20 #include <Library/TimerLib.h>
21 #include <Library/DebugLib.h>
22 #include <Library/PcdLib.h>
23 #include <Library/ArmGenericTimerCounterLib.h>
24
25 #define TICKS_PER_MICRO_SEC (PcdGet32 (PcdArmArchTimerFreqInHz)/1000000U)
26
27 // Select appropriate multiply function for platform architecture.
28 #ifdef MDE_CPU_ARM
29 #define MultU64xN MultU64x32
30 #else
31 #define MultU64xN MultU64x64
32 #endif
33
34
35 RETURN_STATUS
36 EFIAPI
37 TimerConstructor (
38 VOID
39 )
40 {
41 //
42 // Check if the ARM Generic Timer Extension is implemented.
43 //
44 if (ArmIsArchTimerImplemented ()) {
45
46 //
47 // Check if Architectural Timer frequency is pre-determined by the platform
48 // (ie. nonzero).
49 //
50 if (PcdGet32 (PcdArmArchTimerFreqInHz) != 0) {
51 //
52 // Check if ticks/uS is not 0. The Architectural timer runs at constant
53 // frequency, irrespective of CPU frequency. According to Generic Timer
54 // Ref manual, lower bound of the frequency is in the range of 1-10MHz.
55 //
56 ASSERT (TICKS_PER_MICRO_SEC);
57
58 #ifdef MDE_CPU_ARM
59 //
60 // Only set the frequency for ARMv7. We expect the secure firmware to
61 // have already done it.
62 // If the security extension is not implemented, set Timer Frequency
63 // here.
64 //
65 if ((ArmReadIdPfr1 () & ARM_PFR1_SEC) == 0x0) {
66 ArmGenericTimerSetTimerFreq (PcdGet32 (PcdArmArchTimerFreqInHz));
67 }
68 #endif
69 }
70
71 //
72 // Architectural Timer Frequency must be set in Secure privileged
73 // mode (if secure extension is supported).
74 // If the reset value (0) is returned, just ASSERT.
75 //
76 ASSERT (ArmGenericTimerGetTimerFreq () != 0);
77
78 } else {
79 DEBUG ((EFI_D_ERROR, "ARM Architectural Timer is not available in the CPU, hence this library cannot be used.\n"));
80 ASSERT (0);
81 }
82
83 return RETURN_SUCCESS;
84 }
85
86 /**
87 A local utility function that returns the PCD value, if specified.
88 Otherwise it defaults to ArmGenericTimerGetTimerFreq.
89
90 @return The timer frequency.
91
92 **/
93 STATIC
94 UINTN
95 EFIAPI
96 GetPlatformTimerFreq (
97 )
98 {
99 UINTN TimerFreq;
100
101 TimerFreq = PcdGet32 (PcdArmArchTimerFreqInHz);
102 if (TimerFreq == 0) {
103 TimerFreq = ArmGenericTimerGetTimerFreq ();
104 }
105 return TimerFreq;
106 }
107
108
109 /**
110 Stalls the CPU for the number of microseconds specified by MicroSeconds.
111
112 @param MicroSeconds The minimum number of microseconds to delay.
113
114 @return The value of MicroSeconds input.
115
116 **/
117 UINTN
118 EFIAPI
119 MicroSecondDelay (
120 IN UINTN MicroSeconds
121 )
122 {
123 UINT64 TimerTicks64;
124 UINT64 SystemCounterVal;
125
126 // Calculate counter ticks that represent requested delay:
127 // = MicroSeconds x TICKS_PER_MICRO_SEC
128 // = MicroSeconds x Frequency.10^-6
129 TimerTicks64 = DivU64x32 (
130 MultU64xN (
131 MicroSeconds,
132 GetPlatformTimerFreq ()
133 ),
134 1000000U
135 );
136
137 // Read System Counter value
138 SystemCounterVal = ArmGenericTimerGetSystemCount ();
139
140 TimerTicks64 += SystemCounterVal;
141
142 // Wait until delay count expires.
