]> git.proxmox.com Git - mirror_edk2.git/blob - EmulatorPkg/Win/Host/WinHost.c
EmulatorPkg/Win: Enable 64bit (SEC,PEI,DXE all run at 64bit)
[mirror_edk2.git] / EmulatorPkg / Win / Host / WinHost.c
1 /**@file
2 WinNt emulator of pre-SEC phase. It's really a Win32 application, but this is
3 Ok since all the other modules for NT32 are NOT Win32 applications.
4
5 This program gets NT32 PCD setting and figures out what the memory layout
6 will be, how may FD's will be loaded and also what the boot mode is.
7
8 This code produces 128 K of temporary memory for the SEC stack by directly
9 allocate memory space with ReadWrite and Execute attribute.
10
11 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
12 (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
13 This program and the accompanying materials
14 are licensed and made available under the terms and conditions of the BSD License
15 which accompanies this distribution. The full text of the license may be found at
16 http://opensource.org/licenses/bsd-license.php
17
18 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
19 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
20 **/
21
22 #include "WinHost.h"
23
24 #ifndef SE_TIME_ZONE_NAME
25 #define SE_TIME_ZONE_NAME TEXT("SeTimeZonePrivilege")
26 #endif
27
28 //
29 // Default information about where the FD is located.
30 // This array gets filled in with information from PcdWinNtFirmwareVolume
31 // The number of array elements is allocated base on parsing
32 // PcdWinNtFirmwareVolume and the memory is never freed.
33 //
34 UINTN gFdInfoCount = 0;
35 NT_FD_INFO *gFdInfo;
36
37 //
38 // Array that supports seperate memory rantes.
39 // The memory ranges are set by PcdWinNtMemorySizeForSecMain.
40 // The number of array elements is allocated base on parsing
41 // PcdWinNtMemorySizeForSecMain value and the memory is never freed.
42 //
43 UINTN gSystemMemoryCount = 0;
44 NT_SYSTEM_MEMORY *gSystemMemory;
45
46 /*++
47
48 Routine Description:
49 This service is called from Index == 0 until it returns EFI_UNSUPPORTED.
50 It allows discontinuous memory regions to be supported by the emulator.
51 It uses gSystemMemory[] and gSystemMemoryCount that were created by
52 parsing the host environment variable EFI_MEMORY_SIZE.
53 The size comes from the varaible and the address comes from the call to
54 UnixOpenFile.
55
56 Arguments:
57 Index - Which memory region to use
58 MemoryBase - Return Base address of memory region
59 MemorySize - Return size in bytes of the memory region
60
61 Returns:
62 EFI_SUCCESS - If memory region was mapped
63 EFI_UNSUPPORTED - If Index is not supported
64
65 **/
66 EFI_STATUS
67 WinPeiAutoScan (
68 IN UINTN Index,
69 OUT EFI_PHYSICAL_ADDRESS *MemoryBase,
70 OUT UINT64 *MemorySize
71 )
72 {
73 if (Index >= gSystemMemoryCount) {
74 return EFI_UNSUPPORTED;
75 }
76
77 //
78 // Allocate enough memory space for emulator
79 //
80 gSystemMemory[Index].Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (gSystemMemory[Index].Size), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
81 if (gSystemMemory[Index].Memory == 0) {
82 return EFI_OUT_OF_RESOURCES;
83 }
84
85 *MemoryBase = gSystemMemory[Index].Memory;
86 *MemorySize = gSystemMemory[Index].Size;
87
88 return EFI_SUCCESS;
89 }
90
91 /*++
92
93 Routine Description:
94 Return the FD Size and base address. Since the FD is loaded from a
95 file into host memory only the SEC will know it's address.
