]> git.proxmox.com Git - mirror_edk2.git/blob - EdkCompatibilityPkg/Compatibility/MpServicesOnFrameworkMpServicesThunk/MpServicesOnFrameworkMpServicesThunk.c
Check in thunk driver to produce PI MP Services Protocol based on Framework MP Servic...
[mirror_edk2.git] / EdkCompatibilityPkg / Compatibility / MpServicesOnFrameworkMpServicesThunk / MpServicesOnFrameworkMpServicesThunk.c
1 /** @file
2 Produces PI MP Services Protocol on top of Framework MP Services Protocol.
3
4 Intel's Framework MP Services Protocol is replaced by EFI_MP_SERVICES_PROTOCOL in PI 1.1.
5 This module produces PI MP Services Protocol on top of Framework MP Services Protocol.
6
7 Copyright (c) 2009 Intel Corporation. <BR>
8 All rights reserved. This program and the accompanying materials
9 are licensed and made available under the terms and conditions of the BSD License
10 which accompanies this distribution. The full text of the license may be found at
11 http://opensource.org/licenses/bsd-license.php
12
13 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
14 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
15 Module Name:
16
17 **/
18
19 #include "MpServicesOnFrameworkMpServicesThunk.h"
20
21 EFI_HANDLE mHandle = NULL;
22 MP_SYSTEM_DATA mMPSystemData;
23 EFI_PHYSICAL_ADDRESS mStartupVector;
24 MP_CPU_EXCHANGE_INFO *mExchangeInfo;
25 VOID *mStackStartAddress;
26 BOOLEAN mStopCheckAPsStatus = FALSE;
27 UINTN mNumberOfProcessors;
28 EFI_GENERIC_MEMORY_TEST_PROTOCOL *mGenMemoryTest;
29
30 FRAMEWORK_EFI_MP_SERVICES_PROTOCOL *mFrameworkMpService;
31 EFI_MP_SERVICES_PROTOCOL mMpService = {
32 GetNumberOfProcessors,
33 GetProcessorInfo,
34 StartupAllAPs,
35 StartupThisAP,
36 SwitchBSP,
37 EnableDisableAP,
38 WhoAmI
39 };
40
41
42 /**
43 Implementation of GetNumberOfProcessors() service of MP Services Protocol.
44
45 This service retrieves the number of logical processor in the platform
46 and the number of those logical processors that are enabled on this boot.
47 This service may only be called from the BSP.
48
49 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
50 @param NumberOfProcessors Pointer to the total number of logical processors in the system,
51 including the BSP and disabled APs.
52 @param NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist
53 in system, including the BSP.
54
55 @retval EFI_SUCCESS Number of logical processors and enabled logical processors retrieved..
56 @retval EFI_DEVICE_ERROR Caller processor is AP.
57 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL
58 @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL
59
60 **/
61 EFI_STATUS
62 EFIAPI
63 GetNumberOfProcessors (
64 IN EFI_MP_SERVICES_PROTOCOL *This,
65 OUT UINTN *NumberOfProcessors,
66 OUT UINTN *NumberOfEnabledProcessors
67 )
68 {
69 EFI_STATUS Status;
70 UINTN CallerNumber;
71
72 //
73 // Check whether caller processor is BSP
74 //
75 WhoAmI (This, &CallerNumber);
76 if (CallerNumber != GetBspNumber ()) {
77 return EFI_DEVICE_ERROR;
78 }
79
80 //
81 // Check parameter NumberOfProcessors
82 //
83 if (NumberOfProcessors == NULL) {
84 return EFI_INVALID_PARAMETER;
85 }
86
87 //
88 // Check parameter NumberOfEnabledProcessors
89 //
90 if (NumberOfEnabledProcessors == NULL) {
91 return EFI_INVALID_PARAMETER;
92 }
93
94 Status = mFrameworkMpService->GetGeneralMPInfo (
95 mFrameworkMpService,
96 NumberOfProcessors,
97 NULL,
98 NumberOfEnabledProcessors,
99 NULL,
100 NULL
101 );
102 ASSERT_EFI_ERROR (Status);
103
104 return EFI_SUCCESS;
105 }
106
107 /**
108 Implementation of GetNumberOfProcessors() service of MP Services Protocol.
109
110 Gets detailed MP-related information on the requested processor at the
111 instant this call is made. This service may only be called from the BSP.
112
113 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
114 @param ProcessorNumber The handle number of processor.
115 @param ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited.
116
117 @retval EFI_SUCCESS Processor information successfully returned.
118 @retval EFI_DEVICE_ERROR Caller processor is AP.
119 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL
120 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
121
122 **/
123 EFI_STATUS
124 EFIAPI
125 GetProcessorInfo (
126 IN EFI_MP_SERVICES_PROTOCOL *This,
127 IN UINTN ProcessorNumber,
128 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
129 )
130 {
131 EFI_STATUS Status;
132 UINTN CallerNumber;
133 UINTN BufferSize;
134 EFI_MP_PROC_CONTEXT ProcessorContextBuffer;
135
136 //
137 // Check whether caller processor is BSP
138 //
139 WhoAmI (This, &CallerNumber);
140 if (CallerNumber != GetBspNumber ()) {
141 return EFI_DEVICE_ERROR;
142 }
143
144 //
145 // Check parameter ProcessorInfoBuffer
146 //
147 if (ProcessorInfoBuffer == NULL) {
148 return EFI_INVALID_PARAMETER;
149 }
150
151 //
152 // Check whether processor with the handle specified by ProcessorNumber exists
153 //
154 if (ProcessorNumber >= mNumberOfProcessors) {
155 return EFI_NOT_FOUND;
156 }
157
158 BufferSize = sizeof (EFI_MP_PROC_CONTEXT);
159 Status = mFrameworkMpService->GetProcessorContext (
160 mFrameworkMpService,
161 ProcessorNumber,
162 &BufferSize,
163 &ProcessorContextBuffer
164 );
165 ASSERT_EFI_ERROR (Status);
166
167 ProcessorInfoBuffer->ProcessorId = (UINT64) ProcessorContextBuffer.ApicID;
168
169 //
170 // Get Status Flag of specified processor
171 //
172 ProcessorInfoBuffer->StatusFlag = 0;
173
174 if (ProcessorContextBuffer.Enabled) {
175 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
176 }
177
178 if (ProcessorContextBuffer.Designation == EfiCpuBSP) {
179 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
180 }
181
182 if (ProcessorContextBuffer.Health.Flags.Uint32 == 0) {
183 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
184 }
185
186 ProcessorInfoBuffer->Location.Package = (UINT32) ProcessorContextBuffer.PackageNumber;
187 ProcessorInfoBuffer->Location.Core = (UINT32) ProcessorContextBuffer.NumberOfCores;
188 ProcessorInfoBuffer->Location.Thread = (UINT32) ProcessorContextBuffer.NumberOfThreads;
189
190 return EFI_SUCCESS;
191 }
192
193 /**
194 Implementation of StartupAllAPs() service of MP Services Protocol.
195
196 This service lets the caller get all enabled APs to execute a caller-provided function.
197 This service may only be called from the BSP.
198
199 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
200 @param Procedure A pointer to the function to be run on enabled APs of the system.
