]> git.proxmox.com Git - mirror_edk2.git/blob - EmulatorPkg/CpuRuntimeDxe/MpService.c
EmulatorPkg/MpService: use simple pointer access
[mirror_edk2.git] / EmulatorPkg / CpuRuntimeDxe / MpService.c
1 /** @file
2 Construct MP Services Protocol on top of the EMU Thread protocol.
3 This code makes APs show up in the emulator. PcdEmuApCount is the
4 number of APs the emulator should produce.
5
6 The MP Services Protocol provides a generalized way of performing following tasks:
7 - Retrieving information of multi-processor environment and MP-related status of
8 specific processors.
9 - Dispatching user-provided function to APs.
10 - Maintain MP-related processor status.
11
12 The MP Services Protocol must be produced on any system with more than one logical
13 processor.
14
15 The Protocol is available only during boot time.
16
17 MP Services Protocol is hardware-independent. Most of the logic of this protocol
18 is architecturally neutral. It abstracts the multi-processor environment and
19 status of processors, and provides interfaces to retrieve information, maintain,
20 and dispatch.
21
22 MP Services Protocol may be consumed by ACPI module. The ACPI module may use this
23 protocol to retrieve data that are needed for an MP platform and report them to OS.
24 MP Services Protocol may also be used to program and configure processors, such
25 as MTRR synchronization for memory space attributes setting in DXE Services.
26 MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot
27 by taking advantage of the processing capabilities of the APs, for example, using
28 APs to help test system memory in parallel with other device initialization.
29 Diagnostics applications may also use this protocol for multi-processor.
30
31 Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR>
32 Portitions Copyright (c) 2011, Apple Inc. All rights reserved.
33 This program and the accompanying materials are licensed and made available under
34 the terms and conditions of the BSD License that accompanies this distribution.
35 The full text of the license may be found at
36 http://opensource.org/licenses/bsd-license.php.
37
38 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
39 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
40
41
42 **/
43
44 #include "CpuDriver.h"
45
46
47 MP_SYSTEM_DATA gMPSystem;
48 EMU_THREAD_THUNK_PROTOCOL *gThread = NULL;
49 EFI_EVENT gReadToBootEvent;
50 BOOLEAN gReadToBoot = FALSE;
51 UINTN gPollInterval;
52
53
54 BOOLEAN
55 IsBSP (
56 VOID
57 )
58 {
59 EFI_STATUS Status;
60 UINTN ProcessorNumber;
61
62 Status = CpuMpServicesWhoAmI (&mMpServicesTemplate, &ProcessorNumber);
63 if (EFI_ERROR (Status)) {
64 return FALSE;
65 }
66
67 return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0;
68 }
69
70
71 VOID
72 SetApProcedure (
73 IN PROCESSOR_DATA_BLOCK *Processor,
74 IN EFI_AP_PROCEDURE Procedure,
75 IN VOID *ProcedureArgument
76 )
77 {
78 gThread->MutexLock (Processor->ProcedureLock);
79 Processor->Parameter = ProcedureArgument;
80 Processor->Procedure = Procedure;
81 gThread->MutexUnlock (Processor->ProcedureLock);
82 }
83
84
85 EFI_STATUS
86 GetNextBlockedNumber (
87 OUT UINTN *NextNumber
88 )
89 {
90 UINTN Number;
91 PROCESSOR_STATE ProcessorState;
92 PROCESSOR_DATA_BLOCK *Data;
93
94 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
95 Data = &gMPSystem.ProcessorData[Number];
96 if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
97 // Skip BSP
98 continue;
99 }
100
101 gThread->MutexLock (Data->StateLock);
102 ProcessorState = Data->State;
103 gThread->MutexUnlock (Data->StateLock);
104
105 if (ProcessorState == CPU_STATE_BLOCKED) {
106 *NextNumber = Number;
107 return EFI_SUCCESS;
108 }
109 }
110
111 return EFI_NOT_FOUND;
112 }
113
114
115
116
117 /**
118 This service retrieves the number of logical processor in the platform
119 and the number of those logical processors that are enabled on this boot.
120 This service may only be called from the BSP.
121
122 This function is used to retrieve the following information:
123 - The number of logical processors that are present in the system.
124 - The number of enabled logical processors in the system at the instant
125 this call is made.
126
127 Because MP Service Protocol provides services to enable and disable processors
128 dynamically, the number of enabled logical processors may vary during the
129 course of a boot session.
130
131 If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
132 If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
133 EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
134 is returned in NumberOfProcessors, the number of currently enabled processor
135 is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
136
137 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
138 instance.
139 @param[out] NumberOfProcessors Pointer to the total number of logical
140 processors in the system, including the BSP
141 and disabled APs.
142 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
143 processors that exist in system, including
144 the BSP.
145
146 @retval EFI_SUCCESS The number of logical processors and enabled
147 logical processors was retrieved.
148 @retval EFI_DEVICE_ERROR The calling processor is an AP.
149 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
150 @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.
151
152 **/
153 EFI_STATUS
154 EFIAPI
155 CpuMpServicesGetNumberOfProcessors (
156 IN EFI_MP_SERVICES_PROTOCOL *This,
157 OUT UINTN *NumberOfProcessors,
158 OUT UINTN *NumberOfEnabledProcessors
159 )
160 {
161 if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {
162 return EFI_INVALID_PARAMETER;
163 }
164
165 if (!IsBSP ()) {
166 return EFI_DEVICE_ERROR;
167 }
168
169 *NumberOfProcessors = gMPSystem.NumberOfProcessors;
170 *NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors;
171 return EFI_SUCCESS;
172 }
173
174
175
176 /**
177 Gets detailed MP-related information on the requested processor at the
178 instant this call is made. This service may only be called from the BSP.