96
97 Arguments:
98 Index - Which FD, starts at zero.
99 FdSize - Size of the FD in bytes
100 FdBase - Start address of the FD. Assume it points to an FV Header
101 FixUp - Difference between actual FD address and build address
102
103 Returns:
104 EFI_SUCCESS - Return the Base address and size of the FV
105 EFI_UNSUPPORTED - Index does nto map to an FD in the system
106
107 **/
108 EFI_STATUS
109 WinFdAddress (
110 IN UINTN Index,
111 IN OUT EFI_PHYSICAL_ADDRESS *FdBase,
112 IN OUT UINT64 *FdSize,
113 IN OUT EFI_PHYSICAL_ADDRESS *FixUp
114 )
115 {
116 if (Index >= gFdInfoCount) {
117 return EFI_UNSUPPORTED;
118 }
119
120
121 *FdBase = (EFI_PHYSICAL_ADDRESS)(UINTN)gFdInfo[Index].Address;
122 *FdSize = (UINT64)gFdInfo[Index].Size;
123 *FixUp = 0;
124
125 if (*FdBase == 0 && *FdSize == 0) {
126 return EFI_UNSUPPORTED;
127 }
128
129 if (Index == 0) {
130 //
131 // FD 0 has XIP code and well known PCD values
132 // If the memory buffer could not be allocated at the FD build address
133 // the Fixup is the difference.
134 //
135 *FixUp = *FdBase - PcdGet64 (PcdEmuFdBaseAddress);
136 }
137
138 return EFI_SUCCESS;
139 }
140
141 /*++
142
143 Routine Description:
144 Since the SEC is the only Unix program in stack it must export
145 an interface to do POSIX calls. gUnix is initialized in UnixThunk.c.
146
147 Arguments:
148 InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL);
149 InterfaceBase - Address of the gUnix global
150
151 Returns:
152 EFI_SUCCESS - Data returned
153
154 **/
155 VOID *
156 WinThunk (
157 VOID
158 )
159 {
160 return &gEmuThunkProtocol;
161 }
162
163
164 EMU_THUNK_PPI mSecEmuThunkPpi = {
165 WinPeiAutoScan,
166 WinFdAddress,
167 WinThunk
168 };
169
170 VOID
171 SecPrint (
172 CHAR8 *Format,
173 ...
174 )
175 {
176 va_list Marker;
177 UINTN CharCount;
178 CHAR8 Buffer[0x1000];
179
180 va_start (Marker, Format);
181
182 _vsnprintf (Buffer, sizeof (Buffer), Format, Marker);
183
184 va_end (Marker);
185
186 CharCount = strlen (Buffer);
187 WriteFile (
188 GetStdHandle (STD_OUTPUT_HANDLE),
189 Buffer,
190 (DWORD)CharCount,
191 (LPDWORD)&CharCount,
192 NULL
193 );
194 }
195
196 /*++
197
198 Routine Description:
199 Check to see if an address range is in the EFI GCD memory map.
200
201 This is all of GCD for system memory passed to DXE Core. FV
202 mapping and other device mapped into system memory are not
203 inlcuded in the check.
204
205 Arguments:
206 Index - Which memory region to use
207 MemoryBase - Return Base address of memory region
208 MemorySize - Return size in bytes of the memory region
209
210 Returns:
211 TRUE - Address is in the EFI GCD memory map
212 FALSE - Address is NOT in memory map
213
214 **/
215 BOOLEAN
216 EfiSystemMemoryRange (
217 IN VOID *MemoryAddress
218 )
219 {
220 UINTN Index;
221 EFI_PHYSICAL_ADDRESS MemoryBase;
222
223 MemoryBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MemoryAddress;
224 for (Index = 0; Index < gSystemMemoryCount; Index++) {
225 if ((MemoryBase >= gSystemMemory[Index].Memory) &&
226 (MemoryBase < (gSystemMemory[Index].Memory + gSystemMemory[Index].Size)) ) {
227 return TRUE;
228 }
229 }
230
231 return FALSE;
232 }
233
234
235 EFI_STATUS
236 WinNtOpenFile (
237 IN CHAR16 *FileName, OPTIONAL
238 IN UINT32 MapSize,
239 IN DWORD CreationDisposition,
240 IN OUT VOID **BaseAddress,
241 OUT UINTN *Length
242 )
243 /*++
244
245 Routine Description:
246 Opens and memory maps a file using WinNt services. If *BaseAddress is non zero
247 the process will try and allocate the memory starting at BaseAddress.
