]> git.proxmox.com Git - mirror_edk2.git/blob - DuetPkg/FSVariable/FSVariable.c
Fix a bug in GetLangFromSupportedLangCodes()
[mirror_edk2.git] / DuetPkg / FSVariable / FSVariable.c
1 /*++
2
3 Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
4 This program and the accompanying materials
5 are licensed and made available under the terms and conditions of the BSD License
6 which accompanies this distribution. The full text of the license may be found at
7 http://opensource.org/licenses/bsd-license.php
8
9 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
10 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
11
12 Module Name:
13
14 FSVariable.c
15
16 Abstract:
17
18 Provide support functions for variable services.
19
20 --*/
21
22 #include "FSVariable.h"
23
24 VARIABLE_STORE_HEADER mStoreHeaderTemplate = {
25 VARIABLE_STORE_SIGNATURE,
26 VOLATILE_VARIABLE_STORE_SIZE,
27 VARIABLE_STORE_FORMATTED,
28 VARIABLE_STORE_HEALTHY,
29 0,
30 0
31 };
32
33 //
34 // Don't use module globals after the SetVirtualAddress map is signaled
35 //
36 VARIABLE_GLOBAL *mGlobal;
37
38 /**
39 Update the variable region with Variable information. These are the same
40 arguments as the EFI Variable services.
41
42 @param[in] VariableName Name of variable
43
44 @param[in] VendorGuid Guid of variable
45
46 @param[in] Data Variable data
47
48 @param[in] DataSize Size of data. 0 means delete
49
50 @param[in] Attributes Attribues of the variable
51
52 @param[in] Variable The variable information which is used to keep track of variable usage.
53
54 @retval EFI_SUCCESS The update operation is success.
55
56 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
57
58 **/
59 EFI_STATUS
60 EFIAPI
61 UpdateVariable (
62 IN CHAR16 *VariableName,
63 IN EFI_GUID *VendorGuid,
64 IN VOID *Data,
65 IN UINTN DataSize,
66 IN UINT32 Attributes OPTIONAL,
67 IN VARIABLE_POINTER_TRACK *Variable
68 );
69
70 VOID
71 EFIAPI
72 OnVirtualAddressChangeFsv (
73 IN EFI_EVENT Event,
74 IN VOID *Context
75 );
76
77 VOID
78 EFIAPI
79 OnSimpleFileSystemInstall (
80 IN EFI_EVENT Event,
81 IN VOID *Context
82 );
83
84 BOOLEAN
85 IsValidVariableHeader (
86 IN VARIABLE_HEADER *Variable
87 )
88 /*++
89
90 Routine Description:
91
92 This code checks if variable header is valid or not.
93
94 Arguments:
95 Variable Pointer to the Variable Header.
96
97 Returns:
98 TRUE Variable header is valid.
99 FALSE Variable header is not valid.
100
101 --*/
102 {
103 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
104 return FALSE;
105 }
106
107 return TRUE;
108 }
109
110 VARIABLE_STORE_STATUS
111 GetVariableStoreStatus (
112 IN VARIABLE_STORE_HEADER *VarStoreHeader
113 )
114 /*++
115
116 Routine Description:
117
118 This code gets the current status of Variable Store.
119
120 Arguments:
121
122 VarStoreHeader Pointer to the Variable Store Header.
123
124 Returns:
125
126 EfiRaw Variable store status is raw
127 EfiValid Variable store status is valid
128 EfiInvalid Variable store status is invalid
129
130 --*/
131 {
132 if (CompareGuid (&VarStoreHeader->Signature, &mStoreHeaderTemplate.Signature) &&
133 (VarStoreHeader->Format == mStoreHeaderTemplate.Format) &&
134 (VarStoreHeader->State == mStoreHeaderTemplate.State)
135 ) {
136 return EfiValid;
137 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == VAR_DEFAULT_VALUE_32 &&
138 ((UINT32 *)(&VarStoreHeader->Signature))[1] == VAR_DEFAULT_VALUE_32 &&
139 ((UINT32 *)(&VarStoreHeader->Signature))[2] == VAR_DEFAULT_VALUE_32 &&
140 ((UINT32 *)(&VarStoreHeader->Signature))[3] == VAR_DEFAULT_VALUE_32 &&
141 VarStoreHeader->Size == VAR_DEFAULT_VALUE_32 &&
142 VarStoreHeader->Format == VAR_DEFAULT_VALUE &&
143 VarStoreHeader->State == VAR_DEFAULT_VALUE
144 ) {
145
146 return EfiRaw;
147 } else {
148 return EfiInvalid;
149 }
150 }
151
152 UINT8 *
153 GetVariableDataPtr (
154 IN VARIABLE_HEADER *Variable
155 )
156 /*++
157
158 Routine Description:
159
160 This code gets the pointer to the variable data.
161
162 Arguments:
163
164 Variable Pointer to the Variable Header.
165
166 Returns:
167
168 UINT8* Pointer to Variable Data
169
170 --*/
171 {
172 //
173 // Be careful about pad size for alignment
174 //
175 return (UINT8 *) ((UINTN) GET_VARIABLE_NAME_PTR (Variable) + Variable->NameSize + GET_PAD_SIZE (Variable->NameSize));
176 }
177
178 VARIABLE_HEADER *
179 GetNextVariablePtr (
180 IN VARIABLE_HEADER *Variable
181 )
182 /*++
183
184 Routine Description:
185
186 This code gets the pointer to the next variable header.
187
188 Arguments:
189
190 Variable Pointer to the Variable Header.
191
192 Returns:
193
194 VARIABLE_HEADER* Pointer to next variable header.
195
196 --*/
197 {
198 if (!IsValidVariableHeader (Variable)) {
199 return NULL;
200 }
201 //
202 // Be careful about pad size for alignment
203 //
204 return (VARIABLE_HEADER *) ((UINTN) GetVariableDataPtr (Variable) + Variable->DataSize + GET_PAD_SIZE (Variable->DataSize));
205 }
206
207 VARIABLE_HEADER *
208 GetEndPointer (
209 IN VARIABLE_STORE_HEADER *VarStoreHeader
210 )
211 /*++
212
213 Routine Description:
214
215 This code gets the pointer to the last variable memory pointer byte
216
217 Arguments:
218
219 VarStoreHeader Pointer to the Variable Store Header.
220
221 Returns:
222
223 VARIABLE_HEADER* Pointer to last unavailable Variable Header
224
225 --*/
226 {
227 //
228 // The end of variable store
229 //
230 return (VARIABLE_HEADER *) ((UINTN) VarStoreHeader + VarStoreHeader->Size);
231 }
232
233 BOOLEAN
234 ExistNewerVariable (
235 IN VARIABLE_HEADER *Variable
236 )
237 /*++
238
239 Routine Description:
240
241 Check if exist newer variable when doing reclaim
242
243 Arguments:
244
245 Variable Pointer to start position
246
247 Returns:
248
249 TRUE - Exists another variable, which is newer than the current one
250 FALSE - Doesn't exist another vairable which is newer than the current one
251
252 --*/
253 {
254 VARIABLE_HEADER *NextVariable;
255 CHAR16 *VariableName;
256 EFI_GUID *VendorGuid;
257
258 VendorGuid = &Variable->VendorGuid;
259 VariableName = GET_VARIABLE_NAME_PTR(Variable);
260
261 NextVariable = GetNextVariablePtr (Variable);
262 while (IsValidVariableHeader (NextVariable)) {
263 if ((NextVariable->State == VAR_ADDED) || (NextVariable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
264 //
265 // If match Guid and Name
266 //
267 if (CompareGuid (VendorGuid, &NextVariable->VendorGuid)) {
268 if (CompareMem (VariableName, GET_VARIABLE_NAME_PTR (NextVariable), StrSize (VariableName)) == 0) {
269 return TRUE;
270 }
271 }
272 }
273 NextVariable = GetNextVariablePtr (NextVariable);
274 }
275 return FALSE;
276 }
277
278 EFI_STATUS
279 Reclaim (
280 IN VARIABLE_STORAGE_TYPE StorageType,
281 IN VARIABLE_HEADER *CurrentVariable OPTIONAL
282 )
283 /*++
284
285 Routine Description:
286
287 Variable store garbage collection and reclaim operation
288
289 Arguments:
290
291 IsVolatile The variable store is volatile or not,
292 if it is non-volatile, need FTW
293 CurrentVairable If it is not NULL, it means not to process
294 current variable for Reclaim.
