]> git.proxmox.com Git - mirror_edk2.git/blob - EmulatorPkg/Win/Host/WinHost.c
EmulatorPkg/Win: Add input/output support
[mirror_edk2.git] / EmulatorPkg / Win / Host / WinHost.c
1 /**@file
2 WinNt emulator of pre-SEC phase. It's really a Win32 application, but this is
3 Ok since all the other modules for NT32 are NOT Win32 applications.
4
5 This program gets NT32 PCD setting and figures out what the memory layout
6 will be, how may FD's will be loaded and also what the boot mode is.
7
8 This code produces 128 K of temporary memory for the SEC stack by directly
9 allocate memory space with ReadWrite and Execute attribute.
10
11 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
12 (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
13 This program and the accompanying materials
14 are licensed and made available under the terms and conditions of the BSD License
15 which accompanies this distribution. The full text of the license may be found at
16 http://opensource.org/licenses/bsd-license.php
17
18 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
19 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
20 **/
21
22 #include "WinHost.h"
23
24 #ifndef SE_TIME_ZONE_NAME
25 #define SE_TIME_ZONE_NAME TEXT("SeTimeZonePrivilege")
26 #endif
27
28 //
29 // Default information about where the FD is located.
30 // This array gets filled in with information from PcdWinNtFirmwareVolume
31 // The number of array elements is allocated base on parsing
32 // PcdWinNtFirmwareVolume and the memory is never freed.
33 //
34 UINTN gFdInfoCount = 0;
35 NT_FD_INFO *gFdInfo;
36
37 //
38 // Array that supports seperate memory rantes.
39 // The memory ranges are set by PcdWinNtMemorySizeForSecMain.
40 // The number of array elements is allocated base on parsing
41 // PcdWinNtMemorySizeForSecMain value and the memory is never freed.
42 //
43 UINTN gSystemMemoryCount = 0;
44 NT_SYSTEM_MEMORY *gSystemMemory;
45
46 /*++
47
48 Routine Description:
49 This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
50 It allows discontinuous memory regions to be supported by the emulator.
51 It uses gSystemMemory[] and gSystemMemoryCount that were created by
52 parsing the host environment variable EFI_MEMORY_SIZE.
53 The size comes from the varaible and the address comes from the call to
54 UnixOpenFile.
55
56 Arguments:
57 Index - Which memory region to use
58 MemoryBase - Return Base address of memory region
59 MemorySize - Return size in bytes of the memory region
60
61 Returns:
62 EFI_SUCCESS - If memory region was mapped
63 EFI_UNSUPPORTED - If Index is not supported
64
65 **/
66 EFI_STATUS
67 WinPeiAutoScan (
68 IN UINTN Index,
69 OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
70 OUT UINT64 *MemorySize
71 )
72 {
73 if (Index >= gSystemMemoryCount) {
74 return EFI_UNSUPPORTED;
75 }
76
77 //
78 // Allocate enough memory space for emulator
79 //
80 gSystemMemory[Index].Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (gSystemMemory[Index].Size), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
81 if (gSystemMemory[Index].Memory == 0) {
82 return EFI_OUT_OF_RESOURCES;
83 }
84
85 *MemoryBase = gSystemMemory[Index].Memory;
86 *MemorySize = gSystemMemory[Index].Size;
87
88 return EFI_SUCCESS;
89 }
90
91 /*++
92
93 Routine Description:
94 Return the FD Size and base address. Since the FD is loaded from a
95 file into host memory only the SEC will know it's address.
96
97 Arguments:
98 Index - Which FD, starts at zero.
99 FdSize - Size of the FD in bytes
100 FdBase - Start address of the FD. Assume it points to an FV Header
101 FixUp - Difference between actual FD address and build address
102
103 Returns:
104 EFI_SUCCESS - Return the Base address and size of the FV
105 EFI_UNSUPPORTED - Index does nto map to an FD in the system
106
107 **/
108 EFI_STATUS
109 WinFdAddress (
110 IN UINTN Index,
111 IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
112 IN OUT UINT64 *FdSize,
113 IN OUT EFI_PHYSICAL_ADDRESS *FixUp
114 )
115 {
116 if (Index >= gFdInfoCount) {
117 return EFI_UNSUPPORTED;
118 }
119
120
121 *FdBase = (EFI_PHYSICAL_ADDRESS)(UINTN)gFdInfo[Index].Address;
122 *FdSize = (UINT64)gFdInfo[Index].Size;
123 *FixUp = 0;
124
125 if (*FdBase == 0 && *FdSize == 0) {
126 return EFI_UNSUPPORTED;
127 }
128
129 if (Index == 0) {
130 //
131 // FD 0 has XIP code and well known PCD values
132 // If the memory buffer could not be allocated at the FD build address
133 // the Fixup is the difference.
