]> git.proxmox.com Git - mirror_edk2.git/blob - DuetPkg/FSVariable/FSVariable.c
06df161e5debdd6beb3eb9228a220f0c29a35b94
[mirror_edk2.git] / DuetPkg / FSVariable / FSVariable.c
1 /*++
2
3 Caution: This file is used for Duet platform only, do not use them in real platform.
4 All variable code, variable metadata, and variable data used by Duet platform are on
5 disk. They can be changed by user. BIOS is not able to protoect those.
6 Duet trusts all meta data from disk. If variable code, variable metadata and variable
7 data is modified in inproper way, the behavior is undefined.
8
9 Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
10 This program and the accompanying materials
11 are licensed and made available under the terms and conditions of the BSD License
12 which accompanies this distribution. The full text of the license may be found at
13 http://opensource.org/licenses/bsd-license.php
14
15 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
16 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
17
18 Module Name:
19
20 FSVariable.c
21
22 Abstract:
23
24 Provide support functions for variable services.
25
26 --*/
27
28 #include "FSVariable.h"
29
30 VARIABLE_STORE_HEADER mStoreHeaderTemplate = {
31 VARIABLE_STORE_SIGNATURE,
32 VOLATILE_VARIABLE_STORE_SIZE,
33 VARIABLE_STORE_FORMATTED,
34 VARIABLE_STORE_HEALTHY,
35 0,
36 0
37 };
38
39 //
40 // Don't use module globals after the SetVirtualAddress map is signaled
41 //
42 VARIABLE_GLOBAL *mGlobal;
43
44 /**
45 Update the variable region with Variable information. These are the same
46 arguments as the EFI Variable services.
47
48 @param[in] VariableName Name of variable
49
50 @param[in] VendorGuid Guid of variable
51
52 @param[in] Data Variable data
53
54 @param[in] DataSize Size of data. 0 means delete
55
56 @param[in] Attributes Attribues of the variable
57
58 @param[in] Variable The variable information which is used to keep track of variable usage.
59
60 @retval EFI_SUCCESS The update operation is success.
61
62 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
63
64 **/
65 EFI_STATUS
66 EFIAPI
67 UpdateVariable (
68 IN CHAR16 *VariableName,
69 IN EFI_GUID *VendorGuid,
70 IN VOID *Data,
71 IN UINTN DataSize,
72 IN UINT32 Attributes OPTIONAL,
73 IN VARIABLE_POINTER_TRACK *Variable
74 );
75
76 VOID
77 EFIAPI
78 OnVirtualAddressChangeFsv (
79 IN EFI_EVENT Event,
80 IN VOID *Context
81 );
82
83 VOID
84 EFIAPI
85 OnSimpleFileSystemInstall (
86 IN EFI_EVENT Event,
87 IN VOID *Context
88 );
89
90 BOOLEAN
91 IsValidVariableHeader (
92 IN VARIABLE_HEADER *Variable
93 )
94 /*++
95
96 Routine Description:
97
98 This code checks if variable header is valid or not.
99
100 Arguments:
101 Variable Pointer to the Variable Header.
102
103 Returns:
104 TRUE Variable header is valid.
105 FALSE Variable header is not valid.
106
107 --*/
108 {
109 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
110 return FALSE;
111 }
112
113 return TRUE;
114 }
115
116 VARIABLE_STORE_STATUS
117 GetVariableStoreStatus (
118 IN VARIABLE_STORE_HEADER *VarStoreHeader
119 )
120 /*++
121
122 Routine Description:
123
124 This code gets the current status of Variable Store.
125
126 Arguments:
127
128 VarStoreHeader Pointer to the Variable Store Header.
129
130 Returns:
131
132 EfiRaw Variable store status is raw
133 EfiValid Variable store status is valid
134 EfiInvalid Variable store status is invalid
135
136 --*/
137 {
138 if (CompareGuid (&VarStoreHeader->Signature, &mStoreHeaderTemplate.Signature) &&
139 (VarStoreHeader->Format == mStoreHeaderTemplate.Format) &&
140 (VarStoreHeader->State == mStoreHeaderTemplate.State)
141 ) {
142 return EfiValid;
143 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == VAR_DEFAULT_VALUE_32 &&
144 ((UINT32 *)(&VarStoreHeader->Signature))[1] == VAR_DEFAULT_VALUE_32 &&
145 ((UINT32 *)(&VarStoreHeader->Signature))[2] == VAR_DEFAULT_VALUE_32 &&
146 ((UINT32 *)(&VarStoreHeader->Signature))[3] == VAR_DEFAULT_VALUE_32 &&
147 VarStoreHeader->Size == VAR_DEFAULT_VALUE_32 &&
148 VarStoreHeader->Format == VAR_DEFAULT_VALUE &&
149 VarStoreHeader->State == VAR_DEFAULT_VALUE
150 ) {
151
152 return EfiRaw;
153 } else {
154 return EfiInvalid;
155 }
156 }
157
158 UINT8 *
159 GetVariableDataPtr (
160 IN VARIABLE_HEADER *Variable
161 )
162 /*++
163
164 Routine Description:
165
166 This code gets the pointer to the variable data.
167
168 Arguments:
169
170 Variable Pointer to the Variable Header.
171
172 Returns:
173
174 UINT8* Pointer to Variable Data
175
176 --*/
177 {
178 //
179 // Be careful about pad size for alignment
180 //
181 return (UINT8 *) ((UINTN) GET_VARIABLE_NAME_PTR (Variable) + Variable->NameSize + GET_PAD_SIZE (Variable->NameSize));
182 }
183
184 VARIABLE_HEADER *
185 GetNextVariablePtr (
186 IN VARIABLE_HEADER *Variable
187 )
188 /*++
189
190 Routine Description:
191
192 This code gets the pointer to the next variable header.
193
194 Arguments:
195
196 Variable Pointer to the Variable Header.
197
198 Returns:
199
200 VARIABLE_HEADER* Pointer to next variable header.
201
202 --*/
203 {
204 if (!IsValidVariableHeader (Variable)) {
205 return NULL;
206 }
207 //
208 // Be careful about pad size for alignment
209 //
210 return (VARIABLE_HEADER *) ((UINTN) GetVariableDataPtr (Variable) + Variable->DataSize + GET_PAD_SIZE (Variable->DataSize));
211 }
212
213 VARIABLE_HEADER *
214 GetEndPointer (
215 IN VARIABLE_STORE_HEADER *VarStoreHeader
216 )