295
296 Returns:
297
298 EFI STATUS
299
300 --*/
301 {
302 VARIABLE_HEADER *Variable;
303 VARIABLE_HEADER *NextVariable;
304 VARIABLE_STORE_HEADER *VariableStoreHeader;
305 UINT8 *ValidBuffer;
306 UINTN ValidBufferSize;
307 UINTN VariableSize;
308 UINT8 *CurrPtr;
309 EFI_STATUS Status;
310
311 VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType];
312
313 //
314 // Start Pointers for the variable.
315 //
316 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
317
318 //
319 // recaluate the total size of Common/HwErr type variables in non-volatile area.
320 //
321 if (!StorageType) {
322 mGlobal->CommonVariableTotalSize = 0;
323 mGlobal->HwErrVariableTotalSize = 0;
324 }
325 //
326 // To make the reclaim, here we just allocate a memory that equal to the original memory
327 //
328 ValidBufferSize = sizeof (VARIABLE_STORE_HEADER) + VariableStoreHeader->Size;
329
330 Status = gBS->AllocatePool (
331 EfiBootServicesData,
332 ValidBufferSize,
333 (VOID**) &ValidBuffer
334 );
335 if (EFI_ERROR (Status)) {
336 return Status;
337 }
338
339 CurrPtr = ValidBuffer;
340
341 //
342 // Copy variable store header
343 //
344 CopyMem (CurrPtr, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
345 CurrPtr += sizeof (VARIABLE_STORE_HEADER);
346
347 //
348 // Start Pointers for the variable.
349 //
350 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
351
352
353 ValidBufferSize = sizeof (VARIABLE_STORE_HEADER);
354 while (IsValidVariableHeader (Variable)) {
355 NextVariable = GetNextVariablePtr (Variable);
356 //
357 // State VAR_ADDED or VAR_IN_DELETED_TRANSITION are to kept,
358 // The CurrentVariable, is also saved, as SetVariable may fail due to lack of space
359 //
360 if (Variable->State == VAR_ADDED) {
361 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
362 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
363 ValidBufferSize += VariableSize;
364 CurrPtr += VariableSize;
365 if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
366 mGlobal->HwErrVariableTotalSize += VariableSize;
367 } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
368 mGlobal->CommonVariableTotalSize += VariableSize;
369 }
370 } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) {
371 //
372 // As variables that with the same guid and name may exist in NV due to power failure during SetVariable,
373 // we will only save the latest valid one
374 //
375 if (!ExistNewerVariable(Variable)) {
376 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
377 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
378 //
379 // If CurrentVariable == Variable, mark as VAR_IN_DELETED_TRANSITION
380 //
381 if (Variable != CurrentVariable){
382 ((VARIABLE_HEADER *)CurrPtr)->State = VAR_ADDED;
383 }
384 CurrPtr += VariableSize;
385 ValidBufferSize += VariableSize;
386 if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
387 mGlobal->HwErrVariableTotalSize += VariableSize;
388 } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
389 mGlobal->CommonVariableTotalSize += VariableSize;
390 }
391 }
392 }
393 Variable = NextVariable;
394 }
395
396 mGlobal->LastVariableOffset[StorageType] = ValidBufferSize;
397
398 //
399 // TODO: cannot restore to original state, basic FTW needed
400 //
401 Status = mGlobal->VariableStore[StorageType]->Erase (
402 mGlobal->VariableStore[StorageType]
403 );
404 Status = mGlobal->VariableStore[StorageType]->Write (
405 mGlobal->VariableStore[StorageType],
406 0,
407 ValidBufferSize,
408 ValidBuffer
409 );
410
411 if (EFI_ERROR (Status)) {
412 //
413 // If error, then reset the last variable offset to zero.
414 //
415 mGlobal->LastVariableOffset[StorageType] = 0;
416 };
417
418 gBS->FreePool (ValidBuffer);
419
420 return Status;
421 }
422
423 EFI_STATUS
424 FindVariable (
425 IN CHAR16 *VariableName,
426 IN EFI_GUID *VendorGuid,
427 OUT VARIABLE_POINTER_TRACK *PtrTrack
428 )
429 /*++
430
431 Routine Description:
432
433 This code finds variable in storage blocks (Volatile or Non-Volatile)
434
435 Arguments:
436
437 VariableName Name of the variable to be found
438 VendorGuid Vendor GUID to be found.
439 PtrTrack Variable Track Pointer structure that contains
440 Variable Information.
441 Contains the pointer of Variable header.
442
443 Returns:
444
445 EFI_INVALID_PARAMETER - Invalid parameter
446 EFI_SUCCESS - Find the specified variable
447 EFI_NOT_FOUND - Not found
448
449 --*/
450 {
451 VARIABLE_HEADER *Variable;
452 VARIABLE_STORE_HEADER *VariableStoreHeader;
453 UINTN Index;
454 VARIABLE_HEADER *InDeleteVariable;
455 UINTN InDeleteIndex;
456 VARIABLE_HEADER *InDeleteStartPtr;
457 VARIABLE_HEADER *InDeleteEndPtr;
458
459 if (VariableName[0] != 0 && VendorGuid == NULL) {
460 return EFI_INVALID_PARAMETER;
461 }
462
463 InDeleteVariable = NULL;
464 InDeleteIndex = (UINTN)-1;
465 InDeleteStartPtr = NULL;
466 InDeleteEndPtr = NULL;
467
468 for (Index = 0; Index < MaxType; Index ++) {
469 //
470 // 0: Non-Volatile, 1: Volatile
471 //
472 VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Index];
473
474 //
475 // Start Pointers for the variable.
476 // Actual Data Pointer where data can be written.
477 //
478 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
479
480 //
481 // Find the variable by walk through non-volatile and volatile variable store
482 //
483 PtrTrack->StartPtr = Variable;
484 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader);
485
486 while ((Variable < PtrTrack->EndPtr) && IsValidVariableHeader (Variable)) {
487 if (Variable->State == VAR_ADDED) {
488 if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
489 if (VariableName[0] == 0) {
490 PtrTrack->CurrPtr = Variable;
491 PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index;
492 return EFI_SUCCESS;
493 } else {
494 if (CompareGuid (VendorGuid, &Variable->VendorGuid)) {
495 if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) {
496 PtrTrack->CurrPtr = Variable;
497 PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index;
498 return EFI_SUCCESS;
499 }
500 }
501 }
502 }
503 } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) {
504 //
505 // VAR_IN_DELETED_TRANSITION should also be checked.