248
249 Arguments:
250 FileName - The name of the file to open and map
251 MapSize - The amount of the file to map in bytes
252 CreationDisposition - The flags to pass to CreateFile(). Use to create new files for
253 memory emulation, and exiting files for firmware volume emulation
254 BaseAddress - The base address of the mapped file in the user address space.
255 If *BaseAddress is 0, the new memory region is used.
256 If *BaseAddress is not 0, the request memory region is used for
257 the mapping of the file into the process space.
258 Length - The size of the mapped region in bytes
259
260 Returns:
261 EFI_SUCCESS - The file was opened and mapped.
262 EFI_NOT_FOUND - FileName was not found in the current directory
263 EFI_DEVICE_ERROR - An error occured attempting to map the opened file
264
265 --*/
266 {
267 HANDLE NtFileHandle;
268 HANDLE NtMapHandle;
269 VOID *VirtualAddress;
270 UINTN FileSize;
271
272 //
273 // Use Win API to open/create a file
274 //
275 NtFileHandle = INVALID_HANDLE_VALUE;
276 if (FileName != NULL) {
277 NtFileHandle = CreateFile (
278 FileName,
279 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE,
280 FILE_SHARE_READ,
281 NULL,
282 CreationDisposition,
283 FILE_ATTRIBUTE_NORMAL,
284 NULL
285 );
286 if (NtFileHandle == INVALID_HANDLE_VALUE) {
287 return EFI_NOT_FOUND;
288 }
289 }
290 //
291 // Map the open file into a memory range
292 //
293 NtMapHandle = CreateFileMapping (
294 NtFileHandle,
295 NULL,
296 PAGE_EXECUTE_READWRITE,
297 0,
298 MapSize,
299 NULL
300 );
301 if (NtMapHandle == NULL) {
302 return EFI_DEVICE_ERROR;
303 }
304 //
305 // Get the virtual address (address in the emulator) of the mapped file
306 //
307 VirtualAddress = MapViewOfFileEx (
308 NtMapHandle,
309 FILE_MAP_EXECUTE | FILE_MAP_ALL_ACCESS,
310 0,
311 0,
312 MapSize,
313 *BaseAddress
314 );
315 if (VirtualAddress == NULL) {
316 return EFI_DEVICE_ERROR;
317 }
318
319 if (MapSize == 0) {
320 //
321 // Seek to the end of the file to figure out the true file size.
322 //
323 FileSize = SetFilePointer (
324 NtFileHandle,
325 0,
326 NULL,
327 FILE_END
328 );
329 if (FileSize == -1) {
330 return EFI_DEVICE_ERROR;
331 }
332
333 *Length = FileSize;
334 } else {
335 *Length = MapSize;
336 }
337
338 *BaseAddress = VirtualAddress;
339
340 return EFI_SUCCESS;
341 }
342
343 INTN
344 EFIAPI
345 main (
346 IN INTN Argc,
347 IN CHAR8 **Argv,
348 IN CHAR8 **Envp
349 )
350 /*++
351
352 Routine Description:
353 Main entry point to SEC for WinNt. This is a Windows program
354
355 Arguments:
356 Argc - Number of command line arguments
357 Argv - Array of command line argument strings
358 Envp - Array of environment variable strings
359
360 Returns:
361 0 - Normal exit
362 1 - Abnormal exit
363
364 --*/
365 {
366 EFI_STATUS Status;
367 HANDLE Token;
368 TOKEN_PRIVILEGES TokenPrivileges;
369 VOID *TemporaryRam;
370 UINT32 TemporaryRamSize;
371 VOID *EmuMagicPage;
372 UINTN Index;
373 UINTN Index1;
374 CHAR16 *FileName;
375 CHAR16 *FileNamePtr;
376 BOOLEAN Done;
377 EFI_PEI_FILE_HANDLE FileHandle;
378 VOID *SecFile;
379 CHAR16 *MemorySizeStr;