201 @param SingleThread Indicates whether to execute the function simultaneously or one by one..
202 @param WaitEvent The event created by the caller.
203 If it is NULL, then execute in blocking mode.
204 If it is not NULL, then execute in non-blocking mode.
205 @param TimeoutInMicroSeconds The time limit in microseconds for this AP to finish the function.
206 Zero means infinity.
207 @param ProcedureArgument Pointer to the optional parameter of the assigned function.
208 @param FailedCpuList The list of processor numbers that fail to finish the function before
209 TimeoutInMicrosecsond expires.
210
211 @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired.
212 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs.
213 @retval EFI_DEVICE_ERROR Caller processor is AP.
214 @retval EFI_NOT_STARTED No enabled AP exists in the system.
215 @retval EFI_NOT_READY Any enabled AP is busy.
216 @retval EFI_TIMEOUT In blocking mode, The timeout expired before all enabled APs have finished.
217 @retval EFI_INVALID_PARAMETER Procedure is NULL.
218
219 **/
220 EFI_STATUS
221 EFIAPI
222 StartupAllAPs (
223 IN EFI_MP_SERVICES_PROTOCOL *This,
224 IN EFI_AP_PROCEDURE Procedure,
225 IN BOOLEAN SingleThread,
226 IN EFI_EVENT WaitEvent OPTIONAL,
227 IN UINTN TimeoutInMicroSeconds,
228 IN VOID *ProcedureArgument OPTIONAL,
229 OUT UINTN **FailedCpuList OPTIONAL
230 )
231 {
232 EFI_STATUS Status;
233 UINTN ProcessorNumber;
234 CPU_DATA_BLOCK *CpuData;
235 BOOLEAN Blocking;
236 UINTN BspNumber;
237
238 if (FailedCpuList != NULL) {
239 *FailedCpuList = NULL;
240 }
241
242 //
243 // Check whether caller processor is BSP
244 //
245 BspNumber = GetBspNumber ();
246 WhoAmI (This, &ProcessorNumber);
247 if (ProcessorNumber != BspNumber) {
248 return EFI_DEVICE_ERROR;
249 }
250
251 //
252 // Check parameter Procedure
253 //
254 if (Procedure == NULL) {
255 return EFI_INVALID_PARAMETER;
256 }
257
258 //
259 // Temporarily suppress CheckAPsStatus()
260 //
261 mStopCheckAPsStatus = TRUE;
262
263 //
264 // Check whether all enabled APs are idle.
265 // If any enabled AP is not idle, return EFI_NOT_READY.
266 //
267 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
268
269 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
270
271 mMPSystemData.CpuList[ProcessorNumber] = FALSE;
272 if (ProcessorNumber != BspNumber) {
273 if (CpuData->State != CpuStateDisabled) {
274 if (CpuData->State != CpuStateIdle) {
275 mStopCheckAPsStatus = FALSE;
276 return EFI_NOT_READY;
277 } else {
278 //
279 // Mark this processor as responsible for current calling.
280 //
281 mMPSystemData.CpuList[ProcessorNumber] = TRUE;
282 }
283 }
284 }
285 }
286
287 mMPSystemData.FinishCount = 0;
288 mMPSystemData.StartCount = 0;
289 Blocking = FALSE;
290 //
291 // Go through all enabled APs to wakeup them for Procedure.
292 // If in Single Thread mode, then only one AP is woken up, and others are waiting.
293 //
294 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
295
296 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
297 //
298 // Check whether this processor is responsible for current calling.
299 //
300 if (mMPSystemData.CpuList[ProcessorNumber]) {
301
302 mMPSystemData.StartCount++;
303
304 AcquireSpinLock (&CpuData->CpuDataLock);
305 CpuData->State = CpuStateReady;
306 ReleaseSpinLock (&CpuData->CpuDataLock);
307
308 if (!Blocking) {
309 WakeUpAp (
310 ProcessorNumber,
311 Procedure,
312 ProcedureArgument
313 );
314 }
315
316 if (SingleThread) {
317 Blocking = TRUE;
318 }
319 }
320 }
321
322 //
323 // If no enabled AP exists, return EFI_NOT_STARTED.
324 //
325 if (mMPSystemData.StartCount == 0) {
326 mStopCheckAPsStatus = FALSE;
327 return EFI_NOT_STARTED;
328 }
329
330 //
331 // If WaitEvent is not NULL, execute in non-blocking mode.
332 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
333 // CheckAPsStatus() will check completion and timeout periodically.
334 //
335 mMPSystemData.Procedure = Procedure;
336 mMPSystemData.ProcArguments = ProcedureArgument;
337 mMPSystemData.SingleThread = SingleThread;
338 mMPSystemData.FailedCpuList = FailedCpuList;
339 mMPSystemData.ExpectedTime = CalculateTimeout (TimeoutInMicroSeconds, &mMPSystemData.CurrentTime);
340 mMPSystemData.WaitEvent = WaitEvent;
341
342 //
343 // Allow CheckAPsStatus()
344 //
345 mStopCheckAPsStatus = FALSE;
346
347 if (WaitEvent != NULL) {
348 return EFI_SUCCESS;
349 }
350
351 //
352 // If WaitEvent is NULL, execute in blocking mode.
353 // BSP checks APs'state until all APs finish or TimeoutInMicrosecsond expires.
354 //
355 do {
356 Status = CheckAllAPs ();
357 } while (Status == EFI_NOT_READY);
358
359 return Status;
360 }
361
362 /**
363 Implementation of StartupThisAP() service of MP Services Protocol.
364
365 This service lets the caller get one enabled AP to execute a caller-provided function.
366 This service may only be called from the BSP.
367
368 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
369 @param Procedure A pointer to the function to be run on the designated AP.