506 //
507 if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
508 if (VariableName[0] == 0) {
509 InDeleteVariable = Variable;
510 InDeleteIndex = Index;
511 InDeleteStartPtr = PtrTrack->StartPtr;
512 InDeleteEndPtr = PtrTrack->EndPtr;
513 } else {
514 if (CompareGuid (VendorGuid, &Variable->VendorGuid)) {
515 if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) {
516 InDeleteVariable = Variable;
517 InDeleteIndex = Index;
518 InDeleteStartPtr = PtrTrack->StartPtr;
519 InDeleteEndPtr = PtrTrack->EndPtr;
520 }
521 }
522 }
523 }
524 }
525
526 Variable = GetNextVariablePtr (Variable);
527 }
528 //
529 // While (...)
530 //
531 }
532 //
533 // for (...)
534 //
535
536 //
537 // if VAR_IN_DELETED_TRANSITION found, and VAR_ADDED not found,
538 // we return it.
539 //
540 if (InDeleteVariable != NULL) {
541 PtrTrack->CurrPtr = InDeleteVariable;
542 PtrTrack->Type = (VARIABLE_STORAGE_TYPE) InDeleteIndex;
543 PtrTrack->StartPtr = InDeleteStartPtr;
544 PtrTrack->EndPtr = InDeleteEndPtr;
545 return EFI_SUCCESS;
546 }
547
548 PtrTrack->CurrPtr = NULL;
549 return EFI_NOT_FOUND;
550 }
551
552 /**
553 Get index from supported language codes according to language string.
554
555 This code is used to get corresponding index in supported language codes. It can handle
556 RFC4646 and ISO639 language tags.
557 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
558 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
559
560 For example:
561 SupportedLang = "engfraengfra"
562 Lang = "eng"
563 Iso639Language = TRUE
564 The return value is "0".
565 Another example:
566 SupportedLang = "en;fr;en-US;fr-FR"
567 Lang = "fr-FR"
568 Iso639Language = FALSE
569 The return value is "3".
570
571 @param SupportedLang Platform supported language codes.
572 @param Lang Configured language.
573 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
574
575 @retval the index of language in the language codes.
576
577 **/
578 UINTN
579 GetIndexFromSupportedLangCodes(
580 IN CHAR8 *SupportedLang,
581 IN CHAR8 *Lang,
582 IN BOOLEAN Iso639Language
583 )
584 {
585 UINTN Index;
586 UINTN CompareLength;
587 UINTN LanguageLength;
588
589 if (Iso639Language) {
590 CompareLength = ISO_639_2_ENTRY_SIZE;
591 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
592 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
593 //
594 // Successfully find the index of Lang string in SupportedLang string.
595 //
596 Index = Index / CompareLength;
597 return Index;
598 }
599 }
600 ASSERT (FALSE);
601 return 0;
602 } else {
603 //
604 // Compare RFC4646 language code
605 //
606 Index = 0;
607 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
608
609 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
610 //
611 // Skip ';' characters in SupportedLang
612 //
613 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
614 //
615 // Determine the length of the next language code in SupportedLang
616 //
617 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
618
619 if ((CompareLength == LanguageLength) &&
620 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
621 //
622 // Successfully find the index of Lang string in SupportedLang string.
623 //
624 return Index;
625 }
626 }
627 ASSERT (FALSE);
628 return 0;
629 }
630 }
631
632 /**
633 Get language string from supported language codes according to index.
634
635 This code is used to get corresponding language string in supported language codes. It can handle
636 RFC4646 and ISO639 language tags.
637 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
638 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
639
640 For example:
641 SupportedLang = "engfraengfra"
642 Index = "1"
643 Iso639Language = TRUE
644 The return value is "fra".
645 Another example:
646 SupportedLang = "en;fr;en-US;fr-FR"
647 Index = "1"
648 Iso639Language = FALSE
649 The return value is "fr".
650
651 @param SupportedLang Platform supported language codes.
652 @param Index the index in supported language codes.
653 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
654
655 @retval the language string in the language codes.
656
657 **/
658 CHAR8 *
659 GetLangFromSupportedLangCodes (
660 IN CHAR8 *SupportedLang,
661 IN UINTN Index,
662 IN BOOLEAN Iso639Language
663 )
664 {
665 UINTN SubIndex;
666 UINTN CompareLength;
667 CHAR8 *Supported;
668
669 SubIndex = 0;
670 Supported = SupportedLang;
671 if (Iso639Language) {
672 //
673 // according to the index of Lang string in SupportedLang string to get the language.
674 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
675 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
676 //
677 CompareLength = ISO_639_2_ENTRY_SIZE;
678 mGlobal->Lang[CompareLength] = '\0';
679 return CopyMem (mGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
680
681 } else {
682 while (TRUE) {
683 //
684 // take semicolon as delimitation, sequentially traverse supported language codes.
685 //
686 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
687 Supported++;
688 }
689 if ((*Supported == '\0') && (SubIndex != Index)) {
690 //
691 // Have completed the traverse, but not find corrsponding string.
692 // This case is not allowed to happen.
693 //
694 ASSERT(FALSE);
695 return NULL;
696 }
697 if (SubIndex == Index) {
698 //
699 // according to the index of Lang string in SupportedLang string to get the language.
700 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
701 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
702 //
703 mGlobal->PlatformLang[CompareLength] = '\0';
704 return CopyMem (mGlobal->PlatformLang, Supported - CompareLength, CompareLength);
705 }
706 SubIndex++;
707
708 //
709 // Skip ';' characters in Supported
710 //
711 for (; *Supported != '\0' && *Supported == ';'; Supported++);
712 }
713 }
714 }
715
716 /**
717 Returns a pointer to an allocated buffer that contains the best matching language
718 from a set of supported languages.
719
720 This function supports both ISO 639-2 and RFC 4646 language codes, but language
721 code types may not be mixed in a single call to this function. This function
722 supports a variable argument list that allows the caller to pass in a prioritized
723 list of language codes to test against all the language codes in SupportedLanguages.
724
725 If SupportedLanguages is NULL, then ASSERT().
726
727 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
728 contains a set of language codes in the format
729 specified by Iso639Language.
730 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
731 in ISO 639-2 format. If FALSE, then all language
732 codes are assumed to be in RFC 4646 language format
733 @param[in] ... A variable argument list that contains pointers to
734 Null-terminated ASCII strings that contain one or more
735 language codes in the format specified by Iso639Language.
736 The first language code from each of these language
737 code lists is used to determine if it is an exact or
738 close match to any of the language codes in
739 SupportedLanguages. Close matches only apply to RFC 4646
740 language codes, and the matching algorithm from RFC 4647
741 is used to determine if a close match is present. If
742 an exact or close match is found, then the matching
743 language code from SupportedLanguages is returned. If
744 no matches are found, then the next variable argument
745 parameter is evaluated. The variable argument list
746 is terminated by a NULL.
747
748 @retval NULL The best matching language could not be found in SupportedLanguages.
749 @retval NULL There are not enough resources available to return the best matching
750 language.
751 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
752 language in SupportedLanguages.
753
754 **/
755 CHAR8 *
756 VariableGetBestLanguage (
757 IN CONST CHAR8 *SupportedLanguages,
758 IN BOOLEAN Iso639Language,
759 ...