380 CHAR16 *FirmwareVolumesStr;
381 UINT32 ProcessAffinityMask;
382 UINT32 SystemAffinityMask;
383 INT32 LowBit;
384
385 //
386 // Enable the privilege so that RTC driver can successfully run SetTime()
387 //
388 OpenProcessToken (GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES|TOKEN_QUERY, &Token);
389 if (LookupPrivilegeValue(NULL, SE_TIME_ZONE_NAME, &TokenPrivileges.Privileges[0].Luid)) {
390 TokenPrivileges.PrivilegeCount = 1;
391 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
392 AdjustTokenPrivileges(Token, FALSE, &TokenPrivileges, 0, (PTOKEN_PRIVILEGES) NULL, 0);
393 }
394
395 MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdEmuMemorySize);
396 FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdEmuFirmwareVolume);
397
398 SecPrint ("\nEDK II WIN Host Emulation Environment from http://www.tianocore.org/edk2/\n");
399
400 //
401 // Determine the first thread available to this process.
402 //
403 if (GetProcessAffinityMask (GetCurrentProcess (), &ProcessAffinityMask, &SystemAffinityMask)) {
404 LowBit = (INT32)LowBitSet32 (ProcessAffinityMask);
405 if (LowBit != -1) {
406 //
407 // Force the system to bind the process to a single thread to work
408 // around odd semaphore type crashes.
409 //
410 SetProcessAffinityMask (GetCurrentProcess (), (INTN)(BIT0 << LowBit));
411 }
412 }
413
414 //
415 // Make some Windows calls to Set the process to the highest priority in the
416 // idle class. We need this to have good performance.
417 //
418 SetPriorityClass (GetCurrentProcess (), IDLE_PRIORITY_CLASS);
419 SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_HIGHEST);
420
421 SecInitializeThunk ();
422 //
423 // PPIs pased into PEI_CORE
424 //
425 AddThunkPpi (EFI_PEI_PPI_DESCRIPTOR_PPI, &gEmuThunkPpiGuid, &mSecEmuThunkPpi);
426
427 //
428 // Emulator Bus Driver Thunks
429 //
430 AddThunkProtocol (&mWinNtWndThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuGop), TRUE);
431 AddThunkProtocol (&mWinNtFileSystemThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuFileSystem), TRUE);
432 AddThunkProtocol (&mWinNtBlockIoThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuVirtualDisk), TRUE);
433
434 //
435 // Allocate space for gSystemMemory Array
436 //
437 gSystemMemoryCount = CountSeparatorsInString (MemorySizeStr, '!') + 1;
438 gSystemMemory = calloc (gSystemMemoryCount, sizeof (NT_SYSTEM_MEMORY));
439 if (gSystemMemory == NULL) {
440 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", MemorySizeStr);
441 exit (1);
442 }
443
444 //
445 // Allocate space for gSystemMemory Array
446 //
447 gFdInfoCount = CountSeparatorsInString (FirmwareVolumesStr, '!') + 1;
448 gFdInfo = calloc (gFdInfoCount, sizeof (NT_FD_INFO));
449 if (gFdInfo == NULL) {
450 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", FirmwareVolumesStr);
451 exit (1);
452 }
453 //
454 // Setup Boot Mode.
455 //
456 SecPrint (" BootMode 0x%02x\n", PcdGet32 (PcdEmuBootMode));
457
458 //
459 // Allocate 128K memory to emulate temp memory for PEI.
460 // on a real platform this would be SRAM, or using the cache as RAM.