217 /*++
218
219 Routine Description:
220
221 This code gets the pointer to the last variable memory pointer byte
222
223 Arguments:
224
225 VarStoreHeader Pointer to the Variable Store Header.
226
227 Returns:
228
229 VARIABLE_HEADER* Pointer to last unavailable Variable Header
230
231 --*/
232 {
233 //
234 // The end of variable store
235 //
236 return (VARIABLE_HEADER *) ((UINTN) VarStoreHeader + VarStoreHeader->Size);
237 }
238
239 BOOLEAN
240 ExistNewerVariable (
241 IN VARIABLE_HEADER *Variable
242 )
243 /*++
244
245 Routine Description:
246
247 Check if exist newer variable when doing reclaim
248
249 Arguments:
250
251 Variable Pointer to start position
252
253 Returns:
254
255 TRUE - Exists another variable, which is newer than the current one
256 FALSE - Doesn't exist another vairable which is newer than the current one
257
258 --*/
259 {
260 VARIABLE_HEADER *NextVariable;
261 CHAR16 *VariableName;
262 EFI_GUID *VendorGuid;
263
264 VendorGuid = &Variable->VendorGuid;
265 VariableName = GET_VARIABLE_NAME_PTR(Variable);
266
267 NextVariable = GetNextVariablePtr (Variable);
268 while (IsValidVariableHeader (NextVariable)) {
269 if ((NextVariable->State == VAR_ADDED) || (NextVariable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
270 //
271 // If match Guid and Name
272 //
273 if (CompareGuid (VendorGuid, &NextVariable->VendorGuid)) {
274 if (CompareMem (VariableName, GET_VARIABLE_NAME_PTR (NextVariable), StrSize (VariableName)) == 0) {
275 return TRUE;
276 }
277 }
278 }
279 NextVariable = GetNextVariablePtr (NextVariable);
280 }
281 return FALSE;
282 }
283
284 EFI_STATUS
285 Reclaim (
286 IN VARIABLE_STORAGE_TYPE StorageType,
287 IN VARIABLE_HEADER *CurrentVariable OPTIONAL
288 )
289 /*++
290
291 Routine Description:
292
293 Variable store garbage collection and reclaim operation
294
295 Arguments:
296
297 IsVolatile The variable store is volatile or not,
298 if it is non-volatile, need FTW
299 CurrentVairable If it is not NULL, it means not to process
300 current variable for Reclaim.
301
302 Returns:
303
304 EFI STATUS
305
306 --*/
307 {
308 VARIABLE_HEADER *Variable;
309 VARIABLE_HEADER *NextVariable;
310 VARIABLE_STORE_HEADER *VariableStoreHeader;
311 UINT8 *ValidBuffer;
312 UINTN ValidBufferSize;
313 UINTN VariableSize;
314 UINT8 *CurrPtr;
315 EFI_STATUS Status;
316
317 VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType];
318
319 //
320 // Start Pointers for the variable.
321 //
322 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
323
324 //
325 // recaluate the total size of Common/HwErr type variables in non-volatile area.
326 //
327 if (!StorageType) {
328 mGlobal->CommonVariableTotalSize = 0;
329 mGlobal->HwErrVariableTotalSize = 0;
330 }
331 //
332 // To make the reclaim, here we just allocate a memory that equal to the original memory
333 //
334 ValidBufferSize = sizeof (VARIABLE_STORE_HEADER) + VariableStoreHeader->Size;
335
336 Status = gBS->AllocatePool (
337 EfiBootServicesData,
338 ValidBufferSize,
339 (VOID**) &ValidBuffer
340 );
341 if (EFI_ERROR (Status)) {
342 return Status;
343 }
344
345 CurrPtr = ValidBuffer;
346
347 //
348 // Copy variable store header
349 //
350 CopyMem (CurrPtr, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
351 CurrPtr += sizeof (VARIABLE_STORE_HEADER);
352
353 //
354 // Start Pointers for the variable.
355 //
356 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
357
358
359 ValidBufferSize = sizeof (VARIABLE_STORE_HEADER);
360 while (IsValidVariableHeader (Variable)) {
361 NextVariable = GetNextVariablePtr (Variable);
362 //
363 // State VAR_ADDED or VAR_IN_DELETED_TRANSITION are to kept,
364 // The CurrentVariable, is also saved, as SetVariable may fail due to lack of space
365 //
366 if (Variable->State == VAR_ADDED) {
367 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
368 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
369 ValidBufferSize += VariableSize;
370 CurrPtr += VariableSize;
371 if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
372 mGlobal->HwErrVariableTotalSize += VariableSize;
373 } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
374 mGlobal->CommonVariableTotalSize += VariableSize;
375 }
376 } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) {
377 //
378 // As variables that with the same guid and name may exist in NV due to power failure during SetVariable,
379 // we will only save the latest valid one
380 //
381 if (!ExistNewerVariable(Variable)) {
382 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
383 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
384 //
385 // If CurrentVariable == Variable, mark as VAR_IN_DELETED_TRANSITION
386 //
387 if (Variable != CurrentVariable){
388 ((VARIABLE_HEADER *)CurrPtr)->State = VAR_ADDED;
389 }
390 CurrPtr += VariableSize;
391 ValidBufferSize += VariableSize;
392 if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
393 mGlobal->HwErrVariableTotalSize += VariableSize;
394 } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
395 mGlobal->CommonVariableTotalSize += VariableSize;
396 }
397 }
398 }
399 Variable = NextVariable;
400 }
401
402 mGlobal->LastVariableOffset[StorageType] = ValidBufferSize;
403
404 //
405 // TODO: cannot restore to original state, basic FTW needed
406 //
407 Status = mGlobal->VariableStore[StorageType]->Erase (
408 mGlobal->VariableStore[StorageType]
409 );
410 Status = mGlobal->VariableStore[StorageType]->Write (
411 mGlobal->VariableStore[StorageType],
412 0,
413 ValidBufferSize,
414 ValidBuffer
415 );
416
417 if (EFI_ERROR (Status)) {
418 //
419 // If error, then reset the last variable offset to zero.
420 //
421 mGlobal->LastVariableOffset[StorageType] = 0;
422 };
423
424 gBS->FreePool (ValidBuffer);
425
426 return Status;
427 }
428
429 EFI_STATUS
430 FindVariable (
431 IN CHAR16 *VariableName,
432 IN EFI_GUID *VendorGuid,
433 OUT VARIABLE_POINTER_TRACK *PtrTrack
434 )
435 /*++
436
437 Routine Description:
438
439 This code finds variable in storage blocks (Volatile or Non-Volatile)
440
441 Arguments:
442
443 VariableName Name of the variable to be found
444 VendorGuid Vendor GUID to be found.
445 PtrTrack Variable Track Pointer structure that contains
446 Variable Information.
447 Contains the pointer of Variable header.
448
449 Returns:
450
451 EFI_INVALID_PARAMETER - Invalid parameter
452 EFI_SUCCESS - Find the specified variable
453 EFI_NOT_FOUND - Not found
454
455 --*/
456 {
457 VARIABLE_HEADER *Variable;
458 VARIABLE_STORE_HEADER *VariableStoreHeader;
459 UINTN Index;
460 VARIABLE_HEADER *InDeleteVariable;
461 UINTN InDeleteIndex;
462 VARIABLE_HEADER *InDeleteStartPtr;
463 VARIABLE_HEADER *InDeleteEndPtr;
464
465 if (VariableName[0] != 0 && VendorGuid == NULL) {
466 return EFI_INVALID_PARAMETER;
467 }
468
469 InDeleteVariable = NULL;
470 InDeleteIndex = (UINTN)-1;
471 InDeleteStartPtr = NULL;
472 InDeleteEndPtr = NULL;
473
474 for (Index = 0; Index < MaxType; Index ++) {
475 //
476 // 0: Non-Volatile, 1: Volatile
477 //
478 VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Index];
479
480 //
481 // Start Pointers for the variable.
482 // Actual Data Pointer where data can be written.
483 //
484 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
485
486 //
487 // Find the variable by walk through non-volatile and volatile variable store
488 //
489 PtrTrack->StartPtr = Variable;
490 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader);
491
492 while ((Variable < PtrTrack->EndPtr) && IsValidVariableHeader (Variable)) {
493 if (Variable->State == VAR_ADDED) {
494 if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
495 if (VariableName[0] == 0) {
496 PtrTrack->CurrPtr = Variable;
497 PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index;
498 return EFI_SUCCESS;
499 } else {
500 if (CompareGuid (VendorGuid, &Variable->VendorGuid)) {
501 if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) {
502 PtrTrack->CurrPtr = Variable;
503 PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index;
504 return EFI_SUCCESS;
505 }
506 }
507 }
508 }
509 } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) {
510 //
511 // VAR_IN_DELETED_TRANSITION should also be checked.