370 @param ProcessorNumber The handle number of AP..
371 @param WaitEvent The event created by the caller.
372 If it is NULL, then execute in blocking mode.
373 If it is not NULL, then execute in non-blocking mode.
374 @param TimeoutInMicroseconds The time limit in microseconds for this AP to finish the function.
375 Zero means infinity.
376 @param ProcedureArgument Pointer to the optional parameter of the assigned function.
377 @param Finished Indicates whether AP has finished assigned function.
378 In blocking mode, it is ignored.
379
380 @retval EFI_SUCCESS In blocking mode, specified AP has finished before the timeout expires.
381 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to specified AP.
382 @retval EFI_DEVICE_ERROR Caller processor is AP.
383 @retval EFI_TIMEOUT In blocking mode, the timeout expires before specified AP has finished.
384 @retval EFI_NOT_READY Specified AP is busy.
385 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
386 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
387 @retval EFI_INVALID_PARAMETER Procedure is NULL.
388
389 **/
390 EFI_STATUS
391 EFIAPI
392 StartupThisAP (
393 IN EFI_MP_SERVICES_PROTOCOL *This,
394 IN EFI_AP_PROCEDURE Procedure,
395 IN UINTN ProcessorNumber,
396 IN EFI_EVENT WaitEvent OPTIONAL,
397 IN UINTN TimeoutInMicroseconds,
398 IN VOID *ProcedureArgument OPTIONAL,
399 OUT BOOLEAN *Finished OPTIONAL
400 )
401 {
402 CPU_DATA_BLOCK *CpuData;
403 UINTN CallerNumber;
404 EFI_STATUS Status;
405 UINTN BspNumber;
406
407 if (Finished != NULL) {
408 *Finished = TRUE;
409 }
410
411 //
412 // Check whether caller processor is BSP
413 //
414 BspNumber = GetBspNumber ();
415 WhoAmI (This, &CallerNumber);
416 if (CallerNumber != BspNumber) {
417 return EFI_DEVICE_ERROR;
418 }
419
420 //
421 // Check whether processor with the handle specified by ProcessorNumber exists
422 //
423 if (ProcessorNumber >= mNumberOfProcessors) {
424 return EFI_NOT_FOUND;
425 }
426
427 //
428 // Check whether specified processor is BSP
429 //
430 if (ProcessorNumber == BspNumber) {
431 return EFI_INVALID_PARAMETER;
432 }
433
434 //
435 // Check parameter Procedure
436 //
437 if (Procedure == NULL) {
438 return EFI_INVALID_PARAMETER;
439 }
440
441 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
442
443 //
444 // Temporarily suppress CheckAPsStatus()
445 //
446 mStopCheckAPsStatus = TRUE;
447
448 //
449 // Check whether specified AP is disabled
450 //
451 if (CpuData->State == CpuStateDisabled) {
452 mStopCheckAPsStatus = FALSE;
453 return EFI_INVALID_PARAMETER;
454 }
455
456 //
457 // Check whether specified AP is busy
458 //
459 if (CpuData->State != CpuStateIdle) {
460 mStopCheckAPsStatus = FALSE;
461 return EFI_NOT_READY;
462 }
463
464 //
465 // Wakeup specified AP for Procedure.
466 //
467 AcquireSpinLock (&CpuData->CpuDataLock);
468 CpuData->State = CpuStateReady;
469 ReleaseSpinLock (&CpuData->CpuDataLock);
470
471 WakeUpAp (
472 ProcessorNumber,
473 Procedure,
474 ProcedureArgument
475 );
476
477 //
478 // If WaitEvent is not NULL, execute in non-blocking mode.
479 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
480 // CheckAPsStatus() will check completion and timeout periodically.
481 //
482 CpuData->WaitEvent = WaitEvent;
483 CpuData->Finished = Finished;
484 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
485
486 //
487 // Allow CheckAPsStatus()
488 //
489 mStopCheckAPsStatus = FALSE;
490
491 if (WaitEvent != NULL) {
492 return EFI_SUCCESS;
493 }
494
495 //
496 // If WaitEvent is NULL, execute in blocking mode.
497 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
498 //
499 do {
500 Status = CheckThisAP (ProcessorNumber);
501 } while (Status == EFI_NOT_READY);
502
503 return Status;
504 }
505
506 /**
507 Implementation of SwitchBSP() service of MP Services Protocol.
508
509 This service switches the requested AP to be the BSP from that point onward.
510 This service may only be called from the current BSP.
511
512 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
513 @param ProcessorNumber The handle number of processor.
514 @param EnableOldBSP Whether to enable or disable the original BSP.
515
516 @retval EFI_SUCCESS BSP successfully switched.
517 @retval EFI_DEVICE_ERROR Caller processor is AP.
518 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
519 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
520 @retval EFI_NOT_READY Specified AP is busy.
521
522 **/
523 EFI_STATUS
524 EFIAPI
525 SwitchBSP (
526 IN EFI_MP_SERVICES_PROTOCOL *This,
527 IN UINTN ProcessorNumber,
528 IN BOOLEAN EnableOldBSP
529 )
530 {
531 EFI_STATUS Status;
532 CPU_DATA_BLOCK *CpuData;
533 UINTN CallerNumber;
534 UINTN BspNumber;
535
536 //
537 // Check whether caller processor is BSP
538 //
539 BspNumber = GetBspNumber ();
540 WhoAmI (This, &CallerNumber);
541 if (CallerNumber != BspNumber) {
542 return EFI_DEVICE_ERROR;
543 }
544
545 //
546 // Check whether processor with the handle specified by ProcessorNumber exists
547 //
548 if (ProcessorNumber >= mNumberOfProcessors) {
549 return EFI_NOT_FOUND;
550 }
551
552 //
553 // Check whether specified processor is BSP
554 //
555 if (ProcessorNumber == BspNumber) {
556 return EFI_INVALID_PARAMETER;
557 }
558
559 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
560
561 //
562 // Check whether specified AP is disabled
563 //
564 if (CpuData->State == CpuStateDisabled) {
565 return EFI_INVALID_PARAMETER;
566 }
567
568 //
569 // Check whether specified AP is busy
570 //
571 if (CpuData->State != CpuStateIdle) {
572 return EFI_NOT_READY;
573 }
574
575 Status = mFrameworkMpService->SwitchBSP (
576 mFrameworkMpService,
577 ProcessorNumber,
578 EnableOldBSP
579 );
580 ASSERT_EFI_ERROR (Status);
581
582 ChangeCpuState (BspNumber, EnableOldBSP);
583
584 return EFI_SUCCESS;
585 }
586
587 /**
588 Implementation of EnableDisableAP() service of MP Services Protocol.
589
590 This service lets the caller enable or disable an AP.
591 This service may only be called from the BSP.
592
593 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
594 @param ProcessorNumber The handle number of processor.