134 //
135 *FixUp = *FdBase - PcdGet64 (PcdEmuFdBaseAddress);
136 }
137
138 return EFI_SUCCESS;
139 }
140
141 /*++
142
143 Routine Description:
144 Since the SEC is the only Unix program in stack it must export
145 an interface to do POSIX calls. gUnix is initialized in UnixThunk.c.
146
147 Arguments:
148 InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
149 InterfaceBase - Address of the gUnix global
150
151 Returns:
152 EFI_SUCCESS - Data returned
153
154 **/
155 VOID *
156 WinThunk (
157 VOID
158 )
159 {
160 return &gEmuThunkProtocol;
161 }
162
163
164 EMU_THUNK_PPI mSecEmuThunkPpi = {
165 WinPeiAutoScan,
166 WinFdAddress,
167 WinThunk
168 };
169
170 VOID
171 SecPrint (
172 CHAR8 *Format,
173 ...
174 )
175 {
176 va_list Marker;
177 UINTN CharCount;
178 CHAR8 Buffer[0x1000];
179
180 va_start (Marker, Format);
181
182 _vsnprintf (Buffer, sizeof (Buffer), Format, Marker);
183
184 va_end (Marker);
185
186 CharCount = strlen (Buffer);
187 WriteFile (
188 GetStdHandle (STD_OUTPUT_HANDLE),
189 Buffer,
190 (DWORD)CharCount,
191 (LPDWORD)&CharCount,
192 NULL
193 );
194 }
195
196 /*++
197
198 Routine Description:
199 Check to see if an address range is in the EFI GCD memory map.
200
201 This is all of GCD for system memory passed to DXE Core. FV
202 mapping and other device mapped into system memory are not
203 inlcuded in the check.
204
205 Arguments:
206 Index - Which memory region to use
207 MemoryBase - Return Base address of memory region
208 MemorySize - Return size in bytes of the memory region
209
210 Returns:
211 TRUE - Address is in the EFI GCD memory map
212 FALSE - Address is NOT in memory map
213
214 **/
215 BOOLEAN
216 EfiSystemMemoryRange (
217 IN VOID *MemoryAddress
218 )
219 {
220 UINTN Index;
221 EFI_PHYSICAL_ADDRESS MemoryBase;
222
223 MemoryBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MemoryAddress;
224 for (Index = 0; Index < gSystemMemoryCount; Index++) {
225 if ((MemoryBase >= gSystemMemory[Index].Memory) &&
226 (MemoryBase < (gSystemMemory[Index].Memory + gSystemMemory[Index].Size)) ) {
227 return TRUE;
228 }
229 }
230
231 return FALSE;
232 }
233
234
235 EFI_STATUS
236 WinNtOpenFile (
237 IN CHAR16 *FileName, OPTIONAL
238 IN UINT32 MapSize,
239 IN DWORD CreationDisposition,
240 IN OUT VOID **BaseAddress,
241 OUT UINTN *Length
242 )
243 /*++
244
245 Routine Description:
246 Opens and memory maps a file using WinNt services. If *BaseAddress is non zero
247 the process will try and allocate the memory starting at BaseAddress.
248
249 Arguments:
250 FileName - The name of the file to open and map
251 MapSize - The amount of the file to map in bytes
252 CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
253 memory emulation, and exiting files for firmware volume emulation
254 BaseAddress - The base address of the mapped file in the user address space.
255 If *BaseAddress is 0, the new memory region is used.
256 If *BaseAddress is not 0, the request memory region is used for
257 the mapping of the file into the process space.