512 //
513 if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
514 if (VariableName[0] == 0) {
515 InDeleteVariable = Variable;
516 InDeleteIndex = Index;
517 InDeleteStartPtr = PtrTrack->StartPtr;
518 InDeleteEndPtr = PtrTrack->EndPtr;
519 } else {
520 if (CompareGuid (VendorGuid, &Variable->VendorGuid)) {
521 if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) {
522 InDeleteVariable = Variable;
523 InDeleteIndex = Index;
524 InDeleteStartPtr = PtrTrack->StartPtr;
525 InDeleteEndPtr = PtrTrack->EndPtr;
526 }
527 }
528 }
529 }
530 }
531
532 Variable = GetNextVariablePtr (Variable);
533 }
534 //
535 // While (...)
536 //
537 }
538 //
539 // for (...)
540 //
541
542 //
543 // if VAR_IN_DELETED_TRANSITION found, and VAR_ADDED not found,
544 // we return it.
545 //
546 if (InDeleteVariable != NULL) {
547 PtrTrack->CurrPtr = InDeleteVariable;
548 PtrTrack->Type = (VARIABLE_STORAGE_TYPE) InDeleteIndex;
549 PtrTrack->StartPtr = InDeleteStartPtr;
550 PtrTrack->EndPtr = InDeleteEndPtr;
551 return EFI_SUCCESS;
552 }
553
554 PtrTrack->CurrPtr = NULL;
555 return EFI_NOT_FOUND;
556 }
557
558 /**
559 Get index from supported language codes according to language string.
560
561 This code is used to get corresponding index in supported language codes. It can handle
562 RFC4646 and ISO639 language tags.
563 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
564 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
565
566 For example:
567 SupportedLang = "engfraengfra"
568 Lang = "eng"
569 Iso639Language = TRUE
570 The return value is "0".
571 Another example:
572 SupportedLang = "en;fr;en-US;fr-FR"
573 Lang = "fr-FR"
574 Iso639Language = FALSE
575 The return value is "3".
576
577 @param SupportedLang Platform supported language codes.
578 @param Lang Configured language.
579 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
580
581 @retval the index of language in the language codes.
582
583 **/
584 UINTN
585 GetIndexFromSupportedLangCodes(
586 IN CHAR8 *SupportedLang,
587 IN CHAR8 *Lang,
588 IN BOOLEAN Iso639Language
589 )
590 {
591 UINTN Index;
592 UINTN CompareLength;
593 UINTN LanguageLength;
594
595 if (Iso639Language) {
596 CompareLength = ISO_639_2_ENTRY_SIZE;
597 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
598 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
599 //
600 // Successfully find the index of Lang string in SupportedLang string.
601 //
602 Index = Index / CompareLength;
603 return Index;
604 }
605 }
606 ASSERT (FALSE);
607 return 0;
608 } else {
609 //
610 // Compare RFC4646 language code
611 //
612 Index = 0;
613 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
614
615 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
616 //
617 // Skip ';' characters in SupportedLang
618 //
619 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
620 //
621 // Determine the length of the next language code in SupportedLang
622 //
623 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
624
625 if ((CompareLength == LanguageLength) &&
626 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
627 //
628 // Successfully find the index of Lang string in SupportedLang string.
629 //
630 return Index;
631 }
632 }
633 ASSERT (FALSE);
634 return 0;
635 }
636 }
637
638 /**
639 Get language string from supported language codes according to index.
640
641 This code is used to get corresponding language string in supported language codes. It can handle
642 RFC4646 and ISO639 language tags.
643 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
644 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
645
646 For example:
647 SupportedLang = "engfraengfra"
648 Index = "1"
649 Iso639Language = TRUE
650 The return value is "fra".
651 Another example:
652 SupportedLang = "en;fr;en-US;fr-FR"
653 Index = "1"
654 Iso639Language = FALSE
655 The return value is "fr".
656
657 @param SupportedLang Platform supported language codes.
658 @param Index the index in supported language codes.
659 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
660
661 @retval the language string in the language codes.
662
663 **/
664 CHAR8 *
665 GetLangFromSupportedLangCodes (
666 IN CHAR8 *SupportedLang,
667 IN UINTN Index,
668 IN BOOLEAN Iso639Language
669 )
670 {
671 UINTN SubIndex;
672 UINTN CompareLength;
673 CHAR8 *Supported;
674
675 SubIndex = 0;
676 Supported = SupportedLang;
677 if (Iso639Language) {
678 //
679 // according to the index of Lang string in SupportedLang string to get the language.
680 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
681 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
682 //
683 CompareLength = ISO_639_2_ENTRY_SIZE;
684 mGlobal->Lang[CompareLength] = '\0';
685 return CopyMem (mGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
686
687 } else {
688 while (TRUE) {
689 //
690 // take semicolon as delimitation, sequentially traverse supported language codes.
691 //
692 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
693 Supported++;
694 }
695 if ((*Supported == '\0') && (SubIndex != Index)) {
696 //
697 // Have completed the traverse, but not find corrsponding string.
698 // This case is not allowed to happen.
699 //
700 ASSERT(FALSE);
701 return NULL;
702 }
703 if (SubIndex == Index) {
704 //
705 // according to the index of Lang string in SupportedLang string to get the language.
706 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
707 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
708 //
709 mGlobal->PlatformLang[CompareLength] = '\0';
710 return CopyMem (mGlobal->PlatformLang, Supported - CompareLength, CompareLength);
711 }
712 SubIndex++;
713
714 //
715 // Skip ';' characters in Supported
716 //
717 for (; *Supported != '\0' && *Supported == ';'; Supported++);
718 }
719 }
720 }
721
722 /**
723 Returns a pointer to an allocated buffer that contains the best matching language
724 from a set of supported languages.
725
726 This function supports both ISO 639-2 and RFC 4646 language codes, but language
727 code types may not be mixed in a single call to this function. This function
728 supports a variable argument list that allows the caller to pass in a prioritized
729 list of language codes to test against all the language codes in SupportedLanguages.
730
731 If SupportedLanguages is NULL, then ASSERT().
732
733 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
734 contains a set of language codes in the format
735 specified by Iso639Language.
736 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
737 in ISO 639-2 format. If FALSE, then all language
738 codes are assumed to be in RFC 4646 language format
739 @param[in] ... A variable argument list that contains pointers to
740 Null-terminated ASCII strings that contain one or more
741 language codes in the format specified by Iso639Language.
742 The first language code from each of these language
743 code lists is used to determine if it is an exact or
744 close match to any of the language codes in
745 SupportedLanguages. Close matches only apply to RFC 4646
746 language codes, and the matching algorithm from RFC 4647
747 is used to determine if a close match is present. If
748 an exact or close match is found, then the matching
749 language code from SupportedLanguages is returned. If
750 no matches are found, then the next variable argument
751 parameter is evaluated. The variable argument list
752 is terminated by a NULL.
753
754 @retval NULL The best matching language could not be found in SupportedLanguages.
755 @retval NULL There are not enough resources available to return the best matching
756 language.
757 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
758 language in SupportedLanguages.
759
760 **/
761 CHAR8 *
762 EFIAPI
763 VariableGetBestLanguage (
764 IN CONST CHAR8 *SupportedLanguages,
765 IN BOOLEAN Iso639Language,
766 ...
