]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
IntelFrameworkModulePkg: Put report status code after event was signaled per PI spec.
[mirror_edk2.git] / IntelFrameworkModulePkg / Csm / LegacyBiosDxe / LegacyBootSupport.c
1 /** @file
2
3 Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR>
4
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions
7 of the BSD License which accompanies this distribution. The
8 full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "LegacyBiosInterface.h"
17 #include <IndustryStandard/Pci.h>
18
19 #define BOOT_LEGACY_OS 0
20 #define BOOT_EFI_OS 1
21 #define BOOT_UNCONVENTIONAL_DEVICE 2
22
23 UINT32 mLoadOptionsSize = 0;
24 UINTN mBootMode = BOOT_LEGACY_OS;
25 VOID *mLoadOptions = NULL;
26 BBS_BBS_DEVICE_PATH *mBbsDevicePathPtr = NULL;
27 BBS_BBS_DEVICE_PATH mBbsDevicePathNode;
28 UDC_ATTRIBUTES mAttributes = { 0, 0, 0, 0 };
29 UINTN mBbsEntry = 0;
30 VOID *mBeerData = NULL;
31 VOID *mServiceAreaData = NULL;
32 UINT64 mLowWater = 0xffffffffffffffffULL;
33
34 extern BBS_TABLE *mBbsTable;
35
36 extern VOID *mRuntimeSmbiosEntryPoint;
37 extern EFI_PHYSICAL_ADDRESS mReserveSmbiosEntryPoint;
38 extern EFI_PHYSICAL_ADDRESS mStructureTableAddress;
39
40 /**
41 Print the BBS Table.
42
43 @param BbsTable The BBS table.
44
45
46 **/
47 VOID
48 PrintBbsTable (
49 IN BBS_TABLE *BbsTable
50 )
51 {
52 UINT16 Index;
53 UINT16 SubIndex;
54 CHAR8 *String;
55
56 DEBUG ((EFI_D_INFO, "\n"));
57 DEBUG ((EFI_D_INFO, " NO Prio bb/dd/ff cl/sc Type Stat segm:offs mfgs:mfgo dess:deso\n"));
58 DEBUG ((EFI_D_INFO, "=================================================================\n"));
59 for (Index = 0; Index < MAX_BBS_ENTRIES; Index++) {
60 //
61 // Filter
62 //
63 if (BbsTable[Index].BootPriority == BBS_IGNORE_ENTRY) {
64 continue;
65 }
66
67 DEBUG ((
68 EFI_D_INFO,
69 " %02x: %04x %02x/%02x/%02x %02x/%02x %04x %04x",
70 (UINTN) Index,
71 (UINTN) BbsTable[Index].BootPriority,
72 (UINTN) BbsTable[Index].Bus,
73 (UINTN) BbsTable[Index].Device,
74 (UINTN) BbsTable[Index].Function,
75 (UINTN) BbsTable[Index].Class,
76 (UINTN) BbsTable[Index].SubClass,
77 (UINTN) BbsTable[Index].DeviceType,
78 (UINTN) * (UINT16 *) &BbsTable[Index].StatusFlags
79 ));
80 DEBUG ((
81 EFI_D_INFO,
82 " %04x:%04x %04x:%04x %04x:%04x",
83 (UINTN) BbsTable[Index].BootHandlerSegment,
84 (UINTN) BbsTable[Index].BootHandlerOffset,
85 (UINTN) BbsTable[Index].MfgStringSegment,
86 (UINTN) BbsTable[Index].MfgStringOffset,
87 (UINTN) BbsTable[Index].DescStringSegment,
88 (UINTN) BbsTable[Index].DescStringOffset
89 ));
90
91 //
92 // Print DescString
93 //
94 String = (CHAR8 *)(UINTN)((BbsTable[Index].DescStringSegment << 4) + BbsTable[Index].DescStringOffset);
95 if (String != NULL) {
96 DEBUG ((EFI_D_INFO," ("));
97 for (SubIndex = 0; String[SubIndex] != 0; SubIndex++) {
98 DEBUG ((EFI_D_INFO, "%c", String[SubIndex]));
99 }
100 DEBUG ((EFI_D_INFO,")"));
101 }
102 DEBUG ((EFI_D_INFO,"\n"));
103 }
104
105 DEBUG ((EFI_D_INFO, "\n"));
106
107 return ;
108 }
109
110 /**
111 Print the BBS Table.
112
113 @param HddInfo The HddInfo table.
114
115
116 **/
117 VOID
118 PrintHddInfo (
119 IN HDD_INFO *HddInfo
120 )
121 {
122 UINTN Index;
123
124 DEBUG ((EFI_D_INFO, "\n"));
125 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
126 DEBUG ((EFI_D_INFO, "Index - %04x\n", Index));
127 DEBUG ((EFI_D_INFO, " Status - %04x\n", (UINTN)HddInfo[Index].Status));
128 DEBUG ((EFI_D_INFO, " B/D/F - %02x/%02x/%02x\n", (UINTN)HddInfo[Index].Bus, (UINTN)HddInfo[Index].Device, (UINTN)HddInfo[Index].Function));
129 DEBUG ((EFI_D_INFO, " Command - %04x\n", HddInfo[Index].CommandBaseAddress));
130 DEBUG ((EFI_D_INFO, " Control - %04x\n", HddInfo[Index].ControlBaseAddress));
131 DEBUG ((EFI_D_INFO, " BusMaster - %04x\n", HddInfo[Index].BusMasterAddress));
132 DEBUG ((EFI_D_INFO, " HddIrq - %02x\n", HddInfo[Index].HddIrq));
133 DEBUG ((EFI_D_INFO, " IdentifyDrive[0].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[0].Raw[0]));
134 DEBUG ((EFI_D_INFO, " IdentifyDrive[1].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[1].Raw[0]));
135 }
136
137 DEBUG ((EFI_D_INFO, "\n"));
138
139 return ;