461 // Set TemporaryRam to zero so WinNtOpenFile will allocate a new mapping
462 //
463 TemporaryRamSize = TEMPORARY_RAM_SIZE;
464 TemporaryRam = VirtualAlloc (NULL, (SIZE_T) (TemporaryRamSize), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
465 if (TemporaryRam == NULL) {
466 SecPrint ("ERROR : Can not allocate enough space for SecStack\n");
467 exit (1);
468 }
469 SetMem32 (TemporaryRam, TemporaryRamSize, PcdGet32 (PcdInitValueInTempStack));
470
471 SecPrint (" OS Emulator passing in %u KB of temp RAM at 0x%08lx to SEC\n",
472 TemporaryRamSize / SIZE_1KB,
473 TemporaryRam
474 );
475
476 //
477 // If enabled use the magic page to communicate between modules
478 // This replaces the PI PeiServicesTable pointer mechanism that
479 // deos not work in the emulator. It also allows the removal of
480 // writable globals from SEC, PEI_CORE (libraries), PEIMs
481 //
482 EmuMagicPage = (VOID *)(UINTN)(FixedPcdGet64 (PcdPeiServicesTablePage) & MAX_UINTN);
483 if (EmuMagicPage != NULL) {
484 UINT64 Size;
485 Status = WinNtOpenFile (
486 NULL,
487 SIZE_4KB,
488 0,
489 &EmuMagicPage,
490 &Size
491 );
492 if (EFI_ERROR (Status)) {
493 SecPrint ("ERROR : Could not allocate PeiServicesTablePage @ %p\n", EmuMagicPage);
494 return EFI_DEVICE_ERROR;
495 }
496 }
497
498 //
499 // Open All the firmware volumes and remember the info in the gFdInfo global
500 // Meanwhile, find the SEC Core.
501 //
502 FileNamePtr = AllocateCopyPool (StrSize (FirmwareVolumesStr), FirmwareVolumesStr);
503 if (FileNamePtr == NULL) {
504 SecPrint ("ERROR : Can not allocate memory for firmware volume string\n");
505 exit (1);
506 }
507
508 for (Done = FALSE, Index = 0, SecFile = NULL; !Done; Index++) {
509 FileName = FileNamePtr;
510 for (Index1 = 0; (FileNamePtr[Index1] != '!') && (FileNamePtr[Index1] != 0); Index1++)
511 ;
512 if (FileNamePtr[Index1] == 0) {
513 Done = TRUE;
514 } else {
515 FileNamePtr[Index1] = '\0';
516 FileNamePtr = &FileNamePtr[Index1 + 1];
517 }
518
519 //
520 // Open the FD and remember where it got mapped into our processes address space
521 //
522 Status = WinNtOpenFile (
523 FileName,
524 0,
525 OPEN_EXISTING,
526 &gFdInfo[Index].Address,
527 &gFdInfo[Index].Size
528 );
529 if (EFI_ERROR (Status)) {
530 SecPrint ("ERROR : Can not open Firmware Device File %S (0x%X). Exiting.\n", FileName, Status);
531 exit (1);
532 }
533
534 SecPrint (" FD loaded from %S\n", FileName);
535
536 if (SecFile == NULL) {
537 //
538 // Assume the beginning of the FD is an FV and look for the SEC Core.
539 // Load the first one we find.
540 //
541 FileHandle = NULL;
542 Status = PeiServicesFfsFindNextFile (
543 EFI_FV_FILETYPE_SECURITY_CORE,
544 (EFI_PEI_FV_HANDLE)gFdInfo[Index].Address,
545 &FileHandle
546 );
547 if (!EFI_ERROR (Status)) {
548 Status = PeiServicesFfsFindSectionData (EFI_SECTION_PE32, FileHandle, &SecFile);
549 if (!EFI_ERROR (Status)) {
550 SecPrint (" contains SEC Core");
551 }
552 }
553 }
554
555 SecPrint ("\n");
556 }
557 //
558 // Calculate memory regions and store the information in the gSystemMemory
559 // global for later use. The autosizing code will use this data to
560 // map this memory into the SEC process memory space.