258 Length - The size of the mapped region in bytes
259
260 Returns:
261 EFI_SUCCESS - The file was opened and mapped.
262 EFI_NOT_FOUND - FileName was not found in the current directory
263 EFI_DEVICE_ERROR - An error occured attempting to map the opened file
264
265 --*/
266 {
267 HANDLE NtFileHandle;
268 HANDLE NtMapHandle;
269 VOID *VirtualAddress;
270 UINTN FileSize;
271
272 //
273 // Use Win API to open/create a file
274 //
275 NtFileHandle = INVALID_HANDLE_VALUE;
276 if (FileName != NULL) {
277 NtFileHandle = CreateFile (
278 FileName,
279 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE,
280 FILE_SHARE_READ,
281 NULL,
282 CreationDisposition,
283 FILE_ATTRIBUTE_NORMAL,
284 NULL
285 );
286 if (NtFileHandle == INVALID_HANDLE_VALUE) {
287 return EFI_NOT_FOUND;
288 }
289 }
290 //
291 // Map the open file into a memory range
292 //
293 NtMapHandle = CreateFileMapping (
294 NtFileHandle,
295 NULL,
296 PAGE_EXECUTE_READWRITE,
297 0,
298 MapSize,
299 NULL
300 );
301 if (NtMapHandle == NULL) {
302 return EFI_DEVICE_ERROR;
303 }
304 //
305 // Get the virtual address (address in the emulator) of the mapped file
306 //
307 VirtualAddress = MapViewOfFileEx (
308 NtMapHandle,
309 FILE_MAP_EXECUTE | FILE_MAP_ALL_ACCESS,
310 0,
311 0,
312 MapSize,
313 *BaseAddress
314 );
315 if (VirtualAddress == NULL) {
316 return EFI_DEVICE_ERROR;
317 }
318
319 if (MapSize == 0) {
320 //
321 // Seek to the end of the file to figure out the true file size.
322 //
323 FileSize = SetFilePointer (
324 NtFileHandle,
325 0,
326 NULL,
327 FILE_END
328 );
329 if (FileSize == -1) {
330 return EFI_DEVICE_ERROR;
331 }
332
333 *Length = FileSize;
334 } else {
335 *Length = MapSize;
336 }
337
338 *BaseAddress = VirtualAddress;
339
340 return EFI_SUCCESS;
341 }
342
343 INTN
344 EFIAPI
345 main (
346 IN INTN Argc,
347 IN CHAR8 **Argv,
348 IN CHAR8 **Envp
349 )
350 /*++
351
352 Routine Description:
353 Main entry point to SEC for WinNt. This is a Windows program
354
355 Arguments:
356 Argc - Number of command line arguments
357 Argv - Array of command line argument strings
358 Envp - Array of environment variable strings
359
360 Returns:
361 0 - Normal exit
362 1 - Abnormal exit
363
364 --*/
365 {
366 EFI_STATUS Status;
367 HANDLE Token;
368 TOKEN_PRIVILEGES TokenPrivileges;
369 VOID *TemporaryRam;
370 UINT32 TemporaryRamSize;
371 VOID *EmuMagicPage;
372 UINTN Index;
373 UINTN Index1;
374 CHAR16 *FileName;
375 CHAR16 *FileNamePtr;
376 BOOLEAN Done;
377 EFI_PEI_FILE_HANDLE FileHandle;
378 VOID *SecFile;
379 CHAR16 *MemorySizeStr;
380 CHAR16 *FirmwareVolumesStr;
381 UINT32 ProcessAffinityMask;
382 UINT32 SystemAffinityMask;
383 INT32 LowBit;
384
385 //
386 // Enable the privilege so that RTC driver can successfully run SetTime()
387 //
388 OpenProcessToken (GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES|TOKEN_QUERY, &Token);
389 if (LookupPrivilegeValue(NULL, SE_TIME_ZONE_NAME, &TokenPrivileges.Privileges[0].Luid)) {
390 TokenPrivileges.PrivilegeCount = 1;
391 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
392 AdjustTokenPrivileges(Token, FALSE, &TokenPrivileges, 0, (PTOKEN_PRIVILEGES) NULL, 0);
393 }
394
395 MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdEmuMemorySize);
396 FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdEmuFirmwareVolume);
397
398 SecPrint ("\nEDK II WIN Host Emulation Environment from http://www.tianocore.org/edk2/\n");
399
400 //
401 // Determine the first thread available to this process.
402 //
403 if (GetProcessAffinityMask (GetCurrentProcess (), &ProcessAffinityMask, &SystemAffinityMask)) {
404 LowBit = (INT32)LowBitSet32 (ProcessAffinityMask);
405 if (LowBit != -1) {
406 //
407 // Force the system to bind the process to a single thread to work
408 // around odd semaphore type crashes.
