]> git.proxmox.com Git - mirror_edk2.git/blob - EdkCompatibilityPkg/Compatibility/MpServicesOnFrameworkMpServicesThunk/MpServicesOnFrameworkMpServicesThunk.c
Add parameter checking for MP Services Protocol Thunk driver.
[mirror_edk2.git] / EdkCompatibilityPkg / Compatibility / MpServicesOnFrameworkMpServicesThunk / MpServicesOnFrameworkMpServicesThunk.c
1 /** @file
2 Produces PI MP Services Protocol on top of Framework MP Services Protocol.
3
4 Intel's Framework MP Services Protocol is replaced by EFI_MP_SERVICES_PROTOCOL in PI 1.1.
5 This module produces PI MP Services Protocol on top of Framework MP Services Protocol.
6
7 Copyright (c) 2009 - 2010 Intel Corporation. <BR>
8 All rights reserved. This program and the accompanying materials
9 are licensed and made available under the terms and conditions of the BSD License
10 which accompanies this distribution. The full text of the license may be found at
11 http://opensource.org/licenses/bsd-license.php
12
13 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
14 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
15 Module Name:
16
17 **/
18
19 #include "MpServicesOnFrameworkMpServicesThunk.h"
20
21 EFI_HANDLE mHandle = NULL;
22 MP_SYSTEM_DATA mMPSystemData;
23 EFI_PHYSICAL_ADDRESS mStartupVector;
24 MP_CPU_EXCHANGE_INFO *mExchangeInfo;
25 VOID *mStackStartAddress;
26 BOOLEAN mStopCheckAPsStatus = FALSE;
27 UINTN mNumberOfProcessors;
28 EFI_GENERIC_MEMORY_TEST_PROTOCOL *mGenMemoryTest;
29
30 FRAMEWORK_EFI_MP_SERVICES_PROTOCOL *mFrameworkMpService;
31 EFI_MP_SERVICES_PROTOCOL mMpService = {
32 GetNumberOfProcessors,
33 GetProcessorInfo,
34 StartupAllAPs,
35 StartupThisAP,
36 SwitchBSP,
37 EnableDisableAP,
38 WhoAmI
39 };
40
41
42 /**
43 Implementation of GetNumberOfProcessors() service of MP Services Protocol.
44
45 This service retrieves the number of logical processor in the platform
46 and the number of those logical processors that are enabled on this boot.
47 This service may only be called from the BSP.
48
49 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
50 @param NumberOfProcessors Pointer to the total number of logical processors in the system,
51 including the BSP and disabled APs.
52 @param NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist
53 in system, including the BSP.
54
55 @retval EFI_SUCCESS Number of logical processors and enabled logical processors retrieved..
56 @retval EFI_DEVICE_ERROR Caller processor is AP.
57 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL
58 @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL
59
60 **/
61 EFI_STATUS
62 EFIAPI
63 GetNumberOfProcessors (
64 IN EFI_MP_SERVICES_PROTOCOL *This,
65 OUT UINTN *NumberOfProcessors,
66 OUT UINTN *NumberOfEnabledProcessors
67 )
68 {
69 EFI_STATUS Status;
70 UINTN CallerNumber;
71
72 //
73 // Check whether caller processor is BSP
74 //
75 WhoAmI (This, &CallerNumber);
76 if (CallerNumber != GetBspNumber ()) {
77 return EFI_DEVICE_ERROR;
78 }
79
80 //
81 // Check parameter NumberOfProcessors
82 //
83 if (NumberOfProcessors == NULL) {
84 return EFI_INVALID_PARAMETER;
85 }
86
87 //
88 // Check parameter NumberOfEnabledProcessors
89 //
90 if (NumberOfEnabledProcessors == NULL) {
91 return EFI_INVALID_PARAMETER;
92 }
93
94 Status = mFrameworkMpService->GetGeneralMPInfo (
95 mFrameworkMpService,
96 NumberOfProcessors,
97 NULL,
98 NumberOfEnabledProcessors,
99 NULL,
100 NULL
101 );
102 ASSERT_EFI_ERROR (Status);
103
104 return EFI_SUCCESS;
105 }
106
107 /**
108 Implementation of GetNumberOfProcessors() service of MP Services Protocol.
109
110 Gets detailed MP-related information on the requested processor at the
111 instant this call is made. This service may only be called from the BSP.
112
113 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
114 @param ProcessorNumber The handle number of processor.
115 @param ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited.
116
117 @retval EFI_SUCCESS Processor information successfully returned.
118 @retval EFI_DEVICE_ERROR Caller processor is AP.
119 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL
120 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
121
122 **/
123 EFI_STATUS
124 EFIAPI
125 GetProcessorInfo (
126 IN EFI_MP_SERVICES_PROTOCOL *This,
127 IN UINTN ProcessorNumber,
128 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
129 )
130 {
131 EFI_STATUS Status;
132 UINTN CallerNumber;
133 UINTN BufferSize;
134 EFI_MP_PROC_CONTEXT ProcessorContextBuffer;
135
136 //
137 // Check whether caller processor is BSP
138 //
139 WhoAmI (This, &CallerNumber);
140 if (CallerNumber != GetBspNumber ()) {
141 return EFI_DEVICE_ERROR;
142 }
143
144 //
145 // Check parameter ProcessorInfoBuffer
146 //
147 if (ProcessorInfoBuffer == NULL) {
148 return EFI_INVALID_PARAMETER;
149 }
150
151 //
152 // Check whether processor with the handle specified by ProcessorNumber exists
153 //
154 if (ProcessorNumber >= mNumberOfProcessors) {
155 return EFI_NOT_FOUND;
156 }
157
158 BufferSize = sizeof (EFI_MP_PROC_CONTEXT);
159 Status = mFrameworkMpService->GetProcessorContext (
160 mFrameworkMpService,
161 ProcessorNumber,
162 &BufferSize,
163 &ProcessorContextBuffer
164 );
165 ASSERT_EFI_ERROR (Status);
166
167 ProcessorInfoBuffer->ProcessorId = (UINT64) ProcessorContextBuffer.ApicID;
168
169 //
170 // Get Status Flag of specified processor
171 //
172 ProcessorInfoBuffer->StatusFlag = 0;
173
174 if (ProcessorContextBuffer.Enabled) {
175 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
176 }
177
178 if (ProcessorContextBuffer.Designation == EfiCpuBSP) {
179 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
180 }
181
182 if (ProcessorContextBuffer.Health.Flags.Uint32 == 0) {
183 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
184 }
185
186 ProcessorInfoBuffer->Location.Package = (UINT32) ProcessorContextBuffer.PackageNumber;
187 ProcessorInfoBuffer->Location.Core = (UINT32) ProcessorContextBuffer.NumberOfCores;
188 ProcessorInfoBuffer->Location.Thread = (UINT32) ProcessorContextBuffer.NumberOfThreads;
189
190 return EFI_SUCCESS;
191 }
192
193 /**
194 Implementation of StartupAllAPs() service of MP Services Protocol.
195
196 This service lets the caller get all enabled APs to execute a caller-provided function.
197 This service may only be called from the BSP.
198
199 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
200 @param Procedure A pointer to the function to be run on enabled APs of the system.