561 //
562 for (Index = 0, Done = FALSE; !Done; Index++) {
563 //
564 // Save the size of the memory and make a Unicode filename SystemMemory00, ...
565 //
566 gSystemMemory[Index].Size = _wtoi (MemorySizeStr) * SIZE_1MB;
567
568 //
569 // Find the next region
570 //
571 for (Index1 = 0; MemorySizeStr[Index1] != '!' && MemorySizeStr[Index1] != 0; Index1++)
572 ;
573 if (MemorySizeStr[Index1] == 0) {
574 Done = TRUE;
575 }
576
577 MemorySizeStr = MemorySizeStr + Index1 + 1;
578 }
579
580 SecPrint ("\n");
581
582 //
583 // Hand off to SEC Core
584 //
585 SecLoadSecCore ((UINTN)TemporaryRam, TemporaryRamSize, gFdInfo[0].Address, gFdInfo[0].Size, SecFile);
586
587 //
588 // If we get here, then the SEC Core returned. This is an error as SEC should
589 // always hand off to PEI Core and then on to DXE Core.
590 //
591 SecPrint ("ERROR : SEC returned\n");
592 exit (1);
593 }
594
595 VOID
596 SecLoadSecCore (
597 IN UINTN TemporaryRam,
598 IN UINTN TemporaryRamSize,
599 IN VOID *BootFirmwareVolumeBase,
600 IN UINTN BootFirmwareVolumeSize,
601 IN VOID *SecCorePe32File
602 )
603 /*++
604
605 Routine Description:
606 This is the service to load the SEC Core from the Firmware Volume
607
608 Arguments:
609 TemporaryRam - Memory to use for SEC.
610 TemporaryRamSize - Size of Memory to use for SEC
611 BootFirmwareVolumeBase - Start of the Boot FV
612 SecCorePe32File - SEC Core PE32
613
614 Returns:
615 Success means control is transfered and thus we should never return
616
617 --*/
618 {
619 EFI_STATUS Status;
620 VOID *TopOfStack;
621 VOID *SecCoreEntryPoint;
622 EFI_SEC_PEI_HAND_OFF *SecCoreData;
623 UINTN SecStackSize;
624
625 //
626 // Compute Top Of Memory for Stack and PEI Core Allocations
627 //
628 SecStackSize = TemporaryRamSize >> 1;
629
630 //
631 // |-----------| <---- TemporaryRamBase + TemporaryRamSize
632 // | Heap |
633 // | |
634 // |-----------| <---- StackBase / PeiTemporaryMemoryBase
635 // | |
636 // | Stack |
637 // |-----------| <---- TemporaryRamBase
638 //
639 TopOfStack = (VOID *)(TemporaryRam + SecStackSize);
640
641 //
642 // Reservet space for storing PeiCore's parament in stack.