760 )
761 {
762 VA_LIST Args;
763 CHAR8 *Language;
764 UINTN CompareLength;
765 UINTN LanguageLength;
766 CONST CHAR8 *Supported;
767 CHAR8 *Buffer;
768
769 ASSERT (SupportedLanguages != NULL);
770
771 VA_START (Args, Iso639Language);
772 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
773 //
774 // Default to ISO 639-2 mode
775 //
776 CompareLength = 3;
777 LanguageLength = MIN (3, AsciiStrLen (Language));
778
779 //
780 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
781 //
782 if (!Iso639Language) {
783 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
784 }
785
786 //
787 // Trim back the length of Language used until it is empty
788 //
789 while (LanguageLength > 0) {
790 //
791 // Loop through all language codes in SupportedLanguages
792 //
793 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
794 //
795 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
796 //
797 if (!Iso639Language) {
798 //
799 // Skip ';' characters in Supported
800 //
801 for (; *Supported != '\0' && *Supported == ';'; Supported++);
802 //
803 // Determine the length of the next language code in Supported
804 //
805 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
806 //
807 // If Language is longer than the Supported, then skip to the next language
808 //
809 if (LanguageLength > CompareLength) {
810 continue;
811 }
812 }
813 //
814 // See if the first LanguageLength characters in Supported match Language
815 //
816 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
817 VA_END (Args);
818
819 Buffer = Iso639Language ? mGlobal->Lang : mGlobal->PlatformLang;
820 Buffer[CompareLength] = '\0';
821 return CopyMem (Buffer, Supported, CompareLength);
822 }
823 }
824
825 if (Iso639Language) {
826 //
827 // If ISO 639 mode, then each language can only be tested once
828 //
829 LanguageLength = 0;
830 } else {
831 //
832 // If RFC 4646 mode, then trim Language from the right to the next '-' character
833 //
834 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
835 }
836 }
837 }
838 VA_END (Args);
839
840 //
841 // No matches were found
842 //
843 return NULL;
844 }
845
846 /**
847 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
848
849 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
850
851 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
852 and are read-only. Therefore, in variable driver, only store the original value for other use.
853
854 @param[in] VariableName Name of variable
855
856 @param[in] Data Variable data
857
858 @param[in] DataSize Size of data. 0 means delete
859
860 **/
861 VOID
862 AutoUpdateLangVariable(
863 IN CHAR16 *VariableName,
864 IN VOID *Data,
865 IN UINTN DataSize
866 )
867 {
868 EFI_STATUS Status;
869 CHAR8 *BestPlatformLang;
870 CHAR8 *BestLang;
871 UINTN Index;
872 UINT32 Attributes;
873 VARIABLE_POINTER_TRACK Variable;
874 BOOLEAN SetLanguageCodes;
875
876 //
877 // Don't do updates for delete operation
878 //
879 if (DataSize == 0) {
880 return;
881 }
882
883 SetLanguageCodes = FALSE;
884
885 if (StrCmp (VariableName, L"PlatformLangCodes") == 0) {
886 //
887 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
888 //
889 if (EfiAtRuntime ()) {
890 return;
891 }
892
893 SetLanguageCodes = TRUE;
894
895 //
896 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
897 // Therefore, in variable driver, only store the original value for other use.
898 //
899 if (mGlobal->PlatformLangCodes != NULL) {
900 FreePool (mGlobal->PlatformLangCodes);
901 }
902 mGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
903 ASSERT (mGlobal->PlatformLangCodes != NULL);
904
905 //
906 // PlatformLang holds a single language from PlatformLangCodes,
907 // so the size of PlatformLangCodes is enough for the PlatformLang.
908 //
909 if (mGlobal->PlatformLang != NULL) {
910 FreePool (mGlobal->PlatformLang);
911 }
912 mGlobal->PlatformLang = AllocateRuntimePool (DataSize);
913 ASSERT (mGlobal->PlatformLang != NULL);
914
915 } else if (StrCmp (VariableName, L"LangCodes") == 0) {
916 //
917 // LangCodes is a volatile variable, so it can not be updated at runtime.
918 //
919 if (EfiAtRuntime ()) {
920 return;
921 }
922
923 SetLanguageCodes = TRUE;
924
925 //
926 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
927 // Therefore, in variable driver, only store the original value for other use.
928 //
929 if (mGlobal->LangCodes != NULL) {
930 FreePool (mGlobal->LangCodes);
931 }
932 mGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
933 ASSERT (mGlobal->LangCodes != NULL);
934 }
935
936 if (SetLanguageCodes
937 && (mGlobal->PlatformLangCodes != NULL)
938 && (mGlobal->LangCodes != NULL)) {
939 //
940 // Update Lang if PlatformLang is already set
941 // Update PlatformLang if Lang is already set
942 //
943 Status = FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable);
944 if (!EFI_ERROR (Status)) {
945 //
946 // Update Lang
947 //
948 VariableName = L"PlatformLang";
949 Data = GetVariableDataPtr (Variable.CurrPtr);
950 DataSize = Variable.CurrPtr->DataSize;
951 } else {
952 Status = FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable);
953 if (!EFI_ERROR (Status)) {
954 //
955 // Update PlatformLang
956 //
957 VariableName = L"Lang";
958 Data = GetVariableDataPtr (Variable.CurrPtr);
959 DataSize = Variable.CurrPtr->DataSize;
960 } else {
961 //
962 // Neither PlatformLang nor Lang is set, directly return
963 //
964 return;
965 }
966 }
967 }
968
969 //
970 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
971 //
972 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
973
974 if (StrCmp (VariableName, L"PlatformLang") == 0) {
975 //
976 // Update Lang when PlatformLangCodes/LangCodes were set.
977 //
978 if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) {
979 //
980 // When setting PlatformLang, firstly get most matched language string from supported language codes.
981 //
982 BestPlatformLang = VariableGetBestLanguage (mGlobal->PlatformLangCodes, FALSE, Data, NULL);
983 if (BestPlatformLang != NULL) {
984 //
985 // Get the corresponding index in language codes.
986 //
987 Index = GetIndexFromSupportedLangCodes (mGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
988
989 //
990 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
991 //
992 BestLang = GetLangFromSupportedLangCodes (mGlobal->LangCodes, Index, TRUE);
993
994 //
995 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
996 //
997 FindVariable(L"Lang", &gEfiGlobalVariableGuid, &Variable);
998
999 Status = UpdateVariable (L"Lang", &gEfiGlobalVariableGuid, BestLang, ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable);
1000
1001 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang));
1002
1003 ASSERT_EFI_ERROR(Status);
1004 }
1005 }
1006
1007 } else if (StrCmp (VariableName, L"Lang") == 0) {
1008 //
1009 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1010 //
1011 if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) {
1012 //
1013 // When setting Lang, firstly get most matched language string from supported language codes.
1014 //
1015 BestLang = VariableGetBestLanguage (mGlobal->LangCodes, TRUE, Data, NULL);
1016 if (BestLang != NULL) {
1017 //
1018 // Get the corresponding index in language codes.
1019 //
1020 Index = GetIndexFromSupportedLangCodes (mGlobal->LangCodes, BestLang, TRUE);
1021
1022 //
1023 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1024 //
1025 BestPlatformLang = GetLangFromSupportedLangCodes (mGlobal->PlatformLangCodes, Index, FALSE);
1026
1027 //
1028 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1029 //
1030 FindVariable(L"PlatformLang", &gEfiGlobalVariableGuid, &Variable);
1031
1032 Status = UpdateVariable (L"PlatformLang", &gEfiGlobalVariableGuid, BestPlatformLang,
1033 AsciiStrSize (BestPlatformLang), Attributes, &Variable);
1034
1035 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang));
1036 ASSERT_EFI_ERROR (Status);
1037 }
1038 }
1039 }
1040 }
1041
1042 /**
1043 Update the variable region with Variable information. These are the same
1044 arguments as the EFI Variable services.