179
180 This service retrieves detailed MP-related information about any processor
181 on the platform. Note the following:
182 - The processor information may change during the course of a boot session.
183 - The information presented here is entirely MP related.
184
185 Information regarding the number of caches and their sizes, frequency of operation,
186 slot numbers is all considered platform-related information and is not provided
187 by this service.
188
189 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
190 instance.
191 @param[in] ProcessorNumber The handle number of processor.
192 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
193 the requested processor is deposited.
194
195 @retval EFI_SUCCESS Processor information was returned.
196 @retval EFI_DEVICE_ERROR The calling processor is an AP.
197 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
198 @retval EFI_NOT_FOUND The processor with the handle specified by
199 ProcessorNumber does not exist in the platform.
200
201 **/
202 EFI_STATUS
203 EFIAPI
204 CpuMpServicesGetProcessorInfo (
205 IN EFI_MP_SERVICES_PROTOCOL *This,
206 IN UINTN ProcessorNumber,
207 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
208 )
209 {
210 if (ProcessorInfoBuffer == NULL) {
211 return EFI_INVALID_PARAMETER;
212 }
213
214 if (!IsBSP ()) {
215 return EFI_DEVICE_ERROR;
216 }
217
218 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
219 return EFI_NOT_FOUND;
220 }
221
222 CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION));
223 return EFI_SUCCESS;
224 }
225
226
227 /**
228 This service executes a caller provided function on all enabled APs. APs can
229 run either simultaneously or one at a time in sequence. This service supports
230 both blocking and non-blocking requests. The non-blocking requests use EFI
231 events so the BSP can detect when the APs have finished. This service may only
232 be called from the BSP.
233
234 This function is used to dispatch all the enabled APs to the function specified
235 by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned
236 immediately and Procedure is not started on any AP.
237
238 If SingleThread is TRUE, all the enabled APs execute the function specified by
239 Procedure one by one, in ascending order of processor handle number. Otherwise,
240 all the enabled APs execute the function specified by Procedure simultaneously.
241
242 If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
243 APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking
244 mode, and the BSP returns from this service without waiting for APs. If a
245 non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
246 is signaled, then EFI_UNSUPPORTED must be returned.
247
248 If the timeout specified by TimeoutInMicroseconds expires before all APs return
249 from Procedure, then Procedure on the failed APs is terminated. All enabled APs
250 are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
251 and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
252 content points to the list of processor handle numbers in which Procedure was
253 terminated.
254
255 Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
256 to make sure that the nature of the code that is executed on the BSP and the
257 dispatched APs is well controlled. The MP Services Protocol does not guarantee
258 that the Procedure function is MP-safe. Hence, the tasks that can be run in
259 parallel are limited to certain independent tasks and well-controlled exclusive
260 code. EFI services and protocols may not be called by APs unless otherwise
261 specified.
262
263 In blocking execution mode, BSP waits until all APs finish or
264 TimeoutInMicroseconds expires.
265
266 In non-blocking execution mode, BSP is freed to return to the caller and then
267 proceed to the next task without having to wait for APs. The following
268 sequence needs to occur in a non-blocking execution mode:
269
270 -# The caller that intends to use this MP Services Protocol in non-blocking
271 mode creates WaitEvent by calling the EFI CreateEvent() service. The caller
272 invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
273 is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
274 the function specified by Procedure to be started on all the enabled APs,
275 and releases the BSP to continue with other tasks.
276 -# The caller can use the CheckEvent() and WaitForEvent() services to check
277 the state of the WaitEvent created in step 1.
278 -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
279 Service signals WaitEvent by calling the EFI SignalEvent() function. If
280 FailedCpuList is not NULL, its content is available when WaitEvent is
281 signaled. If all APs returned from Procedure prior to the timeout, then
282 FailedCpuList is set to NULL. If not all APs return from Procedure before
283 the timeout, then FailedCpuList is filled in with the list of the failed
284 APs. The buffer is allocated by MP Service Protocol using AllocatePool().
285 It is the caller's responsibility to free the buffer with FreePool() service.
286 -# This invocation of SignalEvent() function informs the caller that invoked
287 EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed
288 the specified task or a timeout occurred. The contents of FailedCpuList
289 can be examined to determine which APs did not complete the specified task
290 prior to the timeout.
291
292 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
293 instance.
294 @param[in] Procedure A pointer to the function to be run on
295 enabled APs of the system. See type
296 EFI_AP_PROCEDURE.
297 @param[in] SingleThread If TRUE, then all the enabled APs execute
298 the function specified by Procedure one by
299 one, in ascending order of processor handle
300 number. If FALSE, then all the enabled APs
301 execute the function specified by Procedure
302 simultaneously.
303 @param[in] WaitEvent The event created by the caller with CreateEvent()
304 service. If it is NULL, then execute in
305 blocking mode. BSP waits until all APs finish
306 or TimeoutInMicroseconds expires. If it's
307 not NULL, then execute in non-blocking mode.