140 }
141
142 /**
143 Print the PCI Interrupt Line and Interrupt Pin registers.
144 **/
145 VOID
146 PrintPciInterruptRegister (
147 VOID
148 )
149 {
150 EFI_STATUS Status;
151 UINTN Index;
152 EFI_HANDLE *Handles;
153 UINTN HandleNum;
154 EFI_PCI_IO_PROTOCOL *PciIo;
155 UINT8 Interrupt[2];
156 UINTN Segment;
157 UINTN Bus;
158 UINTN Device;
159 UINTN Function;
160
161 gBS->LocateHandleBuffer (
162 ByProtocol,
163 &gEfiPciIoProtocolGuid,
164 NULL,
165 &HandleNum,
166 &Handles
167 );
168
169 Bus = 0;
170 Device = 0;
171 Function = 0;
172
173 DEBUG ((EFI_D_INFO, "\n"));
174 DEBUG ((EFI_D_INFO, " bb/dd/ff interrupt line interrupt pin\n"));
175 DEBUG ((EFI_D_INFO, "======================================\n"));
176 for (Index = 0; Index < HandleNum; Index++) {
177 Status = gBS->HandleProtocol (Handles[Index], &gEfiPciIoProtocolGuid, (VOID **) &PciIo);
178 if (!EFI_ERROR (Status)) {
179 Status = PciIo->Pci.Read (
180 PciIo,
181 EfiPciIoWidthUint8,
182 PCI_INT_LINE_OFFSET,
183 2,
184 Interrupt
185 );
186 }
187 if (!EFI_ERROR (Status)) {
188 Status = PciIo->GetLocation (
189 PciIo,
190 &Segment,
191 &Bus,
192 &Device,
193 &Function
194 );
195 }
196 if (!EFI_ERROR (Status)) {
197 DEBUG ((EFI_D_INFO, " %02x/%02x/%02x 0x%02x 0x%02x\n",
198 Bus, Device, Function, Interrupt[0], Interrupt[1]));
199 }
200 }
201 DEBUG ((EFI_D_INFO, "\n"));
202
203 if (Handles != NULL) {
204 FreePool (Handles);
205 }
206 }
207
208 /**
209 Identify drive data must be updated to actual parameters before boot.
210
211 @param IdentifyDriveData ATA Identify Data
212
213 **/
214 VOID
215 UpdateIdentifyDriveData (
216 IN UINT8 *IdentifyDriveData
217 );
218
219 /**
220 Update SIO data.
221
222 @param Private Legacy BIOS Instance data
223
224 @retval EFI_SUCCESS Removable media not present
225
226 **/
227 EFI_STATUS
228 UpdateSioData (
229 IN LEGACY_BIOS_INSTANCE *Private
230 )
231 {
232 EFI_STATUS Status;
233 UINTN Index;
234 UINTN Index1;
235 UINT8 LegacyInterrupts[16];
236 EFI_LEGACY_IRQ_ROUTING_ENTRY *RoutingTable;
237 UINTN RoutingTableEntries;
238 EFI_LEGACY_IRQ_PRIORITY_TABLE_ENTRY *IrqPriorityTable;
239 UINTN NumberPriorityEntries;
240 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
241 UINT8 HddIrq;
242 UINT16 LegacyInt;
243 UINT16 LegMask;
244 UINT32 Register;
245 UINTN HandleCount;
246 EFI_HANDLE *HandleBuffer;
247 EFI_ISA_IO_PROTOCOL *IsaIo;
248
249 LegacyInt = 0;
250 HandleBuffer = NULL;
251
252 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
253 LegacyBiosBuildSioData (Private);
254 SetMem (LegacyInterrupts, sizeof (LegacyInterrupts), 0);
255
256 //
257 // Create list of legacy interrupts.
258 //
259 for (Index = 0; Index < 4; Index++) {
260 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Serial[Index].Irq;
261 }
262
263 for (Index = 4; Index < 7; Index++) {
264 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Parallel[Index - 4].Irq;
265 }
266
267 LegacyInterrupts[7] = EfiToLegacy16BootTable->SioData.Floppy.Irq;
268
269 //
270 // Get Legacy Hdd IRQs. If native mode treat as PCI
271 //
272 for (Index = 0; Index < 2; Index++) {
273 HddIrq = EfiToLegacy16BootTable->HddInfo[Index].HddIrq;
274 if ((HddIrq != 0) && ((HddIrq == 15) || (HddIrq == 14))) {
275 LegacyInterrupts[Index + 8] = HddIrq;
276 }
277 }
278
279 Private->LegacyBiosPlatform->GetRoutingTable (
280 Private->LegacyBiosPlatform,
281 (VOID *) &RoutingTable,
282 &RoutingTableEntries,
283 NULL,
284 NULL,
285 (VOID **) &IrqPriorityTable,
286 &NumberPriorityEntries
287 );
288 //
289 // Remove legacy interrupts from the list of PCI interrupts available.
290 //
291 for (Index = 0; Index <= 0x0b; Index++) {
292 for (Index1 = 0; Index1 <= NumberPriorityEntries; Index1++) {
293 if (LegacyInterrupts[Index] != 0) {
294 LegacyInt = (UINT16) (LegacyInt | (1 << LegacyInterrupts[Index]));
295 if (LegacyInterrupts[Index] == IrqPriorityTable[Index1].Irq) {
296 IrqPriorityTable[Index1].Used = LEGACY_USED;
297 }
298 }
299 }
300 }
301
302 Private->Legacy8259->GetMask (
303 Private->Legacy8259,
304 &LegMask,
305 NULL,
306 NULL,
307 NULL
308 );
309
310 //
311 // Set SIO interrupts and disable mouse. Let mouse driver
312 // re-enable it.
313 //
314 LegMask = (UINT16) ((LegMask &~LegacyInt) | 0x1000);
315 Private->Legacy8259->SetMask (
316 Private->Legacy8259,
317 &LegMask,
318 NULL,
319 NULL,
320 NULL
321 );
322
323 //
324 // Disable mouse in keyboard controller
325 //
326 Register = 0xA7;
327 Status = gBS->LocateHandleBuffer (
328 ByProtocol,
329 &gEfiIsaIoProtocolGuid,
330 NULL,
331 &HandleCount,
332 &HandleBuffer
333 );
334 if (EFI_ERROR (Status)) {
335 return Status;
336 }
337
338 for (Index = 0; Index < HandleCount; Index++) {
339 Status = gBS->HandleProtocol (
340 HandleBuffer[Index],
341 &gEfiIsaIoProtocolGuid,
342 (VOID **) &IsaIo
343 );
344 ASSERT_EFI_ERROR (Status);
345 IsaIo->Io.Write (IsaIo, EfiIsaIoWidthUint8, 0x64, 1, &Register);
346
347 }
348
349 if (HandleBuffer != NULL) {
350 FreePool (HandleBuffer);
351 }
352
353 return EFI_SUCCESS;