1045
1046 @param[in] VariableName Name of variable
1047
1048 @param[in] VendorGuid Guid of variable
1049
1050 @param[in] Data Variable data
1051
1052 @param[in] DataSize Size of data. 0 means delete
1053
1054 @param[in] Attributes Attribues of the variable
1055
1056 @param[in] Variable The variable information which is used to keep track of variable usage.
1057
1058 @retval EFI_SUCCESS The update operation is success.
1059
1060 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1061
1062 **/
1063 EFI_STATUS
1064 EFIAPI
1065 UpdateVariable (
1066 IN CHAR16 *VariableName,
1067 IN EFI_GUID *VendorGuid,
1068 IN VOID *Data,
1069 IN UINTN DataSize,
1070 IN UINT32 Attributes OPTIONAL,
1071 IN VARIABLE_POINTER_TRACK *Variable
1072 )
1073 {
1074 EFI_STATUS Status;
1075 VARIABLE_HEADER *NextVariable;
1076 UINTN VarNameOffset;
1077 UINTN VarDataOffset;
1078 UINTN VarNameSize;
1079 UINTN VarSize;
1080 UINT8 State;
1081 BOOLEAN Reclaimed;
1082 VARIABLE_STORAGE_TYPE StorageType;
1083
1084 Reclaimed = FALSE;
1085
1086 if (Variable->CurrPtr != NULL) {
1087 //
1088 // Update/Delete existing variable
1089 //
1090
1091 if (EfiAtRuntime ()) {
1092 //
1093 // If EfiAtRuntime and the variable is Volatile and Runtime Access,
1094 // the volatile is ReadOnly, and SetVariable should be aborted and
1095 // return EFI_WRITE_PROTECTED.
1096 //
1097 if (Variable->Type == Volatile) {
1098 return EFI_WRITE_PROTECTED;
1099 }
1100 //
1101 // Only variable have NV attribute can be updated/deleted in Runtime
1102 //
1103 if (!(Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE)) {
1104 return EFI_INVALID_PARAMETER;
1105 }
1106 }
1107
1108 //
1109 // Setting a data variable with no access, or zero DataSize attributes
1110 // specified causes it to be deleted.
1111 //
1112 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1113 //
1114 // Found this variable in storage
1115 //
1116 State = Variable->CurrPtr->State;
1117 State &= VAR_DELETED;
1118
1119 Status = mGlobal->VariableStore[Variable->Type]->Write (
1120 mGlobal->VariableStore[Variable->Type],
1121 VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
1122 sizeof (Variable->CurrPtr->State),
1123 &State
1124 );
1125 //
1126 // NOTE: Write operation at least can write data to memory cache
1127 // Discard file writing failure here.
1128 //
1129 return EFI_SUCCESS;
1130 }
1131
1132 //
1133 // Found this variable in storage
1134 // If the variable is marked valid and the same data has been passed in
1135 // then return to the caller immediately.
1136 //
1137 if ((Variable->CurrPtr->DataSize == DataSize) &&
1138 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)
1139 ) {
1140 return EFI_SUCCESS;
1141 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
1142 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1143 //
1144 // Mark the old variable as in delete transition
1145 //
1146 State = Variable->CurrPtr->State;
1147 State &= VAR_IN_DELETED_TRANSITION;
1148
1149 Status = mGlobal->VariableStore[Variable->Type]->Write (
1150 mGlobal->VariableStore[Variable->Type],
1151 VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
1152 sizeof (Variable->CurrPtr->State),
1153 &State
1154 );
1155 //
1156 // NOTE: Write operation at least can write data to memory cache
1157 // Discard file writing failure here.
1158 //
1159 }
1160 } else {
1161 //
1162 // Create a new variable
1163 //
1164
1165 //
1166 // Make sure we are trying to create a new variable.
1167 // Setting a data variable with no access, or zero DataSize attributes means to delete it.
1168 //
1169 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1170 return EFI_NOT_FOUND;
1171 }
1172 //
1173 // Only variable have NV|RT attribute can be created in Runtime
1174 //
1175 if (EfiAtRuntime () &&
1176 (!(Attributes & EFI_VARIABLE_RUNTIME_ACCESS) || !(Attributes & EFI_VARIABLE_NON_VOLATILE))) {
1177 return EFI_INVALID_PARAMETER;
1178 }
1179
1180 }
1181
1182 //
1183 // Function part - create a new variable and copy the data.
1184 // Both update a variable and create a variable will come here.
1185 // We can firstly write all the data in memory, then write them to file
1186 // This can reduce the times of write operation
1187 //
1188
1189 NextVariable = (VARIABLE_HEADER *) mGlobal->Scratch;
1190
1191 NextVariable->StartId = VARIABLE_DATA;
1192 NextVariable->Attributes = Attributes;
1193 NextVariable->State = VAR_ADDED;
1194 NextVariable->Reserved = 0;
1195 VarNameOffset = sizeof (VARIABLE_HEADER);
1196 VarNameSize = StrSize (VariableName);
1197 CopyMem (
1198 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
1199 VariableName,
1200 VarNameSize
1201 );
1202 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
1203 CopyMem (
1204 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
1205 Data,
1206 DataSize
1207 );
1208 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
1209 //
1210 // There will be pad bytes after Data, the NextVariable->NameSize and
1211 // NextVariable->DataSize should not include pad size so that variable
1212 // service can get actual size in GetVariable
1213 //
1214 NextVariable->NameSize = (UINT32)VarNameSize;
1215 NextVariable->DataSize = (UINT32)DataSize;
1216
1217 //
1218 // The actual size of the variable that stores in storage should
1219 // include pad size.
1220 // VarDataOffset: offset from begin of current variable header
1221 //
1222 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
1223
1224 StorageType = (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile;
1225
1226 if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) >
1227 ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size
1228 ) {
1229 if ((StorageType == NonVolatile) && EfiAtRuntime ()) {
1230 return EFI_OUT_OF_RESOURCES;
1231 }
1232 //
1233 // Perform garbage collection & reclaim operation
1234 //
1235 Status = Reclaim (StorageType, Variable->CurrPtr);
1236 if (EFI_ERROR (Status)) {
1237 //
1238 // Reclaim error
1239 // we cannot restore to original state, fetal error, report to user
1240 //
1241 DEBUG ((EFI_D_ERROR, "FSVariable: Recalim error (fetal error) - %r\n", Status));
1242 return Status;
1243 }
1244 //
1245 // If still no enough space, return out of resources
1246 //
1247 if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) >
1248 ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size
1249 ) {
1250 return EFI_OUT_OF_RESOURCES;
1251 }
1252
1253 Reclaimed = TRUE;
1254 }
1255 Status = mGlobal->VariableStore[StorageType]->Write (
1256 mGlobal->VariableStore[StorageType],
1257 mGlobal->LastVariableOffset[StorageType],
1258 VarSize,
1259 NextVariable
1260 );
1261 //
1262 // NOTE: Write operation at least can write data to memory cache
1263 // Discard file writing failure here.
