]> git.proxmox.com Git - mirror_edk2.git/blob - ArmPkg/Library/ArmLib/AArch64/AArch64Mmu.c
ArmPkg: ArmLib: purge incorrect ArmDrainWriteBuffer () alias
[mirror_edk2.git] / ArmPkg / Library / ArmLib / AArch64 / AArch64Mmu.c
1 /** @file
2 * File managing the MMU for ARMv8 architecture
3 *
4 * Copyright (c) 2011-2014, ARM Limited. All rights reserved.
5 *
6 * This program and the accompanying materials
7 * are licensed and made available under the terms and conditions of the BSD License
8 * which accompanies this distribution. The full text of the license may be found at
9 * http://opensource.org/licenses/bsd-license.php
10 *
11 * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 *
14 **/
15
16 #include <Uefi.h>
17 #include <Chipset/AArch64.h>
18 #include <Library/BaseMemoryLib.h>
19 #include <Library/MemoryAllocationLib.h>
20 #include <Library/ArmLib.h>
21 #include <Library/BaseLib.h>
22 #include <Library/DebugLib.h>
23 #include "AArch64Lib.h"
24 #include "ArmLibPrivate.h"
25
26 // We use this index definition to define an invalid block entry
27 #define TT_ATTR_INDX_INVALID ((UINT32)~0)
28
29 STATIC
30 UINT64
31 ArmMemoryAttributeToPageAttribute (
32 IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
33 )
34 {
35 switch (Attributes) {
36 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
37 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
38 return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
39
40 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
41 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
42 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
43
44 // Uncached and device mappings are treated as outer shareable by default,
45 case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
46 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
47 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
48
49 default:
50 ASSERT(0);
51 case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
52 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
53 if (ArmReadCurrentEL () == AARCH64_EL2)
54 return TT_ATTR_INDX_DEVICE_MEMORY | TT_TABLE_XN;
55 else
56 return TT_ATTR_INDX_DEVICE_MEMORY | TT_TABLE_UXN | TT_TABLE_PXN;
57 }
58 }
59
60 UINT64
61 PageAttributeToGcdAttribute (
62 IN UINT64 PageAttributes
63 )
64 {
65 UINT64 GcdAttributes;
66
67 switch (PageAttributes & TT_ATTR_INDX_MASK) {
68 case TT_ATTR_INDX_DEVICE_MEMORY:
69 GcdAttributes = EFI_MEMORY_UC;
70 break;
71 case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
72 GcdAttributes = EFI_MEMORY_WC;
73 break;
74 case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
75 GcdAttributes = EFI_MEMORY_WT;
76 break;
77 case TT_ATTR_INDX_MEMORY_WRITE_BACK:
78 GcdAttributes = EFI_MEMORY_WB;
79 break;
80 default:
81 DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
82 ASSERT (0);
83 // The Global Coherency Domain (GCD) value is defined as a bit set.
84 // Returning 0 means no attribute has been set.