595 @param EnableAP Indicates whether the newstate of the AP is enabled or disabled.
596 @param HealthFlag Indicates new health state of the AP..
597
598 @retval EFI_SUCCESS AP successfully enabled or disabled.
599 @retval EFI_DEVICE_ERROR Caller processor is AP.
600 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
601 @retval EFI_INVALID_PARAMETERS ProcessorNumber specifies the BSP.
602
603 **/
604 EFI_STATUS
605 EFIAPI
606 EnableDisableAP (
607 IN EFI_MP_SERVICES_PROTOCOL *This,
608 IN UINTN ProcessorNumber,
609 IN BOOLEAN EnableAP,
610 IN UINT32 *HealthFlag OPTIONAL
611 )
612 {
613 EFI_STATUS Status;
614 UINTN CallerNumber;
615 EFI_MP_HEALTH HealthState;
616 EFI_MP_HEALTH *HealthStatePointer;
617 UINTN BspNumber;
618
619 //
620 // Check whether caller processor is BSP
621 //
622 BspNumber = GetBspNumber ();
623 WhoAmI (This, &CallerNumber);
624 if (CallerNumber != BspNumber) {
625 return EFI_DEVICE_ERROR;
626 }
627
628 //
629 // Check whether processor with the handle specified by ProcessorNumber exists
630 //
631 if (ProcessorNumber >= mNumberOfProcessors) {
632 return EFI_NOT_FOUND;
633 }
634
635 //
636 // Check whether specified processor is BSP
637 //
638 if (ProcessorNumber == BspNumber) {
639 return EFI_INVALID_PARAMETER;
640 }
641
642 if (HealthFlag == NULL) {
643 HealthStatePointer = NULL;
644 } else {
645 if ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) == 0) {
646 HealthState.Flags.Uint32 = 1;
647 } else {
648 HealthState.Flags.Uint32 = 0;
649 }
650 HealthState.TestStatus = 0;
651
652 HealthStatePointer = &HealthState;
653 }
654
655 Status = mFrameworkMpService->EnableDisableAP (
656 mFrameworkMpService,
657 ProcessorNumber,
658 EnableAP,
659 HealthStatePointer
660 );
661 ASSERT_EFI_ERROR (Status);
662
663 ChangeCpuState (ProcessorNumber, EnableAP);
664
665 return EFI_SUCCESS;
666 }
667
668 /**
669 Implementation of WhoAmI() service of MP Services Protocol.
670
671 This service lets the caller processor get its handle number.
672 This service may be called from the BSP and APs.
673
674 @param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
675 @param ProcessorNumber Pointer to the handle number of AP.
676
677 @retval EFI_SUCCESS Processor number successfully returned.
678 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL
679
680 **/
681 EFI_STATUS
682 EFIAPI
683 WhoAmI (
684 IN EFI_MP_SERVICES_PROTOCOL *This,
685 OUT UINTN *ProcessorNumber
686 )
687 {
688 EFI_STATUS Status;
689
690 if (ProcessorNumber == NULL) {
691 return EFI_INVALID_PARAMETER;
692 }
693
694 Status = mFrameworkMpService->WhoAmI (
695 mFrameworkMpService,
696 ProcessorNumber
697 );
698 ASSERT_EFI_ERROR (Status);
699
700 return EFI_SUCCESS;
701 }
702
703 /**
704 Checks APs' status periodically.
705
706 This function is triggerred by timer perodically to check the
707 state of APs for StartupAllAPs() and StartupThisAP() executed
708 in non-blocking mode.
709
710 @param Event Event triggered.
711 @param Context Parameter passed with the event.
712
713 **/
714 VOID
715 EFIAPI
716 CheckAPsStatus (
717 IN EFI_EVENT Event,
718 IN VOID *Context
719 )
720 {
721 UINTN ProcessorNumber;
722 CPU_DATA_BLOCK *CpuData;
723 EFI_STATUS Status;
724
725 //
726 // If CheckAPsStatus() is stopped, then return immediately.
727 //
728 if (mStopCheckAPsStatus) {
729 return;
730 }
731
732 //
733 // First, check whether pending StartupAllAPs() exists.
734 //
735 if (mMPSystemData.WaitEvent != NULL) {
736
737 Status = CheckAllAPs ();
738 //
739 // If all APs finish for StartupAllAPs(), signal the WaitEvent for it..
740 //
741 if (Status != EFI_NOT_READY) {
742 Status = gBS->SignalEvent (mMPSystemData.WaitEvent);
743 mMPSystemData.WaitEvent = NULL;
744 }
745 }
746
747 //
748 // Second, check whether pending StartupThisAPs() callings exist.
749 //
750 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
751
752 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
753
754 if (CpuData->WaitEvent == NULL) {
755 continue;
756 }
757
758 Status = CheckThisAP (ProcessorNumber);
759
760 if (Status != EFI_NOT_READY) {
761 gBS->SignalEvent (CpuData->WaitEvent);
762 CpuData->WaitEvent = NULL;
763 }
764 }
765 return ;
766 }
767
768 /**
769 Checks status of all APs.
770
771 This function checks whether all APs have finished task assigned by StartupAllAPs(),
772 and whether timeout expires.
773
774 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
775 @retval EFI_TIMEOUT The timeout expires.
776 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
777
778 **/
779 EFI_STATUS
780 CheckAllAPs (
781 VOID
782 )
783 {
784 UINTN ProcessorNumber;
785 UINTN NextProcessorNumber;
786 UINTN ListIndex;
787 EFI_STATUS Status;
788 CPU_STATE CpuState;
789 CPU_DATA_BLOCK *CpuData;
790
791 NextProcessorNumber = 0;
792
793 //
794 // Go through all APs that are responsible for the StartupAllAPs().
795 //
796 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
797 if (!mMPSystemData.CpuList[ProcessorNumber]) {
798 continue;
799 }
800
801 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
802
803 //
804 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
805 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
806 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
807 //
808 AcquireSpinLock (&CpuData->CpuDataLock);
809 CpuState = CpuData->State;
810 ReleaseSpinLock (&CpuData->CpuDataLock);
811
812 if (CpuState == CpuStateFinished) {
813 mMPSystemData.FinishCount++;
814 mMPSystemData.CpuList[ProcessorNumber] = FALSE;
815
816 AcquireSpinLock (&CpuData->CpuDataLock);
817 CpuData->State = CpuStateIdle;
818 ReleaseSpinLock (&CpuData->CpuDataLock);
819
820 //
821 // If in Single Thread mode, then search for the next waiting AP for execution.
