]> git.proxmox.com Git - mirror_edk2.git/blob - BaseTools/Source/C/GenFw/Elf32Convert.c
BaseTools/GenFw: Avoid possible NULL pointer dereference
[mirror_edk2.git] / BaseTools / Source / C / GenFw / Elf32Convert.c
1 /** @file
2 Elf32 Convert solution
3
4 Copyright (c) 2010 - 2016, Intel Corporation. All rights reserved.<BR>
5 Portions copyright (c) 2013, ARM Ltd. All rights reserved.<BR>
6
7 This program and the accompanying materials are licensed and made available
8 under the terms and conditions of the BSD License which accompanies this
9 distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "WinNtInclude.h"
18
19 #ifndef __GNUC__
20 #include <windows.h>
21 #include <io.h>
22 #endif
23 #include <assert.h>
24 #include <stdbool.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <time.h>
29 #include <ctype.h>
30
31 #include <Common/UefiBaseTypes.h>
32 #include <IndustryStandard/PeImage.h>
33
34 #include "PeCoffLib.h"
35 #include "EfiUtilityMsgs.h"
36
37 #include "GenFw.h"
38 #include "ElfConvert.h"
39 #include "Elf32Convert.h"
40
41 STATIC
42 VOID
43 ScanSections32 (
44 VOID
45 );
46
47 STATIC
48 BOOLEAN
49 WriteSections32 (
50 SECTION_FILTER_TYPES FilterType
51 );
52
53 STATIC
54 VOID
55 WriteRelocations32 (
56 VOID
57 );
58
59 STATIC
60 VOID
61 WriteDebug32 (
62 VOID
63 );
64
65 STATIC
66 VOID
67 SetImageSize32 (
68 VOID
69 );
70
71 STATIC
72 VOID
73 CleanUp32 (
74 VOID
75 );
76
77 //
78 // Rename ELF32 strucutres to common names to help when porting to ELF64.
79 //
80 typedef Elf32_Shdr Elf_Shdr;
81 typedef Elf32_Ehdr Elf_Ehdr;
82 typedef Elf32_Rel Elf_Rel;
83 typedef Elf32_Sym Elf_Sym;
84 typedef Elf32_Phdr Elf_Phdr;
85 typedef Elf32_Dyn Elf_Dyn;
86 #define ELFCLASS ELFCLASS32
87 #define ELF_R_TYPE(r) ELF32_R_TYPE(r)
88 #define ELF_R_SYM(r) ELF32_R_SYM(r)
89
90 //
91 // Well known ELF structures.
92 //
93 STATIC Elf_Ehdr *mEhdr;
94 STATIC Elf_Shdr *mShdrBase;
95 STATIC Elf_Phdr *mPhdrBase;
96
97 //
98 // Coff information
99 //
100 STATIC UINT32 mCoffAlignment = 0x20;
101
102 //
103 // PE section alignment.
104 //
105 STATIC const UINT16 mCoffNbrSections = 4;
106
107 //
108 // ELF sections to offset in Coff file.
109 //
110 STATIC UINT32 *mCoffSectionsOffset = NULL;
111
112 //
113 // Offsets in COFF file
114 //
115 STATIC UINT32 mNtHdrOffset;
116 STATIC UINT32 mTextOffset;
117 STATIC UINT32 mDataOffset;
118 STATIC UINT32 mHiiRsrcOffset;
119 STATIC UINT32 mRelocOffset;
120 STATIC UINT32 mDebugOffset;
121
122 //
123 // Initialization Function
124 //
125 BOOLEAN
126 InitializeElf32 (
127 UINT8 *FileBuffer,
128 ELF_FUNCTION_TABLE *ElfFunctions
129 )
130 {
131 //
132 // Initialize data pointer and structures.
133 //
134 mEhdr = (Elf_Ehdr*) FileBuffer;
135
136 //
137 // Check the ELF32 specific header information.
138 //
139 if (mEhdr->e_ident[EI_CLASS] != ELFCLASS32) {
140 Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS32");
141 return FALSE;
142 }
143 if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
144 Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
145 return FALSE;
146 }
147 if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
148 Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
149 return FALSE;
150 }
151 if (!((mEhdr->e_machine == EM_386) || (mEhdr->e_machine == EM_ARM))) {
152 Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_386 or EM_ARM");
153 return FALSE;
154 }
155 if (mEhdr->e_version != EV_CURRENT) {
156 Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
157 return FALSE;
158 }
159
160 //
161 // Update section header pointers
162 //
163 mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
164 mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);
165
166 //
167 // Create COFF Section offset buffer and zero.