308 BSP requests the function specified by
309 Procedure to be started on all the enabled
310 APs, and go on executing immediately. If
311 all return from Procedure, or TimeoutInMicroseconds
312 expires, this event is signaled. The BSP
313 can use the CheckEvent() or WaitForEvent()
314 services to check the state of event. Type
315 EFI_EVENT is defined in CreateEvent() in
316 the Unified Extensible Firmware Interface
317 Specification.
318 @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
319 APs to return from Procedure, either for
320 blocking or non-blocking mode. Zero means
321 infinity. If the timeout expires before
322 all APs return from Procedure, then Procedure
323 on the failed APs is terminated. All enabled
324 APs are available for next function assigned
325 by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
326 or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
327 If the timeout expires in blocking mode,
328 BSP returns EFI_TIMEOUT. If the timeout
329 expires in non-blocking mode, WaitEvent
330 is signaled with SignalEvent().
331 @param[in] ProcedureArgument The parameter passed into Procedure for
332 all APs.
333 @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
334 if all APs finish successfully, then its
335 content is set to NULL. If not all APs
336 finish before timeout expires, then its
337 content is set to address of the buffer
338 holding handle numbers of the failed APs.
339 The buffer is allocated by MP Service Protocol,
340 and it's the caller's responsibility to
341 free the buffer with FreePool() service.
342 In blocking mode, it is ready for consumption
343 when the call returns. In non-blocking mode,
344 it is ready when WaitEvent is signaled. The
345 list of failed CPU is terminated by
346 END_OF_CPU_LIST.
347
348 @retval EFI_SUCCESS In blocking mode, all APs have finished before
349 the timeout expired.
350 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
351 to all enabled APs.
352 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the
353 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
354 signaled.
355 @retval EFI_DEVICE_ERROR Caller processor is AP.
356 @retval EFI_NOT_STARTED No enabled APs exist in the system.
357 @retval EFI_NOT_READY Any enabled APs are busy.
358 @retval EFI_TIMEOUT In blocking mode, the timeout expired before
359 all enabled APs have finished.
360 @retval EFI_INVALID_PARAMETER Procedure is NULL.
361
362 **/
363 EFI_STATUS
364 EFIAPI
365 CpuMpServicesStartupAllAps (
366 IN EFI_MP_SERVICES_PROTOCOL *This,
367 IN EFI_AP_PROCEDURE Procedure,
368 IN BOOLEAN SingleThread,
369 IN EFI_EVENT WaitEvent OPTIONAL,
370 IN UINTN TimeoutInMicroseconds,
371 IN VOID *ProcedureArgument OPTIONAL,
372 OUT UINTN **FailedCpuList OPTIONAL
373 )
374 {
375 EFI_STATUS Status;
376 PROCESSOR_DATA_BLOCK *ProcessorData;
377 UINTN Number;
378 UINTN NextNumber;
379 PROCESSOR_STATE APInitialState;
380 PROCESSOR_STATE ProcessorState;
381 INTN Timeout;
382
383
384 if (!IsBSP ()) {
385 return EFI_DEVICE_ERROR;
386 }
387
388 if (gMPSystem.NumberOfProcessors == 1) {
389 return EFI_NOT_STARTED;
390 }
391
392 if (Procedure == NULL) {
393 return EFI_INVALID_PARAMETER;
394 }
395
396 if ((WaitEvent != NULL) && gReadToBoot) {
397 return EFI_UNSUPPORTED;
398 }
399
400
401 if (FailedCpuList != NULL) {
402 gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN));
403 if (gMPSystem.FailedList == NULL) {
404 return EFI_OUT_OF_RESOURCES;
405 }
406 SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST);
407 gMPSystem.FailedListIndex = 0;
408 *FailedCpuList = gMPSystem.FailedList;
409 }
410
411 Timeout = TimeoutInMicroseconds;
412
413 ProcessorData = NULL;
414
415 gMPSystem.FinishCount = 0;
416 gMPSystem.StartCount = 0;
417 gMPSystem.SingleThread = SingleThread;
418 APInitialState = CPU_STATE_READY;
419
420 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
421 ProcessorData = &gMPSystem.ProcessorData[Number];
422
423 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
424 // Skip BSP
425 continue;
426 }
427
428 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
429 // Skip Disabled processors
430 gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number;
431 continue;
432 }
433
434 //
435 // Get APs prepared, and put failing APs into FailedCpuList
436 // if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready
437 // state 1 by 1, until the previous 1 finished its task
438 // if not "SingleThread", all APs are put to ready state from the beginning
439 //
440 gThread->MutexLock(ProcessorData->StateLock);
441 if (ProcessorData->State == CPU_STATE_IDLE) {
442 ProcessorData->State = APInitialState;
443 gThread->MutexUnlock (ProcessorData->StateLock);
444
445 gMPSystem.StartCount++;
446 if (SingleThread) {
447 APInitialState = CPU_STATE_BLOCKED;
448 }
449 } else {
450 gThread->MutexUnlock (ProcessorData->StateLock);
451 return EFI_NOT_READY;
452 }
453 }
454
455 if (WaitEvent != NULL) {
456 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
457 ProcessorData = &gMPSystem.ProcessorData[Number];
458 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
459 // Skip BSP
460 continue;
461 }
462
463 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
464 // Skip Disabled processors
465 continue;
466 }
467
468 SetApProcedure (ProcessorData, Procedure, ProcedureArgument);
469 }
470
471 //
472 // Save data into private data structure, and create timer to poll AP state before exiting
473 //
474 gMPSystem.Procedure = Procedure;
475 gMPSystem.ProcedureArgument = ProcedureArgument;
476 gMPSystem.WaitEvent = WaitEvent;
477 gMPSystem.Timeout = TimeoutInMicroseconds;
478 gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);
479 Status = gBS->SetTimer (