201 @param SingleThread Indicates whether to execute the function simultaneously or one by one..
202 @param WaitEvent The event created by the caller.
203 If it is NULL, then execute in blocking mode.
204 If it is not NULL, then execute in non-blocking mode.
205 @param TimeoutInMicroSeconds The time limit in microseconds for this AP to finish the function.
206 Zero means infinity.
207 @param ProcedureArgument Pointer to the optional parameter of the assigned function.
208 @param FailedCpuList The list of processor numbers that fail to finish the function before
209 TimeoutInMicrosecsond expires.
210
211 @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired.
212 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs.
213 @retval EFI_DEVICE_ERROR Caller processor is AP.
214 @retval EFI_NOT_STARTED No enabled AP exists in the system.
215 @retval EFI_NOT_READY Any enabled AP is busy.
216 @retval EFI_TIMEOUT In blocking mode, The timeout expired before all enabled APs have finished.
217 @retval EFI_INVALID_PARAMETER Procedure is NULL.
218
219 **/
220 EFI_STATUS
221 EFIAPI
222 StartupAllAPs (
223 IN EFI_MP_SERVICES_PROTOCOL *This,
224 IN EFI_AP_PROCEDURE Procedure,
225 IN BOOLEAN SingleThread,
226 IN EFI_EVENT WaitEvent OPTIONAL,
227 IN UINTN TimeoutInMicroSeconds,
228 IN VOID *ProcedureArgument OPTIONAL,
229 OUT UINTN **FailedCpuList OPTIONAL
230 )
231 {
232 EFI_STATUS Status;
233 UINTN ProcessorNumber;
234 CPU_DATA_BLOCK *CpuData;
235 BOOLEAN Blocking;
236 UINTN BspNumber;
237
238 if (FailedCpuList != NULL) {
239 *FailedCpuList = NULL;
240 }
241
242 //
243 // Check whether caller processor is BSP
244 //
245 BspNumber = GetBspNumber ();
246 WhoAmI (This, &ProcessorNumber);
247 if (ProcessorNumber != BspNumber) {
248 return EFI_DEVICE_ERROR;
249 }
250
251 //
252 // Check parameter Procedure
253 //
254 if (Procedure == NULL) {
255 return EFI_INVALID_PARAMETER;
256 }
257
258 //
259 // Temporarily suppress CheckAPsStatus()
260 //
261 mStopCheckAPsStatus = TRUE;
262
263 //
264 // Check whether all enabled APs are idle.
265 // If any enabled AP is not idle, return EFI_NOT_READY.
266 //
267 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
268
269 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
270
271 mMPSystemData.CpuList[ProcessorNumber] = FALSE;
272 if (ProcessorNumber != BspNumber) {
273 if (CpuData->State != CpuStateDisabled) {
274 if (CpuData->State != CpuStateIdle) {
275 mStopCheckAPsStatus = FALSE;
276 return EFI_NOT_READY;
277 } else {
278 //
279 // Mark this processor as responsible for current calling.
280 //
281 mMPSystemData.CpuList[ProcessorNumber] = TRUE;
282 }
283 }
284 }
285 }
286
287 mMPSystemData.FinishCount = 0;
288 mMPSystemData.StartCount = 0;
289 Blocking = FALSE;
290 //
291 // Go through all enabled APs to wakeup them for Procedure.
292 // If in Single Thread mode, then only one AP is woken up, and others are waiting.
293 //
294 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
295
296 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
297 //
298 // Check whether this processor is responsible for current calling.
299 //
300 if (mMPSystemData.CpuList[ProcessorNumber]) {
301
302 mMPSystemData.StartCount++;
303
304 AcquireSpinLock (&CpuData->CpuDataLock);
305 CpuData->State = CpuStateReady;
306 ReleaseSpinLock (&CpuData->CpuDataLock);
307
308 if (!Blocking) {
309 WakeUpAp (
310 ProcessorNumber,
311 Procedure,
312 ProcedureArgument
313 );
314 }
315
316 if (SingleThread) {
317 Blocking = TRUE;
318 }
319 }
320 }
321
322 //
323 // If no enabled AP exists, return EFI_NOT_STARTED.
324 //
325 if (mMPSystemData.StartCount == 0) {
326 mStopCheckAPsStatus = FALSE;
327 return EFI_NOT_STARTED;
328 }
329
330 //
331 // If WaitEvent is not NULL, execute in non-blocking mode.
332 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
333 // CheckAPsStatus() will check completion and timeout periodically.
334 //
335 mMPSystemData.Procedure = Procedure;
336 mMPSystemData.ProcArguments = ProcedureArgument;
337 mMPSystemData.SingleThread = SingleThread;
338 mMPSystemData.FailedCpuList = FailedCpuList;
339 mMPSystemData.ExpectedTime = CalculateTimeout (TimeoutInMicroSeconds, &mMPSystemData.CurrentTime);
340 mMPSystemData.WaitEvent = WaitEvent;
341
342 //
343 // Allow CheckAPsStatus()
344 //
345 mStopCheckAPsStatus = FALSE;
346
347 if (WaitEvent != NULL) {
348 return EFI_SUCCESS;
349 }
350
351 //
352 // If WaitEvent is NULL, execute in blocking mode.
353 // BSP checks APs'state until all APs finish or TimeoutInMicrosecsond expires.
354 //
355 do {
356 Status = CheckAllAPs ();
357 } while (Status == EFI_NOT_READY);
358
359 return Status;
360 }
361
362 /**
363 Implementation of StartupThisAP() service of MP Services Protocol.
364
365 This service lets the caller get one enabled AP to execute a caller-provided function.
366 This service may only be called from the BSP.
367
368 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
369 @param Procedure A pointer to the function to be run on the designated AP.
370 @param ProcessorNumber The handle number of AP..
371 @param WaitEvent The event created by the caller.