168 //
169 mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
170 if (mCoffSectionsOffset == NULL) {
171 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
172 return FALSE;
173 }
174 memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));
175
176 //
177 // Fill in function pointers.
178 //
179 ElfFunctions->ScanSections = ScanSections32;
180 ElfFunctions->WriteSections = WriteSections32;
181 ElfFunctions->WriteRelocations = WriteRelocations32;
182 ElfFunctions->WriteDebug = WriteDebug32;
183 ElfFunctions->SetImageSize = SetImageSize32;
184 ElfFunctions->CleanUp = CleanUp32;
185
186 return TRUE;
187 }
188
189
190 //
191 // Header by Index functions
192 //
193 STATIC
194 Elf_Shdr*
195 GetShdrByIndex (
196 UINT32 Num
197 )
198 {
199 if (Num >= mEhdr->e_shnum) {
200 Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
201 exit(EXIT_FAILURE);
202 }
203
204 return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
205 }
206
207 STATIC
208 Elf_Phdr*
209 GetPhdrByIndex (
210 UINT32 num
211 )
212 {
213 if (num >= mEhdr->e_phnum) {
214 Error (NULL, 0, 3000, "Invalid", "GetPhdrByIndex: Index %u is too high.", num);
215 exit(EXIT_FAILURE);
216 }
217
218 return (Elf_Phdr *)((UINT8*)mPhdrBase + num * mEhdr->e_phentsize);
219 }
220
221 STATIC
222 UINT32
223 CoffAlign (
224 UINT32 Offset
225 )
226 {
227 return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
228 }
229
230 STATIC
231 UINT32
232 DebugRvaAlign (
233 UINT32 Offset
234 )
235 {
236 return (Offset + 3) & ~3;
237 }
238
239 //
240 // filter functions
241 //
242 STATIC
243 BOOLEAN
244 IsTextShdr (
245 Elf_Shdr *Shdr
246 )
247 {
248 return (BOOLEAN) ((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC);
249 }
250
251 STATIC
252 BOOLEAN
253 IsHiiRsrcShdr (
254 Elf_Shdr *Shdr
255 )
256 {
257 Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
258
259 return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
260 }
261
262 STATIC
263 BOOLEAN
264 IsDataShdr (
265 Elf_Shdr *Shdr
266 )
267 {
268 if (IsHiiRsrcShdr(Shdr)) {
269 return FALSE;
270 }
271 return (BOOLEAN) (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
272 }
273
274 STATIC
275 BOOLEAN
276 IsStrtabShdr (
277 Elf_Shdr *Shdr
278 )
279 {
280 Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
281
282 return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
283 }
284
285 STATIC
286 Elf_Shdr *
287 FindStrtabShdr (
288 VOID
289 )
290 {
291 UINT32 i;
292 for (i = 0; i < mEhdr->e_shnum; i++) {
293 Elf_Shdr *shdr = GetShdrByIndex(i);
294 if (IsStrtabShdr(shdr)) {
295 return shdr;
296 }
297 }
298 return NULL;
299 }
300
301 STATIC
302 const UINT8 *
303 GetSymName (
304 Elf_Sym *Sym
305 )
306 {
307 if (Sym->st_name == 0) {
308 return NULL;
309 }
310
311 Elf_Shdr *StrtabShdr = FindStrtabShdr();
312 if (StrtabShdr == NULL) {
313 return NULL;
314 }
315
316 assert(Sym->st_name < StrtabShdr->sh_size);
317
318 UINT8* StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;
319
320 bool foundEnd = false;
321 UINT32 i;
322 for (i = Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
323 foundEnd = StrtabContents[i] == 0;
324 }
325 assert(foundEnd);
326
327 return StrtabContents + Sym->st_name;
328 }
329
330 //
331 // Elf functions interface implementation
332 //
333
334 STATIC
335 VOID
336 ScanSections32 (
337 VOID
338 )
339 {
340 UINT32 i;
341 EFI_IMAGE_DOS_HEADER *DosHdr;
342 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
343 UINT32 CoffEntry;
344 UINT32 SectionCount;
345 BOOLEAN FoundSection;
346
347 CoffEntry = 0;
348 mCoffOffset = 0;
349
350 //
351 // Coff file start with a DOS header.