480 gMPSystem.CheckAllAPsEvent,
481 TimerPeriodic,
482 gPollInterval
483 );
484 return Status;
485
486 }
487
488 while (TRUE) {
489 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
490 ProcessorData = &gMPSystem.ProcessorData[Number];
491 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
492 // Skip BSP
493 continue;
494 }
495
496 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
497 // Skip Disabled processors
498 continue;
499 }
500
501 gThread->MutexLock (ProcessorData->StateLock);
502 ProcessorState = ProcessorData->State;
503 gThread->MutexUnlock (ProcessorData->StateLock);
504
505 switch (ProcessorState) {
506 case CPU_STATE_READY:
507 SetApProcedure (ProcessorData, Procedure, ProcedureArgument);
508 break;
509
510 case CPU_STATE_FINISHED:
511 gMPSystem.FinishCount++;
512 if (SingleThread) {
513 Status = GetNextBlockedNumber (&NextNumber);
514 if (!EFI_ERROR (Status)) {
515 gThread->MutexLock (gMPSystem.ProcessorData[NextNumber].StateLock);
516 gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY;
517 gThread->MutexUnlock (gMPSystem.ProcessorData[NextNumber].StateLock);
518 }
519 }
520
521 gThread->MutexLock (ProcessorData->StateLock);
522 ProcessorData->State = CPU_STATE_IDLE;
523 gThread->MutexUnlock (ProcessorData->StateLock);
524
525 break;
526
527 default:
528 break;
529 }
530 }
531
532 if (gMPSystem.FinishCount == gMPSystem.StartCount) {
533 Status = EFI_SUCCESS;
534 goto Done;
535 }
536
537 if ((TimeoutInMicroseconds != 0) && (Timeout < 0)) {
538 Status = EFI_TIMEOUT;
539 goto Done;
540 }
541
542 gBS->Stall (gPollInterval);
543 Timeout -= gPollInterval;
544 }
545
546 Done:
547 if (FailedCpuList != NULL) {
548 if (gMPSystem.FailedListIndex == 0) {
549 FreePool (*FailedCpuList);
550 *FailedCpuList = NULL;
551 }
552 }
553
554 return EFI_SUCCESS;
555 }
556
557
558 /**
559 This service lets the caller get one enabled AP to execute a caller-provided
560 function. The caller can request the BSP to either wait for the completion
561 of the AP or just proceed with the next task by using the EFI event mechanism.
562 See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
563 execution support. This service may only be called from the BSP.
564
565 This function is used to dispatch one enabled AP to the function specified by
566 Procedure passing in the argument specified by ProcedureArgument. If WaitEvent
567 is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
568 TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
569 BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
570 is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
571 then EFI_UNSUPPORTED must be returned.
572
573 If the timeout specified by TimeoutInMicroseconds expires before the AP returns
574 from Procedure, then execution of Procedure by the AP is terminated. The AP is
575 available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
576 EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
577
578 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
579 instance.
580 @param[in] Procedure A pointer to the function to be run on
581 enabled APs of the system. See type
582 EFI_AP_PROCEDURE.
583 @param[in] ProcessorNumber The handle number of the AP. The range is
584 from 0 to the total number of logical
585 processors minus 1. The total number of
586 logical processors can be retrieved by
587 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
588 @param[in] WaitEvent The event created by the caller with CreateEvent()
589 service. If it is NULL, then execute in
590 blocking mode. BSP waits until all APs finish
591 or TimeoutInMicroseconds expires. If it's
592 not NULL, then execute in non-blocking mode.
593 BSP requests the function specified by
594 Procedure to be started on all the enabled
595 APs, and go on executing immediately. If
596 all return from Procedure or TimeoutInMicroseconds
597 expires, this event is signaled. The BSP
598 can use the CheckEvent() or WaitForEvent()
599 services to check the state of event. Type
600 EFI_EVENT is defined in CreateEvent() in
601 the Unified Extensible Firmware Interface
602 Specification.
603 @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
604 APs to return from Procedure, either for
605 blocking or non-blocking mode. Zero means
606 infinity. If the timeout expires before
607 all APs return from Procedure, then Procedure
608 on the failed APs is terminated. All enabled
609 APs are available for next function assigned
610 by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
611 or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
612 If the timeout expires in blocking mode,
613 BSP returns EFI_TIMEOUT. If the timeout
614 expires in non-blocking mode, WaitEvent
615 is signaled with SignalEvent().
616 @param[in] ProcedureArgument The parameter passed into Procedure for
617 all APs.
618 @param[out] Finished If NULL, this parameter is ignored. In
619 blocking mode, this parameter is ignored.
620 In non-blocking mode, if AP returns from
621 Procedure before the timeout expires, its
622 content is set to TRUE. Otherwise, the
623 value is set to FALSE. The caller can
624 determine if the AP returned from Procedure
625 by evaluating this value.
626
627 @retval EFI_SUCCESS In blocking mode, specified AP finished before
628 the timeout expires.
629 @retval EFI_SUCCESS In non-blocking mode, the function has been
630 dispatched to specified AP.
631 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the
632 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
633 signaled.
634 @retval EFI_DEVICE_ERROR The calling processor is an AP.
635 @retval EFI_TIMEOUT In blocking mode, the timeout expired before
636 the specified AP has finished.