372 If it is NULL, then execute in blocking mode.
373 If it is not NULL, then execute in non-blocking mode.
374 @param TimeoutInMicroseconds The time limit in microseconds for this AP to finish the function.
375 Zero means infinity.
376 @param ProcedureArgument Pointer to the optional parameter of the assigned function.
377 @param Finished Indicates whether AP has finished assigned function.
378 In blocking mode, it is ignored.
379
380 @retval EFI_SUCCESS In blocking mode, specified AP has finished before the timeout expires.
381 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to specified AP.
382 @retval EFI_DEVICE_ERROR Caller processor is AP.
383 @retval EFI_TIMEOUT In blocking mode, the timeout expires before specified AP has finished.
384 @retval EFI_NOT_READY Specified AP is busy.
385 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
386 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
387 @retval EFI_INVALID_PARAMETER Procedure is NULL.
388
389 **/
390 EFI_STATUS
391 EFIAPI
392 StartupThisAP (
393 IN EFI_MP_SERVICES_PROTOCOL *This,
394 IN EFI_AP_PROCEDURE Procedure,
395 IN UINTN ProcessorNumber,
396 IN EFI_EVENT WaitEvent OPTIONAL,
397 IN UINTN TimeoutInMicroseconds,
398 IN VOID *ProcedureArgument OPTIONAL,
399 OUT BOOLEAN *Finished OPTIONAL
400 )
401 {
402 CPU_DATA_BLOCK *CpuData;
403 UINTN CallerNumber;
404 EFI_STATUS Status;
405 UINTN BspNumber;
406
407 if (Finished != NULL) {
408 *Finished = TRUE;
409 }
410
411 //
412 // Check whether caller processor is BSP
413 //
414 BspNumber = GetBspNumber ();
415 WhoAmI (This, &CallerNumber);
416 if (CallerNumber != BspNumber) {
417 return EFI_DEVICE_ERROR;
418 }
419
420 //
421 // Check whether processor with the handle specified by ProcessorNumber exists
422 //
423 if (ProcessorNumber >= mNumberOfProcessors) {
424 return EFI_NOT_FOUND;
425 }
426
427 //
428 // Check whether specified processor is BSP
429 //
430 if (ProcessorNumber == BspNumber) {
431 return EFI_INVALID_PARAMETER;
432 }
433
434 //
435 // Check parameter Procedure
436 //
437 if (Procedure == NULL) {
438 return EFI_INVALID_PARAMETER;
439 }
440
441 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
442
443 //
444 // Temporarily suppress CheckAPsStatus()
445 //
446 mStopCheckAPsStatus = TRUE;
447
448 //
449 // Check whether specified AP is disabled
450 //
451 if (CpuData->State == CpuStateDisabled) {
452 mStopCheckAPsStatus = FALSE;
453 return EFI_INVALID_PARAMETER;
454 }
455
456 //
457 // Check whether specified AP is busy
458 //
459 if (CpuData->State != CpuStateIdle) {
460 mStopCheckAPsStatus = FALSE;
461 return EFI_NOT_READY;
462 }
463
464 //
465 // Wakeup specified AP for Procedure.
466 //
467 AcquireSpinLock (&CpuData->CpuDataLock);
468 CpuData->State = CpuStateReady;
469 ReleaseSpinLock (&CpuData->CpuDataLock);
470
471 WakeUpAp (
472 ProcessorNumber,
473 Procedure,
474 ProcedureArgument
475 );
476
477 //
478 // If WaitEvent is not NULL, execute in non-blocking mode.
479 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
480 // CheckAPsStatus() will check completion and timeout periodically.
481 //
482 CpuData->WaitEvent = WaitEvent;
483 CpuData->Finished = Finished;
484 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
485
486 //
487 // Allow CheckAPsStatus()
488 //
489 mStopCheckAPsStatus = FALSE;
490
491 if (WaitEvent != NULL) {
492 return EFI_SUCCESS;
493 }
494
495 //
496 // If WaitEvent is NULL, execute in blocking mode.
497 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
498 //
499 do {
500 Status = CheckThisAP (ProcessorNumber);
501 } while (Status == EFI_NOT_READY);
502
503 return Status;
504 }
505
506 /**
507 Implementation of SwitchBSP() service of MP Services Protocol.
508
509 This service switches the requested AP to be the BSP from that point onward.
510 This service may only be called from the current BSP.
511
512 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
513 @param ProcessorNumber The handle number of processor.
514 @param EnableOldBSP Whether to enable or disable the original BSP.
515
516 @retval EFI_SUCCESS BSP successfully switched.
517 @retval EFI_DEVICE_ERROR Caller processor is AP.
518 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
519 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
520 @retval EFI_NOT_READY Specified AP is busy.
521
522 **/
523 EFI_STATUS
524 EFIAPI
525 SwitchBSP (
526 IN EFI_MP_SERVICES_PROTOCOL *This,
527 IN UINTN ProcessorNumber,
528 IN BOOLEAN EnableOldBSP
529 )
530 {
531 EFI_STATUS Status;
532 CPU_DATA_BLOCK *CpuData;
533 UINTN CallerNumber;
534 UINTN BspNumber;
535
536 //
537 // Check whether caller processor is BSP
538 //
539 BspNumber = GetBspNumber ();
540 WhoAmI (This, &CallerNumber);
541 if (CallerNumber != BspNumber) {
542 return EFI_DEVICE_ERROR;
543 }
544
545 //
546 // Check whether processor with the handle specified by ProcessorNumber exists
547 //
548 if (ProcessorNumber >= mNumberOfProcessors) {
549 return EFI_NOT_FOUND;
550 }
551
552 //
553 // Check whether specified processor is BSP
554 //
555 if (ProcessorNumber == BspNumber) {
556 return EFI_INVALID_PARAMETER;
557 }
558
559 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
560
561 //
562 // Check whether specified AP is disabled
563 //
564 if (CpuData->State == CpuStateDisabled) {
565 return EFI_INVALID_PARAMETER;
566 }
567
568 //
569 // Check whether specified AP is busy
570 //
571 if (CpuData->State != CpuStateIdle) {
572 return EFI_NOT_READY;
573 }
574
575 Status = mFrameworkMpService->SwitchBSP (
576 mFrameworkMpService,
577 ProcessorNumber,
578 EnableOldBSP
579 );
580 ASSERT_EFI_ERROR (Status);
581
582 ChangeCpuState (BspNumber, EnableOldBSP);
583
584 return EFI_SUCCESS;
585 }
586
587 /**
588 Implementation of EnableDisableAP() service of MP Services Protocol.
589
590 This service lets the caller enable or disable an AP.
591 This service may only be called from the BSP.
592
593 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
594 @param ProcessorNumber The handle number of processor.