352 //
353 mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
354 mNtHdrOffset = mCoffOffset;
355 switch (mEhdr->e_machine) {
356 case EM_386:
357 case EM_ARM:
358 mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
359 break;
360 default:
361 VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
362 mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
363 break;
364 }
365
366 mTableOffset = mCoffOffset;
367 mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
368
369 //
370 // Set mCoffAlignment to the maximum alignment of the input sections
371 // we care about
372 //
373 for (i = 0; i < mEhdr->e_shnum; i++) {
374 Elf_Shdr *shdr = GetShdrByIndex(i);
375 if (shdr->sh_addralign <= mCoffAlignment) {
376 continue;
377 }
378 if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
379 mCoffAlignment = (UINT32)shdr->sh_addralign;
380 }
381 }
382
383 //
384 // Move the PE/COFF header right before the first section. This will help us
385 // save space when converting to TE.
386 //
387 if (mCoffAlignment > mCoffOffset) {
388 mNtHdrOffset += mCoffAlignment - mCoffOffset;
389 mTableOffset += mCoffAlignment - mCoffOffset;
390 mCoffOffset = mCoffAlignment;
391 }
392
393 //
394 // First text sections.
395 //
396 mCoffOffset = CoffAlign(mCoffOffset);
397 mTextOffset = mCoffOffset;
398 FoundSection = FALSE;
399 SectionCount = 0;
400 for (i = 0; i < mEhdr->e_shnum; i++) {
401 Elf_Shdr *shdr = GetShdrByIndex(i);
402 if (IsTextShdr(shdr)) {
403 if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
404 // the alignment field is valid
405 if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
406 // if the section address is aligned we must align PE/COFF
407 mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
408 } else {
409 Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
410 }
411 }
412
413 /* Relocate entry. */
414 if ((mEhdr->e_entry >= shdr->sh_addr) &&
415 (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
416 CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr;
417 }
418
419 //
420 // Set mTextOffset with the offset of the first '.text' section
421 //
422 if (!FoundSection) {
423 mTextOffset = mCoffOffset;
424 FoundSection = TRUE;
425 }
426
427 mCoffSectionsOffset[i] = mCoffOffset;
428 mCoffOffset += shdr->sh_size;
429 SectionCount ++;
430 }
431 }
432
433 if (!FoundSection) {
434 Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
435 assert (FALSE);
436 }
437
438 mDebugOffset = DebugRvaAlign(mCoffOffset);
439 mCoffOffset = CoffAlign(mCoffOffset);
440
441 if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
442 Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
443 }
444
445 //
446 // Then data sections.
447 //
448 mDataOffset = mCoffOffset;
449 FoundSection = FALSE;
450 SectionCount = 0;
451 for (i = 0; i < mEhdr->e_shnum; i++) {
452 Elf_Shdr *shdr = GetShdrByIndex(i);
453 if (IsDataShdr(shdr)) {
454 if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
455 // the alignment field is valid
456 if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
457 // if the section address is aligned we must align PE/COFF
458 mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
459 } else {
460 Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
461 }
462 }
463
464 //
465 // Set mDataOffset with the offset of the first '.data' section
466 //
467 if (!FoundSection) {
468 mDataOffset = mCoffOffset;
469 FoundSection = TRUE;
470 }
471
472 mCoffSectionsOffset[i] = mCoffOffset;
473 mCoffOffset += shdr->sh_size;
474 SectionCount ++;
475 }
476 }
477
478 if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
479 Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
480 }
481
482 //
483 // Make room for .debug data in .data (or .text if .data is empty) instead of
484 // putting it in a section of its own. This is explicitly allowed by the
485 // PE/COFF spec, and prevents bloat in the binary when using large values for
486 // section alignment.
487 //
488 if (SectionCount > 0) {
489 mDebugOffset = DebugRvaAlign(mCoffOffset);
490 }
491 mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
492 sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
493 strlen(mInImageName) + 1;
494
495 mCoffOffset = CoffAlign(mCoffOffset);
496 if (SectionCount == 0) {
497 mDataOffset = mCoffOffset;
498 }
499
500 //
501 // The HII resource sections.