354
355 }
356
357 /**
358 Identify drive data must be updated to actual parameters before boot.
359 This requires updating the checksum, if it exists.
360
361 @param IdentifyDriveData ATA Identify Data
362 @param Checksum checksum of the ATA Identify Data
363
364 @retval EFI_SUCCESS checksum calculated
365 @retval EFI_SECURITY_VIOLATION IdentifyData invalid
366
367 **/
368 EFI_STATUS
369 CalculateIdentifyDriveChecksum (
370 IN UINT8 *IdentifyDriveData,
371 OUT UINT8 *Checksum
372 )
373 {
374 UINTN Index;
375 UINT8 LocalChecksum;
376 LocalChecksum = 0;
377 *Checksum = 0;
378 if (IdentifyDriveData[510] != 0xA5) {
379 return EFI_SECURITY_VIOLATION;
380 }
381
382 for (Index = 0; Index < 512; Index++) {
383 LocalChecksum = (UINT8) (LocalChecksum + IdentifyDriveData[Index]);
384 }
385
386 *Checksum = LocalChecksum;
387 return EFI_SUCCESS;
388 }
389
390
391 /**
392 Identify drive data must be updated to actual parameters before boot.
393
394 @param IdentifyDriveData ATA Identify Data
395
396
397 **/
398 VOID
399 UpdateIdentifyDriveData (
400 IN UINT8 *IdentifyDriveData
401 )
402 {
403 UINT16 NumberCylinders;
404 UINT16 NumberHeads;
405 UINT16 NumberSectorsTrack;
406 UINT32 CapacityInSectors;
407 UINT8 OriginalChecksum;
408 UINT8 FinalChecksum;
409 EFI_STATUS Status;
410 ATAPI_IDENTIFY *ReadInfo;
411
412 //
413 // Status indicates if Integrity byte is correct. Checksum should be
414 // 0 if valid.
415 //
416 ReadInfo = (ATAPI_IDENTIFY *) IdentifyDriveData;
417 Status = CalculateIdentifyDriveChecksum (IdentifyDriveData, &OriginalChecksum);
418 if (OriginalChecksum != 0) {
419 Status = EFI_SECURITY_VIOLATION;
420 }
421 //
422 // If NumberCylinders = 0 then do data(Controller present but don drive attached).
423 //
424 NumberCylinders = ReadInfo->Raw[1];
425 if (NumberCylinders != 0) {
426 ReadInfo->Raw[54] = NumberCylinders;
427
428 NumberHeads = ReadInfo->Raw[3];
429 ReadInfo->Raw[55] = NumberHeads;
430
431 NumberSectorsTrack = ReadInfo->Raw[6];
432 ReadInfo->Raw[56] = NumberSectorsTrack;
433
434 //
435 // Copy Multisector info and set valid bit.
436 //
437 ReadInfo->Raw[59] = (UINT16) (ReadInfo->Raw[47] + 0x100);
438 CapacityInSectors = (UINT32) ((UINT32) (NumberCylinders) * (UINT32) (NumberHeads) * (UINT32) (NumberSectorsTrack));
439 ReadInfo->Raw[57] = (UINT16) (CapacityInSectors >> 16);
440 ReadInfo->Raw[58] = (UINT16) (CapacityInSectors & 0xffff);
441 if (Status == EFI_SUCCESS) {
442 //
443 // Forece checksum byte to 0 and get new checksum.
444 //
445 ReadInfo->Raw[255] &= 0xff;
446 CalculateIdentifyDriveChecksum (IdentifyDriveData, &FinalChecksum);
447
448 //
449 // Force new checksum such that sum is 0.
450 //
451 FinalChecksum = (UINT8) ((UINT8)0 - FinalChecksum);
452 ReadInfo->Raw[255] = (UINT16) (ReadInfo->Raw[255] | (FinalChecksum << 8));
453 }
454 }
455 }
456
457 /**
458 Identify drive data must be updated to actual parameters before boot.
459 Do for all drives.
460
461 @param Private Legacy BIOS Instance data
462
463
464 **/
465 VOID
466 UpdateAllIdentifyDriveData (
467 IN LEGACY_BIOS_INSTANCE *Private
468 )
469 {
470 UINTN Index;
471 HDD_INFO *HddInfo;
472
473 HddInfo = &Private->IntThunk->EfiToLegacy16BootTable.HddInfo[0];
474
475 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
476 //
477 // Each controller can have 2 devices. Update for each device
478 //
479 if ((HddInfo[Index].Status & HDD_MASTER_IDE) != 0) {
480 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[0].Raw[0]));
481 }
482
483 if ((HddInfo[Index].Status & HDD_SLAVE_IDE) != 0) {
484 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[1].Raw[0]));
485 }
486 }
487 }
488
489 /**
490 Enable ide controller. This gets disabled when LegacyBoot.c is about
491 to run the Option ROMs.
492
493 @param Private Legacy BIOS Instance data
494
495
496 **/
497 VOID
498 EnableIdeController (
499 IN LEGACY_BIOS_INSTANCE *Private
500 )
501 {
502 EFI_PCI_IO_PROTOCOL *PciIo;
503 EFI_STATUS Status;
504 EFI_HANDLE IdeController;
505 UINT8 ByteBuffer;
506 UINTN HandleCount;
507 EFI_HANDLE *HandleBuffer;
508
509 Status = Private->LegacyBiosPlatform->GetPlatformHandle (
510 Private->LegacyBiosPlatform,
511 EfiGetPlatformIdeHandle,
512 0,
513 &HandleBuffer,
514 &HandleCount,
515 NULL
516 );
517 if (!EFI_ERROR (Status)) {
518 IdeController = HandleBuffer[0];
519 Status = gBS->HandleProtocol (
520 IdeController,
521 &gEfiPciIoProtocolGuid,
522 (VOID **) &PciIo
523 );
524 ByteBuffer = 0x1f;
525 if (!EFI_ERROR (Status)) {
526 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x04, 1, &ByteBuffer);
527 }
528 }
529 }
530
531
532 /**
533 Enable ide controller. This gets disabled when LegacyBoot.c is about
534 to run the Option ROMs.