637 @retval EFI_NOT_READY The specified AP is busy.
638 @retval EFI_NOT_FOUND The processor with the handle specified by
639 ProcessorNumber does not exist.
640 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
641 @retval EFI_INVALID_PARAMETER Procedure is NULL.
642
643 **/
644 EFI_STATUS
645 EFIAPI
646 CpuMpServicesStartupThisAP (
647 IN EFI_MP_SERVICES_PROTOCOL *This,
648 IN EFI_AP_PROCEDURE Procedure,
649 IN UINTN ProcessorNumber,
650 IN EFI_EVENT WaitEvent OPTIONAL,
651 IN UINTN TimeoutInMicroseconds,
652 IN VOID *ProcedureArgument OPTIONAL,
653 OUT BOOLEAN *Finished OPTIONAL
654 )
655 {
656 INTN Timeout;
657
658 if (!IsBSP ()) {
659 return EFI_DEVICE_ERROR;
660 }
661
662 if (Procedure == NULL) {
663 return EFI_INVALID_PARAMETER;
664 }
665
666 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
667 return EFI_NOT_FOUND;
668 }
669
670 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
671 return EFI_INVALID_PARAMETER;
672 }
673
674 gThread->MutexLock(gMPSystem.ProcessorData[ProcessorNumber].StateLock);
675 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {
676 gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock);
677 return EFI_NOT_READY;
678 }
679 gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock);
680
681 if ((WaitEvent != NULL) && gReadToBoot) {
682 return EFI_UNSUPPORTED;
683 }
684
685 Timeout = TimeoutInMicroseconds;
686
687 gMPSystem.StartCount = 1;
688 gMPSystem.FinishCount = 0;
689
690 SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument);
691
692 if (WaitEvent != NULL) {
693 // Non Blocking
694 gMPSystem.WaitEvent = WaitEvent;
695 gBS->SetTimer (
696 gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent,
697 TimerPeriodic,
698 gPollInterval
699 );
700 return EFI_SUCCESS;
701 }
702
703 // Blocking
704 while (TRUE) {
705 gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
706 if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) {
707 gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE;
708 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
709 break;
710 }
711
712 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
713
714 if ((TimeoutInMicroseconds != 0) && (Timeout < 0)) {
715 return EFI_TIMEOUT;
716 }
717
718 gBS->Stall (gPollInterval);
719 Timeout -= gPollInterval;
720 }
721
722 return EFI_SUCCESS;
723
724 }
725
726
727 /**
728 This service switches the requested AP to be the BSP from that point onward.
729 This service changes the BSP for all purposes. This call can only be performed
730 by the current BSP.
731
732 This service switches the requested AP to be the BSP from that point onward.
733 This service changes the BSP for all purposes. The new BSP can take over the
734 execution of the old BSP and continue seamlessly from where the old one left
735 off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
736 is signaled.
737
738 If the BSP cannot be switched prior to the return from this service, then
739 EFI_UNSUPPORTED must be returned.
740
741 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
742 @param[in] ProcessorNumber The handle number of AP that is to become the new
743 BSP. The range is from 0 to the total number of
744 logical processors minus 1. The total number of
745 logical processors can be retrieved by
746 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
747 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
748 enabled AP. Otherwise, it will be disabled.
749
750 @retval EFI_SUCCESS BSP successfully switched.
751 @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
752 this service returning.
753 @retval EFI_UNSUPPORTED Switching the BSP is not supported.
754 @retval EFI_SUCCESS The calling processor is an AP.
755 @retval EFI_NOT_FOUND The processor with the handle specified by
756 ProcessorNumber does not exist.
757 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
758 a disabled AP.
759 @retval EFI_NOT_READY The specified AP is busy.
760
761 **/
762 EFI_STATUS
763 EFIAPI
764 CpuMpServicesSwitchBSP (
765 IN EFI_MP_SERVICES_PROTOCOL *This,
766 IN UINTN ProcessorNumber,
767 IN BOOLEAN EnableOldBSP
768 )
769 {
770 UINTN Index;
771
772 if (!IsBSP ()) {
773 return EFI_DEVICE_ERROR;
774 }
775
776 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
777 return EFI_NOT_FOUND;
778 }
779
780 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
781 return EFI_INVALID_PARAMETER;
782 }
783
784 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
785 return EFI_INVALID_PARAMETER;
786 }
787
788 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {
789 if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
790 break;
791 }
792 }
793 ASSERT (Index != gMPSystem.NumberOfProcessors);
794
795 gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
796 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {
797 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
798 return EFI_NOT_READY;
799 }
800 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
801
802 // Skip for now as we need switch a bunch of stack stuff around and it's complex
803 // May not be worth it?
804 return EFI_NOT_READY;
805 }
806
807
808 /**
809 This service lets the caller enable or disable an AP from this point onward.
810 This service may only be called from the BSP.
811
812 This service allows the caller enable or disable an AP from this point onward.
813 The caller can optionally specify the health status of the AP by Health. If
814 an AP is being disabled, then the state of the disabled AP is implementation
815 dependent. If an AP is enabled, then the implementation must guarantee that a
816 complete initialization sequence is performed on the AP, so the AP is in a state
817 that is compatible with an MP operating system. This service may not be supported
818 after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
819
820 If the enable or disable AP operation cannot be completed prior to the return
821 from this service, then EFI_UNSUPPORTED must be returned.