643 //
644 TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT);
645 TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
646
647 //
648 // Bind this information into the SEC hand-off state
649 //
650 SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN)TopOfStack;
651 SecCoreData->DataSize = sizeof (EFI_SEC_PEI_HAND_OFF);
652 SecCoreData->BootFirmwareVolumeBase = BootFirmwareVolumeBase;
653 SecCoreData->BootFirmwareVolumeSize = BootFirmwareVolumeSize;
654 SecCoreData->TemporaryRamBase = (VOID*)TemporaryRam;
655 SecCoreData->TemporaryRamSize = TemporaryRamSize;
656 SecCoreData->StackBase = SecCoreData->TemporaryRamBase;
657 SecCoreData->StackSize = SecStackSize;
658 SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + SecStackSize);
659 SecCoreData->PeiTemporaryRamSize = TemporaryRamSize - SecStackSize;
660
661 //
662 // Load the PEI Core from a Firmware Volume
663 //
664 Status = SecPeCoffGetEntryPoint (
665 SecCorePe32File,
666 &SecCoreEntryPoint
667 );
668 if (EFI_ERROR (Status)) {
669 return ;
670 }
671
672 //
673 // Transfer control to the SEC Core
674 //
675 SwitchStack (
676 (SWITCH_STACK_ENTRY_POINT)SecCoreEntryPoint,
677 SecCoreData,
678 GetThunkPpiList (),
679 TopOfStack
680 );
681 //
682 // If we get here, then the SEC Core returned. This is an error
683 //
684 return ;
685 }
686
687 RETURN_STATUS
688 EFIAPI
689 SecPeCoffGetEntryPoint (
690 IN VOID *Pe32Data,
691 IN OUT VOID **EntryPoint
692 )
693 {
694 EFI_STATUS Status;
695 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
696
697 ZeroMem (&ImageContext, sizeof (ImageContext));
698 ImageContext.Handle = Pe32Data;
699
700 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead;
701
702 Status = PeCoffLoaderGetImageInfo (&ImageContext);
703 if (EFI_ERROR (Status)) {
704 return Status;
705 }
706 //
707 // Allocate space in NT (not emulator) memory with ReadWrite and Execute attribute.
708 // Extra space is for alignment
709 //
710 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
711 if (ImageContext.ImageAddress == 0) {
712 return EFI_OUT_OF_RESOURCES;
713 }
714 //
715 // Align buffer on section boundary
716 //
717 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
718 ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)ImageContext.SectionAlignment - 1);
719
720 Status = PeCoffLoaderLoadImage (&ImageContext);
721 if (EFI_ERROR (Status)) {
722 return Status;
723 }
724
725 Status = PeCoffLoaderRelocateImage (&ImageContext);
726 if (EFI_ERROR (Status)) {
727 return Status;
728 }
729
730 *EntryPoint = (VOID *)(UINTN)ImageContext.EntryPoint;
731
732 return EFI_SUCCESS;
733 }
734
735 EFI_STATUS
736 EFIAPI
737 SecImageRead (
738 IN VOID *FileHandle,
739 IN UINTN FileOffset,
740 IN OUT UINTN *ReadSize,
741 OUT VOID *Buffer
742 )
743 /*++
744
745 Routine Description:
746 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
747
748 Arguments:
749 FileHandle - The handle to the PE/COFF file
750 FileOffset - The offset, in bytes, into the file to read
751 ReadSize - The number of bytes to read from the file starting at FileOffset
752 Buffer - A pointer to the buffer to read the data into.
753
754 Returns:
755 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
756
757 --*/
758 {
759 CHAR8 *Destination8;
760 CHAR8 *Source8;
761 UINTN Length;
762
763 Destination8 = Buffer;
764 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
765 Length = *ReadSize;
766 while (Length--) {
767 *(Destination8++) = *(Source8++);
768 }
769
770 return EFI_SUCCESS;
771 }
772
773 CHAR16 *
774 AsciiToUnicode (
775 IN CHAR8 *Ascii,
776 IN UINTN *StrLen OPTIONAL
777 )