535
536 @param Private Legacy BIOS Instance data
537
538
539 **/
540 VOID
541 EnableAllControllers (
542 IN LEGACY_BIOS_INSTANCE *Private
543 )
544 {
545 UINTN HandleCount;
546 EFI_HANDLE *HandleBuffer;
547 UINTN Index;
548 EFI_PCI_IO_PROTOCOL *PciIo;
549 PCI_TYPE01 PciConfigHeader;
550 EFI_STATUS Status;
551
552 //
553 //
554 //
555 EnableIdeController (Private);
556
557 //
558 // Assumption is table is built from low bus to high bus numbers.
559 //
560 Status = gBS->LocateHandleBuffer (
561 ByProtocol,
562 &gEfiPciIoProtocolGuid,
563 NULL,
564 &HandleCount,
565 &HandleBuffer
566 );
567 ASSERT_EFI_ERROR (Status);
568
569 for (Index = 0; Index < HandleCount; Index++) {
570 Status = gBS->HandleProtocol (
571 HandleBuffer[Index],
572 &gEfiPciIoProtocolGuid,
573 (VOID **) &PciIo
574 );
575 ASSERT_EFI_ERROR (Status);
576
577 PciIo->Pci.Read (
578 PciIo,
579 EfiPciIoWidthUint32,
580 0,
581 sizeof (PciConfigHeader) / sizeof (UINT32),
582 &PciConfigHeader
583 );
584
585 //
586 // We do not enable PPB here. This is for HotPlug Consideration.
587 // The Platform HotPlug Driver is responsible for Padding enough hot plug
588 // resources. It is also responsible for enable this bridge. If it
589 // does not pad it. It will cause some early Windows fail to installation.
590 // If the platform driver does not pad resource for PPB, PPB should be in
591 // un-enabled state to let Windows know that this PPB is not configured by
592 // BIOS. So Windows will allocate default resource for PPB.
593 //
594 // The reason for why we enable the command register is:
595 // The CSM will use the IO bar to detect some IRQ status, if the command
596 // is disabled, the IO resource will be out of scope.
597 // For example:
598 // We installed a legacy IRQ handle for a PCI IDE controller. When IRQ
599 // comes up, the handle will check the IO space to identify is the
600 // controller generated the IRQ source.
601 // If the IO command is not enabled, the IRQ handler will has wrong
602 // information. It will cause IRQ storm when the correctly IRQ handler fails
603 // to run.
604 //
605 if (!(IS_PCI_VGA (&PciConfigHeader) ||
606 IS_PCI_OLD_VGA (&PciConfigHeader) ||
607 IS_PCI_IDE (&PciConfigHeader) ||
608 IS_PCI_P2P (&PciConfigHeader) ||
609 IS_PCI_P2P_SUB (&PciConfigHeader) ||
610 IS_PCI_LPC (&PciConfigHeader) )) {
611
612 PciConfigHeader.Hdr.Command |= 0x1f;
613
614 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 4, 1, &PciConfigHeader.Hdr.Command);
615 }
616 }
617 }
618
619 /**
620 The following routines are identical in operation, so combine
621 for code compaction:
622 EfiGetPlatformBinaryGetMpTable
623 EfiGetPlatformBinaryGetOemIntData
624 EfiGetPlatformBinaryGetOem32Data
625 EfiGetPlatformBinaryGetOem16Data
626
627 @param This Protocol instance pointer.
628 @param Id Table/Data identifier
629
630 @retval EFI_SUCCESS Success
631 @retval EFI_INVALID_PARAMETER Invalid ID
632 @retval EFI_OUT_OF_RESOURCES no resource to get data or table
633
634 **/
635 EFI_STATUS
636 LegacyGetDataOrTable (
637 IN EFI_LEGACY_BIOS_PROTOCOL *This,
638 IN EFI_GET_PLATFORM_INFO_MODE Id
639 )
640 {
641 VOID *Table;
642 UINT32 TablePtr;
643 UINTN TableSize;
644 UINTN Alignment;
645 UINTN Location;
646 EFI_STATUS Status;
647 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
648 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
649 EFI_IA32_REGISTER_SET Regs;
650 LEGACY_BIOS_INSTANCE *Private;
651
652 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
653
654 LegacyBiosPlatform = Private->LegacyBiosPlatform;
655 Legacy16Table = Private->Legacy16Table;
656
657 //
658 // Phase 1 - get an address allocated in 16-bit code
659 //
660 while (TRUE) {
661 switch (Id) {
662 case EfiGetPlatformBinaryMpTable:
663 case EfiGetPlatformBinaryOemIntData:
664 case EfiGetPlatformBinaryOem32Data:
665 case EfiGetPlatformBinaryOem16Data:
666 {
667 Status = LegacyBiosPlatform->GetPlatformInfo (
668 LegacyBiosPlatform,
669 Id,
670 (VOID *) &Table,
671 &TableSize,
672 &Location,
673 &Alignment,
674 0,
675 0
676 );
677 DEBUG ((EFI_D_INFO, "LegacyGetDataOrTable - ID: %x, %r\n", (UINTN)Id, Status));
678 DEBUG ((EFI_D_INFO, " Table - %x, Size - %x, Location - %x, Alignment - %x\n", (UINTN)Table, (UINTN)TableSize, (UINTN)Location, (UINTN)Alignment));
679 break;
680 }
681
682 default:
683 {
684 return EFI_INVALID_PARAMETER;
685 }
686 }
687
688 if (EFI_ERROR (Status)) {
689 return Status;
690 }
691
692 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
693 Regs.X.AX = Legacy16GetTableAddress;
694 Regs.X.CX = (UINT16) TableSize;
695 Regs.X.BX = (UINT16) Location;
696 Regs.X.DX = (UINT16) Alignment;
697 Private->LegacyBios.FarCall86 (
698 This,
699 Private->Legacy16CallSegment,
700 Private->Legacy16CallOffset,
701 &Regs,
702 NULL,
703 0
704 );
705
706 if (Regs.X.AX != 0) {
707 DEBUG ((EFI_D_ERROR, "Table ID %x length insufficient\n", Id));
708 return EFI_OUT_OF_RESOURCES;
709 } else {
710 break;
711 }
712 }
713 //
714 // Phase 2 Call routine second time with address to allow address adjustment
715 //
716 Status = LegacyBiosPlatform->GetPlatformInfo (
717 LegacyBiosPlatform,
718 Id,
719 (VOID *) &Table,
720 &TableSize,
721 &Location,
722 &Alignment,
723 Regs.X.DS,