822
823 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
824 @param[in] ProcessorNumber The handle number of AP that is to become the new
825 BSP. The range is from 0 to the total number of
826 logical processors minus 1. The total number of
827 logical processors can be retrieved by
828 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
829 @param[in] EnableAP Specifies the new state for the processor for
830 enabled, FALSE for disabled.
831 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
832 the new health status of the AP. This flag
833 corresponds to StatusFlag defined in
834 EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
835 the PROCESSOR_HEALTH_STATUS_BIT is used. All other
836 bits are ignored. If it is NULL, this parameter
837 is ignored.
838
839 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
840 @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
841 prior to this service returning.
842 @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
843 @retval EFI_DEVICE_ERROR The calling processor is an AP.
844 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
845 does not exist.
846 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
847
848 **/
849 EFI_STATUS
850 EFIAPI
851 CpuMpServicesEnableDisableAP (
852 IN EFI_MP_SERVICES_PROTOCOL *This,
853 IN UINTN ProcessorNumber,
854 IN BOOLEAN EnableAP,
855 IN UINT32 *HealthFlag OPTIONAL
856 )
857 {
858 if (!IsBSP ()) {
859 return EFI_DEVICE_ERROR;
860 }
861
862 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
863 return EFI_NOT_FOUND;
864 }
865
866 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
867 return EFI_INVALID_PARAMETER;
868 }
869
870 gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
871 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {
872 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
873 return EFI_UNSUPPORTED;
874 }
875 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
876
877 if (EnableAP) {
878 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) {
879 gMPSystem.NumberOfEnabledProcessors++;
880 }
881 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT;
882 } else {
883 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) {
884 gMPSystem.NumberOfEnabledProcessors--;
885 }
886 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT;
887 }
888
889 if (HealthFlag != NULL) {
890 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;
891 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT);
892 }
893
894 return EFI_SUCCESS;
895 }
896
897
898 /**
899 This return the handle number for the calling processor. This service may be
900 called from the BSP and APs.
901
902 This service returns the processor handle number for the calling processor.
903 The returned value is in the range from 0 to the total number of logical
904 processors minus 1. The total number of logical processors can be retrieved
905 with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
906 called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
907 is returned. Otherwise, the current processors handle number is returned in
908 ProcessorNumber, and EFI_SUCCESS is returned.
909
910 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
911 @param[in] ProcessorNumber The handle number of AP that is to become the new
912 BSP. The range is from 0 to the total number of
913 logical processors minus 1. The total number of
914 logical processors can be retrieved by
915 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
916
917 @retval EFI_SUCCESS The current processor handle number was returned
918 in ProcessorNumber.
919 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
920
921 **/
922 EFI_STATUS
923 EFIAPI
924 CpuMpServicesWhoAmI (
925 IN EFI_MP_SERVICES_PROTOCOL *This,
926 OUT UINTN *ProcessorNumber
927 )
928 {
929 UINTN Index;
930 UINT64 ProcessorId;
931
932 if (ProcessorNumber == NULL) {
933 return EFI_INVALID_PARAMETER;
934 }
935
936 ProcessorId = gThread->Self ();
937 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {
938 if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) {
939 break;
940 }
941 }
942
943 *ProcessorNumber = Index;
944 return EFI_SUCCESS;
945 }
946
947
948
949 EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = {
950 CpuMpServicesGetNumberOfProcessors,
951 CpuMpServicesGetProcessorInfo,
952 CpuMpServicesStartupAllAps,
953 CpuMpServicesStartupThisAP,
954 CpuMpServicesSwitchBSP,
955 CpuMpServicesEnableDisableAP,
956 CpuMpServicesWhoAmI
957 };
958
959
960
961 /*++
962 If timeout occurs in StartupAllAps(), a timer is set, which invokes this
963 procedure periodically to check whether all APs have finished.
964
965
966 --*/
967 VOID
968 EFIAPI
969 CpuCheckAllAPsStatus (
970 IN EFI_EVENT Event,
971 IN VOID *Context
972 )
973 {
974 UINTN ProcessorNumber;
975 UINTN NextNumber;
976 PROCESSOR_DATA_BLOCK *ProcessorData;
977 PROCESSOR_DATA_BLOCK *NextData;
978 EFI_STATUS Status;
979 PROCESSOR_STATE ProcessorState;
980 UINTN Cpu;
981 BOOLEAN Found;
982
983 if (gMPSystem.TimeoutActive) {
984 gMPSystem.Timeout -= gPollInterval;
985 }
986
987 for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {
988 ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];
989 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
990 // Skip BSP
991 continue;
992 }
993
994 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
995 // Skip Disabled processors
996 continue;
997 }
998
999 // This is an Interrupt Service routine.
1000 // This can grab a lock that is held in a non-interrupt
1001 // context. Meaning deadlock. Which is a bad thing.
1002 // So, try lock it. If we can get it, cool, do our thing.
1003 // otherwise, just dump out & try again on the next iteration.