778 /*++
779
780 Routine Description:
781 Convert the passed in Ascii string to Unicode.
782 Optionally return the length of the strings.
783
784 Arguments:
785 Ascii - Ascii string to convert
786 StrLen - Length of string
787
788 Returns:
789 Pointer to malloc'ed Unicode version of Ascii
790
791 --*/
792 {
793 UINTN Index;
794 CHAR16 *Unicode;
795
796 //
797 // Allocate a buffer for unicode string
798 //
799 for (Index = 0; Ascii[Index] != '\0'; Index++)
800 ;
801 Unicode = malloc ((Index + 1) * sizeof (CHAR16));
802 if (Unicode == NULL) {
803 return NULL;
804 }
805
806 for (Index = 0; Ascii[Index] != '\0'; Index++) {
807 Unicode[Index] = (CHAR16) Ascii[Index];
808 }
809
810 Unicode[Index] = '\0';
811
812 if (StrLen != NULL) {
813 *StrLen = Index;
814 }
815
816 return Unicode;
817 }
818
819 UINTN
820 CountSeparatorsInString (
821 IN CONST CHAR16 *String,
822 IN CHAR16 Separator
823 )
824 /*++
825
826 Routine Description:
827 Count the number of separators in String
828
829 Arguments:
830 String - String to process
831 Separator - Item to count
832
833 Returns:
834 Number of Separator in String
835
836 --*/
837 {
838 UINTN Count;
839
840 for (Count = 0; *String != '\0'; String++) {
841 if (*String == Separator) {
842 Count++;
843 }
844 }
845
846 return Count;
847 }
848
849
850 VOID
851 EFIAPI
852 PeCoffLoaderRelocateImageExtraAction (
853 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
854 )
855 {
856 VOID *DllEntryPoint;
857 CHAR16 *DllFileName;
858 HMODULE Library;
859 UINTN Index;
860
861 ASSERT (ImageContext != NULL);
862 //
863 // If we load our own PE COFF images the Windows debugger can not source
864 // level debug our code. If a valid PDB pointer exists usw it to load
865 // the *.dll file as a library using Windows* APIs. This allows
866 // source level debug. The image is still loaded and relocated
867 // in the Framework memory space like on a real system (by the code above),
868 // but the entry point points into the DLL loaded by the code bellow.
869 //
870
871 DllEntryPoint = NULL;
872
873 //
874 // Load the DLL if it's not an EBC image.
875 //
876 if ((ImageContext->PdbPointer != NULL) &&
877 (ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) {
878 //
879 // Convert filename from ASCII to Unicode
880 //
881 DllFileName = AsciiToUnicode (ImageContext->PdbPointer, &Index);
882
883 //
884 // Check that we have a valid filename
885 //
886 if (Index < 5 || DllFileName[Index - 4] != '.') {
887 free (DllFileName);
888
889 //
890 // Never return an error if PeCoffLoaderRelocateImage() succeeded.
891 // The image will run, but we just can't source level debug. If we
892 // return an error the image will not run.
893 //
894 return;
895 }
896 //
897 // Replace .PDB with .DLL on the filename
898 //
899 DllFileName[Index - 3] = 'D';
900 DllFileName[Index - 2] = 'L';
901 DllFileName[Index - 1] = 'L';
902
903 //
904 // Load the .DLL file into the user process's address space for source
905 // level debug
906 //
907 Library = LoadLibraryEx (DllFileName, NULL, DONT_RESOLVE_DLL_REFERENCES);
908 if (Library != NULL) {
909 //
910 // InitializeDriver is the entry point we put in all our EFI DLL's. The
911 // DONT_RESOLVE_DLL_REFERENCES argument to LoadLIbraryEx() suppresses the
912 // normal DLL entry point of DllMain, and prevents other modules that are
913 // referenced in side the DllFileName from being loaded. There is no error
914 // checking as the we can point to the PE32 image loaded by Tiano. This
915 // step is only needed for source level debugging
916 //
917 DllEntryPoint = (VOID *) (UINTN) GetProcAddress (Library, "InitializeDriver");
918
919 }
920
921 if ((Library != NULL) && (DllEntryPoint != NULL)) {
922 ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint;
923 SecPrint ("LoadLibraryEx (%S,\n NULL, DONT_RESOLVE_DLL_REFERENCES)\n", DllFileName);
924 } else {
925 SecPrint ("WARNING: No source level debug %S. \n", DllFileName);
926 }
927
928 free (DllFileName);
929 }
930 }
931
932 VOID
933 EFIAPI
934 PeCoffLoaderUnloadImageExtraAction (
935 IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
936 )
937 {
938 ASSERT (ImageContext != NULL);
939 }
940
941
942 VOID
943 _ModuleEntryPoint (
944 VOID
945 )
946 {
947 }