724 Regs.X.BX
725 );
726 switch (Id) {
727 case EfiGetPlatformBinaryMpTable:
728 {
729 Legacy16Table->MpTablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
730 Legacy16Table->MpTableLength = (UINT32)TableSize;
731 DEBUG ((EFI_D_INFO, "MP table in legacy region - %x\n", (UINTN)Legacy16Table->MpTablePtr));
732 break;
733 }
734
735 case EfiGetPlatformBinaryOemIntData:
736 {
737
738 Legacy16Table->OemIntSegment = Regs.X.DS;
739 Legacy16Table->OemIntOffset = Regs.X.BX;
740 DEBUG ((EFI_D_INFO, "OemInt table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->OemIntSegment, (UINTN)Legacy16Table->OemIntOffset));
741 break;
742 }
743
744 case EfiGetPlatformBinaryOem32Data:
745 {
746 Legacy16Table->Oem32Segment = Regs.X.DS;
747 Legacy16Table->Oem32Offset = Regs.X.BX;
748 DEBUG ((EFI_D_INFO, "Oem32 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem32Segment, (UINTN)Legacy16Table->Oem32Offset));
749 break;
750 }
751
752 case EfiGetPlatformBinaryOem16Data:
753 {
754 //
755 // Legacy16Table->Oem16Segment = Regs.X.DS;
756 // Legacy16Table->Oem16Offset = Regs.X.BX;
757 DEBUG ((EFI_D_INFO, "Oem16 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem16Segment, (UINTN)Legacy16Table->Oem16Offset));
758 break;
759 }
760
761 default:
762 {
763 return EFI_INVALID_PARAMETER;
764 }
765 }
766
767 if (EFI_ERROR (Status)) {
768 return Status;
769 }
770 //
771 // Phase 3 Copy table to final location
772 //
773 TablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
774
775 CopyMem (
776 (VOID *) (UINTN)TablePtr,
777 Table,
778 TableSize
779 );
780
781 return EFI_SUCCESS;
782 }
783
784 /**
785 Copy SMBIOS table to EfiReservedMemoryType of memory for legacy boot.
786
787 **/
788 VOID
789 CreateSmbiosTableInReservedMemory (
790 VOID
791 )
792 {
793 SMBIOS_TABLE_ENTRY_POINT *EntryPointStructure;
794
795 if ((mRuntimeSmbiosEntryPoint == NULL) ||
796 (mReserveSmbiosEntryPoint == 0) ||
797 (mStructureTableAddress == 0)) {
798 return;
799 }
800
801 EntryPointStructure = (SMBIOS_TABLE_ENTRY_POINT *) mRuntimeSmbiosEntryPoint;
802
803 //
804 // Copy SMBIOS Entry Point Structure
805 //
806 CopyMem (
807 (VOID *)(UINTN) mReserveSmbiosEntryPoint,
808 EntryPointStructure,
809 EntryPointStructure->EntryPointLength
810 );
811
812 //
813 // Copy SMBIOS Structure Table into EfiReservedMemoryType memory
814 //
815 CopyMem (
816 (VOID *)(UINTN) mStructureTableAddress,
817 (VOID *)(UINTN) EntryPointStructure->TableAddress,
818 EntryPointStructure->TableLength
819 );
820
821 //
822 // Update TableAddress in Entry Point Structure
823 //
824 EntryPointStructure = (SMBIOS_TABLE_ENTRY_POINT *)(UINTN) mReserveSmbiosEntryPoint;
825 EntryPointStructure->TableAddress = (UINT32)(UINTN) mStructureTableAddress;
826
827 //
828 // Fixup checksums in the Entry Point Structure
829 //
830 EntryPointStructure->IntermediateChecksum = 0;
831 EntryPointStructure->EntryPointStructureChecksum = 0;
832
833 EntryPointStructure->IntermediateChecksum =
834 CalculateCheckSum8 (
835 (UINT8 *) EntryPointStructure + OFFSET_OF (SMBIOS_TABLE_ENTRY_POINT, IntermediateAnchorString),
836 EntryPointStructure->EntryPointLength - OFFSET_OF (SMBIOS_TABLE_ENTRY_POINT, IntermediateAnchorString)
837 );
838 EntryPointStructure->EntryPointStructureChecksum =
839 CalculateCheckSum8 ((UINT8 *) EntryPointStructure, EntryPointStructure->EntryPointLength);
840 }
841
842 /**
843 Assign drive number to legacy HDD drives prior to booting an EFI
844 aware OS so the OS can access drives without an EFI driver.
845 Note: BBS compliant drives ARE NOT available until this call by
846 either shell or EFI.
847
848 @param This Protocol instance pointer.
849
850 @retval EFI_SUCCESS Drive numbers assigned
851
852 **/
853 EFI_STATUS
854 GenericLegacyBoot (
855 IN EFI_LEGACY_BIOS_PROTOCOL *This
856 )
857 {
858 EFI_STATUS Status;
859 LEGACY_BIOS_INSTANCE *Private;
860 EFI_IA32_REGISTER_SET Regs;
861 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
862 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
863 UINTN CopySize;
864 VOID *AcpiPtr;
865 HDD_INFO *HddInfo;
866 HDD_INFO *LocalHddInfo;
867 UINTN Index;
868 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
869 UINT32 *BdaPtr;
870 UINT16 HddCount;
871 UINT16 BbsCount;
872 BBS_TABLE *LocalBbsTable;
873 UINT32 *BaseVectorMaster;
874 EFI_TIME BootTime;
875 UINT32 LocalTime;
876 EFI_HANDLE IdeController;
877 UINTN HandleCount;
878 EFI_HANDLE *HandleBuffer;
879 VOID *AcpiTable;
880 UINTN ShadowAddress;
881 UINT32 Granularity;
882
883 LocalHddInfo = NULL;
884 HddCount = 0;
885 BbsCount = 0;
886 LocalBbsTable = NULL;
887
888 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
889 DEBUG_CODE (
890 DEBUG ((EFI_D_ERROR, "Start of legacy boot\n"));
891 );
892
893 Legacy16Table = Private->Legacy16Table;
894 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
895 HddInfo = &EfiToLegacy16BootTable->HddInfo[0];
896
897 LegacyBiosPlatform = Private->LegacyBiosPlatform;
898
899 EfiToLegacy16BootTable->MajorVersion = EFI_TO_LEGACY_MAJOR_VERSION;
900 EfiToLegacy16BootTable->MinorVersion = EFI_TO_LEGACY_MINOR_VERSION;
901
902 //
903 // If booting to a legacy OS then force HDD drives to the appropriate
904 // boot mode by calling GetIdeHandle.