767 )
768 {
769 VA_LIST Args;
770 CHAR8 *Language;
771 UINTN CompareLength;
772 UINTN LanguageLength;
773 CONST CHAR8 *Supported;
774 CHAR8 *Buffer;
775
776 ASSERT (SupportedLanguages != NULL);
777
778 VA_START (Args, Iso639Language);
779 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
780 //
781 // Default to ISO 639-2 mode
782 //
783 CompareLength = 3;
784 LanguageLength = MIN (3, AsciiStrLen (Language));
785
786 //
787 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
788 //
789 if (!Iso639Language) {
790 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
791 }
792
793 //
794 // Trim back the length of Language used until it is empty
795 //
796 while (LanguageLength > 0) {
797 //
798 // Loop through all language codes in SupportedLanguages
799 //
800 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
801 //
802 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
803 //
804 if (!Iso639Language) {
805 //
806 // Skip ';' characters in Supported
807 //
808 for (; *Supported != '\0' && *Supported == ';'; Supported++);
809 //
810 // Determine the length of the next language code in Supported
811 //
812 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
813 //
814 // If Language is longer than the Supported, then skip to the next language
815 //
816 if (LanguageLength > CompareLength) {
817 continue;
818 }
819 }
820 //
821 // See if the first LanguageLength characters in Supported match Language
822 //
823 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
824 VA_END (Args);
825
826 Buffer = Iso639Language ? mGlobal->Lang : mGlobal->PlatformLang;
827 Buffer[CompareLength] = '\0';
828 return CopyMem (Buffer, Supported, CompareLength);
829 }
830 }
831
832 if (Iso639Language) {
833 //
834 // If ISO 639 mode, then each language can only be tested once
835 //
836 LanguageLength = 0;
837 } else {
838 //
839 // If RFC 4646 mode, then trim Language from the right to the next '-' character
840 //
841 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
842 }
843 }
844 }
845 VA_END (Args);
846
847 //
848 // No matches were found
849 //
850 return NULL;
851 }
852
853 /**
854 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
855
856 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
857
858 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
859 and are read-only. Therefore, in variable driver, only store the original value for other use.
860
861 @param[in] VariableName Name of variable
862
863 @param[in] Data Variable data
864
865 @param[in] DataSize Size of data. 0 means delete
866
867 **/
868 VOID
869 AutoUpdateLangVariable(
870 IN CHAR16 *VariableName,
871 IN VOID *Data,
872 IN UINTN DataSize
873 )
874 {
875 EFI_STATUS Status;
876 CHAR8 *BestPlatformLang;
877 CHAR8 *BestLang;
878 UINTN Index;
879 UINT32 Attributes;
880 VARIABLE_POINTER_TRACK Variable;
881 BOOLEAN SetLanguageCodes;
882
883 //
884 // Don't do updates for delete operation
885 //
886 if (DataSize == 0) {
887 return;
888 }
889
890 SetLanguageCodes = FALSE;
891
892 if (StrCmp (VariableName, L"PlatformLangCodes") == 0) {
893 //
894 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
895 //
896 if (EfiAtRuntime ()) {
897 return;
898 }
899
900 SetLanguageCodes = TRUE;
901
902 //
903 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
904 // Therefore, in variable driver, only store the original value for other use.
905 //
906 if (mGlobal->PlatformLangCodes != NULL) {
907 FreePool (mGlobal->PlatformLangCodes);
908 }
909 mGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
910 ASSERT (mGlobal->PlatformLangCodes != NULL);
911
912 //
913 // PlatformLang holds a single language from PlatformLangCodes,
914 // so the size of PlatformLangCodes is enough for the PlatformLang.
915 //
916 if (mGlobal->PlatformLang != NULL) {
917 FreePool (mGlobal->PlatformLang);
918 }
919 mGlobal->PlatformLang = AllocateRuntimePool (DataSize);
920 ASSERT (mGlobal->PlatformLang != NULL);
921
922 } else if (StrCmp (VariableName, L"LangCodes") == 0) {
923 //
924 // LangCodes is a volatile variable, so it can not be updated at runtime.
925 //
926 if (EfiAtRuntime ()) {
927 return;
928 }
929
930 SetLanguageCodes = TRUE;
931
932 //
933 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
934 // Therefore, in variable driver, only store the original value for other use.
935 //
936 if (mGlobal->LangCodes != NULL) {
937 FreePool (mGlobal->LangCodes);
938 }
939 mGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
940 ASSERT (mGlobal->LangCodes != NULL);
941 }
942
943 if (SetLanguageCodes
944 && (mGlobal->PlatformLangCodes != NULL)
945 && (mGlobal->LangCodes != NULL)) {
946 //
947 // Update Lang if PlatformLang is already set
948 // Update PlatformLang if Lang is already set
949 //
950 Status = FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable);
951 if (!EFI_ERROR (Status)) {
952 //
953 // Update Lang
954 //
955 VariableName = L"PlatformLang";
956 Data = GetVariableDataPtr (Variable.CurrPtr);
957 DataSize = Variable.CurrPtr->DataSize;
958 } else {
959 Status = FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable);
960 if (!EFI_ERROR (Status)) {
961 //
962 // Update PlatformLang
963 //
964 VariableName = L"Lang";
965 Data = GetVariableDataPtr (Variable.CurrPtr);
966 DataSize = Variable.CurrPtr->DataSize;
967 } else {
968 //
969 // Neither PlatformLang nor Lang is set, directly return
970 //
971 return;
972 }
973 }
974 }
975
976 //
977 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
978 //
979 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
980
981 if (StrCmp (VariableName, L"PlatformLang") == 0) {
982 //
983 // Update Lang when PlatformLangCodes/LangCodes were set.
984 //
985 if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) {
986 //
987 // When setting PlatformLang, firstly get most matched language string from supported language codes.
988 //
989 BestPlatformLang = VariableGetBestLanguage (mGlobal->PlatformLangCodes, FALSE, Data, NULL);
990 if (BestPlatformLang != NULL) {
991 //
992 // Get the corresponding index in language codes.
993 //
994 Index = GetIndexFromSupportedLangCodes (mGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
995
996 //
997 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
998 //
999 BestLang = GetLangFromSupportedLangCodes (mGlobal->LangCodes, Index, TRUE);
1000
1001 //
1002 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1003 //
1004 FindVariable(L"Lang", &gEfiGlobalVariableGuid, &Variable);
1005
1006 Status = UpdateVariable (L"Lang", &gEfiGlobalVariableGuid, BestLang, ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable);
1007
1008 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang));
1009
1010 ASSERT_EFI_ERROR(Status);
1011 }
1012 }
1013
1014 } else if (StrCmp (VariableName, L"Lang") == 0) {
1015 //
1016 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1017 //
1018 if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) {
1019 //
1020 // When setting Lang, firstly get most matched language string from supported language codes.
1021 //
1022 BestLang = VariableGetBestLanguage (mGlobal->LangCodes, TRUE, Data, NULL);
1023 if (BestLang != NULL) {
1024 //
1025 // Get the corresponding index in language codes.
1026 //
1027 Index = GetIndexFromSupportedLangCodes (mGlobal->LangCodes, BestLang, TRUE);
1028
1029 //
1030 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1031 //
1032 BestPlatformLang = GetLangFromSupportedLangCodes (mGlobal->PlatformLangCodes, Index, FALSE);
1033
1034 //
1035 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1036 //
1037 FindVariable(L"PlatformLang", &gEfiGlobalVariableGuid, &Variable);
1038
1039 Status = UpdateVariable (L"PlatformLang", &gEfiGlobalVariableGuid, BestPlatformLang,
1040 AsciiStrSize (BestPlatformLang), Attributes, &Variable);
1041
1042 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang));
1043 ASSERT_EFI_ERROR (Status);
1044 }
1045 }
1046 }
1047 }
1048
1049 /**
1050 Update the variable region with Variable information. These are the same
1051 arguments as the EFI Variable services.