595 @param EnableAP Indicates whether the newstate of the AP is enabled or disabled.
596 @param HealthFlag Indicates new health state of the AP..
597
598 @retval EFI_SUCCESS AP successfully enabled or disabled.
599 @retval EFI_DEVICE_ERROR Caller processor is AP.
600 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
601 @retval EFI_INVALID_PARAMETERS ProcessorNumber specifies the BSP.
602
603 **/
604 EFI_STATUS
605 EFIAPI
606 EnableDisableAP (
607 IN EFI_MP_SERVICES_PROTOCOL *This,
608 IN UINTN ProcessorNumber,
609 IN BOOLEAN EnableAP,
610 IN UINT32 *HealthFlag OPTIONAL
611 )
612 {
613 EFI_STATUS Status;
614 UINTN CallerNumber;
615 EFI_MP_HEALTH HealthState;
616 EFI_MP_HEALTH *HealthStatePointer;
617 UINTN BspNumber;
618
619 //
620 // Check whether caller processor is BSP
621 //
622 BspNumber = GetBspNumber ();
623 WhoAmI (This, &CallerNumber);
624 if (CallerNumber != BspNumber) {
625 return EFI_DEVICE_ERROR;
626 }
627
628 //
629 // Check whether processor with the handle specified by ProcessorNumber exists
630 //
631 if (ProcessorNumber >= mNumberOfProcessors) {
632 return EFI_NOT_FOUND;
633 }
634
635 //
636 // Check whether specified processor is BSP
637 //
638 if (ProcessorNumber == BspNumber) {
639 return EFI_INVALID_PARAMETER;
640 }
641
642 if (HealthFlag == NULL) {
643 HealthStatePointer = NULL;
644 } else {
645 if ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) == 0) {
646 HealthState.Flags.Uint32 = 1;
647 } else {
648 HealthState.Flags.Uint32 = 0;
649 }
650 HealthState.TestStatus = 0;
651
652 HealthStatePointer = &HealthState;
653 }
654
655 Status = mFrameworkMpService->EnableDisableAP (
656 mFrameworkMpService,
657 ProcessorNumber,
658 EnableAP,
659 HealthStatePointer
660 );
661 ASSERT_EFI_ERROR (Status);
662
663 ChangeCpuState (ProcessorNumber, EnableAP);
664
665 return EFI_SUCCESS;
666 }
667
668 /**
669 Implementation of WhoAmI() service of MP Services Protocol.
670
671 This service lets the caller processor get its handle number.
672 This service may be called from the BSP and APs.
673
674 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
675 @param ProcessorNumber Pointer to the handle number of AP.
676
677 @retval EFI_SUCCESS Processor number successfully returned.
678 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL
679
680 **/
681 EFI_STATUS
682 EFIAPI
683 WhoAmI (
684 IN EFI_MP_SERVICES_PROTOCOL *This,
685 OUT UINTN *ProcessorNumber
686 )
687 {
688 EFI_STATUS Status;
689
690 if (ProcessorNumber == NULL) {
691 return EFI_INVALID_PARAMETER;
692 }
693
694 Status = mFrameworkMpService->WhoAmI (
695 mFrameworkMpService,
696 ProcessorNumber
697 );
698 ASSERT_EFI_ERROR (Status);
699
700 return EFI_SUCCESS;
701 }
702
703 /**
704 Checks APs' status periodically.
705
706 This function is triggerred by timer perodically to check the
707 state of APs for StartupAllAPs() and StartupThisAP() executed
708 in non-blocking mode.
709
710 @param Event Event triggered.
711 @param Context Parameter passed with the event.
712
713 **/
714 VOID
715 EFIAPI
716 CheckAPsStatus (
717 IN EFI_EVENT Event,
718 IN VOID *Context
719 )
720 {
721 UINTN ProcessorNumber;
722 CPU_DATA_BLOCK *CpuData;
723 EFI_STATUS Status;
724
725 //
726 // If CheckAPsStatus() is stopped, then return immediately.
727 //
728 if (mStopCheckAPsStatus) {
729 return;
730 }
731
732 //
733 // First, check whether pending StartupAllAPs() exists.
734 //
735 if (mMPSystemData.WaitEvent != NULL) {
736
737 Status = CheckAllAPs ();
738 //
739 // If all APs finish for StartupAllAPs(), signal the WaitEvent for it..
740 //
741 if (Status != EFI_NOT_READY) {
742 Status = gBS->SignalEvent (mMPSystemData.WaitEvent);
743 mMPSystemData.WaitEvent = NULL;
744 }
745 }
746
747 //
748 // Second, check whether pending StartupThisAPs() callings exist.
749 //
750 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
751
752 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
753
754 if (CpuData->WaitEvent == NULL) {
755 continue;
756 }
757
758 Status = CheckThisAP (ProcessorNumber);
759
760 if (Status != EFI_NOT_READY) {
761 gBS->SignalEvent (CpuData->WaitEvent);
762 CpuData->WaitEvent = NULL;
763 }
764 }
765 return ;
766 }
767
768 /**
769 Checks status of all APs.
770
771 This function checks whether all APs have finished task assigned by StartupAllAPs(),
772 and whether timeout expires.
773
774 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
775 @retval EFI_TIMEOUT The timeout expires.
776 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
777
778 **/
779 EFI_STATUS
780 CheckAllAPs (
781 VOID
782 )
783 {
784 UINTN ProcessorNumber;
785 UINTN NextProcessorNumber;
786 UINTN ListIndex;
787 EFI_STATUS Status;
788 CPU_STATE CpuState;
789 CPU_DATA_BLOCK *CpuData;
790
791 NextProcessorNumber = 0;
792
793 //
794 // Go through all APs that are responsible for the StartupAllAPs().
795 //
796 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
797 if (!mMPSystemData.CpuList[ProcessorNumber]) {
798 continue;
799 }
800
801 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
802
803 //
804 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
805 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
806 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
807 //
808 AcquireSpinLock (&CpuData->CpuDataLock);
809 CpuState = CpuData->State;
810 ReleaseSpinLock (&CpuData->CpuDataLock);
811
812 if (CpuState == CpuStateFinished) {
813 mMPSystemData.FinishCount++;
814 mMPSystemData.CpuList[ProcessorNumber] = FALSE;
815
816 AcquireSpinLock (&CpuData->CpuDataLock);
817 CpuData->State = CpuStateIdle;
818 ReleaseSpinLock (&CpuData->CpuDataLock);
819
820 //
821 // If in Single Thread mode, then search for the next waiting AP for execution.
