]> git.proxmox.com Git - mirror_edk2.git/blob - EmulatorPkg/Win/Host/WinHost.c
EmulatorPkg/Win: Add Windows host support
[mirror_edk2.git] / EmulatorPkg / Win / Host / WinHost.c
1 /**@file
2 WinNt emulator of pre-SEC phase. It's really a Win32 application, but this is
3 Ok since all the other modules for NT32 are NOT Win32 applications.
4
5 This program gets NT32 PCD setting and figures out what the memory layout
6 will be, how may FD's will be loaded and also what the boot mode is.
7
8 This code produces 128 K of temporary memory for the SEC stack by directly
9 allocate memory space with ReadWrite and Execute attribute.
10
11 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
12 (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
13 This program and the accompanying materials
14 are licensed and made available under the terms and conditions of the BSD License
15 which accompanies this distribution. The full text of the license may be found at
16 http://opensource.org/licenses/bsd-license.php
17
18 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
19 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
20 **/
21
22 #include "WinHost.h"
23
24 #ifndef SE_TIME_ZONE_NAME
25 #define SE_TIME_ZONE_NAME TEXT("SeTimeZonePrivilege")
26 #endif
27
28 //
29 // Default information about where the FD is located.
30 // This array gets filled in with information from PcdWinNtFirmwareVolume
31 // The number of array elements is allocated base on parsing
32 // PcdWinNtFirmwareVolume and the memory is never freed.
33 //
34 UINTN gFdInfoCount = 0;
35 NT_FD_INFO *gFdInfo;
36
37 //
38 // Array that supports seperate memory rantes.
39 // The memory ranges are set by PcdWinNtMemorySizeForSecMain.
40 // The number of array elements is allocated base on parsing
41 // PcdWinNtMemorySizeForSecMain value and the memory is never freed.
42 //
43 UINTN gSystemMemoryCount = 0;
44 NT_SYSTEM_MEMORY *gSystemMemory;
45
46 /*++
47
48 Routine Description:
49 This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
50 It allows discontinuous memory regions to be supported by the emulator.
51 It uses gSystemMemory[] and gSystemMemoryCount that were created by
52 parsing the host environment variable EFI_MEMORY_SIZE.
53 The size comes from the varaible and the address comes from the call to
54 UnixOpenFile.
55
56 Arguments:
57 Index - Which memory region to use
58 MemoryBase - Return Base address of memory region
59 MemorySize - Return size in bytes of the memory region
60
61 Returns:
62 EFI_SUCCESS - If memory region was mapped
63 EFI_UNSUPPORTED - If Index is not supported
64
65 **/
66 EFI_STATUS
67 WinPeiAutoScan (
68 IN UINTN Index,
69 OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
70 OUT UINT64 *MemorySize
71 )
72 {
73 if (Index >= gSystemMemoryCount) {
74 return EFI_UNSUPPORTED;
75 }
76
77 //
78 // Allocate enough memory space for emulator
79 //
80 gSystemMemory[Index].Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (gSystemMemory[Index].Size), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
81 if (gSystemMemory[Index].Memory == 0) {
82 return EFI_OUT_OF_RESOURCES;
83 }
84
85 *MemoryBase = gSystemMemory[Index].Memory;
86 *MemorySize = gSystemMemory[Index].Size;
87
88 return EFI_SUCCESS;
89 }
90
91 /*++
92
93 Routine Description:
94 Return the FD Size and base address. Since the FD is loaded from a
95 file into host memory only the SEC will know it's address.
96
97 Arguments:
98 Index - Which FD, starts at zero.
99 FdSize - Size of the FD in bytes
100 FdBase - Start address of the FD. Assume it points to an FV Header
101 FixUp - Difference between actual FD address and build address
102
103 Returns:
104 EFI_SUCCESS - Return the Base address and size of the FV
105 EFI_UNSUPPORTED - Index does nto map to an FD in the system
106
107 **/
108 EFI_STATUS
109 WinFdAddress (
110 IN UINTN Index,
111 IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
112 IN OUT UINT64 *FdSize,
113 IN OUT EFI_PHYSICAL_ADDRESS *FixUp
114 )
115 {
116 if (Index >= gFdInfoCount) {
117 return EFI_UNSUPPORTED;
118 }
119
120
121 *FdBase = (EFI_PHYSICAL_ADDRESS)(UINTN)gFdInfo[Index].Address;
122 *FdSize = (UINT64)gFdInfo[Index].Size;
123 *FixUp = 0;
124
125 if (*FdBase == 0 && *FdSize == 0) {
126 return EFI_UNSUPPORTED;
127 }
128
129 if (Index == 0) {
130 //
131 // FD 0 has XIP code and well known PCD values
132 // If the memory buffer could not be allocated at the FD build address
133 // the Fixup is the difference.