409 //
410 SetProcessAffinityMask (GetCurrentProcess (), (INTN)(BIT0 << LowBit));
411 }
412 }
413
414 //
415 // Make some Windows calls to Set the process to the highest priority in the
416 // idle class. We need this to have good performance.
417 //
418 SetPriorityClass (GetCurrentProcess (), IDLE_PRIORITY_CLASS);
419 SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_HIGHEST);
420
421 SecInitializeThunk ();
422 //
423 // PPIs pased into PEI_CORE
424 //
425 AddThunkPpi (EFI_PEI_PPI_DESCRIPTOR_PPI, &gEmuThunkPpiGuid, &mSecEmuThunkPpi);
426
427 //
428 // Emulator Bus Driver Thunks
429 //
430 AddThunkProtocol (&mWinNtWndThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuGop), TRUE);
431
432 //
433 // Allocate space for gSystemMemory Array
434 //
435 gSystemMemoryCount = CountSeparatorsInString (MemorySizeStr, '!') + 1;
436 gSystemMemory = calloc (gSystemMemoryCount, sizeof (NT_SYSTEM_MEMORY));
437 if (gSystemMemory == NULL) {
438 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", MemorySizeStr);
439 exit (1);
440 }
441
442 //
443 // Allocate space for gSystemMemory Array
444 //
445 gFdInfoCount = CountSeparatorsInString (FirmwareVolumesStr, '!') + 1;
446 gFdInfo = calloc (gFdInfoCount, sizeof (NT_FD_INFO));
447 if (gFdInfo == NULL) {
448 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", FirmwareVolumesStr);
449 exit (1);
450 }
451 //
452 // Setup Boot Mode.
453 //
454 SecPrint (" BootMode 0x%02x\n", PcdGet32 (PcdEmuBootMode));
455
456 //
457 // Allocate 128K memory to emulate temp memory for PEI.
458 // on a real platform this would be SRAM, or using the cache as RAM.
459 // Set TemporaryRam to zero so WinNtOpenFile will allocate a new mapping
460 //
461 TemporaryRamSize = TEMPORARY_RAM_SIZE;
462 TemporaryRam = VirtualAlloc (NULL, (SIZE_T) (TemporaryRamSize), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
463 if (TemporaryRam == NULL) {
464 SecPrint ("ERROR : Can not allocate enough space for SecStack\n");
465 exit (1);
466 }
467 SetMemN (TemporaryRam, TemporaryRamSize, PcdGet32 (PcdInitValueInTempStack));
468
469 SecPrint (" OS Emulator passing in %u KB of temp RAM at 0x%08lx to SEC\n",
470 TemporaryRamSize / SIZE_1KB,
471 TemporaryRam
472 );
473
474 //
475 // If enabled use the magic page to communicate between modules
476 // This replaces the PI PeiServicesTable pointer mechanism that
477 // deos not work in the emulator. It also allows the removal of
478 // writable globals from SEC, PEI_CORE (libraries), PEIMs
479 //
480 EmuMagicPage = (VOID *)(UINTN)(FixedPcdGet64 (PcdPeiServicesTablePage) & MAX_UINTN);
481 if (EmuMagicPage != NULL) {
482 UINT64 Size;
483 Status = WinNtOpenFile (
484 NULL,
485 SIZE_4KB,
486 0,
487 &EmuMagicPage,
488 &Size
489 );
490 if (EFI_ERROR (Status)) {
491 SecPrint ("ERROR : Could not allocate PeiServicesTablePage @ %p\n", EmuMagicPage);
492 return EFI_DEVICE_ERROR;
493 }
494 }
495
496 //
497 // Open All the firmware volumes and remember the info in the gFdInfo global
498 // Meanwhile, find the SEC Core.