502 //
503 mHiiRsrcOffset = mCoffOffset;
504 for (i = 0; i < mEhdr->e_shnum; i++) {
505 Elf_Shdr *shdr = GetShdrByIndex(i);
506 if (IsHiiRsrcShdr(shdr)) {
507 if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
508 // the alignment field is valid
509 if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
510 // if the section address is aligned we must align PE/COFF
511 mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
512 } else {
513 Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
514 }
515 }
516 if (shdr->sh_size != 0) {
517 mHiiRsrcOffset = mCoffOffset;
518 mCoffSectionsOffset[i] = mCoffOffset;
519 mCoffOffset += shdr->sh_size;
520 mCoffOffset = CoffAlign(mCoffOffset);
521 SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
522 }
523 break;
524 }
525 }
526
527 mRelocOffset = mCoffOffset;
528
529 //
530 // Allocate base Coff file. Will be expanded later for relocations.
531 //
532 mCoffFile = (UINT8 *)malloc(mCoffOffset);
533 if (mCoffFile == NULL) {
534 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
535 }
536 assert (mCoffFile != NULL);
537 memset(mCoffFile, 0, mCoffOffset);
538
539 //
540 // Fill headers.
541 //
542 DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
543 DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
544 DosHdr->e_lfanew = mNtHdrOffset;
545
546 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);
547
548 NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE;
549
550 switch (mEhdr->e_machine) {
551 case EM_386:
552 NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
553 NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
554 break;
555 case EM_ARM:
556 NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT;
557 NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
558 break;
559 default:
560 VerboseMsg ("%s unknown e_machine type %hu. Assume IA-32", mInImageName, mEhdr->e_machine);
561 NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
562 NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
563 }
564
565 NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections;
566 NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL);
567 mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp;
568 NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
569 NtHdr->Pe32.FileHeader.NumberOfSymbols = 0;
570 NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader);
571 NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
572 | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
573 | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
574 | EFI_IMAGE_FILE_32BIT_MACHINE;
575
576 NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
577 NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
578 NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0;
579 NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry;
580
581 NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset;
582
583 NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset;
584 NtHdr->Pe32.OptionalHeader.ImageBase = 0;
585 NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment;
586 NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment;
587 NtHdr->Pe32.OptionalHeader.SizeOfImage = 0;
588
589 NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset;
590 NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
591
592 //
593 // Section headers.
594 //
595 if ((mDataOffset - mTextOffset) > 0) {
596 CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
597 EFI_IMAGE_SCN_CNT_CODE
598 | EFI_IMAGE_SCN_MEM_EXECUTE
599 | EFI_IMAGE_SCN_MEM_READ);
600 } else {
601 // Don't make a section of size 0.
602 NtHdr->Pe32.FileHeader.NumberOfSections--;
603 }
604
605 if ((mHiiRsrcOffset - mDataOffset) > 0) {
606 CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
607 EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
608 | EFI_IMAGE_SCN_MEM_WRITE
609 | EFI_IMAGE_SCN_MEM_READ);
610 } else {
611 // Don't make a section of size 0.
612 NtHdr->Pe32.FileHeader.NumberOfSections--;
613 }
614
615 if ((mRelocOffset - mHiiRsrcOffset) > 0) {
616 CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
617 EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
618 | EFI_IMAGE_SCN_MEM_READ);
619
620 NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
621 NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
622 } else {
623 // Don't make a section of size 0.
624 NtHdr->Pe32.FileHeader.NumberOfSections--;
625 }
626
627 }
628
629 STATIC
630 BOOLEAN
631 WriteSections32 (
632 SECTION_FILTER_TYPES FilterType
633 )
634 {
635 UINT32 Idx;
636 Elf_Shdr *SecShdr;
637 UINT32 SecOffset;
638 BOOLEAN (*Filter)(Elf_Shdr *);
639
640 //
641 // Initialize filter pointer
642 //
643 switch (FilterType) {
644 case SECTION_TEXT:
645 Filter = IsTextShdr;
646 break;
647 case SECTION_HII:
648 Filter = IsHiiRsrcShdr;
649 break;
650 case SECTION_DATA:
651 Filter = IsDataShdr;
652 break;
653 default:
654 return FALSE;
655 }
656
657 //
658 // First: copy sections.