143 while (SystemCounterVal < TimerTicks64) {
144 SystemCounterVal = ArmGenericTimerGetSystemCount ();
145 }
146
147 return MicroSeconds;
148 }
149
150
151 /**
152 Stalls the CPU for at least the given number of nanoseconds.
153
154 Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
155
156 When the timer frequency is 1MHz, each tick corresponds to 1 microsecond.
157 Therefore, the nanosecond delay will be rounded up to the nearest 1 microsecond.
158
159 @param NanoSeconds The minimum number of nanoseconds to delay.
160
161 @return The value of NanoSeconds inputed.
162
163 **/
164 UINTN
165 EFIAPI
166 NanoSecondDelay (
167 IN UINTN NanoSeconds
168 )
169 {
170 UINTN MicroSeconds;
171
172 // Round up to 1us Tick Number
173 MicroSeconds = NanoSeconds / 1000;
174 MicroSeconds += ((NanoSeconds % 1000) == 0) ? 0 : 1;
175
176 MicroSecondDelay (MicroSeconds);
177
178 return NanoSeconds;
179 }
180
181 /**
182 Retrieves the current value of a 64-bit free running performance counter.
183
184 The counter can either count up by 1 or count down by 1. If the physical
185 performance counter counts by a larger increment, then the counter values
186 must be translated. The properties of the counter can be retrieved from
187 GetPerformanceCounterProperties().
188
189 @return The current value of the free running performance counter.
190
191 **/
192 UINT64
193 EFIAPI
194 GetPerformanceCounter (
195 VOID
196 )
197 {
198 // Just return the value of system count
199 return ArmGenericTimerGetSystemCount ();
200 }
201
202 /**
203 Retrieves the 64-bit frequency in Hz and the range of performance counter
204 values.
205
206 If StartValue is not NULL, then the value that the performance counter starts
207 with immediately after is it rolls over is returned in StartValue. If
208 EndValue is not NULL, then the value that the performance counter end with
209 immediately before it rolls over is returned in EndValue. The 64-bit
210 frequency of the performance counter in Hz is always returned. If StartValue
211 is less than EndValue, then the performance counter counts up. If StartValue
212 is greater than EndValue, then the performance counter counts down. For
213 example, a 64-bit free running counter that counts up would have a StartValue
214 of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
215 that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
216
217 @param StartValue The value the performance counter starts with when it
218 rolls over.
219 @param EndValue The value that the performance counter ends with before
220 it rolls over.
221
222 @return The frequency in Hz.
223
224 **/
225 UINT64
226 EFIAPI
227 GetPerformanceCounterProperties (
228 OUT UINT64 *StartValue, OPTIONAL
229 OUT UINT64 *EndValue OPTIONAL
230 )
231 {
232 if (StartValue != NULL) {
233 // Timer starts at 0
234 *StartValue = (UINT64)0ULL ;
235 }
236
237 if (EndValue != NULL) {
238 // Timer counts up.
239 *EndValue = 0xFFFFFFFFFFFFFFFFUL;
240 }
241
242 return (UINT64)ArmGenericTimerGetTimerFreq ();
243 }
244
245 /**
246 Converts elapsed ticks of performance counter to time in nanoseconds.
247
248 This function converts the elapsed ticks of running performance counter to
249 time value in unit of nanoseconds.
250
251 @param Ticks The number of elapsed ticks of running performance counter.
252
253 @return The elapsed time in nanoseconds.
254
255 **/
256 UINT64
257 EFIAPI
258 GetTimeInNanoSecond (
259 IN UINT64 Ticks
260 )
261 {
262 UINT64 NanoSeconds;
263 UINT32 Remainder;
264 UINT32 TimerFreq;
265
266 TimerFreq = GetPlatformTimerFreq ();
267 //
268 // Ticks
269 // Time = --------- x 1,000,000,000
270 // Frequency
271 //
272 NanoSeconds = MultU64xN (
273 DivU64x32Remainder (
274 Ticks,
275 TimerFreq,
276 &Remainder),
277 1000000000U
278 );
279
280 //
281 // Frequency < 0x100000000, so Remainder < 0x100000000, then (Remainder * 1,000,000,000)
282 // will not overflow 64-bit.
283 //
284 NanoSeconds += DivU64x32 (
285 MultU64xN (
286 (UINT64) Remainder,
287 1000000000U),
288 TimerFreq
289 );
290
291 return NanoSeconds;
292 }