1264 //
1265 mGlobal->LastVariableOffset[StorageType] += VarSize;
1266
1267 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
1268 mGlobal->HwErrVariableTotalSize += VarSize;
1269 } else {
1270 mGlobal->CommonVariableTotalSize += VarSize;
1271 }
1272
1273 //
1274 // Mark the old variable as deleted
1275 //
1276 if (!Reclaimed && !EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
1277 State = Variable->CurrPtr->State;
1278 State &= VAR_DELETED;
1279
1280 Status = mGlobal->VariableStore[StorageType]->Write (
1281 mGlobal->VariableStore[StorageType],
1282 VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
1283 sizeof (Variable->CurrPtr->State),
1284 &State
1285 );
1286 //
1287 // NOTE: Write operation at least can write data to memory cache
1288 // Discard file writing failure here.
1289 //
1290 }
1291 return EFI_SUCCESS;
1292 }
1293
1294 EFI_STATUS
1295 EFIAPI
1296 DuetGetVariable (
1297 IN CHAR16 *VariableName,
1298 IN EFI_GUID *VendorGuid,
1299 OUT UINT32 *Attributes OPTIONAL,
1300 IN OUT UINTN *DataSize,
1301 OUT VOID *Data
1302 )
1303 /*++
1304
1305 Routine Description:
1306
1307 This code finds variable in storage blocks (Volatile or Non-Volatile)
1308
1309 Arguments:
1310
1311 VariableName Name of Variable to be found
1312 VendorGuid Variable vendor GUID
1313 Attributes OPTIONAL Attribute value of the variable found
1314 DataSize Size of Data found. If size is less than the
1315 data, this value contains the required size.
1316 Data Data pointer
1317
1318 Returns:
1319
1320 EFI STATUS
1321
1322 --*/
1323 {
1324 VARIABLE_POINTER_TRACK Variable;
1325 UINTN VarDataSize;
1326 EFI_STATUS Status;
1327
1328 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
1329 return EFI_INVALID_PARAMETER;
1330 }
1331
1332 //
1333 // Find existing variable
1334 //
1335 Status = FindVariable (VariableName, VendorGuid, &Variable);
1336
1337 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
1338 return Status;
1339 }
1340 //
1341 // Get data size
1342 //
1343 VarDataSize = Variable.CurrPtr->DataSize;
1344 if (*DataSize >= VarDataSize) {
1345 if (Data == NULL) {
1346 return EFI_INVALID_PARAMETER;
1347 }
1348 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
1349
1350 if (Attributes != NULL) {
1351 *Attributes = Variable.CurrPtr->Attributes;
1352 }
1353
1354 *DataSize = VarDataSize;
1355
1356 return EFI_SUCCESS;
1357 } else {
1358 *DataSize = VarDataSize;
1359 return EFI_BUFFER_TOO_SMALL;
1360 }
1361 }
1362
1363 EFI_STATUS
1364 EFIAPI
1365 GetNextVariableName (
1366 IN OUT UINTN *VariableNameSize,
1367 IN OUT CHAR16 *VariableName,
1368 IN OUT EFI_GUID *VendorGuid
1369 )
1370 /*++
1371
1372 Routine Description:
1373
1374 This code Finds the Next available variable
1375
1376 Arguments:
1377
1378 VariableNameSize Size of the variable
1379 VariableName Pointer to variable name
1380 VendorGuid Variable Vendor Guid
1381
1382 Returns:
1383
1384 EFI STATUS
1385
1386 --*/
1387 {
1388 VARIABLE_POINTER_TRACK Variable;
1389 UINTN VarNameSize;
1390 EFI_STATUS Status;
1391
1392 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
1393 return EFI_INVALID_PARAMETER;
1394 }
1395
1396 Status = FindVariable (VariableName, VendorGuid, &Variable);
1397
1398 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
1399 return Status;
1400 }
1401
1402 if (VariableName[0] != 0) {
1403 //
1404 // If variable name is not NULL, get next variable
1405 //
1406 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
1407 }
1408
1409 while (TRUE) {
1410 //
1411 // The order we find variable is: 1). NonVolatile; 2). Volatile
1412 // If both volatile and non-volatile variable store are parsed,
1413 // return not found
1414 //
1415 if (Variable.CurrPtr >= Variable.EndPtr || Variable.CurrPtr == NULL) {
1416 if (Variable.Type == Volatile) {
1417 //
1418 // Since we met the end of Volatile storage, we have parsed all the stores.
1419 //
1420 return EFI_NOT_FOUND;
1421 }
1422
1423 //
1424 // End of NonVolatile, continue to parse Volatile
1425 //
1426 Variable.Type = Volatile;
1427 Variable.StartPtr = (VARIABLE_HEADER *) ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile] + 1);
1428 Variable.EndPtr = (VARIABLE_HEADER *) GetEndPointer ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile]);
1429
1430 Variable.CurrPtr = Variable.StartPtr;
1431 if (!IsValidVariableHeader (Variable.CurrPtr)) {
1432 continue;
1433 }
1434 }
1435 //
1436 // Variable is found
1437 //
1438 if (IsValidVariableHeader (Variable.CurrPtr) &&
1439 ((Variable.CurrPtr->State == VAR_ADDED) ||
1440 (Variable.CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)))) {
1441 if (!EfiAtRuntime () || (Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
1442 VarNameSize = Variable.CurrPtr->NameSize;
1443 if (VarNameSize <= *VariableNameSize) {
1444 CopyMem (
1445 VariableName,
1446 GET_VARIABLE_NAME_PTR (Variable.CurrPtr),
1447 VarNameSize
1448 );
1449 CopyMem (
1450 VendorGuid,
1451 &Variable.CurrPtr->VendorGuid,
1452 sizeof (EFI_GUID)
1453 );
1454 Status = EFI_SUCCESS;
1455 } else {
1456 Status = EFI_BUFFER_TOO_SMALL;
1457 }
1458
1459 *VariableNameSize = VarNameSize;
1460 return Status;
1461 }
1462 }
1463
1464 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
1465 }
1466 }
1467
1468 EFI_STATUS
1469 EFIAPI
1470 SetVariable (
1471 IN CHAR16 *VariableName,
1472 IN EFI_GUID *VendorGuid,
1473 IN UINT32 Attributes,
1474 IN UINTN DataSize,
1475 IN VOID *Data
1476 )
1477 /*++
1478
1479 Routine Description:
1480
1481 This code sets variable in storage blocks (Volatile or Non-Volatile)
1482
1483 Arguments:
1484
1485 VariableName Name of Variable to be found
1486 VendorGuid Variable vendor GUID
1487 Attributes Attribute value of the variable found
1488 DataSize Size of Data found. If size is less than the
1489 data, this value contains the required size.
1490 Data Data pointer
1491
1492 Returns:
1493
1494 EFI_INVALID_PARAMETER - Invalid parameter
1495 EFI_SUCCESS - Set successfully
1496 EFI_OUT_OF_RESOURCES - Resource not enough to set variable
1497 EFI_NOT_FOUND - Not found
1498 EFI_DEVICE_ERROR - Variable can not be saved due to hardware failure
1499 EFI_WRITE_PROTECTED - Variable is read-only
1500
1501 --*/
1502 {
1503 VARIABLE_POINTER_TRACK Variable;
1504 EFI_STATUS Status;
1505
1506 //
1507 // Check input parameters
1508 //
1509 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
1510 return EFI_INVALID_PARAMETER;
1511 }
1512
1513 if (DataSize != 0 && Data == NULL) {
1514 return EFI_INVALID_PARAMETER;
1515 }
1516
1517 //
1518 // Not support authenticated variable write yet.