822 //
823 if (mMPSystemData.SingleThread) {
824 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
825
826 if (!EFI_ERROR (Status)) {
827 WakeUpAp (
828 NextProcessorNumber,
829 mMPSystemData.Procedure,
830 mMPSystemData.ProcArguments
831 );
832 }
833 }
834 }
835 }
836
837 //
838 // If all APs finish, return EFI_SUCCESS.
839 //
840 if (mMPSystemData.FinishCount == mMPSystemData.StartCount) {
841 return EFI_SUCCESS;
842 }
843
844 //
845 // If timeout expires, report timeout.
846 //
847 if (CheckTimeout (&mMPSystemData.CurrentTime, &mMPSystemData.TotalTime, mMPSystemData.ExpectedTime)) {
848 //
849 // If FailedCpuList is not NULL, record all failed APs in it.
850 //
851 if (mMPSystemData.FailedCpuList != NULL) {
852 *mMPSystemData.FailedCpuList = AllocatePool ((mMPSystemData.StartCount - mMPSystemData.FinishCount + 1) * sizeof(UINTN));
853 ASSERT (*mMPSystemData.FailedCpuList != NULL);
854 }
855 ListIndex = 0;
856
857 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
858 //
859 // Check whether this processor is responsible for StartupAllAPs().
860 //
861 if (mMPSystemData.CpuList[ProcessorNumber]) {
862 //
863 // Reset failed APs to idle state
864 //
865 ResetProcessorToIdleState (ProcessorNumber);
866 mMPSystemData.CpuList[ProcessorNumber] = FALSE;
867 if (mMPSystemData.FailedCpuList != NULL) {
868 (*mMPSystemData.FailedCpuList)[ListIndex++] = ProcessorNumber;
869 }
870 }
871 }
872 if (mMPSystemData.FailedCpuList != NULL) {
873 (*mMPSystemData.FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
874 }
875 return EFI_TIMEOUT;
876 }
877 return EFI_NOT_READY;
878 }
879
880 /**
881 Checks status of specified AP.
882
883 This function checks whether specified AP has finished task assigned by StartupThisAP(),
884 and whether timeout expires.
885
886 @param ProcessorNumber The handle number of processor.
887
888 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
889 @retval EFI_TIMEOUT The timeout expires.
890 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
891
892 **/
893 EFI_STATUS
894 CheckThisAP (
895 UINTN ProcessorNumber
896 )
897 {
898 CPU_DATA_BLOCK *CpuData;
899 CPU_STATE CpuState;
900
901 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
902
903 //
904 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
905 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
906 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
907 //
908 AcquireSpinLock (&CpuData->CpuDataLock);
909 CpuState = CpuData->State;
910 ReleaseSpinLock (&CpuData->CpuDataLock);
911
912 //
913 // If the APs finishes for StartupThisAP(), return EFI_SUCCESS.
914 //
915 if (CpuState == CpuStateFinished) {
916
917 AcquireSpinLock (&CpuData->CpuDataLock);
918 CpuData->State = CpuStateIdle;
919 ReleaseSpinLock (&CpuData->CpuDataLock);
920
921 if (CpuData->Finished != NULL) {
922 *(CpuData->Finished) = TRUE;
923 }
924 return EFI_SUCCESS;
925 } else {
926 //
927 // If timeout expires for StartupThisAP(), report timeout.
928 //
929 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
930
931 if (CpuData->Finished != NULL) {
932 *(CpuData->Finished) = FALSE;
933 }
934 //
935 // Reset failed AP to idle state
936 //
937 ResetProcessorToIdleState (ProcessorNumber);
938
939 return EFI_TIMEOUT;
940 }
941 }
942 return EFI_NOT_READY;
943 }
944
945 /**
946 Calculate timeout value and return the current performance counter value.
947
948 Calculate the number of performance counter ticks required for a timeout.
949 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
950 as infinity.
951
952 @param TimeoutInMicroseconds Timeout value in microseconds.
953 @param CurrentTime Returns the current value of the performance counter.
954
955 @return Expected timestamp counter for timeout.
956 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
957 as infinity.
958
959 **/
960 UINT64
961 CalculateTimeout (
962 IN UINTN TimeoutInMicroseconds,
963 OUT UINT64 *CurrentTime
964 )
965 {
966 //
967 // Read the current value of the performance counter
968 //
969 *CurrentTime = GetPerformanceCounter ();
970
971 //
972 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
973 // as infinity.
974 //
975 if (TimeoutInMicroseconds == 0) {
976 return 0;
977 }
978
979 //
980 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
981 // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide
982 // it by 1,000,000, to get the number of ticks for the timeout value.
983 //
984 return DivU64x32 (
985 MultU64x64 (
986 GetPerformanceCounterProperties (NULL, NULL),
987 TimeoutInMicroseconds
988 ),
989 1000000
990 );
991 }
992
993 /**
994 Checks whether timeout expires.
995
996 Check whether the number of ellapsed performance counter ticks required for a timeout condition
997 has been reached. If Timeout is zero, which means infinity, return value is always FALSE.
998
999 @param PreviousTime On input, the value of the performance counter when it was last read.
1000 On output, the current value of the performance counter
1001 @param TotalTime The total amount of ellapsed time in performance counter ticks.
1002 @param Timeout The number of performance counter ticks required to reach a timeout condition.
1003
1004 @retval TRUE A timeout condition has been reached.
1005 @retval FALSE A timeout condition has not been reached.
1006
1007 **/
1008 BOOLEAN
1009 CheckTimeout (
1010 IN OUT UINT64 *PreviousTime,
1011 IN UINT64 *TotalTime,
1012 IN UINT64 Timeout
1013 )
1014 {
1015 UINT64 Start;
1016 UINT64 End;
1017 UINT64 CurrentTime;
1018 INT64 Delta;
1019 INT64 Cycle;
1020
1021 if (Timeout == 0) {
1022 return FALSE;
1023 }
1024 GetPerformanceCounterProperties (&Start, &End);
1025 Cycle = End - Start;
1026 if (Cycle < 0) {
1027 Cycle = -Cycle;
1028 }
1029 Cycle++;
1030 CurrentTime = GetPerformanceCounter();
1031 Delta = (INT64) (CurrentTime - *PreviousTime);
1032 if (Start > End) {
1033 Delta = -Delta;
1034 }
1035 if (Delta < 0) {
1036 Delta += Cycle;
1037 }
1038 *TotalTime += Delta;
1039 *PreviousTime = CurrentTime;
1040 if (*TotalTime > Timeout) {
1041 return TRUE;
1042 }
1043 return FALSE;
1044 }
1045
1046 /**
1047 Searches for the next waiting AP.
1048
1049 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1050
1051 @param NextProcessorNumber Pointer to the processor number of the next waiting AP.