499 //
500 FileNamePtr = AllocateCopyPool (StrSize (FirmwareVolumesStr), FirmwareVolumesStr);
501 if (FileNamePtr == NULL) {
502 SecPrint ("ERROR : Can not allocate memory for firmware volume string\n");
503 exit (1);
504 }
505
506 for (Done = FALSE, Index = 0, SecFile = NULL; !Done; Index++) {
507 FileName = FileNamePtr;
508 for (Index1 = 0; (FileNamePtr[Index1] != '!') && (FileNamePtr[Index1] != 0); Index1++)
509 ;
510 if (FileNamePtr[Index1] == 0) {
511 Done = TRUE;
512 } else {
513 FileNamePtr[Index1] = '\0';
514 FileNamePtr = &FileNamePtr[Index1 + 1];
515 }
516
517 //
518 // Open the FD and remember where it got mapped into our processes address space
519 //
520 Status = WinNtOpenFile (
521 FileName,
522 0,
523 OPEN_EXISTING,
524 &gFdInfo[Index].Address,
525 &gFdInfo[Index].Size
526 );
527 if (EFI_ERROR (Status)) {
528 SecPrint ("ERROR : Can not open Firmware Device File %S (0x%X). Exiting.\n", FileName, Status);
529 exit (1);
530 }
531
532 SecPrint (" FD loaded from %S\n", FileName);
533
534 if (SecFile == NULL) {
535 //
536 // Assume the beginning of the FD is an FV and look for the SEC Core.
537 // Load the first one we find.
538 //
539 FileHandle = NULL;
540 Status = PeiServicesFfsFindNextFile (
541 EFI_FV_FILETYPE_SECURITY_CORE,
542 (EFI_PEI_FV_HANDLE)gFdInfo[Index].Address,
543 &FileHandle
544 );
545 if (!EFI_ERROR (Status)) {
546 Status = PeiServicesFfsFindSectionData (EFI_SECTION_PE32, FileHandle, &SecFile);
547 if (!EFI_ERROR (Status)) {
548 SecPrint (" contains SEC Core");
549 }
550 }
551 }
552
553 SecPrint ("\n");
554 }
555 //
556 // Calculate memory regions and store the information in the gSystemMemory
557 // global for later use. The autosizing code will use this data to
558 // map this memory into the SEC process memory space.
559 //
560 for (Index = 0, Done = FALSE; !Done; Index++) {
561 //
562 // Save the size of the memory and make a Unicode filename SystemMemory00, ...
563 //
564 gSystemMemory[Index].Size = _wtoi (MemorySizeStr) * SIZE_1MB;
565
566 //
567 // Find the next region
568 //
569 for (Index1 = 0; MemorySizeStr[Index1] != '!' && MemorySizeStr[Index1] != 0; Index1++)
570 ;
571 if (MemorySizeStr[Index1] == 0) {
572 Done = TRUE;
573 }
574
575 MemorySizeStr = MemorySizeStr + Index1 + 1;
576 }
577
578 SecPrint ("\n");
579
580 //
581 // Hand off to SEC Core
582 //
583 SecLoadSecCore ((UINTN)TemporaryRam, TemporaryRamSize, gFdInfo[0].Address, gFdInfo[0].Size, SecFile);
584
585 //
586 // If we get here, then the SEC Core returned. This is an error as SEC should
587 // always hand off to PEI Core and then on to DXE Core.
588 //
589 SecPrint ("ERROR : SEC returned\n");
590 exit (1);
591 }
592
593 VOID
594 SecLoadSecCore (
595 IN UINTN TemporaryRam,
596 IN UINTN TemporaryRamSize,
597 IN VOID *BootFirmwareVolumeBase,
598 IN UINTN BootFirmwareVolumeSize,
599 IN VOID *SecCorePe32File
600 )
601 /*++
602
603 Routine Description:
604 This is the service to load the SEC Core from the Firmware Volume
605
606 Arguments:
607 TemporaryRam - Memory to use for SEC.
608 TemporaryRamSize - Size of Memory to use for SEC
609 BootFirmwareVolumeBase - Start of the Boot FV
610 SecCorePe32File - SEC Core PE32
611
612 Returns:
613 Success means control is transfered and thus we should never return
614
615 --*/
616 {
617 EFI_STATUS Status;
618 VOID *TopOfStack;
619 VOID *SecCoreEntryPoint;
620 EFI_SEC_PEI_HAND_OFF *SecCoreData;
621 UINTN SecStackSize;
622
623 //
624 // Compute Top Of Memory for Stack and PEI Core Allocations
625 //
626 SecStackSize = TemporaryRamSize >> 1;
627
628 //
629 // |-----------| <---- TemporaryRamBase + TemporaryRamSize
630 // | Heap |
631 // | |
632 // |-----------| <---- StackBase / PeiTemporaryMemoryBase
633 // | |
634 // | Stack |
635 // |-----------| <---- TemporaryRamBase
636 //
637 TopOfStack = (VOID *)(TemporaryRam + SecStackSize);
638
639 //
640 // Reservet space for storing PeiCore's parament in stack.