134 //
135 *FixUp = *FdBase - PcdGet64 (PcdEmuFdBaseAddress);
136 }
137
138 return EFI_SUCCESS;
139 }
140
141 /*++
142
143 Routine Description:
144 Since the SEC is the only Unix program in stack it must export
145 an interface to do POSIX calls. gUnix is initialized in UnixThunk.c.
146
147 Arguments:
148 InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
149 InterfaceBase - Address of the gUnix global
150
151 Returns:
152 EFI_SUCCESS - Data returned
153
154 **/
155 VOID *
156 WinThunk (
157 VOID
158 )
159 {
160 return &gEmuThunkProtocol;
161 }
162
163
164 EMU_THUNK_PPI mSecEmuThunkPpi = {
165 WinPeiAutoScan,
166 WinFdAddress,
167 WinThunk
168 };
169
170 VOID
171 SecPrint (
172 CHAR8 *Format,
173 ...
174 )
175 {
176 va_list Marker;
177 UINTN CharCount;
178 CHAR8 Buffer[0x1000];
179
180 va_start (Marker, Format);
181
182 _vsnprintf (Buffer, sizeof (Buffer), Format, Marker);
183
184 va_end (Marker);
185
186 CharCount = strlen (Buffer);
187 WriteFile (
188 GetStdHandle (STD_OUTPUT_HANDLE),
189 Buffer,
190 (DWORD)CharCount,
191 (LPDWORD)&CharCount,
192 NULL
193 );
194 }
195
196 /*++
197
198 Routine Description:
199 Check to see if an address range is in the EFI GCD memory map.
200
201 This is all of GCD for system memory passed to DXE Core. FV
202 mapping and other device mapped into system memory are not
203 inlcuded in the check.
204
205 Arguments:
206 Index - Which memory region to use
207 MemoryBase - Return Base address of memory region
208 MemorySize - Return size in bytes of the memory region
209
210 Returns:
211 TRUE - Address is in the EFI GCD memory map
212 FALSE - Address is NOT in memory map
213
214 **/
215 BOOLEAN
216 EfiSystemMemoryRange (
217 IN VOID *MemoryAddress
218 )
219 {
220 UINTN Index;
221 EFI_PHYSICAL_ADDRESS MemoryBase;
222
223 MemoryBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MemoryAddress;
224 for (Index = 0; Index < gSystemMemoryCount; Index++) {
225 if ((MemoryBase >= gSystemMemory[Index].Memory) &&
226 (MemoryBase < (gSystemMemory[Index].Memory + gSystemMemory[Index].Size)) ) {
227 return TRUE;
228 }
229 }
230
231 return FALSE;
232 }
233
234
235 EFI_STATUS
236 WinNtOpenFile (
237 IN CHAR16 *FileName, OPTIONAL
238 IN UINT32 MapSize,
239 IN DWORD CreationDisposition,
240 IN OUT VOID **BaseAddress,
241 OUT UINTN *Length
242 )
243 /*++
244
245 Routine Description:
246 Opens and memory maps a file using WinNt services. If *BaseAddress is non zero
247 the process will try and allocate the memory starting at BaseAddress.
248
249 Arguments:
250 FileName - The name of the file to open and map
251 MapSize - The amount of the file to map in bytes
252 CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
253 memory emulation, and exiting files for firmware volume emulation
254 BaseAddress - The base address of the mapped file in the user address space.
255 If *BaseAddress is 0, the new memory region is used.
256 If *BaseAddress is not 0, the request memory region is used for
257 the mapping of the file into the process space.