905 // A reconnect -r can force all HDDs back to native mode.
906 //
907 IdeController = NULL;
908 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
909 Status = LegacyBiosPlatform->GetPlatformHandle (
910 Private->LegacyBiosPlatform,
911 EfiGetPlatformIdeHandle,
912 0,
913 &HandleBuffer,
914 &HandleCount,
915 NULL
916 );
917 if (!EFI_ERROR (Status)) {
918 IdeController = HandleBuffer[0];
919 }
920 }
921 //
922 // Unlock the Legacy BIOS region
923 //
924 Private->LegacyRegion->UnLock (
925 Private->LegacyRegion,
926 0xE0000,
927 0x20000,
928 &Granularity
929 );
930
931 //
932 // Reconstruct the Legacy16 boot memory map
933 //
934 LegacyBiosBuildE820 (Private, &CopySize);
935 if (CopySize > Private->Legacy16Table->E820Length) {
936 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
937 Regs.X.AX = Legacy16GetTableAddress;
938 Regs.X.CX = (UINT16) CopySize;
939 Private->LegacyBios.FarCall86 (
940 &Private->LegacyBios,
941 Private->Legacy16Table->Compatibility16CallSegment,
942 Private->Legacy16Table->Compatibility16CallOffset,
943 &Regs,
944 NULL,
945 0
946 );
947
948 Private->Legacy16Table->E820Pointer = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
949 Private->Legacy16Table->E820Length = (UINT32) CopySize;
950 if (Regs.X.AX != 0) {
951 DEBUG ((EFI_D_ERROR, "Legacy16 E820 length insufficient\n"));
952 } else {
953 CopyMem (
954 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
955 Private->E820Table,
956 CopySize
957 );
958 }
959 } else {
960 CopyMem (
961 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
962 Private->E820Table,
963 CopySize
964 );
965 Private->Legacy16Table->E820Length = (UINT32) CopySize;
966 }
967
968 //
969 // We do not ASSERT if SmbiosTable not found. It is possbile that a platform does not produce SmbiosTable.
970 //
971 if (mReserveSmbiosEntryPoint == 0) {
972 DEBUG ((EFI_D_INFO, "Smbios table is not found!\n"));
973 }
974 CreateSmbiosTableInReservedMemory ();
975 EfiToLegacy16BootTable->SmbiosTable = (UINT32)(UINTN)mReserveSmbiosEntryPoint;
976
977 AcpiTable = NULL;
978 Status = EfiGetSystemConfigurationTable (
979 &gEfiAcpi20TableGuid,
980 &AcpiTable
981 );
982 if (EFI_ERROR (Status)) {
983 Status = EfiGetSystemConfigurationTable (
984 &gEfiAcpi10TableGuid,
985 &AcpiTable
986 );
987 }
988 //
989 // We do not ASSERT if AcpiTable not found. It is possbile that a platform does not produce AcpiTable.
990 //
991 if (AcpiTable == NULL) {
992 DEBUG ((EFI_D_INFO, "ACPI table is not found!\n"));
993 }
994 EfiToLegacy16BootTable->AcpiTable = (UINT32)(UINTN)AcpiTable;
995
996 //
997 // Get RSD Ptr table rev at offset 15 decimal
998 // Rev = 0 Length is 20 decimal
999 // Rev != 0 Length is UINT32 at offset 20 decimal
1000 //
1001 if (AcpiTable != NULL) {
1002
1003 AcpiPtr = AcpiTable;
1004 if (*((UINT8 *) AcpiPtr + 15) == 0) {
1005 CopySize = 20;
1006 } else {
1007 AcpiPtr = ((UINT8 *) AcpiPtr + 20);
1008 CopySize = (*(UINT32 *) AcpiPtr);
1009 }
1010
1011 CopyMem (
1012 (VOID *)(UINTN) Private->Legacy16Table->AcpiRsdPtrPointer,
1013 AcpiTable,
1014 CopySize
1015 );
1016 }
1017 //
1018 // Make sure all PCI Interrupt Line register are programmed to match 8259
1019 //
1020 PciProgramAllInterruptLineRegisters (Private);
1021
1022 //
1023 // Unlock the Legacy BIOS region as PciProgramAllInterruptLineRegisters
1024 // can lock it.
1025 //
1026 Private->LegacyRegion->UnLock (
1027 Private->LegacyRegion,
1028 Private->BiosStart,
1029 Private->LegacyBiosImageSize,
1030 &Granularity
1031 );
1032
1033 //
1034 // Configure Legacy Device Magic
1035 //
1036 // Only do this code if booting legacy OS
1037 //
1038 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1039 UpdateSioData (Private);
1040 }
1041 //
1042 // Setup BDA and EBDA standard areas before Legacy Boot
1043 //
1044 LegacyBiosCompleteBdaBeforeBoot (Private);
1045 LegacyBiosCompleteStandardCmosBeforeBoot (Private);
1046
1047 //
1048 // We must build IDE data, if it hasn't been done, before PciShadowRoms
1049 // to insure EFI drivers are connected.
1050 //
1051 LegacyBiosBuildIdeData (Private, &HddInfo, 1);
1052 UpdateAllIdentifyDriveData (Private);
1053
1054 //
1055 // Clear IO BAR, if IDE controller in legacy mode.
1056 //
1057 InitLegacyIdeController (IdeController);
1058
1059 //
1060 // Generate number of ticks since midnight for BDA. DOS requires this
1061 // for its time. We have to make assumptions as to how long following
1062 // code takes since after PciShadowRoms PciIo is gone. Place result in
1063 // 40:6C-6F
1064 //
1065 // Adjust value by 1 second.
1066 //
1067 gRT->GetTime (&BootTime, NULL);
1068 LocalTime = BootTime.Hour * 3600 + BootTime.Minute * 60 + BootTime.Second;
1069 LocalTime += 1;
1070
1071 //
1072 // Multiply result by 18.2 for number of ticks since midnight.
1073 // Use 182/10 to avoid floating point math.