85 GcdAttributes = 0;
86 }
87
88 // Determine protection attributes
89 if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
90 // Read only cases map to write-protect
91 GcdAttributes |= EFI_MEMORY_WP;
92 }
93
94 // Process eXecute Never attribute
95 if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
96 GcdAttributes |= EFI_MEMORY_XP;
97 }
98
99 return GcdAttributes;
100 }
101
102 ARM_MEMORY_REGION_ATTRIBUTES
103 GcdAttributeToArmAttribute (
104 IN UINT64 GcdAttributes
105 )
106 {
107 switch (GcdAttributes & 0xFF) {
108 case EFI_MEMORY_UC:
109 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
110 case EFI_MEMORY_WC:
111 return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
112 case EFI_MEMORY_WT:
113 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;
114 case EFI_MEMORY_WB:
115 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
116 default:
117 DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));
118 ASSERT (0);
119 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
120 }
121 }
122
123 // Describe the T0SZ values for each translation table level
124 typedef struct {
125 UINTN MinT0SZ;
126 UINTN MaxT0SZ;
127 UINTN LargestT0SZ; // Generally (MaxT0SZ == LargestT0SZ) but at the Level3 Table
128 // the MaxT0SZ is not at the boundary of the table
129 } T0SZ_DESCRIPTION_PER_LEVEL;
130
131 // Map table for the corresponding Level of Table
132 STATIC CONST T0SZ_DESCRIPTION_PER_LEVEL T0SZPerTableLevel[] = {
133 { 16, 24, 24 }, // Table Level 0
134 { 25, 33, 33 }, // Table Level 1
135 { 34, 39, 42 } // Table Level 2
136 };
137
138 VOID
139 GetRootTranslationTableInfo (
140 IN UINTN T0SZ,
141 OUT UINTN *TableLevel,
142 OUT UINTN *TableEntryCount
143 )
144 {
145 UINTN Index;
146
147 // Identify the level of the root table from the given T0SZ
148 for (Index = 0; Index < sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL); Index++) {
149 if (T0SZ <= T0SZPerTableLevel[Index].MaxT0SZ) {
150 break;
151 }
152 }
153
154 // If we have not found the corresponding maximum T0SZ then we use the last one
155 if (Index == sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL)) {
156 Index--;
157 }
158
159 // Get the level of the root table
160 if (TableLevel) {
161 *TableLevel = Index;
162 }
163
164 // The Size of the Table is 2^(T0SZ-LargestT0SZ)
165 if (TableEntryCount) {
166 *TableEntryCount = 1 << (T0SZPerTableLevel[Index].LargestT0SZ - T0SZ + 1);
167 }
168 }
169
170 STATIC
171 VOID
172 LookupAddresstoRootTable (
173 IN UINT64 MaxAddress,
174 OUT UINTN *T0SZ,
175 OUT UINTN *TableEntryCount
176 )
177 {
178 UINTN TopBit;
179
180 // Check the parameters are not NULL
181 ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
182
183 // Look for the highest bit set in MaxAddress
184 for (TopBit = 63; TopBit != 0; TopBit--) {
185 if ((1ULL << TopBit) & MaxAddress) {
186 // MaxAddress top bit is found
187 TopBit = TopBit + 1;
188 break;
189 }
190 }
191 ASSERT (TopBit != 0);
192
193 // Calculate T0SZ from the top bit of the MaxAddress
194 *T0SZ = 64 - TopBit;
195
196 // Get the Table info from T0SZ
197 GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
198 }
199
200 STATIC
201 UINT64*
202 GetBlockEntryListFromAddress (
203 IN UINT64 *RootTable,
204 IN UINT64 RegionStart,
205 OUT UINTN *TableLevel,
206 IN OUT UINT64 *BlockEntrySize,
207 OUT UINT64 **LastBlockEntry
208 )
209 {
210 UINTN RootTableLevel;
211 UINTN RootTableEntryCount;
212 UINT64 *TranslationTable;
213 UINT64 *BlockEntry;
214 UINT64 *SubTableBlockEntry;
215 UINT64 BlockEntryAddress;
216 UINTN BaseAddressAlignment;
217 UINTN PageLevel;
218 UINTN Index;
219 UINTN IndexLevel;
220 UINTN T0SZ;
221 UINT64 Attributes;
222 UINT64 TableAttributes;
223
224 // Initialize variable
225 BlockEntry = NULL;
226
227 // Ensure the parameters are valid
228 if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {
229 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
230 return NULL;
231 }
232
233 // Ensure the Region is aligned on 4KB boundary
234 if ((RegionStart & (SIZE_4KB - 1)) != 0) {
235 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
236 return NULL;
237 }
238
239 // Ensure the required size is aligned on 4KB boundary and not 0
240 if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0 || *BlockEntrySize == 0) {
241 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
242 return NULL;
243 }
244
245 T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
246 // Get the Table info from T0SZ
247 GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
248
249 // If the start address is 0x0 then we use the size of the region to identify the alignment
250 if (RegionStart == 0) {
251 // Identify the highest possible alignment for the Region Size
252 BaseAddressAlignment = LowBitSet64 (*BlockEntrySize);
253 } else {
254 // Identify the highest possible alignment for the Base Address
255 BaseAddressAlignment = LowBitSet64 (RegionStart);
256 }
257
258 // Identify the Page Level the RegionStart must belong to. Note that PageLevel
259 // should be at least 1 since block translations are not supported at level 0
260 PageLevel = MAX (3 - ((BaseAddressAlignment - 12) / 9), 1);
261
262 // If the required size is smaller than the current block size then we need to go to the page below.