659 //
660 for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
661 Elf_Shdr *Shdr = GetShdrByIndex(Idx);
662 if ((*Filter)(Shdr)) {
663 switch (Shdr->sh_type) {
664 case SHT_PROGBITS:
665 /* Copy. */
666 memcpy(mCoffFile + mCoffSectionsOffset[Idx],
667 (UINT8*)mEhdr + Shdr->sh_offset,
668 Shdr->sh_size);
669 break;
670
671 case SHT_NOBITS:
672 memset(mCoffFile + mCoffSectionsOffset[Idx], 0, Shdr->sh_size);
673 break;
674
675 default:
676 //
677 // Ignore for unkown section type.
678 //
679 VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
680 break;
681 }
682 }
683 }
684
685 //
686 // Second: apply relocations.
687 //
688 for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
689 //
690 // Determine if this is a relocation section.
691 //
692 Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
693 if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
694 continue;
695 }
696
697 //
698 // Relocation section found. Now extract section information that the relocations
699 // apply to in the ELF data and the new COFF data.
700 //
701 SecShdr = GetShdrByIndex(RelShdr->sh_info);
702 SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
703
704 //
705 // Only process relocations for the current filter type.
706 //
707 if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) {
708 UINT32 RelOffset;
709
710 //
711 // Determine the symbol table referenced by the relocation data.
712 //
713 Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
714 UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
715
716 //
717 // Process all relocation entries for this section.
718 //
719 for (RelOffset = 0; RelOffset < RelShdr->sh_size; RelOffset += RelShdr->sh_entsize) {
720 //
721 // Set pointer to relocation entry
722 //
723 Elf_Rel *Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelOffset);
724
725 //
726 // Set pointer to symbol table entry associated with the relocation entry.
727 //
728 Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
729
730 Elf_Shdr *SymShdr;
731 UINT8 *Targ;
732 UINT16 Address;
733
734 //
735 // Check section header index found in symbol table and get the section
736 // header location.
737 //
738 if (Sym->st_shndx == SHN_UNDEF
739 || Sym->st_shndx >= mEhdr->e_shnum) {
740 const UINT8 *SymName = GetSymName(Sym);
741 if (SymName == NULL) {
742 SymName = (const UINT8 *)"<unknown>";
743 }
744
745 Error (NULL, 0, 3000, "Invalid",
746 "%s: Bad definition for symbol '%s'@%#x or unsupported symbol type. "
747 "For example, absolute and undefined symbols are not supported.",
748 mInImageName, SymName, Sym->st_value);
749
750 exit(EXIT_FAILURE);
751 }
752 SymShdr = GetShdrByIndex(Sym->st_shndx);
753
754 //
755 // Convert the relocation data to a pointer into the coff file.
756 //
757 // Note:
758 // r_offset is the virtual address of the storage unit to be relocated.
759 // sh_addr is the virtual address for the base of the section.
760 //
761 Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
762
763 //
764 // Determine how to handle each relocation type based on the machine type.
765 //
766 if (mEhdr->e_machine == EM_386) {
767 switch (ELF_R_TYPE(Rel->r_info)) {
768 case R_386_NONE:
769 break;
770 case R_386_32:
771 //
772 // Absolute relocation.
773 // Converts Targ from a absolute virtual address to the absolute
774 // COFF address.