1004 Status = gThread->MutexTryLock (ProcessorData->StateLock);
1005 if (EFI_ERROR(Status)) {
1006 return;
1007 }
1008 ProcessorState = ProcessorData->State;
1009 gThread->MutexUnlock (ProcessorData->StateLock);
1010
1011 switch (ProcessorState) {
1012 case CPU_STATE_READY:
1013 SetApProcedure (ProcessorData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);
1014 break;
1015
1016 case CPU_STATE_FINISHED:
1017 if (gMPSystem.SingleThread) {
1018 Status = GetNextBlockedNumber (&NextNumber);
1019 if (!EFI_ERROR (Status)) {
1020 NextData = &gMPSystem.ProcessorData[NextNumber];
1021
1022 gThread->MutexLock (NextData->StateLock);
1023 NextData->State = CPU_STATE_READY;
1024 gThread->MutexUnlock (NextData->StateLock);
1025
1026 SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);
1027 }
1028 }
1029
1030 gThread->MutexLock (ProcessorData->StateLock);
1031 ProcessorData->State = CPU_STATE_IDLE;
1032 gThread->MutexUnlock (ProcessorData->StateLock);
1033 gMPSystem.FinishCount++;
1034 break;
1035
1036 default:
1037 break;
1038 }
1039 }
1040
1041 if (gMPSystem.TimeoutActive && gMPSystem.Timeout < 0) {
1042 //
1043 // Timeout
1044 //
1045 if (gMPSystem.FailedList != NULL) {
1046 for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {
1047 ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];
1048 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
1049 // Skip BSP
1050 continue;
1051 }
1052
1053 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
1054 // Skip Disabled processors
1055 continue;
1056 }
1057
1058 // Mark the
1059 Status = gThread->MutexTryLock (ProcessorData->StateLock);
1060 if (EFI_ERROR(Status)) {
1061 return;
1062 }
1063 ProcessorState = ProcessorData->State;
1064 gThread->MutexUnlock (ProcessorData->StateLock);
1065
1066 if (ProcessorState != CPU_STATE_IDLE) {
1067 // If we are retrying make sure we don't double count
1068 for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) {
1069 if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) {
1070 break;
1071 }
1072 if (gMPSystem.FailedList[ProcessorNumber] == Cpu) {
1073 Found = TRUE;
1074 break;
1075 }
1076 }
1077 if (!Found) {
1078 gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu;
1079 }
1080 }
1081 }
1082 }
1083 // Force terminal exit
1084 gMPSystem.FinishCount = gMPSystem.StartCount;
1085 }
1086
1087 if (gMPSystem.FinishCount != gMPSystem.StartCount) {
1088 return;
1089 }
1090
1091 gBS->SetTimer (
1092 gMPSystem.CheckAllAPsEvent,
1093 TimerCancel,
1094 0
1095 );
1096
1097 if (gMPSystem.FailedListIndex == 0) {
1098 if (gMPSystem.FailedList != NULL) {
1099 FreePool (gMPSystem.FailedList);
1100 gMPSystem.FailedList = NULL;
1101 }
1102 }
1103
1104 Status = gBS->SignalEvent (gMPSystem.WaitEvent);
1105
1106 return ;
1107 }
1108
1109 VOID
1110 EFIAPI
1111 CpuCheckThisAPStatus (
1112 IN EFI_EVENT Event,
1113 IN VOID *Context
1114 )
1115 {
1116 EFI_STATUS Status;
1117 PROCESSOR_DATA_BLOCK *ProcessorData;
1118 PROCESSOR_STATE ProcessorState;
1119
1120 ProcessorData = (PROCESSOR_DATA_BLOCK *) Context;
1121
1122 //
1123 // This is an Interrupt Service routine.
1124 // that can grab a lock that is held in a non-interrupt
1125 // context. Meaning deadlock. Which is a badddd thing.
1126 // So, try lock it. If we can get it, cool, do our thing.
1127 // otherwise, just dump out & try again on the next iteration.
1128 //
1129 Status = gThread->MutexTryLock (ProcessorData->StateLock);
1130 if (EFI_ERROR(Status)) {
1131 return;
1132 }
1133 ProcessorState = ProcessorData->State;
1134 gThread->MutexUnlock (ProcessorData->StateLock);
1135
1136 if (ProcessorState == CPU_STATE_FINISHED) {
1137 Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0);
1138 ASSERT_EFI_ERROR (Status);
1139
1140 Status = gBS->SignalEvent (gMPSystem.WaitEvent);
1141 ASSERT_EFI_ERROR (Status);
1142
1143 gThread->MutexLock (ProcessorData->StateLock);
1144 ProcessorData->State = CPU_STATE_IDLE;
1145 gThread->MutexUnlock (ProcessorData->StateLock);
1146 }
1147
1148 return ;
1149 }
1150
1151
1152 /*++
1153 This function is called by all processors (both BSP and AP) once and collects MP related data
1154
1155 MPSystemData - Pointer to the data structure containing MP related data
1156 BSP - TRUE if the CPU is BSP
1157
1158 EFI_SUCCESS - Data for the processor collected and filled in
1159
1160 --*/
1161 EFI_STATUS
1162 FillInProcessorInformation (
1163 IN BOOLEAN BSP,
1164 IN UINTN ProcessorNumber
1165 )
1166 {
1167 gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self ();
1168 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT;
1169 if (BSP) {
1170 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT;
1171 }
1172
1173 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = (UINT32) ProcessorNumber;
1174 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0;
1175 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0;
1176 gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE;
1177
1178 gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL;
1179 gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL;
1180 gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit ();
1181 gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit ();
1182
1183 return EFI_SUCCESS;
1184 }
1185
1186 VOID *
1187 EFIAPI
1188 CpuDriverApIdolLoop (
1189 VOID *Context
1190 )
1191 {
1192 EFI_AP_PROCEDURE Procedure;
1193 VOID *Parameter;
1194 UINTN ProcessorNumber;
1195 PROCESSOR_DATA_BLOCK *ProcessorData;
1196
1197 ProcessorNumber = (UINTN)Context;
1198 ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];
1199
1200 ProcessorData->Info.ProcessorId = gThread->Self ();
1201
1202 while (TRUE) {
1203 //
1204 // Make a local copy on the stack to be extra safe
1205 //
1206 gThread->MutexLock (ProcessorData->ProcedureLock);
1207 Procedure = ProcessorData->Procedure;
1208 Parameter = ProcessorData->Parameter;
1209 gThread->MutexUnlock (ProcessorData->ProcedureLock);
1210
1211 if (Procedure != NULL) {
1212 gThread->MutexLock (ProcessorData->StateLock);
1213 ProcessorData->State = CPU_STATE_BUSY;
1214 gThread->MutexUnlock (ProcessorData->StateLock);
1215
1216 Procedure (Parameter);
1217
1218 gThread->MutexLock (ProcessorData->ProcedureLock);
1219 ProcessorData->Procedure = NULL;
1220 gThread->MutexUnlock (ProcessorData->ProcedureLock);
1221
1222 gThread->MutexLock (ProcessorData->StateLock);
1223 ProcessorData->State = CPU_STATE_FINISHED;
1224 gThread->MutexUnlock (ProcessorData->StateLock);
1225 }
1226
1227 // Poll 5 times a seconds, 200ms
1228 // Don't want to burn too many system resources doing nothing.