263 // The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
264 // of the allocation size
265 while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
266 // It does not fit so we need to go a page level above
267 PageLevel++;
268 }
269
270 //
271 // Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
272 //
273
274 TranslationTable = RootTable;
275 for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
276 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
277
278 if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
279 // Go to the next table
280 TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
281
282 // If we are at the last level then update the last level to next level
283 if (IndexLevel == PageLevel) {
284 // Enter the next level
285 PageLevel++;
286 }
287 } else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
288 // If we are not at the last level then we need to split this BlockEntry
289 if (IndexLevel != PageLevel) {
290 // Retrieve the attributes from the block entry
291 Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;
292
293 // Convert the block entry attributes into Table descriptor attributes
294 TableAttributes = TT_TABLE_AP_NO_PERMISSION;
295 if (Attributes & TT_PXN_MASK) {
296 TableAttributes = TT_TABLE_PXN;
297 }
298 // XN maps to UXN in the EL1&0 translation regime
299 if (Attributes & TT_XN_MASK) {
300 TableAttributes = TT_TABLE_XN;
301 }
302 if (Attributes & TT_NS) {
303 TableAttributes = TT_TABLE_NS;
304 }
305
306 // Get the address corresponding at this entry
307 BlockEntryAddress = RegionStart;
308 BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
309 // Shift back to right to set zero before the effective address
310 BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
311
312 // Set the correct entry type for the next page level
313 if ((IndexLevel + 1) == 3) {
314 Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
315 } else {
316 Attributes |= TT_TYPE_BLOCK_ENTRY;
317 }
318
319 // Create a new translation table
320 TranslationTable = (UINT64*)AllocateAlignedPages (EFI_SIZE_TO_PAGES(TT_ENTRY_COUNT * sizeof(UINT64)), TT_ALIGNMENT_DESCRIPTION_TABLE);
321 if (TranslationTable == NULL) {
322 return NULL;
323 }
324
325 // Populate the newly created lower level table
326 SubTableBlockEntry = TranslationTable;
327 for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
328 *SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
329 SubTableBlockEntry++;
330 }
331
332 // Fill the BlockEntry with the new TranslationTable
333 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;
334 }
335 } else {
336 if (IndexLevel != PageLevel) {
337 //
338 // Case when we have an Invalid Entry and we are at a page level above of the one targetted.
339 //
340
341 // Create a new translation table
342 TranslationTable = (UINT64*)AllocateAlignedPages (EFI_SIZE_TO_PAGES(TT_ENTRY_COUNT * sizeof(UINT64)), TT_ALIGNMENT_DESCRIPTION_TABLE);
343 if (TranslationTable == NULL) {
344 return NULL;
345 }
346
347 ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
348
349 // Fill the new BlockEntry with the TranslationTable
350 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
351 }
352 }
353 }
354
355 // Expose the found PageLevel to the caller
356 *TableLevel = PageLevel;
357
358 // Now, we have the Table Level we can get the Block Size associated to this table
359 *BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
360
361 // The last block of the root table depends on the number of entry in this table,
362 // otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the table.