1052
1053 @retval EFI_SUCCESS The next waiting AP has been found.
1054 @retval EFI_NOT_FOUND No waiting AP exists.
1055
1056 **/
1057 EFI_STATUS
1058 GetNextWaitingProcessorNumber (
1059 OUT UINTN *NextProcessorNumber
1060 )
1061 {
1062 UINTN ProcessorNumber;
1063
1064 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
1065
1066 if (mMPSystemData.CpuList[ProcessorNumber]) {
1067 *NextProcessorNumber = ProcessorNumber;
1068 return EFI_SUCCESS;
1069 }
1070 }
1071
1072 return EFI_NOT_FOUND;
1073 }
1074
1075 /**
1076 Wrapper function for all procedures assigned to AP.
1077
1078 Wrapper function for all procedures assigned to AP via MP service protocol.
1079 It controls states of AP and invokes assigned precedure.
1080
1081 **/
1082 VOID
1083 ApProcWrapper (
1084 VOID
1085 )
1086 {
1087 EFI_AP_PROCEDURE Procedure;
1088 VOID *Parameter;
1089 UINTN ProcessorNumber;
1090 CPU_DATA_BLOCK *CpuData;
1091
1092 WhoAmI (&mMpService, &ProcessorNumber);
1093 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1094
1095 AcquireSpinLock (&CpuData->CpuDataLock);
1096 CpuData->State = CpuStateBusy;
1097 ReleaseSpinLock (&CpuData->CpuDataLock);
1098
1099 //
1100 // Now let us check it out.
1101 //
1102 AcquireSpinLock (&CpuData->CpuDataLock);
1103 Procedure = CpuData->Procedure;
1104 Parameter = CpuData->Parameter;
1105 ReleaseSpinLock (&CpuData->CpuDataLock);
1106
1107 if (Procedure != NULL) {
1108
1109 Procedure (Parameter);
1110
1111 //
1112 // if BSP is switched to AP, it continue execute from here, but it carries register state
1113 // of the old AP, so need to reload CpuData (might be stored in a register after compiler
1114 // optimization) to make sure it points to the right data
1115 //
1116 WhoAmI (&mMpService, &ProcessorNumber);
1117 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1118
1119 AcquireSpinLock (&CpuData->CpuDataLock);
1120 CpuData->Procedure = NULL;
1121 ReleaseSpinLock (&CpuData->CpuDataLock);
1122 }
1123
1124 AcquireSpinLock (&CpuData->CpuDataLock);
1125 CpuData->State = CpuStateFinished;
1126 ReleaseSpinLock (&CpuData->CpuDataLock);
1127 }
1128
1129 /**
1130 Sends INIT-SIPI-SIPI to AP.
1131
1132 This function sends INIT-SIPI-SIPI to AP, and assign procedure specified by ApFunction.
1133
1134 @param Broadcast If TRUE, broadcase IPI to all APs; otherwise, send to specified AP.
1135 @param ApicID The Local APIC ID of the specified AP. If Broadcast is TRUE, it is ignored.
1136 @param ApFunction The procedure for AP to work on.
1137
1138 **/
1139 VOID
1140 SendInitSipiSipi (
1141 IN BOOLEAN Broadcast,
1142 IN UINT32 ApicID,
1143 IN VOID *ApFunction
1144 )
1145 {
1146 UINTN ApicBase;
1147 UINT32 ICRLow;
1148 UINT32 ICRHigh;
1149
1150 UINT32 VectorNumber;
1151 UINT32 DeliveryMode;
1152
1153 mExchangeInfo->ApFunction = ApFunction;
1154 mExchangeInfo->StackStart = mStackStartAddress;
1155
1156 if (Broadcast) {
1157 ICRHigh = 0;
1158 ICRLow = BROADCAST_MODE_ALL_EXCLUDING_SELF_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1159 } else {
1160 ICRHigh = ApicID << 24;
1161 ICRLow = SPECIFY_CPU_MODE_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1162 }
1163
1164 VectorNumber = 0;
1165 DeliveryMode = DELIVERY_MODE_INIT;
1166 ICRLow |= VectorNumber | (DeliveryMode << 8);
1167
1168 ApicBase = 0xfee00000;
1169
1170 //
1171 // Write Interrupt Command Registers to send INIT IPI.
1172 //
1173 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_HIGH_OFFSET, ICRHigh);
1174 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
1175
1176 MicroSecondDelay (10);
1177
1178 VectorNumber = (UINT32) RShiftU64 (mStartupVector, 12);
1179 DeliveryMode = DELIVERY_MODE_SIPI;
1180 if (Broadcast) {
1181 ICRLow = BROADCAST_MODE_ALL_EXCLUDING_SELF_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1182 } else {
1183 ICRLow = SPECIFY_CPU_MODE_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
1184 }
1185
1186 ICRLow |= VectorNumber | (DeliveryMode << 8);
1187
1188 //
1189 // Write Interrupt Command Register to send first SIPI IPI.
1190 //
1191 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
1192
1193 MicroSecondDelay (200);
1194
1195 //
1196 // Write Interrupt Command Register to send second SIPI IPI.
1197 //
1198 MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
1199 }
1200
1201 /**
1202 Function to wake up a specified AP and assign procedure to it.
1203
1204 @param ProcessorNumber Handle number of the specified processor.
1205 @param Procedure Procedure to assign.
1206 @param ProcArguments Argument for Procedure.