822 //
823 if (mMPSystemData.SingleThread) {
824 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
825
826 if (!EFI_ERROR (Status)) {
827 WakeUpAp (
828 NextProcessorNumber,
829 mMPSystemData.Procedure,
830 mMPSystemData.ProcArguments
831 );
832 }
833 }
834 }
835 }
836
837 //
838 // If all APs finish, return EFI_SUCCESS.
839 //
840 if (mMPSystemData.FinishCount == mMPSystemData.StartCount) {
841 return EFI_SUCCESS;
842 }
843
844 //
845 // If timeout expires, report timeout.
846 //
847 if (CheckTimeout (&mMPSystemData.CurrentTime, &mMPSystemData.TotalTime, mMPSystemData.ExpectedTime)) {
848 //
849 // If FailedCpuList is not NULL, record all failed APs in it.
850 //
851 if (mMPSystemData.FailedCpuList != NULL) {
852 *mMPSystemData.FailedCpuList = AllocatePool ((mMPSystemData.StartCount - mMPSystemData.FinishCount + 1) * sizeof(UINTN));
853 ASSERT (*mMPSystemData.FailedCpuList != NULL);
854 }
855 ListIndex = 0;
856
857 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
858 //
859 // Check whether this processor is responsible for StartupAllAPs().
860 //
861 if (mMPSystemData.CpuList[ProcessorNumber]) {
862 //
863 // Reset failed APs to idle state
864 //
865 ResetProcessorToIdleState (ProcessorNumber);
866 mMPSystemData.CpuList[ProcessorNumber] = FALSE;
867 if (mMPSystemData.FailedCpuList != NULL) {
868 (*mMPSystemData.FailedCpuList)[ListIndex++] = ProcessorNumber;
869 }
870 }
871 }
872 if (mMPSystemData.FailedCpuList != NULL) {
873 (*mMPSystemData.FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
874 }
875 return EFI_TIMEOUT;
876 }
877 return EFI_NOT_READY;
878 }
879
880 /**
881 Checks status of specified AP.
882
883 This function checks whether specified AP has finished task assigned by StartupThisAP(),
884 and whether timeout expires.
885
886 @param ProcessorNumber The handle number of processor.
887
888 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
889 @retval EFI_TIMEOUT The timeout expires.
890 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
891
892 **/
893 EFI_STATUS
894 CheckThisAP (
895 UINTN ProcessorNumber
896 )
897 {
898 CPU_DATA_BLOCK *CpuData;
899 CPU_STATE CpuState;
900
901 ASSERT (ProcessorNumber < mNumberOfProcessors);
902
903 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
904
905 //
906 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
907 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
908 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
909 //
910 AcquireSpinLock (&CpuData->CpuDataLock);
911 CpuState = CpuData->State;
912 ReleaseSpinLock (&CpuData->CpuDataLock);
913
914 //
915 // If the APs finishes for StartupThisAP(), return EFI_SUCCESS.
916 //
917 if (CpuState == CpuStateFinished) {
918
919 AcquireSpinLock (&CpuData->CpuDataLock);
920 CpuData->State = CpuStateIdle;
921 ReleaseSpinLock (&CpuData->CpuDataLock);
922
923 if (CpuData->Finished != NULL) {
924 *(CpuData->Finished) = TRUE;
925 }
926 return EFI_SUCCESS;
927 } else {
928 //
929 // If timeout expires for StartupThisAP(), report timeout.
930 //
931 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
932
933 if (CpuData->Finished != NULL) {
934 *(CpuData->Finished) = FALSE;
935 }
936 //
937 // Reset failed AP to idle state
938 //
939 ResetProcessorToIdleState (ProcessorNumber);
940
941 return EFI_TIMEOUT;
942 }
943 }
944 return EFI_NOT_READY;
945 }
946
947 /**
948 Calculate timeout value and return the current performance counter value.
949
950 Calculate the number of performance counter ticks required for a timeout.
951 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
952 as infinity.
953
954 @param TimeoutInMicroseconds Timeout value in microseconds.
955 @param CurrentTime Returns the current value of the performance counter.
956
957 @return Expected timestamp counter for timeout.
958 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
959 as infinity.
960
961 **/
962 UINT64
963 CalculateTimeout (
964 IN UINTN TimeoutInMicroseconds,
965 OUT UINT64 *CurrentTime
966 )
967 {
968 //
969 // Read the current value of the performance counter
970 //
971 *CurrentTime = GetPerformanceCounter ();
972
973 //
974 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
975 // as infinity.
976 //
977 if (TimeoutInMicroseconds == 0) {
978 return 0;
979 }
980
981 //
982 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
983 // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide
984 // it by 1,000,000, to get the number of ticks for the timeout value.
985 //
986 return DivU64x32 (
987 MultU64x64 (
988 GetPerformanceCounterProperties (NULL, NULL),
989 TimeoutInMicroseconds
990 ),
991 1000000
992 );
993 }
994
995 /**
996 Checks whether timeout expires.
997
998 Check whether the number of ellapsed performance counter ticks required for a timeout condition
999 has been reached. If Timeout is zero, which means infinity, return value is always FALSE.
1000
1001 @param PreviousTime On input, the value of the performance counter when it was last read.
1002 On output, the current value of the performance counter
1003 @param TotalTime The total amount of ellapsed time in performance counter ticks.
1004 @param Timeout The number of performance counter ticks required to reach a timeout condition.
1005
1006 @retval TRUE A timeout condition has been reached.
1007 @retval FALSE A timeout condition has not been reached.
1008
1009 **/
1010 BOOLEAN
1011 CheckTimeout (
1012 IN OUT UINT64 *PreviousTime,
1013 IN UINT64 *TotalTime,
1014 IN UINT64 Timeout
1015 )
1016 {
1017 UINT64 Start;
1018 UINT64 End;
1019 UINT64 CurrentTime;
1020 INT64 Delta;
1021 INT64 Cycle;
1022
1023 if (Timeout == 0) {
1024 return FALSE;
1025 }
1026 GetPerformanceCounterProperties (&Start, &End);
1027 Cycle = End - Start;
1028 if (Cycle < 0) {
1029 Cycle = -Cycle;
1030 }
1031 Cycle++;
1032 CurrentTime = GetPerformanceCounter();
1033 Delta = (INT64) (CurrentTime - *PreviousTime);
1034 if (Start > End) {
1035 Delta = -Delta;
1036 }
1037 if (Delta < 0) {
1038 Delta += Cycle;
1039 }
1040 *TotalTime += Delta;
1041 *PreviousTime = CurrentTime;
1042 if (*TotalTime > Timeout) {
1043 return TRUE;
1044 }
1045 return FALSE;
1046 }
1047
1048 /**
1049 Searches for the next waiting AP.
1050
1051 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1052
1053 @param NextProcessorNumber Pointer to the processor number of the next waiting AP.