363 *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable,
364 (PageLevel == RootTableLevel) ? RootTableEntryCount : TT_ENTRY_COUNT);
365
366 return BlockEntry;
367 }
368
369 STATIC
370 RETURN_STATUS
371 UpdateRegionMapping (
372 IN UINT64 *RootTable,
373 IN UINT64 RegionStart,
374 IN UINT64 RegionLength,
375 IN UINT64 Attributes,
376 IN UINT64 BlockEntryMask
377 )
378 {
379 UINT32 Type;
380 UINT64 *BlockEntry;
381 UINT64 *LastBlockEntry;
382 UINT64 BlockEntrySize;
383 UINTN TableLevel;
384
385 // Ensure the Length is aligned on 4KB boundary
386 if ((RegionLength == 0) || ((RegionLength & (SIZE_4KB - 1)) != 0)) {
387 ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
388 return RETURN_INVALID_PARAMETER;
389 }
390
391 do {
392 // Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
393 // such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
394 BlockEntrySize = RegionLength;
395 BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
396 if (BlockEntry == NULL) {
397 // GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
398 return RETURN_OUT_OF_RESOURCES;
399 }
400
401 if (TableLevel != 3) {
402 Type = TT_TYPE_BLOCK_ENTRY;
403 } else {
404 Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
405 }
406
407 do {
408 // Fill the Block Entry with attribute and output block address
409 *BlockEntry &= BlockEntryMask;
410 *BlockEntry |= (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
411
412 // Go to the next BlockEntry
413 RegionStart += BlockEntrySize;
414 RegionLength -= BlockEntrySize;
415 BlockEntry++;
416
417 // Break the inner loop when next block is a table
418 // Rerun GetBlockEntryListFromAddress to avoid page table memory leak
419 if (TableLevel != 3 &&
420 (*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
421 break;
422 }
423 } while ((RegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
424 } while (RegionLength != 0);
425
426 return RETURN_SUCCESS;
427 }
428
429 STATIC
430 RETURN_STATUS
431 FillTranslationTable (
432 IN UINT64 *RootTable,
433 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
434 )
435 {
436 return UpdateRegionMapping (
437 RootTable,
438 MemoryRegion->VirtualBase,
439 MemoryRegion->Length,
440 ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
441 0
442 );
443 }
444
445 RETURN_STATUS
446 SetMemoryAttributes (
447 IN EFI_PHYSICAL_ADDRESS BaseAddress,
448 IN UINT64 Length,
449 IN UINT64 Attributes,
450 IN EFI_PHYSICAL_ADDRESS VirtualMask
451 )
452 {
453 RETURN_STATUS Status;
454 ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;
455 UINT64 *TranslationTable;
456
457 MemoryRegion.PhysicalBase = BaseAddress;
458 MemoryRegion.VirtualBase = BaseAddress;
459 MemoryRegion.Length = Length;
460 MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);
461
462 TranslationTable = ArmGetTTBR0BaseAddress ();
463
464 Status = FillTranslationTable (TranslationTable, &MemoryRegion);
465 if (RETURN_ERROR (Status)) {
466 return Status;
467 }
468
469 // Invalidate all TLB entries so changes are synced
470 ArmInvalidateTlb ();
471
472 return RETURN_SUCCESS;
473 }
474
475 STATIC
476 RETURN_STATUS
477 SetMemoryRegionAttribute (