775 //
776 *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr
777 + mCoffSectionsOffset[Sym->st_shndx];
778 break;
779 case R_386_PC32:
780 //
781 // Relative relocation: Symbol - Ip + Addend
782 //
783 *(UINT32 *)Targ = *(UINT32 *)Targ
784 + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
785 - (SecOffset - SecShdr->sh_addr);
786 break;
787 default:
788 Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
789 }
790 } else if (mEhdr->e_machine == EM_ARM) {
791 switch (ELF32_R_TYPE(Rel->r_info)) {
792 case R_ARM_RBASE:
793 // No relocation - no action required
794 // break skipped
795
796 case R_ARM_PC24:
797 case R_ARM_REL32:
798 case R_ARM_XPC25:
799 case R_ARM_THM_PC22:
800 case R_ARM_THM_JUMP19:
801 case R_ARM_CALL:
802 case R_ARM_JMP24:
803 case R_ARM_THM_JUMP24:
804 case R_ARM_PREL31:
805 case R_ARM_MOVW_PREL_NC:
806 case R_ARM_MOVT_PREL:
807 case R_ARM_THM_MOVW_PREL_NC:
808 case R_ARM_THM_MOVT_PREL:
809 case R_ARM_THM_JMP6:
810 case R_ARM_THM_ALU_PREL_11_0:
811 case R_ARM_THM_PC12:
812 case R_ARM_REL32_NOI:
813 case R_ARM_ALU_PC_G0_NC:
814 case R_ARM_ALU_PC_G0:
815 case R_ARM_ALU_PC_G1_NC:
816 case R_ARM_ALU_PC_G1:
817 case R_ARM_ALU_PC_G2:
818 case R_ARM_LDR_PC_G1:
819 case R_ARM_LDR_PC_G2:
820 case R_ARM_LDRS_PC_G0:
821 case R_ARM_LDRS_PC_G1:
822 case R_ARM_LDRS_PC_G2:
823 case R_ARM_LDC_PC_G0:
824 case R_ARM_LDC_PC_G1:
825 case R_ARM_LDC_PC_G2:
826 case R_ARM_GOT_PREL:
827 case R_ARM_THM_JUMP11:
828 case R_ARM_THM_JUMP8:
829 case R_ARM_TLS_GD32:
830 case R_ARM_TLS_LDM32:
831 case R_ARM_TLS_IE32:
832 // Thease are all PC-relative relocations and don't require modification
833 // GCC does not seem to have the concept of a application that just needs to get relocated.
834 break;
835
836 case R_ARM_THM_MOVW_ABS_NC:
837 // MOVW is only lower 16-bits of the addres
838 Address = (UINT16)(Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
839 ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
840 break;
841
842 case R_ARM_THM_MOVT_ABS:
843 // MOVT is only upper 16-bits of the addres
844 Address = (UINT16)((Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]) >> 16);
845 ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
846 break;
847
848 case R_ARM_ABS32:
849 case R_ARM_RABS32:
850 //
851 // Absolute relocation.
852 //
853 *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
854 break;
855
856 default:
857 Error (NULL, 0, 3000, "Invalid", "WriteSections (): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
858 }
859 }
860 }
861 }
862 }
863
864 return TRUE;
865 }
866
867 UINTN gMovwOffset = 0;
868
869 STATIC
870 VOID
871 WriteRelocations32 (
872 VOID
873 )
874 {
875 UINT32 Index;
876 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
877 EFI_IMAGE_DATA_DIRECTORY *Dir;
878 BOOLEAN FoundRelocations;
879 Elf_Dyn *Dyn;
880 Elf_Rel *Rel;
881 UINTN RelElementSize;
882 UINTN RelSize;
883 UINTN RelOffset;
884 UINTN K;
885 Elf32_Phdr *DynamicSegment;
886
887 for (Index = 0, FoundRelocations = FALSE; Index < mEhdr->e_shnum; Index++) {
888 Elf_Shdr *RelShdr = GetShdrByIndex(Index);
889 if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
890 Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
891 if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
892 UINT32 RelIdx;
893
894 FoundRelocations = TRUE;
895 for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
896 Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
897
898 if (mEhdr->e_machine == EM_386) {
899 switch (ELF_R_TYPE(Rel->r_info)) {
900 case R_386_NONE:
901 case R_386_PC32:
902 //
903 // No fixup entry required.
904 //
905 break;
906 case R_386_32:
907 //
908 // Creates a relative relocation entry from the absolute entry.