1519 //
1520 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
1521 return EFI_INVALID_PARAMETER;
1522 }
1523
1524 //
1525 // Make sure if runtime bit is set, boot service bit is set also
1526 //
1527 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
1528 return EFI_INVALID_PARAMETER;
1529 }
1530
1531 //
1532 // The size of the VariableName, including the Unicode Null in bytes plus
1533 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
1534 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
1535 //
1536 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1537 if ((DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize)) ||
1538 (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize))) {
1539 return EFI_INVALID_PARAMETER;
1540 }
1541 //
1542 // According to UEFI spec, HARDWARE_ERROR_RECORD variable name convention should be L"HwErrRecXXXX"
1543 //
1544 if (StrnCmp(VariableName, L"HwErrRec", StrLen(L"HwErrRec")) != 0) {
1545 return EFI_INVALID_PARAMETER;
1546 }
1547 } else {
1548 if ((DataSize > PcdGet32(PcdMaxVariableSize)) ||
1549 (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxVariableSize))) {
1550 return EFI_INVALID_PARAMETER;
1551 }
1552 }
1553
1554 //
1555 // Check whether the input variable is already existed
1556 //
1557 Status = FindVariable (VariableName, VendorGuid, &Variable);
1558
1559 //
1560 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang
1561 //
1562 AutoUpdateLangVariable (VariableName, Data, DataSize);
1563
1564 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable);
1565
1566 return Status;
1567 }
1568
1569 EFI_STATUS
1570 EFIAPI
1571 QueryVariableInfo (
1572 IN UINT32 Attributes,
1573 OUT UINT64 *MaximumVariableStorageSize,
1574 OUT UINT64 *RemainingVariableStorageSize,
1575 OUT UINT64 *MaximumVariableSize
1576 )
1577 /*++
1578
1579 Routine Description:
1580
1581 This code returns information about the EFI variables.
1582
1583 Arguments:
1584
1585 Attributes Attributes bitmask to specify the type of variables
1586 on which to return information.
1587 MaximumVariableStorageSize Pointer to the maximum size of the storage space available
1588 for the EFI variables associated with the attributes specified.
1589 RemainingVariableStorageSize Pointer to the remaining size of the storage space available
1590 for the EFI variables associated with the attributes specified.
1591 MaximumVariableSize Pointer to the maximum size of the individual EFI variables
1592 associated with the attributes specified.
1593
1594 Returns:
1595
1596 EFI STATUS
1597 EFI_INVALID_PARAMETER - An invalid combination of attribute bits was supplied.
1598 EFI_SUCCESS - Query successfully.
1599 EFI_UNSUPPORTED - The attribute is not supported on this platform.
1600
1601 --*/
1602 {
1603 VARIABLE_HEADER *Variable;
1604 VARIABLE_HEADER *NextVariable;
1605 UINT64 VariableSize;
1606 VARIABLE_STORE_HEADER *VariableStoreHeader;
1607 UINT64 CommonVariableTotalSize;
1608 UINT64 HwErrVariableTotalSize;
1609
1610 CommonVariableTotalSize = 0;
1611 HwErrVariableTotalSize = 0;
1612
1613 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
1614 return EFI_INVALID_PARAMETER;
1615 }
1616
1617 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
1618 //
1619 // Make sure the Attributes combination is supported by the platform.
1620 //
1621 return EFI_UNSUPPORTED;
1622 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
1623 //
1624 // Make sure if runtime bit is set, boot service bit is set also.
1625 //
1626 return EFI_INVALID_PARAMETER;
1627 } else if (EfiAtRuntime () && !(Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
1628 //
1629 // Make sure RT Attribute is set if we are in Runtime phase.
1630 //
1631 return EFI_INVALID_PARAMETER;
1632 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1633 //
1634 // Make sure Hw Attribute is set with NV.
1635 //
1636 return EFI_INVALID_PARAMETER;
1637 } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
1638 //
1639 // Not support authentiated variable write yet.
1640 //
1641 return EFI_UNSUPPORTED;
1642 }
1643
1644 VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[
1645 (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile
1646 ];
1647 //
1648 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
1649 // with the storage size (excluding the storage header size).
1650 //
1651 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
1652
1653 //
1654 // Harware error record variable needs larger size.
1655 //
1656 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1657 *MaximumVariableStorageSize = PcdGet32(PcdHwErrStorageSize);
1658 *MaximumVariableSize = PcdGet32(PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
1659 } else {
1660 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1661 ASSERT (PcdGet32(PcdHwErrStorageSize) < VariableStoreHeader->Size);
1662 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize);
1663 }
1664
1665 //
1666 // Let *MaximumVariableSize be PcdGet32(PcdMaxVariableSize) with the exception of the variable header size.
1667 //
1668 *MaximumVariableSize = PcdGet32(PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
1669 }
1670
1671 //
1672 // Point to the starting address of the variables.
1673 //
1674 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
1675
1676 //
1677 // Now walk through the related variable store.
1678 //
1679 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
1680 NextVariable = GetNextVariablePtr (Variable);
1681 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
1682
1683 if (EfiAtRuntime ()) {
1684 //
1685 // we don't take the state of the variables in mind
1686 // when calculating RemainingVariableStorageSize,
1687 // since the space occupied by variables not marked with
1688 // VAR_ADDED is not allowed to be reclaimed in Runtime.
1689 //
1690 if ((NextVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1691 HwErrVariableTotalSize += VariableSize;
1692 } else {
1693 CommonVariableTotalSize += VariableSize;
1694 }
1695 } else {
1696 //
1697 // Only care about Variables with State VAR_ADDED,because
1698 // the space not marked as VAR_ADDED is reclaimable now.
1699 //
1700 if ((Variable->State == VAR_ADDED) || (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1701 if ((NextVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1702 HwErrVariableTotalSize += VariableSize;
1703 } else {
1704 CommonVariableTotalSize += VariableSize;
1705 }
1706 }
1707 }
1708
1709 //
1710 // Go to the next one
1711 //
1712 Variable = NextVariable;
1713 }
1714
1715 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
1716 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
1717 } else {
1718 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
1719 }
1720
1721 return EFI_SUCCESS;
1722 }
1723
1724 EFI_STATUS
1725 EFIAPI
1726 VariableServiceInitialize (
1727 IN EFI_HANDLE ImageHandle,
1728 IN EFI_SYSTEM_TABLE *SystemTable
1729 )