478 IN EFI_PHYSICAL_ADDRESS BaseAddress,
479 IN UINT64 Length,
480 IN UINT64 Attributes,
481 IN UINT64 BlockEntryMask
482 )
483 {
484 RETURN_STATUS Status;
485 UINT64 *RootTable;
486
487 RootTable = ArmGetTTBR0BaseAddress ();
488
489 Status = UpdateRegionMapping (RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
490 if (RETURN_ERROR (Status)) {
491 return Status;
492 }
493
494 // Invalidate all TLB entries so changes are synced
495 ArmInvalidateTlb ();
496
497 return RETURN_SUCCESS;
498 }
499
500 RETURN_STATUS
501 ArmSetMemoryRegionNoExec (
502 IN EFI_PHYSICAL_ADDRESS BaseAddress,
503 IN UINT64 Length
504 )
505 {
506 UINT64 Val;
507
508 if (ArmReadCurrentEL () == AARCH64_EL1) {
509 Val = TT_PXN_MASK | TT_UXN_MASK;
510 } else {
511 Val = TT_XN_MASK;
512 }
513
514 return SetMemoryRegionAttribute (
515 BaseAddress,
516 Length,
517 Val,
518 ~TT_ADDRESS_MASK_BLOCK_ENTRY);
519 }
520
521 RETURN_STATUS
522 ArmClearMemoryRegionNoExec (
523 IN EFI_PHYSICAL_ADDRESS BaseAddress,
524 IN UINT64 Length
525 )
526 {
527 UINT64 Mask;
528
529 // XN maps to UXN in the EL1&0 translation regime
530 Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);
531
532 return SetMemoryRegionAttribute (
533 BaseAddress,
534 Length,
535 0,
536 Mask);
537 }
538
539 RETURN_STATUS
540 ArmSetMemoryRegionReadOnly (
541 IN EFI_PHYSICAL_ADDRESS BaseAddress,
542 IN UINT64 Length
543 )
544 {
545 return SetMemoryRegionAttribute (
546 BaseAddress,
547 Length,
548 TT_AP_RO_RO,
549 ~TT_ADDRESS_MASK_BLOCK_ENTRY);
550 }
551
552 RETURN_STATUS
553 ArmClearMemoryRegionReadOnly (
554 IN EFI_PHYSICAL_ADDRESS BaseAddress,
555 IN UINT64 Length
556 )
557 {
558 return SetMemoryRegionAttribute (
559 BaseAddress,
560 Length,
561 TT_AP_NO_RO,
562 ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
563 }
564
565 RETURN_STATUS
566 EFIAPI
567 ArmConfigureMmu (
568 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
569 OUT VOID **TranslationTableBase OPTIONAL,
570 OUT UINTN *TranslationTableSize OPTIONAL
571 )
572 {
573 VOID* TranslationTable;
574 UINTN TranslationTablePageCount;
575 UINT32 TranslationTableAttribute;
576 ARM_MEMORY_REGION_DESCRIPTOR *MemoryTableEntry;
577 UINT64 MaxAddress;
578 UINT64 TopAddress;
579 UINTN T0SZ;
580 UINTN RootTableEntryCount;
581 UINT64 TCR;
582 RETURN_STATUS Status;
583
584 if(MemoryTable == NULL) {
585 ASSERT (MemoryTable != NULL);
586 return RETURN_INVALID_PARAMETER;
587 }
588
589 // Identify the highest address of the memory table
590 MaxAddress = MemoryTable->PhysicalBase + MemoryTable->Length - 1;
591 MemoryTableEntry = MemoryTable;
592 while (MemoryTableEntry->Length != 0) {
593 TopAddress = MemoryTableEntry->PhysicalBase + MemoryTableEntry->Length - 1;
594 if (TopAddress > MaxAddress) {
595 MaxAddress = TopAddress;
596 }
597 MemoryTableEntry++;
598 }
599
600 // Lookup the Table Level to get the information
601 LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
602
603 //
604 // Set TCR that allows us to retrieve T0SZ in the subsequent functions
605 //
606 // Ideally we will be running at EL2, but should support EL1 as well.
607 // UEFI should not run at EL3.