909 //
910 CoffAddFixup(mCoffSectionsOffset[RelShdr->sh_info]
911 + (Rel->r_offset - SecShdr->sh_addr),
912 EFI_IMAGE_REL_BASED_HIGHLOW);
913 break;
914 default:
915 Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
916 }
917 } else if (mEhdr->e_machine == EM_ARM) {
918 switch (ELF32_R_TYPE(Rel->r_info)) {
919 case R_ARM_RBASE:
920 // No relocation - no action required
921 // break skipped
922
923 case R_ARM_PC24:
924 case R_ARM_REL32:
925 case R_ARM_XPC25:
926 case R_ARM_THM_PC22:
927 case R_ARM_THM_JUMP19:
928 case R_ARM_CALL:
929 case R_ARM_JMP24:
930 case R_ARM_THM_JUMP24:
931 case R_ARM_PREL31:
932 case R_ARM_MOVW_PREL_NC:
933 case R_ARM_MOVT_PREL:
934 case R_ARM_THM_MOVW_PREL_NC:
935 case R_ARM_THM_MOVT_PREL:
936 case R_ARM_THM_JMP6:
937 case R_ARM_THM_ALU_PREL_11_0:
938 case R_ARM_THM_PC12:
939 case R_ARM_REL32_NOI:
940 case R_ARM_ALU_PC_G0_NC:
941 case R_ARM_ALU_PC_G0:
942 case R_ARM_ALU_PC_G1_NC:
943 case R_ARM_ALU_PC_G1:
944 case R_ARM_ALU_PC_G2:
945 case R_ARM_LDR_PC_G1:
946 case R_ARM_LDR_PC_G2:
947 case R_ARM_LDRS_PC_G0:
948 case R_ARM_LDRS_PC_G1:
949 case R_ARM_LDRS_PC_G2:
950 case R_ARM_LDC_PC_G0:
951 case R_ARM_LDC_PC_G1:
952 case R_ARM_LDC_PC_G2:
953 case R_ARM_GOT_PREL:
954 case R_ARM_THM_JUMP11:
955 case R_ARM_THM_JUMP8:
956 case R_ARM_TLS_GD32:
957 case R_ARM_TLS_LDM32:
958 case R_ARM_TLS_IE32:
959 // Thease are all PC-relative relocations and don't require modification
960 break;
961
962 case R_ARM_THM_MOVW_ABS_NC:
963 CoffAddFixup (
964 mCoffSectionsOffset[RelShdr->sh_info]
965 + (Rel->r_offset - SecShdr->sh_addr),
966 EFI_IMAGE_REL_BASED_ARM_MOV32T
967 );
968
969 // PE/COFF treats MOVW/MOVT relocation as single 64-bit instruction
970 // Track this address so we can log an error for unsupported sequence of MOVW/MOVT
971 gMovwOffset = mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr);
972 break;
973
974 case R_ARM_THM_MOVT_ABS:
975 if ((gMovwOffset + 4) != (mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr))) {
976 Error (NULL, 0, 3000, "Not Supported", "PE/COFF requires MOVW+MOVT instruction sequence %x +4 != %x.", gMovwOffset, mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
977 }
978 break;
979
980 case R_ARM_ABS32:
981 case R_ARM_RABS32:
982 CoffAddFixup (
983 mCoffSectionsOffset[RelShdr->sh_info]
984 + (Rel->r_offset - SecShdr->sh_addr),
985 EFI_IMAGE_REL_BASED_HIGHLOW
986 );
987 break;
988
989 default:
990 Error (NULL, 0, 3000, "Invalid", "WriteRelocations(): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
991 }
992 } else {
993 Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
994 }
995 }
996 }
997 }
998 }
999
1000 if (!FoundRelocations && (mEhdr->e_machine == EM_ARM)) {
1001 /* Try again, but look for PT_DYNAMIC instead of SHT_REL */
1002
1003 for (Index = 0; Index < mEhdr->e_phnum; Index++) {
1004 RelElementSize = 0;
1005 RelSize = 0;
1006 RelOffset = 0;
1007
1008 DynamicSegment = GetPhdrByIndex (Index);
1009
1010 if (DynamicSegment->p_type == PT_DYNAMIC) {
1011 Dyn = (Elf32_Dyn *) ((UINT8 *)mEhdr + DynamicSegment->p_offset);
1012
1013 while (Dyn->d_tag != DT_NULL) {
1014 switch (Dyn->d_tag) {
1015 case DT_REL:
1016 RelOffset = Dyn->d_un.d_val;
1017 break;
1018
1019 case DT_RELSZ:
1020 RelSize = Dyn->d_un.d_val;
1021 break;
1022
1023 case DT_RELENT:
1024 RelElementSize = Dyn->d_un.d_val;
1025 break;
1026
1027 default:
1028 break;
1029 }
1030 Dyn++;
1031 }
1032 if (( RelOffset == 0 ) || ( RelSize == 0 ) || ( RelElementSize == 0 )) {
1033 Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations.", mInImageName);
1034 }
1035
1036 for (Index = 0; Index < mEhdr->e_shnum; Index++) {
1037 Elf_Shdr *shdr = GetShdrByIndex(Index);
1038
1039 //
1040 // The PT_DYNAMIC section contains DT_REL relocations whose r_offset
1041 // field is relative to the base of a segment (or the entire image),
1042 // and not to the base of an ELF input section as is the case for
1043 // SHT_REL sections. This means that we cannot fix up such relocations
1044 // unless we cross-reference ELF sections and segments, considering
1045 // that the output placement recorded in mCoffSectionsOffset[] is
1046 // section based, not segment based.