1229 gEmuThunk->Sleep (200 * 1000);
1230 }
1231
1232 return 0;
1233 }
1234
1235
1236 EFI_STATUS
1237 InitializeMpSystemData (
1238 IN UINTN NumberOfProcessors
1239 )
1240 {
1241 EFI_STATUS Status;
1242 UINTN Index;
1243
1244
1245 //
1246 // Clear the data structure area first.
1247 //
1248 ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA));
1249
1250 //
1251 // First BSP fills and inits all known values, including it's own records.
1252 //
1253 gMPSystem.NumberOfProcessors = NumberOfProcessors;
1254 gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors;
1255
1256 gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK));
1257 ASSERT (gMPSystem.ProcessorData != NULL);
1258
1259 FillInProcessorInformation (TRUE, 0);
1260
1261 Status = gBS->CreateEvent (
1262 EVT_TIMER | EVT_NOTIFY_SIGNAL,
1263 TPL_CALLBACK,
1264 CpuCheckAllAPsStatus,
1265 NULL,
1266 &gMPSystem.CheckAllAPsEvent
1267 );
1268 ASSERT_EFI_ERROR (Status);
1269
1270
1271 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {
1272 if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
1273 // Skip BSP
1274 continue;
1275 }
1276
1277 FillInProcessorInformation (FALSE, Index);
1278
1279 Status = gThread->CreateThread (
1280 (VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId,
1281 NULL,
1282 CpuDriverApIdolLoop,
1283 (VOID *)Index
1284 );
1285
1286
1287 Status = gBS->CreateEvent (
1288 EVT_TIMER | EVT_NOTIFY_SIGNAL,
1289 TPL_CALLBACK,
1290 CpuCheckThisAPStatus,
1291 (VOID *) &gMPSystem.ProcessorData[Index],
1292 &gMPSystem.ProcessorData[Index].CheckThisAPEvent
1293 );
1294 }
1295
1296 return EFI_SUCCESS;
1297 }
1298
1299
1300
1301 /**
1302 Invoke a notification event
1303
1304 @param Event Event whose notification function is being invoked.
1305 @param Context The pointer to the notification function's context,
1306 which is implementation-dependent.
1307
1308 **/
1309 VOID
1310 EFIAPI
1311 CpuReadToBootFunction (
1312 IN EFI_EVENT Event,
1313 IN VOID *Context
1314 )
1315 {
1316 gReadToBoot = TRUE;
1317 }
1318
1319
1320
1321 EFI_STATUS
1322 CpuMpServicesInit (
1323 OUT UINTN *MaxCpus
1324 )
1325 {
1326 EFI_STATUS Status;
1327 EFI_HANDLE Handle;
1328 EMU_IO_THUNK_PROTOCOL *IoThunk;
1329
1330 *MaxCpus = 1; // BSP
1331 IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0);
1332 if (IoThunk != NULL) {
1333 Status = IoThunk->Open (IoThunk);
1334 if (!EFI_ERROR (Status)) {
1335 if (IoThunk->ConfigString != NULL) {
1336 *MaxCpus += StrDecimalToUintn (IoThunk->ConfigString);
1337 gThread = IoThunk->Interface;
1338 }
1339 }
1340 }
1341
1342 if (*MaxCpus == 1) {
1343 // We are not MP so nothing to do
1344 return EFI_SUCCESS;
1345 }
1346
1347 gPollInterval = (UINTN) PcdGet64 (PcdEmuMpServicesPollingInterval);
1348
1349 Status = InitializeMpSystemData (*MaxCpus);
1350 if (EFI_ERROR (Status)) {
1351 return Status;
1352 }
1353
1354 Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent);
1355 ASSERT_EFI_ERROR (Status);
1356
1357 //
1358 // Now install the MP services protocol.
1359 //
1360 Handle = NULL;
1361 Status = gBS->InstallMultipleProtocolInterfaces (
1362 &Handle,
1363 &gEfiMpServiceProtocolGuid, &mMpServicesTemplate,
1364 NULL
1365 );
1366 return Status;
1367 }
1368
1369