258 Length - The size of the mapped region in bytes
259
260 Returns:
261 EFI_SUCCESS - The file was opened and mapped.
262 EFI_NOT_FOUND - FileName was not found in the current directory
263 EFI_DEVICE_ERROR - An error occured attempting to map the opened file
264
265 --*/
266 {
267 HANDLE NtFileHandle;
268 HANDLE NtMapHandle;
269 VOID *VirtualAddress;
270 UINTN FileSize;
271
272 //
273 // Use Win API to open/create a file
274 //
275 NtFileHandle = INVALID_HANDLE_VALUE;
276 if (FileName != NULL) {
277 NtFileHandle = CreateFile (
278 FileName,
279 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE,
280 FILE_SHARE_READ,
281 NULL,
282 CreationDisposition,
283 FILE_ATTRIBUTE_NORMAL,
284 NULL
285 );
286 if (NtFileHandle == INVALID_HANDLE_VALUE) {
287 return EFI_NOT_FOUND;
288 }
289 }
290 //
291 // Map the open file into a memory range
292 //
293 NtMapHandle = CreateFileMapping (
294 NtFileHandle,
295 NULL,
296 PAGE_EXECUTE_READWRITE,
297 0,
298 MapSize,
299 NULL
300 );
301 if (NtMapHandle == NULL) {
302 return EFI_DEVICE_ERROR;
303 }
304 //
305 // Get the virtual address (address in the emulator) of the mapped file
306 //
307 VirtualAddress = MapViewOfFileEx (
308 NtMapHandle,
309 FILE_MAP_EXECUTE | FILE_MAP_ALL_ACCESS,
310 0,
311 0,
312 MapSize,
313 *BaseAddress
314 );
315 if (VirtualAddress == NULL) {
316 return EFI_DEVICE_ERROR;
317 }
318
319 if (MapSize == 0) {
320 //
321 // Seek to the end of the file to figure out the true file size.
322 //
323 FileSize = SetFilePointer (
324 NtFileHandle,
325 0,
326 NULL,
327 FILE_END
328 );
329 if (FileSize == -1) {
330 return EFI_DEVICE_ERROR;
331 }
332
333 *Length = FileSize;
334 } else {
335 *Length = MapSize;
336 }
337
338 *BaseAddress = VirtualAddress;
339
340 return EFI_SUCCESS;
341 }
342
343 INTN
344 EFIAPI
345 main (
346 IN INTN Argc,
347 IN CHAR8 **Argv,
348 IN CHAR8 **Envp
349 )
350 /*++
351
352 Routine Description:
353 Main entry point to SEC for WinNt. This is a Windows program
354
355 Arguments:
356 Argc - Number of command line arguments
357 Argv - Array of command line argument strings
358 Envp - Array of environment variable strings
359
360 Returns:
361 0 - Normal exit
362 1 - Abnormal exit
363
364 --*/
365 {
366 EFI_STATUS Status;
367 HANDLE Token;
368 TOKEN_PRIVILEGES TokenPrivileges;
369 VOID *TemporaryRam;
370 UINT32 TemporaryRamSize;
371 VOID *EmuMagicPage;
372 UINTN Index;
373 UINTN Index1;
374 CHAR16 *FileName;
375 CHAR16 *FileNamePtr;
376 BOOLEAN Done;
377 EFI_PEI_FILE_HANDLE FileHandle;
378 VOID *SecFile;
379 CHAR16 *MemorySizeStr;
380 CHAR16 *FirmwareVolumesStr;
381 UINT32 ProcessAffinityMask;
382 UINT32 SystemAffinityMask;
383 INT32 LowBit;
384
385 //
386 // Enable the privilege so that RTC driver can successfully run SetTime()
387 //
388 OpenProcessToken (GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES|TOKEN_QUERY, &Token);
389 if (LookupPrivilegeValue(NULL, SE_TIME_ZONE_NAME, &TokenPrivileges.Privileges[0].Luid)) {
390 TokenPrivileges.PrivilegeCount = 1;
391 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
392 AdjustTokenPrivileges(Token, FALSE, &TokenPrivileges, 0, (PTOKEN_PRIVILEGES) NULL, 0);
393 }
394
395 MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdEmuMemorySize);
396 FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdEmuFirmwareVolume);
397
398 SecPrint ("\nEDK II WIN Host Emulation Environment from http://www.tianocore.org/edk2/\n");
399
400 //
401 // Determine the first thread available to this process.
402 //
403 if (GetProcessAffinityMask (GetCurrentProcess (), &ProcessAffinityMask, &SystemAffinityMask)) {
404 LowBit = (INT32)LowBitSet32 (ProcessAffinityMask);
405 if (LowBit != -1) {
406 //
407 // Force the system to bind the process to a single thread to work
408 // around odd semaphore type crashes.