1052
1053 @param[in] VariableName Name of variable
1054
1055 @param[in] VendorGuid Guid of variable
1056
1057 @param[in] Data Variable data
1058
1059 @param[in] DataSize Size of data. 0 means delete
1060
1061 @param[in] Attributes Attribues of the variable
1062
1063 @param[in] Variable The variable information which is used to keep track of variable usage.
1064
1065 @retval EFI_SUCCESS The update operation is success.
1066
1067 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1068
1069 **/
1070 EFI_STATUS
1071 EFIAPI
1072 UpdateVariable (
1073 IN CHAR16 *VariableName,
1074 IN EFI_GUID *VendorGuid,
1075 IN VOID *Data,
1076 IN UINTN DataSize,
1077 IN UINT32 Attributes OPTIONAL,
1078 IN VARIABLE_POINTER_TRACK *Variable
1079 )
1080 {
1081 EFI_STATUS Status;
1082 VARIABLE_HEADER *NextVariable;
1083 UINTN VarNameOffset;
1084 UINTN VarDataOffset;
1085 UINTN VarNameSize;
1086 UINTN VarSize;
1087 UINT8 State;
1088 BOOLEAN Reclaimed;
1089 VARIABLE_STORAGE_TYPE StorageType;
1090
1091 Reclaimed = FALSE;
1092
1093 if (Variable->CurrPtr != NULL) {
1094 //
1095 // Update/Delete existing variable
1096 //
1097
1098 if (EfiAtRuntime ()) {
1099 //
1100 // If EfiAtRuntime and the variable is Volatile and Runtime Access,
1101 // the volatile is ReadOnly, and SetVariable should be aborted and
1102 // return EFI_WRITE_PROTECTED.
1103 //
1104 if (Variable->Type == Volatile) {
1105 return EFI_WRITE_PROTECTED;
1106 }
1107 //
1108 // Only variable have NV attribute can be updated/deleted in Runtime
1109 //
1110 if (!(Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE)) {
1111 return EFI_INVALID_PARAMETER;
1112 }
1113 }
1114
1115 //
1116 // Setting a data variable with no access, or zero DataSize attributes
1117 // specified causes it to be deleted.
1118 //
1119 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1120 //
1121 // Found this variable in storage
1122 //
1123 State = Variable->CurrPtr->State;
1124 State &= VAR_DELETED;
1125
1126 Status = mGlobal->VariableStore[Variable->Type]->Write (
1127 mGlobal->VariableStore[Variable->Type],
1128 VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
1129 sizeof (Variable->CurrPtr->State),
1130 &State
1131 );
1132 //
1133 // NOTE: Write operation at least can write data to memory cache
1134 // Discard file writing failure here.
1135 //
1136 return EFI_SUCCESS;
1137 }
1138
1139 //
1140 // Found this variable in storage
1141 // If the variable is marked valid and the same data has been passed in
1142 // then return to the caller immediately.
1143 //
1144 if ((Variable->CurrPtr->DataSize == DataSize) &&
1145 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)
1146 ) {
1147 return EFI_SUCCESS;
1148 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
1149 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1150 //
1151 // Mark the old variable as in delete transition
1152 //
1153 State = Variable->CurrPtr->State;
1154 State &= VAR_IN_DELETED_TRANSITION;
1155
1156 Status = mGlobal->VariableStore[Variable->Type]->Write (
1157 mGlobal->VariableStore[Variable->Type],
1158 VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
1159 sizeof (Variable->CurrPtr->State),
1160 &State
1161 );
1162 //
1163 // NOTE: Write operation at least can write data to memory cache
1164 // Discard file writing failure here.
1165 //
1166 }
1167 } else {
1168 //
1169 // Create a new variable
1170 //
1171
1172 //
1173 // Make sure we are trying to create a new variable.
1174 // Setting a data variable with no access, or zero DataSize attributes means to delete it.
1175 //
1176 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1177 return EFI_NOT_FOUND;
1178 }
1179 //
1180 // Only variable have NV|RT attribute can be created in Runtime
1181 //
1182 if (EfiAtRuntime () &&
1183 (!(Attributes & EFI_VARIABLE_RUNTIME_ACCESS) || !(Attributes & EFI_VARIABLE_NON_VOLATILE))) {
1184 return EFI_INVALID_PARAMETER;
1185 }
1186
1187 }
1188
1189 //
1190 // Function part - create a new variable and copy the data.
1191 // Both update a variable and create a variable will come here.
1192 // We can firstly write all the data in memory, then write them to file
1193 // This can reduce the times of write operation
1194 //
1195
1196 NextVariable = (VARIABLE_HEADER *) mGlobal->Scratch;
1197
1198 NextVariable->StartId = VARIABLE_DATA;
1199 NextVariable->Attributes = Attributes;
1200 NextVariable->State = VAR_ADDED;
1201 NextVariable->Reserved = 0;
1202 VarNameOffset = sizeof (VARIABLE_HEADER);
1203 VarNameSize = StrSize (VariableName);
1204 CopyMem (
1205 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
1206 VariableName,
1207 VarNameSize
1208 );
1209 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
1210 CopyMem (
1211 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
1212 Data,
1213 DataSize
1214 );
1215 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
1216 //
1217 // There will be pad bytes after Data, the NextVariable->NameSize and
1218 // NextVariable->DataSize should not include pad size so that variable
1219 // service can get actual size in GetVariable
1220 //
1221 NextVariable->NameSize = (UINT32)VarNameSize;
1222 NextVariable->DataSize = (UINT32)DataSize;
1223
1224 //
1225 // The actual size of the variable that stores in storage should
1226 // include pad size.
1227 // VarDataOffset: offset from begin of current variable header
1228 //
1229 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
1230
1231 StorageType = (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile;
1232
1233 if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) >
1234 ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size
1235 ) {
1236 if ((StorageType == NonVolatile) && EfiAtRuntime ()) {
1237 return EFI_OUT_OF_RESOURCES;
1238 }
1239 //
1240 // Perform garbage collection & reclaim operation
1241 //
1242 Status = Reclaim (StorageType, Variable->CurrPtr);
1243 if (EFI_ERROR (Status)) {
1244 //
1245 // Reclaim error
1246 // we cannot restore to original state, fetal error, report to user
1247 //
1248 DEBUG ((EFI_D_ERROR, "FSVariable: Recalim error (fetal error) - %r\n", Status));
1249 return Status;
1250 }
1251 //
1252 // If still no enough space, return out of resources
1253 //
1254 if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) >
1255 ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size
1256 ) {
1257 return EFI_OUT_OF_RESOURCES;
1258 }
1259
1260 Reclaimed = TRUE;
1261 }
1262 Status = mGlobal->VariableStore[StorageType]->Write (
1263 mGlobal->VariableStore[StorageType],
1264 mGlobal->LastVariableOffset[StorageType],
1265 VarSize,
1266 NextVariable
1267 );
1268 //
1269 // NOTE: Write operation at least can write data to memory cache
1270 // Discard file writing failure here.