641 //
642 TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT);
643 TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
644
645 //
646 // Bind this information into the SEC hand-off state
647 //
648 SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN)TopOfStack;
649 SecCoreData->DataSize = sizeof (EFI_SEC_PEI_HAND_OFF);
650 SecCoreData->BootFirmwareVolumeBase = BootFirmwareVolumeBase;
651 SecCoreData->BootFirmwareVolumeSize = BootFirmwareVolumeSize;
652 SecCoreData->TemporaryRamBase = (VOID*)TemporaryRam;
653 SecCoreData->TemporaryRamSize = TemporaryRamSize;
654 SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
655 SecCoreData->StackSize = SecStackSize;
656 SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + SecStackSize);
657 SecCoreData->PeiTemporaryRamSize = TemporaryRamSize - SecStackSize;
658
659 //
660 // Load the PEI Core from a Firmware Volume
661 //
662 Status = SecPeCoffGetEntryPoint (
663 SecCorePe32File,
664 &SecCoreEntryPoint
665 );
666 if (EFI_ERROR (Status)) {
667 return ;
668 }
669
670 //
671 // Transfer control to the SEC Core
672 //
673 SwitchStack (
674 (SWITCH_STACK_ENTRY_POINT)SecCoreEntryPoint,
675 SecCoreData,
676 GetThunkPpiList (),
677 TopOfStack
678 );
679 //
680 // If we get here, then the SEC Core returned. This is an error
681 //
682 return ;
683 }
684
685 RETURN_STATUS
686 EFIAPI
687 SecPeCoffGetEntryPoint (
688 IN VOID *Pe32Data,
689 IN OUT VOID **EntryPoint
690 )
691 {
692 EFI_STATUS Status;
693 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
694
695 ZeroMem (&ImageContext, sizeof (ImageContext));
696 ImageContext.Handle = Pe32Data;
697
698 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
699
700 Status = PeCoffLoaderGetImageInfo (&ImageContext);
701 if (EFI_ERROR (Status)) {
702 return Status;
703 }
704 //
705 // Allocate space in NT (not emulator) memory with ReadWrite and Execute attribute.
706 // Extra space is for alignment
707 //
708 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
709 if (ImageContext.ImageAddress == 0) {
710 return EFI_OUT_OF_RESOURCES;
711 }
712 //
713 // Align buffer on section boundary
714 //
715 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
716 ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)ImageContext.SectionAlignment - 1);
717
718 Status = PeCoffLoaderLoadImage (&ImageContext);
719 if (EFI_ERROR (Status)) {
720 return Status;
721 }
722
723 Status = PeCoffLoaderRelocateImage (&ImageContext);
724 if (EFI_ERROR (Status)) {
725 return Status;
726 }
727
728 *EntryPoint = (VOID *)(UINTN)ImageContext.EntryPoint;
729
730 return EFI_SUCCESS;
731 }
732
733 EFI_STATUS
734 EFIAPI
735 SecImageRead (
736 IN VOID *FileHandle,
737 IN UINTN FileOffset,
738 IN OUT UINTN *ReadSize,
739 OUT VOID *Buffer
740 )
741 /*++
742
743 Routine Description:
744 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
745
746 Arguments:
747 FileHandle - The handle to the PE/COFF file
748 FileOffset - The offset, in bytes, into the file to read
749 ReadSize - The number of bytes to read from the file starting at FileOffset
750 Buffer - A pointer to the buffer to read the data into.
751
752 Returns:
753 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
754
755 --*/
756 {
757 CHAR8 *Destination8;
758 CHAR8 *Source8;
759 UINTN Length;
760
761 Destination8 = Buffer;
762 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
763 Length = *ReadSize;
764 while (Length--) {
765 *(Destination8++) = *(Source8++);
766 }
767
768 return EFI_SUCCESS;
769 }
770
771 CHAR16 *
772 AsciiToUnicode (
773 IN CHAR8 *Ascii,
774 IN UINTN *StrLen OPTIONAL
775 )