1207
1208 **/
1209 VOID
1210 WakeUpAp (
1211 IN UINTN ProcessorNumber,
1212 IN EFI_AP_PROCEDURE Procedure,
1213 IN VOID *ProcArguments
1214 )
1215 {
1216 EFI_STATUS Status;
1217 CPU_DATA_BLOCK *CpuData;
1218 EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
1219
1220 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1221
1222 AcquireSpinLock (&CpuData->CpuDataLock);
1223 CpuData->Parameter = ProcArguments;
1224 CpuData->Procedure = Procedure;
1225 ReleaseSpinLock (&CpuData->CpuDataLock);
1226
1227 Status = GetProcessorInfo (
1228 &mMpService,
1229 ProcessorNumber,
1230 &ProcessorInfoBuffer
1231 );
1232 ASSERT_EFI_ERROR (Status);
1233
1234 SendInitSipiSipi (
1235 FALSE,
1236 (UINT32) ProcessorInfoBuffer.ProcessorId,
1237 (VOID *) (UINTN) ApProcWrapper
1238 );
1239 }
1240
1241 /**
1242 Terminate AP's task and set it to idle state.
1243
1244 This function terminates AP's task due to timeout by sending INIT-SIPI,
1245 and sends it to idle state.
1246
1247 @param ProcessorNumber Handle number of the specified processor.
1248
1249 **/
1250 VOID
1251 ResetProcessorToIdleState (
1252 UINTN ProcessorNumber
1253 )
1254 {
1255 EFI_STATUS Status;
1256 CPU_DATA_BLOCK *CpuData;
1257 EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
1258
1259 Status = GetProcessorInfo (
1260 &mMpService,
1261 ProcessorNumber,
1262 &ProcessorInfoBuffer
1263 );
1264 ASSERT_EFI_ERROR (Status);
1265
1266 SendInitSipiSipi (
1267 FALSE,
1268 (UINT32) ProcessorInfoBuffer.ProcessorId,
1269 NULL
1270 );
1271
1272 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1273
1274 AcquireSpinLock (&CpuData->CpuDataLock);
1275 CpuData->State = CpuStateIdle;
1276 ReleaseSpinLock (&CpuData->CpuDataLock);
1277 }
1278
1279 /**
1280 Worker function of EnableDisableAP ()
1281
1282 Worker function of EnableDisableAP (). Changes state of specified processor.
1283
1284 @param ProcessorNumber Processor number of specified AP.
1285 @param NewState Desired state of the specified AP.
1286
1287 @retval EFI_SUCCESS AP's state successfully changed.
1288
1289 **/
1290 EFI_STATUS
1291 ChangeCpuState (
1292 IN UINTN ProcessorNumber,
1293 IN BOOLEAN NewState
1294 )
1295 {
1296 CPU_DATA_BLOCK *CpuData;
1297
1298 CpuData = &mMPSystemData.CpuData[ProcessorNumber];
1299
1300 if (!NewState) {
1301 AcquireSpinLock (&CpuData->CpuDataLock);
1302 CpuData->State = CpuStateDisabled;
1303 ReleaseSpinLock (&CpuData->CpuDataLock);
1304 } else {
1305 AcquireSpinLock (&CpuData->CpuDataLock);
1306 CpuData->State = CpuStateIdle;
1307 ReleaseSpinLock (&CpuData->CpuDataLock);
1308 }
1309
1310 return EFI_SUCCESS;
1311 }
1312
1313 /**
1314 Test memory region of EfiGcdMemoryTypeReserved.
1315
1316 @param Length The length of memory region to test.
1317
1318 @retval EFI_SUCCESS The memory region passes test.
1319 @retval EFI_NOT_FOUND The memory region is not reserved memory.
1320 @retval EFI_DEVICE_ERROR The memory fails on test.
1321
1322 **/
1323 EFI_STATUS
1324 TestReservedMemory (
1325 UINTN Length
1326 )
1327 {
1328 EFI_STATUS Status;
1329 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
1330 EFI_PHYSICAL_ADDRESS Address;
1331 UINTN LengthCovered;
1332 UINTN RemainingLength;
1333
1334 //
1335 // Walk through the memory descriptors covering the memory range.
1336 //
1337 Address = mStartupVector;
1338 RemainingLength = Length;
1339 while (Address < mStartupVector + Length) {
1340 Status = gDS->GetMemorySpaceDescriptor(
1341 Address,
1342 &Descriptor
1343 );
1344 if (EFI_ERROR (Status)) {
1345 return EFI_NOT_FOUND;
1346 }
1347
1348 if (Descriptor.GcdMemoryType != EfiGcdMemoryTypeReserved) {
1349 return EFI_NOT_FOUND;
1350 }
1351 //
1352 // Calculated the length of the intersected range.
1353 //
1354 LengthCovered = (UINTN) (Descriptor.BaseAddress + Descriptor.Length - Address);
1355 if (LengthCovered > RemainingLength) {
1356 LengthCovered = RemainingLength;
1357 }
1358
1359 Status = mGenMemoryTest->CompatibleRangeTest (
1360 mGenMemoryTest,
1361 Address,
1362 LengthCovered
1363 );
1364 if (EFI_ERROR (Status)) {
1365 return EFI_DEVICE_ERROR;
1366 }
1367
1368 Address += LengthCovered;
1369 RemainingLength -= LengthCovered;
1370 }
1371
1372 return EFI_SUCCESS;
1373 }
1374
1375 /**
1376 Allocates startup vector for APs.
1377
1378 This function allocates Startup vector for APs.
1379
1380 @param Size The size of startup vector.
1381
1382 **/
1383 VOID
1384 AllocateStartupVector (
1385 UINTN Size
1386 )
1387 {
1388 EFI_STATUS Status;
1389
1390 Status = gBS->LocateProtocol (
1391 &gEfiGenericMemTestProtocolGuid,
1392 NULL,
1393 (VOID **) &mGenMemoryTest
1394 );
1395 if (EFI_ERROR (Status)) {
1396 mGenMemoryTest = NULL;
1397 }
1398
1399 for (mStartupVector = 0x7F000; mStartupVector >= 0x2000; mStartupVector -= EFI_PAGE_SIZE) {
1400 if (mGenMemoryTest != NULL) {
1401 //
1402 // Test memory if it is EfiGcdMemoryTypeReserved.
1403 //
1404 Status = TestReservedMemory (EFI_SIZE_TO_PAGES (Size) * EFI_PAGE_SIZE);
1405 if (Status == EFI_DEVICE_ERROR) {
1406 continue;
1407 }
1408 }
1409
1410 Status = gBS->AllocatePages (
1411 AllocateAddress,
1412 EfiBootServicesCode,
1413 EFI_SIZE_TO_PAGES (Size),
1414 &mStartupVector
1415 );
1416
1417 if (!EFI_ERROR (Status)) {
1418 break;
1419 }
1420 }
1421
1422 ASSERT_EFI_ERROR (Status);
1423 }
1424
1425 /**
1426 Prepares Startup Vector for APs.
1427
1428 This function prepares Startup Vector for APs.
1429
1430 **/
1431 VOID
1432 PrepareAPStartupVector (
1433 VOID
1434 )
1435 {
1436 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1437 IA32_DESCRIPTOR GdtrForBSP;
1438
1439 //
1440 // Get the address map of startup code for AP,
1441 // including code size, and offset of long jump instructions to redirect.