409 //
410 SetProcessAffinityMask (GetCurrentProcess (), (INTN)(BIT0 << LowBit));
411 }
412 }
413
414 //
415 // Make some Windows calls to Set the process to the highest priority in the
416 // idle class. We need this to have good performance.
417 //
418 SetPriorityClass (GetCurrentProcess (), IDLE_PRIORITY_CLASS);
419 SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_HIGHEST);
420
421 SecInitializeThunk ();
422 //
423 // PPIs pased into PEI_CORE
424 //
425 AddThunkPpi (EFI_PEI_PPI_DESCRIPTOR_PPI, &gEmuThunkPpiGuid, &mSecEmuThunkPpi);
426
427 //
428 // Allocate space for gSystemMemory Array
429 //
430 gSystemMemoryCount = CountSeparatorsInString (MemorySizeStr, '!') + 1;
431 gSystemMemory = calloc (gSystemMemoryCount, sizeof (NT_SYSTEM_MEMORY));
432 if (gSystemMemory == NULL) {
433 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", MemorySizeStr);
434 exit (1);
435 }
436
437 //
438 // Allocate space for gSystemMemory Array
439 //
440 gFdInfoCount = CountSeparatorsInString (FirmwareVolumesStr, '!') + 1;
441 gFdInfo = calloc (gFdInfoCount, sizeof (NT_FD_INFO));
442 if (gFdInfo == NULL) {
443 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", FirmwareVolumesStr);
444 exit (1);
445 }
446 //
447 // Setup Boot Mode.
448 //
449 SecPrint (" BootMode 0x%02x\n", PcdGet32 (PcdEmuBootMode));
450
451 //
452 // Allocate 128K memory to emulate temp memory for PEI.
453 // on a real platform this would be SRAM, or using the cache as RAM.
454 // Set TemporaryRam to zero so WinNtOpenFile will allocate a new mapping
455 //
456 TemporaryRamSize = TEMPORARY_RAM_SIZE;
457 TemporaryRam = VirtualAlloc (NULL, (SIZE_T) (TemporaryRamSize), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
458 if (TemporaryRam == NULL) {
459 SecPrint ("ERROR : Can not allocate enough space for SecStack\n");
460 exit (1);
461 }
462 SetMemN (TemporaryRam, TemporaryRamSize, PcdGet32 (PcdInitValueInTempStack));
463
464 SecPrint (" OS Emulator passing in %u KB of temp RAM at 0x%08lx to SEC\n",
465 TemporaryRamSize / SIZE_1KB,
466 TemporaryRam
467 );
468
469 //
470 // If enabled use the magic page to communicate between modules
471 // This replaces the PI PeiServicesTable pointer mechanism that
472 // deos not work in the emulator. It also allows the removal of
473 // writable globals from SEC, PEI_CORE (libraries), PEIMs
474 //
475 EmuMagicPage = (VOID *)(UINTN)(FixedPcdGet64 (PcdPeiServicesTablePage) & MAX_UINTN);
476 if (EmuMagicPage != NULL) {
477 UINT64 Size;
478 Status = WinNtOpenFile (
479 NULL,
480 SIZE_4KB,
481 0,
482 &EmuMagicPage,
483 &Size
484 );
485 if (EFI_ERROR (Status)) {
486 SecPrint ("ERROR : Could not allocate PeiServicesTablePage @ %p\n", EmuMagicPage);
487 return EFI_DEVICE_ERROR;
488 }
489 }
490
491 //
492 // Open All the firmware volumes and remember the info in the gFdInfo global
493 // Meanwhile, find the SEC Core.
494 //
495 FileNamePtr = AllocateCopyPool (StrSize (FirmwareVolumesStr), FirmwareVolumesStr);
496 if (FileNamePtr == NULL) {
497 SecPrint ("ERROR : Can not allocate memory for firmware volume string\n");
498 exit (1);
499 }
500
501 for (Done = FALSE, Index = 0, SecFile = NULL; !Done; Index++) {
502 FileName = FileNamePtr;
503 for (Index1 = 0; (FileNamePtr[Index1] != '!') && (FileNamePtr[Index1] != 0); Index1++)
504 ;
505 if (FileNamePtr[Index1] == 0) {
506 Done = TRUE;
507 } else {
508 FileNamePtr[Index1] = '\0';
509 FileNamePtr = &FileNamePtr[Index1 + 1];
510 }
511
512 //
513 // Open the FD and remember where it got mapped into our processes address space
514 //
515 Status = WinNtOpenFile (
516 FileName,
517 0,
518 OPEN_EXISTING,
519 &gFdInfo[Index].Address,
520 &gFdInfo[Index].Size
521 );
522 if (EFI_ERROR (Status)) {
523 SecPrint ("ERROR : Can not open Firmware Device File %S (0x%X). Exiting.\n", FileName, Status);
524 exit (1);
525 }
526
527 SecPrint (" FD loaded from %S\n", FileName);
528
529 if (SecFile == NULL) {
530 //
531 // Assume the beginning of the FD is an FV and look for the SEC Core.