1054
1055 @retval EFI_SUCCESS The next waiting AP has been found.
1056 @retval EFI_NOT_FOUND No waiting AP exists.
1057
1058 **/
1059 EFI_STATUS
1060 GetNextWaitingProcessorNumber (
1061 OUT UINTN *NextProcessorNumber
1062 )
1063 {
1064 UINTN ProcessorNumber;
1065
1066 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
1067
1068 if (mMPSystemData.CpuList[ProcessorNumber]) {
1069 *NextProcessorNumber = ProcessorNumber;
1070 return EFI_SUCCESS;
1071 }
1072 }
1073
1074 return EFI_NOT_FOUND;
1075 }
1076
1077 /**
1078 Wrapper function for all procedures assigned to AP.
1079
1080 Wrapper function for all procedures assigned to AP via MP service protocol.
1081 It controls states of AP and invokes assigned precedure.
1082
1083 **/
1084 VOID
1085 ApProcWrapper (
1086 VOID
1087 )
1088 {
1089 EFI_AP_PROCEDURE Procedure;
1090 VOID *Parameter;
1091 UINTN ProcessorNumber;
1092 CPU_DATA_BLOCK *CpuData;
1093
1094 WhoAmI (&mMpService, &ProcessorNumber);
1095 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1096
1097 AcquireSpinLock (&CpuData->CpuDataLock);
1098 CpuData->State = CpuStateBusy;
1099 ReleaseSpinLock (&CpuData->CpuDataLock);
1100
1101 //
1102 // Now let us check it out.
1103 //
1104 AcquireSpinLock (&CpuData->CpuDataLock);
1105 Procedure = CpuData->Procedure;
1106 Parameter = CpuData->Parameter;
1107 ReleaseSpinLock (&CpuData->CpuDataLock);
1108
1109 if (Procedure != NULL) {
1110
1111 Procedure (Parameter);
1112
1113 //
1114 // if BSP is switched to AP, it continue execute from here, but it carries register state
1115 // of the old AP, so need to reload CpuData (might be stored in a register after compiler
1116 // optimization) to make sure it points to the right data
1117 //
1118 WhoAmI (&mMpService, &ProcessorNumber);
1119 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1120
1121 AcquireSpinLock (&CpuData->CpuDataLock);
1122 CpuData->Procedure = NULL;
1123 ReleaseSpinLock (&CpuData->CpuDataLock);
1124 }
1125
1126 AcquireSpinLock (&CpuData->CpuDataLock);
1127 CpuData->State = CpuStateFinished;
1128 ReleaseSpinLock (&CpuData->CpuDataLock);
1129 }
1130
1131 /**
1132 Sends INIT-SIPI-SIPI to AP.
1133
1134 This function sends INIT-SIPI-SIPI to AP, and assign procedure specified by ApFunction.
1135
1136 @param Broadcast If TRUE, broadcase IPI to all APs; otherwise, send to specified AP.
1137 @param ApicID The Local APIC ID of the specified AP. If Broadcast is TRUE, it is ignored.
1138 @param ApFunction The procedure for AP to work on.
1139
1140 **/
1141 VOID
1142 SendInitSipiSipi (
1143 IN BOOLEAN Broadcast,
1144 IN UINT32 ApicID,
1145 IN VOID *ApFunction
1146 )
1147 {
1148 UINTN ApicBase;
1149 UINT32 ICRLow;
1150 UINT32 ICRHigh;
1151
1152 UINT32 VectorNumber;
1153 UINT32 DeliveryMode;
1154
1155 mExchangeInfo->ApFunction = ApFunction;
1156 mExchangeInfo->StackStart = mStackStartAddress;
1157
1158 if (Broadcast) {
1159 ICRHigh = 0;
1160 ICRLow = BROADCAST_MODE_ALL_EXCLUDING_SELF_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1161 } else {
1162 ICRHigh = ApicID << 24;
1163 ICRLow = SPECIFY_CPU_MODE_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1164 }
1165
1166 VectorNumber = 0;
1167 DeliveryMode = DELIVERY_MODE_INIT;
1168 ICRLow |= VectorNumber | (DeliveryMode << 8);
1169
1170 ApicBase = 0xfee00000;
1171
1172 //
1173 // Write Interrupt Command Registers to send INIT IPI.
1174 //
1175 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_HIGH_OFFSET, ICRHigh);
1176 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
1177
1178 MicroSecondDelay (10);
1179
1180 VectorNumber = (UINT32) RShiftU64 (mStartupVector, 12);
1181 DeliveryMode = DELIVERY_MODE_SIPI;
1182 if (Broadcast) {
1183 ICRLow = BROADCAST_MODE_ALL_EXCLUDING_SELF_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1184 } else {
1185 ICRLow = SPECIFY_CPU_MODE_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1186 }
1187
1188 ICRLow |= VectorNumber | (DeliveryMode << 8);
1189
1190 //
1191 // Write Interrupt Command Register to send first SIPI IPI.
1192 //
1193 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
1194
1195 MicroSecondDelay (200);
1196
1197 //
1198 // Write Interrupt Command Register to send second SIPI IPI.
1199 //
1200 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
1201 }
1202
1203 /**
1204 Function to wake up a specified AP and assign procedure to it.
1205
1206 @param ProcessorNumber Handle number of the specified processor.
1207 @param Procedure Procedure to assign.
1208 @param ProcArguments Argument for Procedure.