608 if (ArmReadCurrentEL () == AARCH64_EL2) {
609 //Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
610 TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
611
612 // Set the Physical Address Size using MaxAddress
613 if (MaxAddress < SIZE_4GB) {
614 TCR |= TCR_PS_4GB;
615 } else if (MaxAddress < SIZE_64GB) {
616 TCR |= TCR_PS_64GB;
617 } else if (MaxAddress < SIZE_1TB) {
618 TCR |= TCR_PS_1TB;
619 } else if (MaxAddress < SIZE_4TB) {
620 TCR |= TCR_PS_4TB;
621 } else if (MaxAddress < SIZE_16TB) {
622 TCR |= TCR_PS_16TB;
623 } else if (MaxAddress < SIZE_256TB) {
624 TCR |= TCR_PS_256TB;
625 } else {
626 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
627 ASSERT (0); // Bigger than 48-bit memory space are not supported
628 return RETURN_UNSUPPORTED;
629 }
630 } else if (ArmReadCurrentEL () == AARCH64_EL1) {
631 // Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
632 TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
633
634 // Set the Physical Address Size using MaxAddress
635 if (MaxAddress < SIZE_4GB) {
636 TCR |= TCR_IPS_4GB;
637 } else if (MaxAddress < SIZE_64GB) {
638 TCR |= TCR_IPS_64GB;
639 } else if (MaxAddress < SIZE_1TB) {
640 TCR |= TCR_IPS_1TB;
641 } else if (MaxAddress < SIZE_4TB) {
642 TCR |= TCR_IPS_4TB;
643 } else if (MaxAddress < SIZE_16TB) {
644 TCR |= TCR_IPS_16TB;
645 } else if (MaxAddress < SIZE_256TB) {
646 TCR |= TCR_IPS_256TB;
647 } else {
648 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
649 ASSERT (0); // Bigger than 48-bit memory space are not supported
650 return RETURN_UNSUPPORTED;
651 }
652 } else {
653 ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
654 return RETURN_UNSUPPORTED;
655 }
656
657 // Set TCR
658 ArmSetTCR (TCR);
659
660 // Allocate pages for translation table
661 TranslationTablePageCount = EFI_SIZE_TO_PAGES(RootTableEntryCount * sizeof(UINT64));
662 TranslationTable = (UINT64*)AllocateAlignedPages (TranslationTablePageCount, TT_ALIGNMENT_DESCRIPTION_TABLE);
663 if (TranslationTable == NULL) {
664 return RETURN_OUT_OF_RESOURCES;
665 }
666 // We set TTBR0 just after allocating the table to retrieve its location from the subsequent
667 // functions without needing to pass this value across the functions. The MMU is only enabled
668 // after the translation tables are populated.
669 ArmSetTTBR0 (TranslationTable);
670
671 if (TranslationTableBase != NULL) {
672 *TranslationTableBase = TranslationTable;
673 }
674
675 if (TranslationTableSize != NULL) {
676 *TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
677 }
678
679 ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
680
681 // Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
682 ArmDisableMmu ();
683 ArmDisableDataCache ();
684 ArmDisableInstructionCache ();
685
686 // Make sure nothing sneaked into the cache
687 ArmCleanInvalidateDataCache ();
688 ArmInvalidateInstructionCache ();
689
690 TranslationTableAttribute = TT_ATTR_INDX_INVALID;
691 while (MemoryTable->Length != 0) {
692 // Find the memory attribute for the Translation Table
693 if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) &&
694 ((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {
695 TranslationTableAttribute = MemoryTable->Attributes;
696 }
697
698 Status = FillTranslationTable (TranslationTable, MemoryTable);
699 if (RETURN_ERROR (Status)) {
700 goto FREE_TRANSLATION_TABLE;
701 }
702 MemoryTable++;
703 }
704
705 // Translate the Memory Attributes into Translation Table Register Attributes
706 if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||
707 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {
708 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NON_CACHEABLE | TCR_RGN_INNER_NON_CACHEABLE;
709 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||
710 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {
711 TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC | TCR_RGN_INNER_WRITE_BACK_ALLOC;
712 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||
713 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {
714 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_WRITE_THROUGH | TCR_RGN_INNER_WRITE_THROUGH;
715 } else {
716 // If we failed to find a mapping that contains the root translation table then it probably means the translation table
717 // is not mapped in the given memory map.
718 ASSERT (0);
719 Status = RETURN_UNSUPPORTED;
720 goto FREE_TRANSLATION_TABLE;
721 }
722
723 // Set again TCR after getting the Translation Table attributes
724 ArmSetTCR (TCR);
725
726 ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
727 MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
728 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
729 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
730
731 ArmDisableAlignmentCheck ();
732 ArmEnableInstructionCache ();
733 ArmEnableDataCache ();
734
735 ArmEnableMmu ();
736 return RETURN_SUCCESS;
737
738 FREE_TRANSLATION_TABLE:
739 FreePages (TranslationTable, TranslationTablePageCount);
740 return Status;
741 }