532 // Load the first one we find.
533 //
534 FileHandle = NULL;
535 Status = PeiServicesFfsFindNextFile (
536 EFI_FV_FILETYPE_SECURITY_CORE,
537 (EFI_PEI_FV_HANDLE)gFdInfo[Index].Address,
538 &FileHandle
539 );
540 if (!EFI_ERROR (Status)) {
541 Status = PeiServicesFfsFindSectionData (EFI_SECTION_PE32, FileHandle, &SecFile);
542 if (!EFI_ERROR (Status)) {
543 SecPrint (" contains SEC Core");
544 }
545 }
546 }
547
548 SecPrint ("\n");
549 }
550 //
551 // Calculate memory regions and store the information in the gSystemMemory
552 // global for later use. The autosizing code will use this data to
553 // map this memory into the SEC process memory space.
554 //
555 for (Index = 0, Done = FALSE; !Done; Index++) {
556 //
557 // Save the size of the memory and make a Unicode filename SystemMemory00, ...
558 //
559 gSystemMemory[Index].Size = _wtoi (MemorySizeStr) * SIZE_1MB;
560
561 //
562 // Find the next region
563 //
564 for (Index1 = 0; MemorySizeStr[Index1] != '!' && MemorySizeStr[Index1] != 0; Index1++)
565 ;
566 if (MemorySizeStr[Index1] == 0) {
567 Done = TRUE;
568 }
569
570 MemorySizeStr = MemorySizeStr + Index1 + 1;
571 }
572
573 SecPrint ("\n");
574
575 //
576 // Hand off to SEC Core
577 //
578 SecLoadSecCore ((UINTN)TemporaryRam, TemporaryRamSize, gFdInfo[0].Address, gFdInfo[0].Size, SecFile);
579
580 //
581 // If we get here, then the SEC Core returned. This is an error as SEC should
582 // always hand off to PEI Core and then on to DXE Core.
583 //
584 SecPrint ("ERROR : SEC returned\n");
585 exit (1);
586 }
587
588 VOID
589 SecLoadSecCore (
590 IN UINTN TemporaryRam,
591 IN UINTN TemporaryRamSize,
592 IN VOID *BootFirmwareVolumeBase,
593 IN UINTN BootFirmwareVolumeSize,
594 IN VOID *SecCorePe32File
595 )
596 /*++
597
598 Routine Description:
599 This is the service to load the SEC Core from the Firmware Volume
600
601 Arguments:
602 TemporaryRam - Memory to use for SEC.
603 TemporaryRamSize - Size of Memory to use for SEC
604 BootFirmwareVolumeBase - Start of the Boot FV
605 SecCorePe32File - SEC Core PE32
606
607 Returns:
608 Success means control is transfered and thus we should never return
609
610 --*/
611 {
612 EFI_STATUS Status;
613 VOID *TopOfStack;
614 VOID *SecCoreEntryPoint;
615 EFI_SEC_PEI_HAND_OFF *SecCoreData;
616 UINTN SecStackSize;
617
618 //
619 // Compute Top Of Memory for Stack and PEI Core Allocations
620 //
621 SecStackSize = TemporaryRamSize >> 1;
622
623 //
624 // |-----------| <---- TemporaryRamBase + TemporaryRamSize
625 // | Heap |
626 // | |
627 // |-----------| <---- StackBase / PeiTemporaryMemoryBase
628 // | |
629 // | Stack |
630 // |-----------| <---- TemporaryRamBase
631 //
632 TopOfStack = (VOID *)(TemporaryRam + SecStackSize);
633
634 //
635 // Reservet space for storing PeiCore's parament in stack.