1442 //
1443 AsmGetAddressMap (&AddressMap);
1444
1445 //
1446 // Allocate a 4K-aligned region under 1M for startup vector for AP.
1447 // The region contains AP startup code and exchange data between BSP and AP.
1448 //
1449 AllocateStartupVector (AddressMap.Size + sizeof (MP_CPU_EXCHANGE_INFO));
1450
1451 //
1452 // Copy AP startup code to startup vector, and then redirect the long jump
1453 // instructions for mode switching.
1454 //
1455 CopyMem ((VOID *) (UINTN) mStartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
1456 *(UINT32 *) (UINTN) (mStartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (mStartupVector + AddressMap.PModeEntryOffset);
1457 //
1458 // For IA32 mode, LongJumpOffset is filled with zero. If non-zero, then we are in X64 mode, so further redirect for long mode switch.
1459 //
1460 if (AddressMap.LongJumpOffset != 0) {
1461 *(UINT32 *) (UINTN) (mStartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (mStartupVector + AddressMap.LModeEntryOffset);
1462 }
1463
1464 //
1465 // Get the start address of exchange data between BSP and AP.
1466 //
1467 mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (mStartupVector + AddressMap.Size);
1468
1469 ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
1470
1471 mStackStartAddress = AllocatePages (EFI_SIZE_TO_PAGES (MAX_CPU_NUMBER * AP_STACK_SIZE));
1472 mExchangeInfo->StackSize = AP_STACK_SIZE;
1473
1474 AsmReadGdtr (&GdtrForBSP);
1475 mExchangeInfo->GdtrProfile.Base = GdtrForBSP.Base;
1476 mExchangeInfo->GdtrProfile.Limit = GdtrForBSP.Limit;
1477
1478 mExchangeInfo->BufferStart = (UINT32) mStartupVector;
1479 mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());
1480 }
1481
1482 /**
1483 Prepares memory region for processor configuration.
1484
1485 This function prepares memory region for processor configuration.
1486
1487 **/
1488 VOID
1489 PrepareMemoryForConfiguration (
1490 VOID
1491 )
1492 {
1493 UINTN Index;
1494
1495 //
1496 // Initialize Spin Locks for system
1497 //
1498 InitializeSpinLock (&mMPSystemData.APSerializeLock);
1499 for (Index = 0; Index < MAX_CPU_NUMBER; Index++) {
1500 InitializeSpinLock (&mMPSystemData.CpuData[Index].CpuDataLock);
1501 }
1502
1503 PrepareAPStartupVector ();
1504 }
1505
1506 /**
1507 Gets the processor number of BSP.
1508
1509 @return The processor number of BSP.
1510
1511 **/
1512 UINTN
1513 GetBspNumber (
1514 VOID
1515 )
1516 {
1517 UINTN ProcessorNumber;
1518 EFI_MP_PROC_CONTEXT ProcessorContextBuffer;
1519 EFI_STATUS Status;
1520 UINTN BufferSize;
1521
1522 BufferSize = sizeof (EFI_MP_PROC_CONTEXT);
1523
1524 for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
1525 Status = mFrameworkMpService->GetProcessorContext (
1526 mFrameworkMpService,
1527 ProcessorNumber,
1528 &BufferSize,
1529 &ProcessorContextBuffer
1530 );
1531 ASSERT_EFI_ERROR (Status);
1532
1533 if (ProcessorContextBuffer.Designation == EfiCpuBSP) {
1534 break;
1535 }
1536 }
1537 ASSERT (ProcessorNumber < mNumberOfProcessors);
1538
1539 return ProcessorNumber;
1540 }
1541
1542 /**
1543 Entrypoint of MP Services Protocol thunk driver.
1544
1545 @param[in] ImageHandle The firmware allocated handle for the EFI image.
1546 @param[in] SystemTable A pointer to the EFI System Table.
1547
1548 @retval EFI_SUCCESS The entry point is executed successfully.
1549
1550 **/
1551 EFI_STATUS
1552 EFIAPI
1553 InitializeMpServicesProtocol (
1554 IN EFI_HANDLE ImageHandle,
1555 IN EFI_SYSTEM_TABLE *SystemTable
1556 )
1557 {
1558 EFI_STATUS Status;
1559
1560 PrepareMemoryForConfiguration ();
1561
1562 //
1563 // Locates Framework version MP Services Protocol
1564 //
1565 Status = gBS->LocateProtocol (
1566 &gFrameworkEfiMpServiceProtocolGuid,
1567 NULL,
1568 (VOID **) &mFrameworkMpService
1569 );
1570 ASSERT_EFI_ERROR (Status);
1571
1572 Status = mFrameworkMpService->GetGeneralMPInfo (
1573 mFrameworkMpService,
1574 &mNumberOfProcessors,
1575 NULL,
1576 NULL,
1577 NULL,
1578 NULL
1579 );
1580 ASSERT_EFI_ERROR (Status);
1581
1582 //
1583 // Create timer event to check AP state for non-blocking execution.
1584 //
1585 Status = gBS->CreateEvent (
1586 EVT_TIMER | EVT_NOTIFY_SIGNAL,
1587 TPL_CALLBACK,
1588 CheckAPsStatus,
1589 NULL,
1590 &mMPSystemData.CheckAPsEvent
1591 );
1592 ASSERT_EFI_ERROR (Status);
1593
1594 //
1595 // Now install the MP services protocol.
1596 //
1597 Status = gBS->InstallProtocolInterface (
1598 &mHandle,
1599 &gEfiMpServiceProtocolGuid,
1600 EFI_NATIVE_INTERFACE,
1601 &mMpService
1602 );
1603 ASSERT_EFI_ERROR (Status);
1604
1605 //
1606 // Launch the timer event to check AP state.
1607 //
1608 Status = gBS->SetTimer (
1609 mMPSystemData.CheckAPsEvent,
1610 TimerPeriodic,
1611 100000
1612 );
1613 ASSERT_EFI_ERROR (Status);
1614
1615 return EFI_SUCCESS;
1616 }