1271 //
1272 mGlobal->LastVariableOffset[StorageType] += VarSize;
1273
1274 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
1275 mGlobal->HwErrVariableTotalSize += VarSize;
1276 } else {
1277 mGlobal->CommonVariableTotalSize += VarSize;
1278 }
1279
1280 //
1281 // Mark the old variable as deleted
1282 //
1283 if (!Reclaimed && !EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
1284 State = Variable->CurrPtr->State;
1285 State &= VAR_DELETED;
1286
1287 Status = mGlobal->VariableStore[StorageType]->Write (
1288 mGlobal->VariableStore[StorageType],
1289 VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
1290 sizeof (Variable->CurrPtr->State),
1291 &State
1292 );
1293 //
1294 // NOTE: Write operation at least can write data to memory cache
1295 // Discard file writing failure here.
1296 //
1297 }
1298 return EFI_SUCCESS;
1299 }
1300
1301 EFI_STATUS
1302 EFIAPI
1303 DuetGetVariable (
1304 IN CHAR16 *VariableName,
1305 IN EFI_GUID *VendorGuid,
1306 OUT UINT32 *Attributes OPTIONAL,
1307 IN OUT UINTN *DataSize,
1308 OUT VOID *Data OPTIONAL
1309 )
1310 /*++
1311
1312 Routine Description:
1313
1314 This code finds variable in storage blocks (Volatile or Non-Volatile)
1315
1316 Arguments:
1317
1318 VariableName Name of Variable to be found
1319 VendorGuid Variable vendor GUID
1320 Attributes OPTIONAL Attribute value of the variable found
1321 DataSize Size of Data found. If size is less than the
1322 data, this value contains the required size.
1323 Data The buffer to return the contents of the variable. May be NULL
1324 with a zero DataSize in order to determine the size buffer needed.
1325
1326 Returns:
1327
1328 EFI STATUS
1329
1330 --*/
1331 {
1332 VARIABLE_POINTER_TRACK Variable;
1333 UINTN VarDataSize;
1334 EFI_STATUS Status;
1335
1336 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
1337 return EFI_INVALID_PARAMETER;
1338 }
1339
1340 //
1341 // Find existing variable
1342 //
1343 Status = FindVariable (VariableName, VendorGuid, &Variable);
1344
1345 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
1346 return Status;
1347 }
1348 //
1349 // Get data size
1350 //
1351 VarDataSize = Variable.CurrPtr->DataSize;
1352 if (*DataSize >= VarDataSize) {
1353 if (Data == NULL) {
1354 return EFI_INVALID_PARAMETER;
1355 }
1356 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
1357
1358 if (Attributes != NULL) {
1359 *Attributes = Variable.CurrPtr->Attributes;
1360 }
1361
1362 *DataSize = VarDataSize;
1363
1364 return EFI_SUCCESS;
1365 } else {
1366 *DataSize = VarDataSize;
1367 return EFI_BUFFER_TOO_SMALL;
1368 }
1369 }
1370
1371 EFI_STATUS
1372 EFIAPI
1373 GetNextVariableName (
1374 IN OUT UINTN *VariableNameSize,
1375 IN OUT CHAR16 *VariableName,
1376 IN OUT EFI_GUID *VendorGuid
1377 )
1378 /*++
1379
1380 Routine Description:
1381
1382 This code Finds the Next available variable
1383
1384 Arguments:
1385
1386 VariableNameSize Size of the variable
1387 VariableName Pointer to variable name
1388 VendorGuid Variable Vendor Guid
1389
1390 Returns:
1391
1392 EFI STATUS
1393
1394 --*/
1395 {
1396 VARIABLE_POINTER_TRACK Variable;
1397 UINTN VarNameSize;
1398 EFI_STATUS Status;
1399
1400 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
1401 return EFI_INVALID_PARAMETER;
1402 }
1403
1404 Status = FindVariable (VariableName, VendorGuid, &Variable);
1405
1406 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
1407 return Status;
1408 }
1409
1410 if (VariableName[0] != 0) {
1411 //
1412 // If variable name is not NULL, get next variable
1413 //
1414 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
1415 }
1416
1417 while (TRUE) {
1418 //
1419 // The order we find variable is: 1). NonVolatile; 2). Volatile
1420 // If both volatile and non-volatile variable store are parsed,
1421 // return not found
1422 //
1423 if (Variable.CurrPtr >= Variable.EndPtr || Variable.CurrPtr == NULL) {
1424 if (Variable.Type == Volatile) {
1425 //
1426 // Since we met the end of Volatile storage, we have parsed all the stores.
1427 //
1428 return EFI_NOT_FOUND;
1429 }
1430
1431 //
1432 // End of NonVolatile, continue to parse Volatile
1433 //
1434 Variable.Type = Volatile;
1435 Variable.StartPtr = (VARIABLE_HEADER *) ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile] + 1);
1436 Variable.EndPtr = (VARIABLE_HEADER *) GetEndPointer ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile]);
1437
1438 Variable.CurrPtr = Variable.StartPtr;
1439 if (!IsValidVariableHeader (Variable.CurrPtr)) {
1440 continue;
1441 }
1442 }
1443 //
1444 // Variable is found
1445 //
1446 if (IsValidVariableHeader (Variable.CurrPtr) &&
1447 ((Variable.CurrPtr->State == VAR_ADDED) ||
1448 (Variable.CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)))) {
1449 if (!EfiAtRuntime () || (Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
1450 VarNameSize = Variable.CurrPtr->NameSize;
1451 if (VarNameSize <= *VariableNameSize) {
1452 CopyMem (
1453 VariableName,
1454 GET_VARIABLE_NAME_PTR (Variable.CurrPtr),
1455 VarNameSize
1456 );
1457 CopyMem (
1458 VendorGuid,
1459 &Variable.CurrPtr->VendorGuid,
1460 sizeof (EFI_GUID)
1461 );
1462 Status = EFI_SUCCESS;
1463 } else {
1464 Status = EFI_BUFFER_TOO_SMALL;
1465 }
1466
1467 *VariableNameSize = VarNameSize;
1468 return Status;
1469 }
1470 }
1471
1472 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
1473 }
1474 }
1475
1476 EFI_STATUS
1477 EFIAPI
1478 SetVariable (
1479 IN CHAR16 *VariableName,
1480 IN EFI_GUID *VendorGuid,
1481 IN UINT32 Attributes,
1482 IN UINTN DataSize,
1483 IN VOID *Data
1484 )
1485 /*++
1486
1487 Routine Description:
1488
1489 This code sets variable in storage blocks (Volatile or Non-Volatile)
1490
1491 Arguments:
1492
1493 VariableName Name of Variable to be found
1494 VendorGuid Variable vendor GUID
1495 Attributes Attribute value of the variable found
1496 DataSize Size of Data found. If size is less than the
1497 data, this value contains the required size.
1498 Data Data pointer
1499
1500 Returns:
1501
1502 EFI_INVALID_PARAMETER - Invalid parameter
1503 EFI_SUCCESS - Set successfully
1504 EFI_OUT_OF_RESOURCES - Resource not enough to set variable
1505 EFI_NOT_FOUND - Not found
1506 EFI_DEVICE_ERROR - Variable can not be saved due to hardware failure
1507 EFI_WRITE_PROTECTED - Variable is read-only
1508
1509 --*/
1510 {
1511 VARIABLE_POINTER_TRACK Variable;
1512 EFI_STATUS Status;
1513
1514 //
1515 // Check input parameters
1516 //
1517 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
1518 return EFI_INVALID_PARAMETER;
1519 }
1520
1521 if (DataSize != 0 && Data == NULL) {
1522 return EFI_INVALID_PARAMETER;
1523 }
1524
1525 //
1526 // Not support authenticated variable write yet.