636 //
637 TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT);
638 TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
639
640 //
641 // Bind this information into the SEC hand-off state
642 //
643 SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN)TopOfStack;
644 SecCoreData->DataSize = sizeof (EFI_SEC_PEI_HAND_OFF);
645 SecCoreData->BootFirmwareVolumeBase = BootFirmwareVolumeBase;
646 SecCoreData->BootFirmwareVolumeSize = BootFirmwareVolumeSize;
647 SecCoreData->TemporaryRamBase = (VOID*)TemporaryRam;
648 SecCoreData->TemporaryRamSize = TemporaryRamSize;
649 SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
650 SecCoreData->StackSize = SecStackSize;
651 SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + SecStackSize);
652 SecCoreData->PeiTemporaryRamSize = TemporaryRamSize - SecStackSize;
653
654 //
655 // Load the PEI Core from a Firmware Volume
656 //
657 Status = SecPeCoffGetEntryPoint (
658 SecCorePe32File,
659 &SecCoreEntryPoint
660 );
661 if (EFI_ERROR (Status)) {
662 return ;
663 }
664
665 //
666 // Transfer control to the SEC Core
667 //
668 SwitchStack (
669 (SWITCH_STACK_ENTRY_POINT)SecCoreEntryPoint,
670 SecCoreData,
671 GetThunkPpiList (),
672 TopOfStack
673 );
674 //
675 // If we get here, then the SEC Core returned. This is an error
676 //
677 return ;
678 }
679
680 RETURN_STATUS
681 EFIAPI
682 SecPeCoffGetEntryPoint (
683 IN VOID *Pe32Data,
684 IN OUT VOID **EntryPoint
685 )
686 {
687 EFI_STATUS Status;
688 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
689
690 ZeroMem (&ImageContext, sizeof (ImageContext));
691 ImageContext.Handle = Pe32Data;
692
693 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
694
695 Status = PeCoffLoaderGetImageInfo (&ImageContext);
696 if (EFI_ERROR (Status)) {
697 return Status;
698 }
699 //
700 // Allocate space in NT (not emulator) memory with ReadWrite and Execute attribute.
701 // Extra space is for alignment
702 //
703 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
704 if (ImageContext.ImageAddress == 0) {
705 return EFI_OUT_OF_RESOURCES;
706 }
707 //
708 // Align buffer on section boundary
709 //
710 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
711 ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)ImageContext.SectionAlignment - 1);
712
713 Status = PeCoffLoaderLoadImage (&ImageContext);
714 if (EFI_ERROR (Status)) {
715 return Status;
716 }
717
718 Status = PeCoffLoaderRelocateImage (&ImageContext);
719 if (EFI_ERROR (Status)) {
720 return Status;
721 }
722
723 *EntryPoint = (VOID *)(UINTN)ImageContext.EntryPoint;
724
725 return EFI_SUCCESS;
726 }
727
728 EFI_STATUS
729 EFIAPI
730 SecImageRead (
731 IN VOID *FileHandle,
732 IN UINTN FileOffset,
733 IN OUT UINTN *ReadSize,
734 OUT VOID *Buffer
735 )
736 /*++
737
738 Routine Description:
739 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
740
741 Arguments:
742 FileHandle - The handle to the PE/COFF file
743 FileOffset - The offset, in bytes, into the file to read
744 ReadSize - The number of bytes to read from the file starting at FileOffset
745 Buffer - A pointer to the buffer to read the data into.
746
747 Returns:
748 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
749
750 --*/
751 {
752 CHAR8 *Destination8;
753 CHAR8 *Source8;
754 UINTN Length;
755
756 Destination8 = Buffer;
757 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
758 Length = *ReadSize;
759 while (Length--) {
760 *(Destination8++) = *(Source8++);
761 }
762
763 return EFI_SUCCESS;
764 }
765
766 CHAR16 *
767 AsciiToUnicode (
768 IN CHAR8 *Ascii,
769 IN UINTN *StrLen OPTIONAL
770 )