776 /*++
777
778 Routine Description:
779 Convert the passed in Ascii string to Unicode.
780 Optionally return the length of the strings.
781
782 Arguments:
783 Ascii - Ascii string to convert
784 StrLen - Length of string
785
786 Returns:
787 Pointer to malloc'ed Unicode version of Ascii
788
789 --*/
790 {
791 UINTN Index;
792 CHAR16 *Unicode;
793
794 //
795 // Allocate a buffer for unicode string
796 //
797 for (Index = 0; Ascii[Index] != '\0'; Index++)
798 ;
799 Unicode = malloc ((Index + 1) * sizeof (CHAR16));
800 if (Unicode == NULL) {
801 return NULL;
802 }
803
804 for (Index = 0; Ascii[Index] != '\0'; Index++) {
805 Unicode[Index] = (CHAR16) Ascii[Index];
806 }
807
808 Unicode[Index] = '\0';
809
810 if (StrLen != NULL) {
811 *StrLen = Index;
812 }
813
814 return Unicode;
815 }
816
817 UINTN
818 CountSeparatorsInString (
819 IN CONST CHAR16 *String,
820 IN CHAR16 Separator
821 )
822 /*++
823
824 Routine Description:
825 Count the number of separators in String
826
827 Arguments:
828 String - String to process
829 Separator - Item to count
830
831 Returns:
832 Number of Separator in String
833
834 --*/
835 {
836 UINTN Count;
837
838 for (Count = 0; *String != '\0'; String++) {
839 if (*String == Separator) {
840 Count++;
841 }
842 }
843
844 return Count;
845 }
846
847
848 VOID
849 EFIAPI
850 PeCoffLoaderRelocateImageExtraAction (
851 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
852 )
853 {
854 VOID *DllEntryPoint;
855 CHAR16 *DllFileName;
856 HMODULE Library;
857 UINTN Index;
858
859 ASSERT (ImageContext != NULL);
860 //
861 // If we load our own PE COFF images the Windows debugger can not source
862 // level debug our code. If a valid PDB pointer exists usw it to load
863 // the *.dll file as a library using Windows* APIs. This allows
864 // source level debug. The image is still loaded and relocated
865 // in the Framework memory space like on a real system (by the code above),
866 // but the entry point points into the DLL loaded by the code bellow.
867 //
868
869 DllEntryPoint = NULL;
870
871 //
872 // Load the DLL if it's not an EBC image.
873 //
874 if ((ImageContext->PdbPointer != NULL) &&
875 (ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) {
876 //
877 // Convert filename from ASCII to Unicode
878 //
879 DllFileName = AsciiToUnicode (ImageContext->PdbPointer, &Index);
880
881 //
882 // Check that we have a valid filename
883 //
884 if (Index < 5 || DllFileName[Index - 4] != '.') {
885 free (DllFileName);
886
887 //
888 // Never return an error if PeCoffLoaderRelocateImage() succeeded.
889 // The image will run, but we just can't source level debug. If we
890 // return an error the image will not run.
891 //
892 return;
893 }
894 //
895 // Replace .PDB with .DLL on the filename
896 //
897 DllFileName[Index - 3] = 'D';
898 DllFileName[Index - 2] = 'L';
899 DllFileName[Index - 1] = 'L';
900
901 //
902 // Load the .DLL file into the user process's address space for source
903 // level debug
904 //
905 Library = LoadLibraryEx (DllFileName, NULL, DONT_RESOLVE_DLL_REFERENCES);
906 if (Library != NULL) {
907 //
908 // InitializeDriver is the entry point we put in all our EFI DLL's. The
909 // DONT_RESOLVE_DLL_REFERENCES argument to LoadLIbraryEx() suppresses the
910 // normal DLL entry point of DllMain, and prevents other modules that are
911 // referenced in side the DllFileName from being loaded. There is no error
912 // checking as the we can point to the PE32 image loaded by Tiano. This
913 // step is only needed for source level debugging
914 //
915 DllEntryPoint = (VOID *) (UINTN) GetProcAddress (Library, "InitializeDriver");
916
917 }
918
919 if ((Library != NULL) && (DllEntryPoint != NULL)) {
920 ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint;
921 SecPrint ("LoadLibraryEx (%S,\n NULL, DONT_RESOLVE_DLL_REFERENCES)\n", DllFileName);
922 } else {
923 SecPrint ("WARNING: No source level debug %S. \n", DllFileName);
924 }
925
926 free (DllFileName);
927 }
928 }
929
930 VOID
931 EFIAPI
932 PeCoffLoaderUnloadImageExtraAction (
933 IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
934 )
935 {
936 ASSERT (ImageContext != NULL);
937 }
938
939
940 VOID
941 _ModuleEntryPoint (
942 VOID
943 )
944 {
945 }