1527 //
1528 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
1529 return EFI_INVALID_PARAMETER;
1530 }
1531
1532 //
1533 // Make sure if runtime bit is set, boot service bit is set also
1534 //
1535 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
1536 return EFI_INVALID_PARAMETER;
1537 }
1538
1539 //
1540 // The size of the VariableName, including the Unicode Null in bytes plus
1541 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
1542 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
1543 //
1544 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1545 if ((DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize)) ||
1546 (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize))) {
1547 return EFI_INVALID_PARAMETER;
1548 }
1549 //
1550 // According to UEFI spec, HARDWARE_ERROR_RECORD variable name convention should be L"HwErrRecXXXX"
1551 //
1552 if (StrnCmp(VariableName, L"HwErrRec", StrLen(L"HwErrRec")) != 0) {
1553 return EFI_INVALID_PARAMETER;
1554 }
1555 } else {
1556 if ((DataSize > PcdGet32(PcdMaxVariableSize)) ||
1557 (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxVariableSize))) {
1558 return EFI_INVALID_PARAMETER;
1559 }
1560 }
1561
1562 //
1563 // Check whether the input variable is already existed
1564 //
1565 Status = FindVariable (VariableName, VendorGuid, &Variable);
1566
1567 //
1568 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang
1569 //
1570 AutoUpdateLangVariable (VariableName, Data, DataSize);
1571
1572 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable);
1573
1574 return Status;
1575 }
1576
1577 EFI_STATUS
1578 EFIAPI
1579 QueryVariableInfo (
1580 IN UINT32 Attributes,
1581 OUT UINT64 *MaximumVariableStorageSize,
1582 OUT UINT64 *RemainingVariableStorageSize,
1583 OUT UINT64 *MaximumVariableSize
1584 )
1585 /*++
1586
1587 Routine Description:
1588
1589 This code returns information about the EFI variables.
1590
1591 Arguments:
1592
1593 Attributes Attributes bitmask to specify the type of variables
1594 on which to return information.
1595 MaximumVariableStorageSize Pointer to the maximum size of the storage space available
1596 for the EFI variables associated with the attributes specified.
1597 RemainingVariableStorageSize Pointer to the remaining size of the storage space available
1598 for the EFI variables associated with the attributes specified.
1599 MaximumVariableSize Pointer to the maximum size of the individual EFI variables
1600 associated with the attributes specified.
1601
1602 Returns:
1603
1604 EFI STATUS
1605 EFI_INVALID_PARAMETER - An invalid combination of attribute bits was supplied.
1606 EFI_SUCCESS - Query successfully.
1607 EFI_UNSUPPORTED - The attribute is not supported on this platform.
1608
1609 --*/
1610 {
1611 VARIABLE_HEADER *Variable;
1612 VARIABLE_HEADER *NextVariable;
1613 UINT64 VariableSize;
1614 VARIABLE_STORE_HEADER *VariableStoreHeader;
1615 UINT64 CommonVariableTotalSize;
1616 UINT64 HwErrVariableTotalSize;
1617
1618 CommonVariableTotalSize = 0;
1619 HwErrVariableTotalSize = 0;
1620
1621 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
1622 return EFI_INVALID_PARAMETER;
1623 }
1624
1625 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
1626 //
1627 // Make sure the Attributes combination is supported by the platform.
1628 //
1629 return EFI_UNSUPPORTED;
1630 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
1631 //
1632 // Make sure if runtime bit is set, boot service bit is set also.
1633 //
1634 return EFI_INVALID_PARAMETER;
1635 } else if (EfiAtRuntime () && !(Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
1636 //
1637 // Make sure RT Attribute is set if we are in Runtime phase.
1638 //
1639 return EFI_INVALID_PARAMETER;
1640 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1641 //
1642 // Make sure Hw Attribute is set with NV.
1643 //
1644 return EFI_INVALID_PARAMETER;
1645 } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
1646 //
1647 // Not support authentiated variable write yet.
1648 //
1649 return EFI_UNSUPPORTED;
1650 }
1651
1652 VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[
1653 (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile
1654 ];
1655 //
1656 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
1657 // with the storage size (excluding the storage header size).
1658 //
1659 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
1660
1661 //
1662 // Harware error record variable needs larger size.
1663 //
1664 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1665 *MaximumVariableStorageSize = PcdGet32(PcdHwErrStorageSize);
1666 *MaximumVariableSize = PcdGet32(PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
1667 } else {
1668 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1669 ASSERT (PcdGet32(PcdHwErrStorageSize) < VariableStoreHeader->Size);
1670 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize);
1671 }
1672
1673 //
1674 // Let *MaximumVariableSize be PcdGet32(PcdMaxVariableSize) with the exception of the variable header size.
1675 //
1676 *MaximumVariableSize = PcdGet32(PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
1677 }
1678
1679 //
1680 // Point to the starting address of the variables.
1681 //
1682 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
1683
1684 //
1685 // Now walk through the related variable store.
1686 //
1687 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
1688 NextVariable = GetNextVariablePtr (Variable);
1689 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
1690
1691 if (EfiAtRuntime ()) {
1692 //
1693 // we don't take the state of the variables in mind
1694 // when calculating RemainingVariableStorageSize,
1695 // since the space occupied by variables not marked with
1696 // VAR_ADDED is not allowed to be reclaimed in Runtime.
1697 //
1698 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1699 HwErrVariableTotalSize += VariableSize;
1700 } else {
1701 CommonVariableTotalSize += VariableSize;
1702 }
1703 } else {
1704 //
1705 // Only care about Variables with State VAR_ADDED,because
1706 // the space not marked as VAR_ADDED is reclaimable now.
1707 //
1708 if ((Variable->State == VAR_ADDED) || (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1709 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1710 HwErrVariableTotalSize += VariableSize;
1711 } else {
1712 CommonVariableTotalSize += VariableSize;
1713 }
1714 }
1715 }
1716
1717 //
1718 // Go to the next one
1719 //
1720 Variable = NextVariable;
1721 }
1722
1723 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
1724 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
1725 } else {
1726 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
1727 }
1728
1729 return EFI_SUCCESS;
1730 }
1731
1732 EFI_STATUS
1733 EFIAPI
1734 VariableServiceInitialize (
1735 IN EFI_HANDLE ImageHandle,
1736 IN EFI_SYSTEM_TABLE *SystemTable
1737 )