1047 //
1048 // Fortunately, there is a simple way around this: we require that the
1049 // in-memory layout of the ELF and PE/COFF versions of the binary is
1050 // identical. That way, r_offset will retain its validity as a PE/COFF
1051 // image offset, and we can record it in the COFF fixup table
1052 // unmodified.
1053 //
1054 if (shdr->sh_addr != mCoffSectionsOffset[Index]) {
1055 Error (NULL, 0, 3000,
1056 "Invalid", "%s: PT_DYNAMIC relocations require identical ELF and PE/COFF section offsets.",
1057 mInImageName);
1058 }
1059 }
1060
1061 for (K = 0; K < RelSize; K += RelElementSize) {
1062
1063 if (DynamicSegment->p_paddr == 0) {
1064 // Older versions of the ARM ELF (SWS ESPC 0003 B-02) specification define DT_REL
1065 // as an offset in the dynamic segment. p_paddr is defined to be zero for ARM tools
1066 Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + DynamicSegment->p_offset + RelOffset + K);
1067 } else {
1068 // This is how it reads in the generic ELF specification
1069 Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + RelOffset + K);
1070 }
1071
1072 switch (ELF32_R_TYPE (Rel->r_info)) {
1073 case R_ARM_RBASE:
1074 break;
1075
1076 case R_ARM_RABS32:
1077 CoffAddFixup (Rel->r_offset, EFI_IMAGE_REL_BASED_HIGHLOW);
1078 break;
1079
1080 default:
1081 Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations, unkown type %d.", mInImageName, ELF32_R_TYPE (Rel->r_info));
1082 break;
1083 }
1084 }
1085 break;
1086 }
1087 }
1088 }
1089
1090 //
1091 // Pad by adding empty entries.
1092 //
1093 while (mCoffOffset & (mCoffAlignment - 1)) {
1094 CoffAddFixupEntry(0);
1095 }
1096
1097 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
1098 Dir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
1099 Dir->Size = mCoffOffset - mRelocOffset;
1100 if (Dir->Size == 0) {
1101 // If no relocations, null out the directory entry and don't add the .reloc section
1102 Dir->VirtualAddress = 0;
1103 NtHdr->Pe32.FileHeader.NumberOfSections--;
1104 } else {
1105 Dir->VirtualAddress = mRelocOffset;
1106 CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
1107 EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
1108 | EFI_IMAGE_SCN_MEM_DISCARDABLE
1109 | EFI_IMAGE_SCN_MEM_READ);
1110 }
1111
1112 }
1113
1114 STATIC
1115 VOID
1116 WriteDebug32 (
1117 VOID
1118 )
1119 {
1120 UINT32 Len;
1121 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
1122 EFI_IMAGE_DATA_DIRECTORY *DataDir;
1123 EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir;
1124 EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
1125
1126 Len = strlen(mInImageName) + 1;
1127
1128 Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
1129 Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
1130 Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
1131 Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
1132 Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
1133
1134 Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
1135 Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
1136 strcpy ((char *)(Nb10 + 1), mInImageName);
1137
1138
1139 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
1140 DataDir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
1141 DataDir->VirtualAddress = mDebugOffset;
1142 DataDir->Size = Dir->SizeOfData + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
1143 }
1144
1145 STATIC
1146 VOID
1147 SetImageSize32 (
1148 VOID
1149 )
1150 {
1151 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
1152
1153 //
1154 // Set image size
1155 //
1156 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
1157 NtHdr->Pe32.OptionalHeader.SizeOfImage = mCoffOffset;
1158 }
1159
1160 STATIC
1161 VOID
1162 CleanUp32 (
1163 VOID
1164 )
1165 {
1166 if (mCoffSectionsOffset != NULL) {
1167 free (mCoffSectionsOffset);
1168 }
1169 }
1170
1171