771 /*++
772
773 Routine Description:
774 Convert the passed in Ascii string to Unicode.
775 Optionally return the length of the strings.
776
777 Arguments:
778 Ascii - Ascii string to convert
779 StrLen - Length of string
780
781 Returns:
782 Pointer to malloc'ed Unicode version of Ascii
783
784 --*/
785 {
786 UINTN Index;
787 CHAR16 *Unicode;
788
789 //
790 // Allocate a buffer for unicode string
791 //
792 for (Index = 0; Ascii[Index] != '\0'; Index++)
793 ;
794 Unicode = malloc ((Index + 1) * sizeof (CHAR16));
795 if (Unicode == NULL) {
796 return NULL;
797 }
798
799 for (Index = 0; Ascii[Index] != '\0'; Index++) {
800 Unicode[Index] = (CHAR16) Ascii[Index];
801 }
802
803 Unicode[Index] = '\0';
804
805 if (StrLen != NULL) {
806 *StrLen = Index;
807 }
808
809 return Unicode;
810 }
811
812 UINTN
813 CountSeparatorsInString (
814 IN CONST CHAR16 *String,
815 IN CHAR16 Separator
816 )
817 /*++
818
819 Routine Description:
820 Count the number of separators in String
821
822 Arguments:
823 String - String to process
824 Separator - Item to count
825
826 Returns:
827 Number of Separator in String
828
829 --*/
830 {
831 UINTN Count;
832
833 for (Count = 0; *String != '\0'; String++) {
834 if (*String == Separator) {
835 Count++;
836 }
837 }
838
839 return Count;
840 }
841
842
843 VOID
844 EFIAPI
845 PeCoffLoaderRelocateImageExtraAction (
846 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
847 )
848 {
849 VOID *DllEntryPoint;
850 CHAR16 *DllFileName;
851 HMODULE Library;
852 UINTN Index;
853
854 ASSERT (ImageContext != NULL);
855 //
856 // If we load our own PE COFF images the Windows debugger can not source
857 // level debug our code. If a valid PDB pointer exists usw it to load
858 // the *.dll file as a library using Windows* APIs. This allows
859 // source level debug. The image is still loaded and relocated
860 // in the Framework memory space like on a real system (by the code above),
861 // but the entry point points into the DLL loaded by the code bellow.
862 //
863
864 DllEntryPoint = NULL;
865
866 //
867 // Load the DLL if it's not an EBC image.
868 //
869 if ((ImageContext->PdbPointer != NULL) &&
870 (ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) {
871 //
872 // Convert filename from ASCII to Unicode
873 //
874 DllFileName = AsciiToUnicode (ImageContext->PdbPointer, &Index);
875
876 //
877 // Check that we have a valid filename
878 //
879 if (Index < 5 || DllFileName[Index - 4] != '.') {
880 free (DllFileName);
881
882 //
883 // Never return an error if PeCoffLoaderRelocateImage() succeeded.
884 // The image will run, but we just can't source level debug. If we
885 // return an error the image will not run.
886 //
887 return;
888 }
889 //
890 // Replace .PDB with .DLL on the filename
891 //
892 DllFileName[Index - 3] = 'D';
893 DllFileName[Index - 2] = 'L';
894 DllFileName[Index - 1] = 'L';
895
896 //
897 // Load the .DLL file into the user process's address space for source
898 // level debug
899 //
900 Library = LoadLibraryEx (DllFileName, NULL, DONT_RESOLVE_DLL_REFERENCES);
901 if (Library != NULL) {
902 //
903 // InitializeDriver is the entry point we put in all our EFI DLL's. The
904 // DONT_RESOLVE_DLL_REFERENCES argument to LoadLIbraryEx() suppresses the
905 // normal DLL entry point of DllMain, and prevents other modules that are
906 // referenced in side the DllFileName from being loaded. There is no error
907 // checking as the we can point to the PE32 image loaded by Tiano. This
908 // step is only needed for source level debugging
909 //
910 DllEntryPoint = (VOID *) (UINTN) GetProcAddress (Library, "InitializeDriver");
911
912 }
913
914 if ((Library != NULL) && (DllEntryPoint != NULL)) {
915 ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint;
916 SecPrint ("LoadLibraryEx (%S,\n NULL, DONT_RESOLVE_DLL_REFERENCES)\n", DllFileName);
917 } else {
918 SecPrint ("WARNING: No source level debug %S. \n", DllFileName);
919 }
920
921 free (DllFileName);
922 }
923 }
924
925 VOID
926 EFIAPI
927 PeCoffLoaderUnloadImageExtraAction (
928 IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
929 )
930 {
931 ASSERT (ImageContext != NULL);
932 }
933
934
935 VOID
936 _ModuleEntryPoint (
937 VOID
938 )
939 {
940 }