1074 //
1075 LocalTime = (LocalTime * 182) / 10;
1076 BdaPtr = (UINT32 *) (UINTN)0x46C;
1077 *BdaPtr = LocalTime;
1078
1079 //
1080 // Shadow PCI ROMs. We must do this near the end since this will kick
1081 // of Native EFI drivers that may be needed to collect info for Legacy16
1082 //
1083 // WARNING: PciIo is gone after this call.
1084 //
1085 PciShadowRoms (Private);
1086
1087 //
1088 // Shadow PXE base code, BIS etc.
1089 //
1090 Private->LegacyRegion->UnLock (Private->LegacyRegion, 0xc0000, 0x40000, &Granularity);
1091 ShadowAddress = Private->OptionRom;
1092 Private->LegacyBiosPlatform->PlatformHooks (
1093 Private->LegacyBiosPlatform,
1094 EfiPlatformHookShadowServiceRoms,
1095 0,
1096 0,
1097 &ShadowAddress,
1098 Legacy16Table,
1099 NULL
1100 );
1101 Private->OptionRom = (UINT32)ShadowAddress;
1102 //
1103 // Register Legacy SMI Handler
1104 //
1105 LegacyBiosPlatform->SmmInit (
1106 LegacyBiosPlatform,
1107 EfiToLegacy16BootTable
1108 );
1109
1110 //
1111 // Let platform code know the boot options
1112 //
1113 LegacyBiosGetBbsInfo (
1114 This,
1115 &HddCount,
1116 &LocalHddInfo,
1117 &BbsCount,
1118 &LocalBbsTable
1119 );
1120
1121 DEBUG_CODE (
1122 PrintPciInterruptRegister ();
1123 PrintBbsTable (LocalBbsTable);
1124 PrintHddInfo (LocalHddInfo);
1125 );
1126 //
1127 // If drive wasn't spun up then BuildIdeData may have found new drives.
1128 // Need to update BBS boot priority.
1129 //
1130 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
1131 if ((LocalHddInfo[Index].IdentifyDrive[0].Raw[0] != 0) &&
1132 (LocalBbsTable[2 * Index + 1].BootPriority == BBS_IGNORE_ENTRY)
1133 ) {
1134 LocalBbsTable[2 * Index + 1].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1135 }
1136
1137 if ((LocalHddInfo[Index].IdentifyDrive[1].Raw[0] != 0) &&
1138 (LocalBbsTable[2 * Index + 2].BootPriority == BBS_IGNORE_ENTRY)
1139 ) {
1140 LocalBbsTable[2 * Index + 2].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1141 }
1142 }
1143
1144 Private->LegacyRegion->UnLock (
1145 Private->LegacyRegion,
1146 0xc0000,
1147 0x40000,
1148 &Granularity
1149 );
1150
1151 LegacyBiosPlatform->PrepareToBoot (
1152 LegacyBiosPlatform,
1153 mBbsDevicePathPtr,
1154 mBbsTable,
1155 mLoadOptionsSize,
1156 mLoadOptions,
1157 (VOID *) &Private->IntThunk->EfiToLegacy16BootTable
1158 );
1159
1160 //
1161 // If no boot device return to BDS
1162 //
1163 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1164 for (Index = 0; Index < BbsCount; Index++){
1165 if ((LocalBbsTable[Index].BootPriority != BBS_DO_NOT_BOOT_FROM) &&
1166 (LocalBbsTable[Index].BootPriority != BBS_UNPRIORITIZED_ENTRY) &&
1167 (LocalBbsTable[Index].BootPriority != BBS_IGNORE_ENTRY)) {
1168 break;
1169 }
1170 }
1171 if (Index == BbsCount) {
1172 return EFI_DEVICE_ERROR;
1173 }
1174 }
1175 //
1176 // Let the Legacy16 code know the device path type for legacy boot
1177 //
1178 EfiToLegacy16BootTable->DevicePathType = mBbsDevicePathPtr->DeviceType;
1179
1180 //
1181 // Copy MP table, if it exists.
1182 //
1183 LegacyGetDataOrTable (This, EfiGetPlatformBinaryMpTable);
1184
1185 if (!Private->LegacyBootEntered) {
1186 //
1187 // Copy OEM INT Data, if it exists. Note: This code treats any data
1188 // as a bag of bits and knows nothing of the contents nor cares.
1189 // Contents are IBV specific.
1190 //
1191 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOemIntData);
1192
1193 //
1194 // Copy OEM16 Data, if it exists.Note: This code treats any data
1195 // as a bag of bits and knows nothing of the contents nor cares.
1196 // Contents are IBV specific.
1197 //
1198 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem16Data);
1199
1200 //
1201 // Copy OEM32 Data, if it exists.Note: This code treats any data
1202 // as a bag of bits and knows nothing of the contents nor cares.
1203 // Contents are IBV specific.
1204 //
1205 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem32Data);
1206 }
1207
1208 //
1209 // Call into Legacy16 code to prepare for INT 19h
1210 //
1211 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1212 Regs.X.AX = Legacy16PrepareToBoot;
1213
1214 //
1215 // Pass in handoff data
1216 //
1217 Regs.X.ES = NORMALIZE_EFI_SEGMENT ((UINTN)EfiToLegacy16BootTable);
1218 Regs.X.BX = NORMALIZE_EFI_OFFSET ((UINTN)EfiToLegacy16BootTable);
1219
1220 Private->LegacyBios.FarCall86 (
1221 This,
1222 Private->Legacy16CallSegment,
1223 Private->Legacy16CallOffset,
1224 &Regs,
1225 NULL,
1226 0
1227 );
1228
1229 if (Regs.X.AX != 0) {
1230 return EFI_DEVICE_ERROR;
1231 }
1232 //
1233 // Lock the Legacy BIOS region
1234 //
1235 Private->LegacyRegion->Lock (
1236 Private->LegacyRegion,
1237 0xc0000,
1238 0x40000,
1239 &Granularity
1240 );
1241 //
1242 // Lock attributes of the Legacy Region if chipset supports
1243 //
1244 Private->LegacyRegion->BootLock (
1245 Private->LegacyRegion,
1246 0xc0000,
1247 0x40000,
1248 &Granularity
1249 );
1250
1251 //
1252 // Call into Legacy16 code to do the INT 19h
1253 //
1254 EnableAllControllers (Private);
1255 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1256
1257 //
1258 // Signal all the events that are waiting on EVT_SIGNAL_LEGACY_BOOT
1259 //
1260 EfiSignalEventLegacyBoot ();
1261
1262 //
1263 // Report Status Code to indicate legacy boot event was signalled
1264 //
1265 REPORT_STATUS_CODE (
1266 EFI_PROGRESS_CODE,
1267 (EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT)
1268 );
1269
1270 DEBUG ((EFI_D_INFO, "Legacy INT19 Boot...\n"));
1271
1272 //
1273 // Disable DXE Timer while executing in real mode
1274 //
1275 Private->Timer->SetTimerPeriod (Private->Timer, 0);
1276
1277 //
1278 // Save and disable interrupt of debug timer
1279 //
1280 SaveAndSetDebugTimerInterrupt (FALSE);
1281
1282
1283 //
1284 // Put the 8259 into its legacy mode by reprogramming the vector bases
1285 //
1286 Private->Legacy8259->SetVectorBase (Private->Legacy8259, LEGACY_MODE_BASE_VECTOR_MASTER, LEGACY_MODE_BASE_VECTOR_SLAVE);
1287 //
1288 // PC History
1289 // The original PC used INT8-F for master PIC. Since these mapped over
1290 // processor exceptions TIANO moved the master PIC to INT68-6F.