1209
1210 **/
1211 VOID
1212 WakeUpAp (
1213 IN UINTN ProcessorNumber,
1214 IN EFI_AP_PROCEDURE Procedure,
1215 IN VOID *ProcArguments
1216 )
1217 {
1218 EFI_STATUS Status;
1219 CPU_DATA_BLOCK *CpuData;
1220 EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
1221
1222 ASSERT (ProcessorNumber < mNumberOfProcessors);
1223
1224 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1225
1226 AcquireSpinLock (&CpuData->CpuDataLock);
1227 CpuData->Parameter = ProcArguments;
1228 CpuData->Procedure = Procedure;
1229 ReleaseSpinLock (&CpuData->CpuDataLock);
1230
1231 Status = GetProcessorInfo (
1232 &mMpService,
1233 ProcessorNumber,
1234 &ProcessorInfoBuffer
1235 );
1236 ASSERT_EFI_ERROR (Status);
1237
1238 SendInitSipiSipi (
1239 FALSE,
1240 (UINT32) ProcessorInfoBuffer.ProcessorId,
1241 (VOID *) (UINTN) ApProcWrapper
1242 );
1243 }
1244
1245 /**
1246 Terminate AP's task and set it to idle state.
1247
1248 This function terminates AP's task due to timeout by sending INIT-SIPI,
1249 and sends it to idle state.
1250
1251 @param ProcessorNumber Handle number of the specified processor.
1252
1253 **/
1254 VOID
1255 ResetProcessorToIdleState (
1256 UINTN ProcessorNumber
1257 )
1258 {
1259 EFI_STATUS Status;
1260 CPU_DATA_BLOCK *CpuData;
1261 EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
1262
1263 Status = GetProcessorInfo (
1264 &mMpService,
1265 ProcessorNumber,
1266 &ProcessorInfoBuffer
1267 );
1268 ASSERT_EFI_ERROR (Status);
1269
1270 SendInitSipiSipi (
1271 FALSE,
1272 (UINT32) ProcessorInfoBuffer.ProcessorId,
1273 NULL
1274 );
1275
1276 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1277
1278 AcquireSpinLock (&CpuData->CpuDataLock);
1279 CpuData->State = CpuStateIdle;
1280 ReleaseSpinLock (&CpuData->CpuDataLock);
1281 }
1282
1283 /**
1284 Worker function of EnableDisableAP ()
1285
1286 Worker function of EnableDisableAP (). Changes state of specified processor.
1287
1288 @param ProcessorNumber Processor number of specified AP.
1289 @param NewState Desired state of the specified AP.
1290
1291 @retval EFI_SUCCESS AP's state successfully changed.
1292
1293 **/
1294 EFI_STATUS
1295 ChangeCpuState (
1296 IN UINTN ProcessorNumber,
1297 IN BOOLEAN NewState
1298 )
1299 {
1300 CPU_DATA_BLOCK *CpuData;
1301
1302 ASSERT (ProcessorNumber < mNumberOfProcessors);
1303
1304 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1305
1306 if (!NewState) {
1307 AcquireSpinLock (&CpuData->CpuDataLock);
1308 CpuData->State = CpuStateDisabled;
1309 ReleaseSpinLock (&CpuData->CpuDataLock);
1310 } else {
1311 AcquireSpinLock (&CpuData->CpuDataLock);
1312 CpuData->State = CpuStateIdle;
1313 ReleaseSpinLock (&CpuData->CpuDataLock);
1314 }
1315
1316 return EFI_SUCCESS;
1317 }
1318
1319 /**
1320 Test memory region of EfiGcdMemoryTypeReserved.
1321
1322 @param Length The length of memory region to test.
1323
1324 @retval EFI_SUCCESS The memory region passes test.
1325 @retval EFI_NOT_FOUND The memory region is not reserved memory.
1326 @retval EFI_DEVICE_ERROR The memory fails on test.
1327
1328 **/
1329 EFI_STATUS
1330 TestReservedMemory (
1331 UINTN Length
1332 )
1333 {
1334 EFI_STATUS Status;
1335 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
1336 EFI_PHYSICAL_ADDRESS Address;
1337 UINTN LengthCovered;
1338 UINTN RemainingLength;
1339
1340 //
1341 // Walk through the memory descriptors covering the memory range.
1342 //
1343 Address = mStartupVector;
1344 RemainingLength = Length;
1345 while (Address < mStartupVector + Length) {
1346 Status = gDS->GetMemorySpaceDescriptor(
1347 Address,
1348 &Descriptor
1349 );
1350 if (EFI_ERROR (Status)) {
1351 return EFI_NOT_FOUND;
1352 }
1353
1354 if (Descriptor.GcdMemoryType != EfiGcdMemoryTypeReserved) {
1355 return EFI_NOT_FOUND;
1356 }
1357 //
1358 // Calculated the length of the intersected range.
1359 //
1360 LengthCovered = (UINTN) (Descriptor.BaseAddress + Descriptor.Length - Address);
1361 if (LengthCovered > RemainingLength) {
1362 LengthCovered = RemainingLength;
1363 }
1364
1365 Status = mGenMemoryTest->CompatibleRangeTest (
1366 mGenMemoryTest,
1367 Address,
1368 LengthCovered
1369 );
1370 if (EFI_ERROR (Status)) {
1371 return EFI_DEVICE_ERROR;
1372 }
1373
1374 Address += LengthCovered;
1375 RemainingLength -= LengthCovered;
1376 }
1377
1378 return EFI_SUCCESS;
1379 }
1380
1381 /**
1382 Allocates startup vector for APs.
1383
1384 This function allocates Startup vector for APs.
1385
1386 @param Size The size of startup vector.
1387
1388 **/
1389 VOID
1390 AllocateStartupVector (
1391 UINTN Size
1392 )
1393 {
1394 EFI_STATUS Status;
1395
1396 Status = gBS->LocateProtocol (
1397 &gEfiGenericMemTestProtocolGuid,
1398 NULL,
1399 (VOID **) &mGenMemoryTest
1400 );
1401 if (EFI_ERROR (Status)) {
1402 mGenMemoryTest = NULL;
1403 }
1404
1405 for (mStartupVector = 0x7F000; mStartupVector >= 0x2000; mStartupVector -= EFI_PAGE_SIZE) {
1406 if (mGenMemoryTest != NULL) {
1407 //
1408 // Test memory if it is EfiGcdMemoryTypeReserved.
1409 //
1410 Status = TestReservedMemory (EFI_SIZE_TO_PAGES (Size) * EFI_PAGE_SIZE);
1411 if (Status == EFI_DEVICE_ERROR) {
1412 continue;
1413 }
1414 }
1415
1416 Status = gBS->AllocatePages (
1417 AllocateAddress,
1418 EfiBootServicesCode,
1419 EFI_SIZE_TO_PAGES (Size),
1420 &mStartupVector
1421 );
1422
1423 if (!EFI_ERROR (Status)) {
1424 break;
1425 }
1426 }
1427
1428 ASSERT_EFI_ERROR (Status);
1429 }
1430
1431 /**
1432 Prepares Startup Vector for APs.
1433
1434 This function prepares Startup Vector for APs.
1435
1436 **/
1437 VOID
1438 PrepareAPStartupVector (
1439 VOID
1440 )
1441 {
1442 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1443 IA32_DESCRIPTOR GdtrForBSP;
1444
1445 //
1446 // Get the address map of startup code for AP,
1447 // including code size, and offset of long jump instructions to redirect.