1738 /*++
1739
1740 Routine Description:
1741 This function does initialization for variable services
1742
1743 Arguments:
1744
1745 ImageHandle - The firmware allocated handle for the EFI image.
1746 SystemTable - A pointer to the EFI System Table.
1747
1748 Returns:
1749
1750 Status code.
1751
1752 EFI_NOT_FOUND - Variable store area not found.
1753 EFI_SUCCESS - Variable services successfully initialized.
1754
1755 --*/
1756 {
1757 EFI_STATUS Status;
1758 EFI_HANDLE NewHandle;
1759 VS_DEV *Dev;
1760 EFI_PEI_HOB_POINTERS GuidHob;
1761 VARIABLE_HEADER *Variable;
1762 VARIABLE_HEADER *NextVariable;
1763 VARIABLE_STORE_HEADER *VariableStoreHeader;
1764 EFI_FLASH_MAP_FS_ENTRY_DATA *FlashMapEntryData;
1765 EFI_FLASH_SUBAREA_ENTRY VariableStoreEntry;
1766 UINT64 BaseAddress;
1767 UINT64 Length;
1768 EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
1769
1770 Status = gBS->AllocatePool (
1771 EfiRuntimeServicesData,
1772 (UINTN) sizeof (VARIABLE_GLOBAL),
1773 (VOID**) &mGlobal
1774 );
1775 if (EFI_ERROR (Status)) {
1776 return Status;
1777 }
1778
1779 ZeroMem (mGlobal, (UINTN) sizeof (VARIABLE_GLOBAL));
1780
1781 GuidHob.Raw = GetHobList ();
1782 FlashMapEntryData = NULL;
1783 while ((GuidHob.Raw = GetNextGuidHob (&gEfiFlashMapHobGuid, GuidHob.Raw)) != NULL) {
1784 FlashMapEntryData = (EFI_FLASH_MAP_FS_ENTRY_DATA *) GET_GUID_HOB_DATA (GuidHob.Guid);
1785 if (FlashMapEntryData->AreaType == EFI_FLASH_AREA_EFI_VARIABLES) {
1786 break;
1787 }
1788 GuidHob.Raw = GET_NEXT_HOB (GuidHob);
1789 }
1790
1791 if (FlashMapEntryData == NULL) {
1792 DEBUG ((EFI_D_ERROR, "FSVariable: Could not find flash area for variable!\n"));
1793 Status = EFI_NOT_FOUND;
1794 return Status;
1795 }
1796
1797 CopyMem(
1798 (VOID*)&VariableStoreEntry,
1799 (VOID*)&FlashMapEntryData->Entries[0],
1800 sizeof(EFI_FLASH_SUBAREA_ENTRY)
1801 );
1802
1803 //
1804 // Mark the variable storage region of the FLASH as RUNTIME
1805 //
1806 BaseAddress = VariableStoreEntry.Base & (~EFI_PAGE_MASK);
1807 Length = VariableStoreEntry.Length + (VariableStoreEntry.Base - BaseAddress);
1808 Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK);
1809 Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
1810 if (EFI_ERROR (Status)) {
1811 Status = EFI_UNSUPPORTED;
1812 return Status;
1813 }
1814 Status = gDS->SetMemorySpaceAttributes (
1815 BaseAddress,
1816 Length,
1817 GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME
1818 );
1819 if (EFI_ERROR (Status)) {
1820 Status = EFI_UNSUPPORTED;
1821 return Status;
1822 }
1823
1824 Status = FileStorageConstructor (
1825 &mGlobal->VariableStore[NonVolatile],
1826 &mGlobal->GoVirtualChildEvent[NonVolatile],
1827 VariableStoreEntry.Base,
1828 (UINT32) VariableStoreEntry.Length,
1829 FlashMapEntryData->VolumeId,
1830 FlashMapEntryData->FilePath
1831 );
1832 ASSERT_EFI_ERROR (Status);
1833
1834 //
1835 // Volatile Storage
1836 //
1837 Status = MemStorageConstructor (
1838 &mGlobal->VariableStore[Volatile],
1839 &mGlobal->GoVirtualChildEvent[Volatile],
1840 VOLATILE_VARIABLE_STORE_SIZE
1841 );
1842 ASSERT_EFI_ERROR (Status);
1843
1844 //
1845 // Scratch
1846 //
1847 Status = gBS->AllocatePool (
1848 EfiRuntimeServicesData,
1849 VARIABLE_SCRATCH_SIZE,
1850 &mGlobal->Scratch
1851 );
1852 ASSERT_EFI_ERROR (Status);
1853
1854 //
1855 // 1. NV Storage
1856 //
1857 Dev = DEV_FROM_THIS (mGlobal->VariableStore[NonVolatile]);
1858 VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev);
1859 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
1860 if (~VariableStoreHeader->Size == 0) {
1861 VariableStoreHeader->Size = (UINT32) VariableStoreEntry.Length;
1862 }
1863 }
1864 //
1865 // Calculate LastVariableOffset
1866 //
1867 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
1868 while (IsValidVariableHeader (Variable)) {
1869 UINTN VariableSize = 0;
1870 NextVariable = GetNextVariablePtr (Variable);
1871 VariableSize = NextVariable - Variable;
1872 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1873 mGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
1874 } else {
1875 mGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
1876 }
1877 Variable = NextVariable;
1878 }
1879
1880 mGlobal->LastVariableOffset[NonVolatile] = (UINTN) Variable - (UINTN) VariableStoreHeader;
1881 mGlobal->VariableBase[NonVolatile] = VariableStoreHeader;
1882
1883 //
1884 // Reclaim if remaining space is too small
1885 //
1886 if ((VariableStoreHeader->Size - mGlobal->LastVariableOffset[NonVolatile]) < VARIABLE_RECLAIM_THRESHOLD) {
1887 Status = Reclaim (NonVolatile, NULL);
1888 if (EFI_ERROR (Status)) {
1889 //
1890 // Reclaim error
1891 // we cannot restore to original state
1892 //
1893 DEBUG ((EFI_D_ERROR, "FSVariable: Reclaim error (fatal error) - %r\n", Status));
1894 ASSERT_EFI_ERROR (Status);
1895 }
1896 }
1897
1898 //
1899 // 2. Volatile Storage
1900 //
1901 Dev = DEV_FROM_THIS (mGlobal->VariableStore[Volatile]);
1902 VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev);
1903 mGlobal->VariableBase[Volatile] = VAR_DATA_PTR (Dev);
1904 mGlobal->LastVariableOffset[Volatile] = sizeof (VARIABLE_STORE_HEADER);
1905 //
1906 // init store_header & body in memory.
1907 //
1908 mGlobal->VariableStore[Volatile]->Erase (mGlobal->VariableStore[Volatile]);
1909 mGlobal->VariableStore[Volatile]->Write (
1910 mGlobal->VariableStore[Volatile],
1911 0,
1912 sizeof (VARIABLE_STORE_HEADER),
1913 &mStoreHeaderTemplate
1914 );
1915
1916
1917 SystemTable->RuntimeServices->GetVariable = DuetGetVariable;
1918 SystemTable->RuntimeServices->GetNextVariableName = GetNextVariableName;
1919 SystemTable->RuntimeServices->SetVariable = SetVariable;
1920
1921 SystemTable->RuntimeServices->QueryVariableInfo = QueryVariableInfo;
1922
1923 //
1924 // Now install the Variable Runtime Architectural Protocol on a new handle
1925 //
1926 NewHandle = NULL;
1927 Status = gBS->InstallMultipleProtocolInterfaces (
1928 &NewHandle,
1929 &gEfiVariableArchProtocolGuid,
1930 NULL,
1931 &gEfiVariableWriteArchProtocolGuid,
1932 NULL,
1933 NULL
1934 );
1935 ASSERT_EFI_ERROR (Status);
1936
1937 return Status;
1938 }
1939
1940
1941
1942 VOID
1943 EFIAPI
1944 OnVirtualAddressChangeFsv (
1945 IN EFI_EVENT Event,
1946 IN VOID *Context
1947 )
1948 {
1949 UINTN Index;
1950
1951 for (Index = 0; Index < MaxType; Index++) {
1952 mGlobal->GoVirtualChildEvent[Index] (Event, mGlobal->VariableStore[Index]);
1953 EfiConvertPointer (0, (VOID**) &mGlobal->VariableStore[Index]);
1954 EfiConvertPointer (0, &mGlobal->VariableBase[Index]);
1955 }
1956 EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLangCodes);
1957 EfiConvertPointer (0, (VOID **) &mGlobal->LangCodes);
1958 EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLang);
1959 EfiConvertPointer (0, &mGlobal->Scratch);
1960 EfiConvertPointer (0, (VOID**) &mGlobal);
1961 }