1730 /*++
1731
1732 Routine Description:
1733 This function does initialization for variable services
1734
1735 Arguments:
1736
1737 ImageHandle - The firmware allocated handle for the EFI image.
1738 SystemTable - A pointer to the EFI System Table.
1739
1740 Returns:
1741
1742 Status code.
1743
1744 EFI_NOT_FOUND - Variable store area not found.
1745 EFI_SUCCESS - Variable services successfully initialized.
1746
1747 --*/
1748 {
1749 EFI_STATUS Status;
1750 EFI_HANDLE NewHandle;
1751 VS_DEV *Dev;
1752 EFI_PEI_HOB_POINTERS GuidHob;
1753 VARIABLE_HEADER *Variable;
1754 VARIABLE_HEADER *NextVariable;
1755 VARIABLE_STORE_HEADER *VariableStoreHeader;
1756 EFI_FLASH_MAP_FS_ENTRY_DATA *FlashMapEntryData;
1757 EFI_FLASH_SUBAREA_ENTRY VariableStoreEntry;
1758 UINT64 BaseAddress;
1759 UINT64 Length;
1760 EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
1761
1762 Status = gBS->AllocatePool (
1763 EfiRuntimeServicesData,
1764 (UINTN) sizeof (VARIABLE_GLOBAL),
1765 (VOID**) &mGlobal
1766 );
1767 if (EFI_ERROR (Status)) {
1768 return Status;
1769 }
1770
1771 ZeroMem (mGlobal, (UINTN) sizeof (VARIABLE_GLOBAL));
1772
1773 GuidHob.Raw = GetHobList ();
1774 FlashMapEntryData = NULL;
1775 while ((GuidHob.Raw = GetNextGuidHob (&gEfiFlashMapHobGuid, GuidHob.Raw)) != NULL) {
1776 FlashMapEntryData = (EFI_FLASH_MAP_FS_ENTRY_DATA *) GET_GUID_HOB_DATA (GuidHob.Guid);
1777 if (FlashMapEntryData->AreaType == EFI_FLASH_AREA_EFI_VARIABLES) {
1778 break;
1779 }
1780 GuidHob.Raw = GET_NEXT_HOB (GuidHob);
1781 }
1782
1783 if (FlashMapEntryData == NULL) {
1784 DEBUG ((EFI_D_ERROR, "FSVariable: Could not find flash area for variable!\n"));
1785 Status = EFI_NOT_FOUND;
1786 return Status;
1787 }
1788
1789 CopyMem(
1790 (VOID*)&VariableStoreEntry,
1791 (VOID*)&FlashMapEntryData->Entries[0],
1792 sizeof(EFI_FLASH_SUBAREA_ENTRY)
1793 );
1794
1795 //
1796 // Mark the variable storage region of the FLASH as RUNTIME
1797 //
1798 BaseAddress = VariableStoreEntry.Base & (~EFI_PAGE_MASK);
1799 Length = VariableStoreEntry.Length + (VariableStoreEntry.Base - BaseAddress);
1800 Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK);
1801 Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
1802 if (EFI_ERROR (Status)) {
1803 Status = EFI_UNSUPPORTED;
1804 return Status;
1805 }
1806 Status = gDS->SetMemorySpaceAttributes (
1807 BaseAddress,
1808 Length,
1809 GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME
1810 );
1811 if (EFI_ERROR (Status)) {
1812 Status = EFI_UNSUPPORTED;
1813 return Status;
1814 }
1815
1816 Status = FileStorageConstructor (
1817 &mGlobal->VariableStore[NonVolatile],
1818 &mGlobal->GoVirtualChildEvent[NonVolatile],
1819 VariableStoreEntry.Base,
1820 (UINT32) VariableStoreEntry.Length,
1821 FlashMapEntryData->VolumeId,
1822 FlashMapEntryData->FilePath
1823 );
1824 ASSERT_EFI_ERROR (Status);
1825
1826 //
1827 // Volatile Storage
1828 //
1829 Status = MemStorageConstructor (
1830 &mGlobal->VariableStore[Volatile],
1831 &mGlobal->GoVirtualChildEvent[Volatile],
1832 VOLATILE_VARIABLE_STORE_SIZE
1833 );
1834 ASSERT_EFI_ERROR (Status);
1835
1836 //
1837 // Scratch
1838 //
1839 Status = gBS->AllocatePool (
1840 EfiRuntimeServicesData,
1841 VARIABLE_SCRATCH_SIZE,
1842 &mGlobal->Scratch
1843 );
1844 ASSERT_EFI_ERROR (Status);
1845
1846 //
1847 // 1. NV Storage
1848 //
1849 Dev = DEV_FROM_THIS (mGlobal->VariableStore[NonVolatile]);
1850 VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev);
1851 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
1852 if (~VariableStoreHeader->Size == 0) {
1853 VariableStoreHeader->Size = (UINT32) VariableStoreEntry.Length;
1854 }
1855 }
1856 //
1857 // Calculate LastVariableOffset
1858 //
1859 Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
1860 while (IsValidVariableHeader (Variable)) {
1861 UINTN VariableSize = 0;
1862 NextVariable = GetNextVariablePtr (Variable);
1863 VariableSize = NextVariable - Variable;
1864 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1865 mGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
1866 } else {
1867 mGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
1868 }
1869 Variable = NextVariable;
1870 }
1871
1872 mGlobal->LastVariableOffset[NonVolatile] = (UINTN) Variable - (UINTN) VariableStoreHeader;
1873 mGlobal->VariableBase[NonVolatile] = VariableStoreHeader;
1874
1875 //
1876 // Reclaim if remaining space is too small
1877 //
1878 if ((VariableStoreHeader->Size - mGlobal->LastVariableOffset[NonVolatile]) < VARIABLE_RECLAIM_THRESHOLD) {
1879 Status = Reclaim (NonVolatile, NULL);
1880 if (EFI_ERROR (Status)) {
1881 //
1882 // Reclaim error
1883 // we cannot restore to original state
1884 //
1885 DEBUG ((EFI_D_ERROR, "FSVariable: Reclaim error (fatal error) - %r\n", Status));
1886 ASSERT_EFI_ERROR (Status);
1887 }
1888 }
1889
1890 //
1891 // 2. Volatile Storage
1892 //
1893 Dev = DEV_FROM_THIS (mGlobal->VariableStore[Volatile]);
1894 VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev);
1895 mGlobal->VariableBase[Volatile] = VAR_DATA_PTR (Dev);
1896 mGlobal->LastVariableOffset[Volatile] = sizeof (VARIABLE_STORE_HEADER);
1897 //
1898 // init store_header & body in memory.
1899 //
1900 mGlobal->VariableStore[Volatile]->Erase (mGlobal->VariableStore[Volatile]);
1901 mGlobal->VariableStore[Volatile]->Write (
1902 mGlobal->VariableStore[Volatile],
1903 0,
1904 sizeof (VARIABLE_STORE_HEADER),
1905 &mStoreHeaderTemplate
1906 );
1907
1908
1909 SystemTable->RuntimeServices->GetVariable = DuetGetVariable;
1910 SystemTable->RuntimeServices->GetNextVariableName = GetNextVariableName;
1911 SystemTable->RuntimeServices->SetVariable = SetVariable;
1912
1913 SystemTable->RuntimeServices->QueryVariableInfo = QueryVariableInfo;
1914
1915 //
1916 // Now install the Variable Runtime Architectural Protocol on a new handle
1917 //
1918 NewHandle = NULL;
1919 Status = gBS->InstallMultipleProtocolInterfaces (
1920 &NewHandle,
1921 &gEfiVariableArchProtocolGuid,
1922 NULL,
1923 &gEfiVariableWriteArchProtocolGuid,
1924 NULL,
1925 NULL
1926 );
1927 ASSERT_EFI_ERROR (Status);
1928
1929 return Status;
1930 }
1931
1932
1933
1934 VOID
1935 EFIAPI
1936 OnVirtualAddressChangeFsv (
1937 IN EFI_EVENT Event,
1938 IN VOID *Context
1939 )
1940 {
1941 UINTN Index;
1942
1943 for (Index = 0; Index < MaxType; Index++) {
1944 mGlobal->GoVirtualChildEvent[Index] (Event, mGlobal->VariableStore[Index]);
1945 EfiConvertPointer (0, (VOID**) &mGlobal->VariableStore[Index]);
1946 EfiConvertPointer (0, &mGlobal->VariableBase[Index]);
1947 }
1948 EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLangCodes);
1949 EfiConvertPointer (0, (VOID **) &mGlobal->LangCodes);
1950 EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLang);
1951 EfiConvertPointer (0, &mGlobal->Scratch);
1952 EfiConvertPointer (0, (VOID**) &mGlobal);
1953 }