1448 //
1449 AsmGetAddressMap (&AddressMap);
1450
1451 //
1452 // Allocate a 4K-aligned region under 1M for startup vector for AP.
1453 // The region contains AP startup code and exchange data between BSP and AP.
1454 //
1455 AllocateStartupVector (AddressMap.Size + sizeof (MP_CPU_EXCHANGE_INFO));
1456
1457 //
1458 // Copy AP startup code to startup vector, and then redirect the long jump
1459 // instructions for mode switching.
1460 //
1461 CopyMem ((VOID *) (UINTN) mStartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
1462 *(UINT32 *) (UINTN) (mStartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (mStartupVector + AddressMap.PModeEntryOffset);
1463 //
1464 // For IA32 mode, LongJumpOffset is filled with zero. If non-zero, then we are in X64 mode, so further redirect for long mode switch.
1465 //
1466 if (AddressMap.LongJumpOffset != 0) {
1467 *(UINT32 *) (UINTN) (mStartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (mStartupVector + AddressMap.LModeEntryOffset);
1468 }
1469
1470 //
1471 // Get the start address of exchange data between BSP and AP.
1472 //
1473 mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (mStartupVector + AddressMap.Size);
1474
1475 ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
1476
1477 mStackStartAddress = AllocatePages (EFI_SIZE_TO_PAGES (MAX_CPU_NUMBER * AP_STACK_SIZE));
1478 mExchangeInfo->StackSize = AP_STACK_SIZE;
1479
1480 AsmReadGdtr (&GdtrForBSP);
1481 mExchangeInfo->GdtrProfile.Base = GdtrForBSP.Base;
1482 mExchangeInfo->GdtrProfile.Limit = GdtrForBSP.Limit;
1483
1484 mExchangeInfo->BufferStart = (UINT32) mStartupVector;
1485 mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());
1486 }
1487
1488 /**
1489 Prepares memory region for processor configuration.
1490
1491 This function prepares memory region for processor configuration.
1492
1493 **/
1494 VOID
1495 PrepareMemoryForConfiguration (
1496 VOID
1497 )
1498 {
1499 UINTN Index;
1500
1501 //
1502 // Initialize Spin Locks for system
1503 //
1504 InitializeSpinLock (&mMPSystemData.APSerializeLock);
1505 for (Index = 0; Index < MAX_CPU_NUMBER; Index++) {
1506 InitializeSpinLock (&mMPSystemData.CpuData[Index].CpuDataLock);
1507 }
1508
1509 PrepareAPStartupVector ();
1510 }
1511
1512 /**
1513 Gets the processor number of BSP.
1514
1515 @return The processor number of BSP.
1516
1517 **/
1518 UINTN
1519 GetBspNumber (
1520 VOID
1521 )
1522 {
1523 UINTN ProcessorNumber;
1524 EFI_MP_PROC_CONTEXT ProcessorContextBuffer;
1525 EFI_STATUS Status;
1526 UINTN BufferSize;
1527
1528 BufferSize = sizeof (EFI_MP_PROC_CONTEXT);
1529
1530 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
1531 Status = mFrameworkMpService->GetProcessorContext (
1532 mFrameworkMpService,
1533 ProcessorNumber,
1534 &BufferSize,
1535 &ProcessorContextBuffer
1536 );
1537 ASSERT_EFI_ERROR (Status);
1538
1539 if (ProcessorContextBuffer.Designation == EfiCpuBSP) {
1540 break;
1541 }
1542 }
1543 ASSERT (ProcessorNumber < mNumberOfProcessors);
1544
1545 return ProcessorNumber;
1546 }
1547
1548 /**
1549 Entrypoint of MP Services Protocol thunk driver.
1550
1551 @param[in] ImageHandle The firmware allocated handle for the EFI image.
1552 @param[in] SystemTable A pointer to the EFI System Table.
1553
1554 @retval EFI_SUCCESS The entry point is executed successfully.
1555
1556 **/
1557 EFI_STATUS
1558 EFIAPI
1559 InitializeMpServicesProtocol (
1560 IN EFI_HANDLE ImageHandle,
1561 IN EFI_SYSTEM_TABLE *SystemTable
1562 )
1563 {
1564 EFI_STATUS Status;
1565
1566 PrepareMemoryForConfiguration ();
1567
1568 //
1569 // Locates Framework version MP Services Protocol
1570 //
1571 Status = gBS->LocateProtocol (
1572 &gFrameworkEfiMpServiceProtocolGuid,
1573 NULL,
1574 (VOID **) &mFrameworkMpService
1575 );
1576 ASSERT_EFI_ERROR (Status);
1577
1578 Status = mFrameworkMpService->GetGeneralMPInfo (
1579 mFrameworkMpService,
1580 &mNumberOfProcessors,
1581 NULL,
1582 NULL,
1583 NULL,
1584 NULL
1585 );
1586 ASSERT_EFI_ERROR (Status);
1587 ASSERT (mNumberOfProcessors < MAX_CPU_NUMBER);
1588
1589 //
1590 // Create timer event to check AP state for non-blocking execution.
1591 //
1592 Status = gBS->CreateEvent (
1593 EVT_TIMER | EVT_NOTIFY_SIGNAL,
1594 TPL_CALLBACK,
1595 CheckAPsStatus,
1596 NULL,
1597 &mMPSystemData.CheckAPsEvent
1598 );
1599 ASSERT_EFI_ERROR (Status);
1600
1601 //
1602 // Now install the MP services protocol.
1603 //
1604 Status = gBS->InstallProtocolInterface (
1605 &mHandle,
1606 &gEfiMpServiceProtocolGuid,
1607 EFI_NATIVE_INTERFACE,
1608 &mMpService
1609 );
1610 ASSERT_EFI_ERROR (Status);
1611
1612 //
1613 // Launch the timer event to check AP state.
1614 //
1615 Status = gBS->SetTimer (
1616 mMPSystemData.CheckAPsEvent,
1617 TimerPeriodic,
1618 100000
1619 );
1620 ASSERT_EFI_ERROR (Status);
1621
1622 return EFI_SUCCESS;
1623 }