1291 // We need to set these back to the Legacy16 unexpected interrupt(saved
1292 // in LegacyBios.c) since some OS see that these have values different from
1293 // what is expected and invoke them. Since the legacy OS corrupts EFI
1294 // memory, there is no handler for these interrupts and OS blows up.
1295 //
1296 // We need to save the TIANO values for the rare case that the Legacy16
1297 // code cannot boot but knows memory hasn't been destroyed.
1298 //
1299 // To compound the problem, video takes over one of these INTS and must be
1300 // be left.
1301 // @bug - determine if video hooks INT(in which case we must find new
1302 // set of TIANO vectors) or takes it over.
1303 //
1304 //
1305 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1306 for (Index = 0; Index < 8; Index++) {
1307 Private->ThunkSavedInt[Index] = BaseVectorMaster[Index];
1308 if (Private->ThunkSeg == (UINT16) (BaseVectorMaster[Index] >> 16)) {
1309 BaseVectorMaster[Index] = (UINT32) (Private->BiosUnexpectedInt);
1310 }
1311 }
1312
1313 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1314 Regs.X.AX = Legacy16Boot;
1315
1316 Private->LegacyBios.FarCall86 (
1317 This,
1318 Private->Legacy16CallSegment,
1319 Private->Legacy16CallOffset,
1320 &Regs,
1321 NULL,
1322 0
1323 );
1324
1325 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1326 for (Index = 0; Index < 8; Index++) {
1327 BaseVectorMaster[Index] = Private->ThunkSavedInt[Index];
1328 }
1329 }
1330 Private->LegacyBootEntered = TRUE;
1331 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1332 //
1333 // Should never return unless never passed control to 0:7c00(first stage
1334 // OS loader) and only then if no bootable device found.
1335 //
1336 return EFI_DEVICE_ERROR;
1337 } else {
1338 //
1339 // If boot to EFI then expect to return to caller
1340 //
1341 return EFI_SUCCESS;
1342 }
1343 }
1344
1345
1346 /**
1347 Assign drive number to legacy HDD drives prior to booting an EFI
1348 aware OS so the OS can access drives without an EFI driver.
1349 Note: BBS compliant drives ARE NOT available until this call by
1350 either shell or EFI.
1351
1352 @param This Protocol instance pointer.
1353 @param BbsCount Number of BBS_TABLE structures
1354 @param BbsTable List BBS entries
1355
1356 @retval EFI_SUCCESS Drive numbers assigned
1357
1358 **/
1359 EFI_STATUS
1360 EFIAPI
1361 LegacyBiosPrepareToBootEfi (
1362 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1363 OUT UINT16 *BbsCount,
1364 OUT BBS_TABLE **BbsTable
1365 )
1366 {
1367 EFI_STATUS Status;
1368 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1369 LEGACY_BIOS_INSTANCE *Private;
1370
1371 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1372 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1373 mBootMode = BOOT_EFI_OS;
1374 mBbsDevicePathPtr = NULL;
1375 Status = GenericLegacyBoot (This);
1376 *BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1377 *BbsCount = (UINT16) (sizeof (Private->IntThunk->BbsTable) / sizeof (BBS_TABLE));
1378 return Status;
1379 }
1380
1381 /**
1382 To boot from an unconventional device like parties and/or execute HDD diagnostics.
1383
1384 @param This Protocol instance pointer.
1385 @param Attributes How to interpret the other input parameters
1386 @param BbsEntry The 0-based index into the BbsTable for the parent
1387 device.
1388 @param BeerData Pointer to the 128 bytes of ram BEER data.
1389 @param ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
1390 caller must provide a pointer to the specific Service
1391 Area and not the start all Service Areas.
1392
1393 @retval EFI_INVALID_PARAMETER if error. Does NOT return if no error.
1394
1395 ***/
1396 EFI_STATUS
1397 EFIAPI
1398 LegacyBiosBootUnconventionalDevice (
1399 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1400 IN UDC_ATTRIBUTES Attributes,
1401 IN UINTN BbsEntry,
1402 IN VOID *BeerData,
1403 IN VOID *ServiceAreaData
1404 )
1405 {
1406 EFI_STATUS Status;
1407 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1408 LEGACY_BIOS_INSTANCE *Private;
1409 UD_TABLE *UcdTable;
1410 UINTN Index;
1411 UINT16 BootPriority;
1412 BBS_TABLE *BbsTable;
1413
1414 BootPriority = 0;
1415 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1416 mBootMode = BOOT_UNCONVENTIONAL_DEVICE;
1417 mBbsDevicePathPtr = &mBbsDevicePathNode;
1418 mAttributes = Attributes;
1419 mBbsEntry = BbsEntry;
1420 mBeerData = BeerData, mServiceAreaData = ServiceAreaData;
1421
1422 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1423
1424 //
1425 // Do input parameter checking
1426 //
1427 if ((Attributes.DirectoryServiceValidity == 0) &&
1428 (Attributes.RabcaUsedFlag == 0) &&
1429 (Attributes.ExecuteHddDiagnosticsFlag == 0)
1430 ) {
1431 return EFI_INVALID_PARAMETER;
1432 }
1433
1434 if (((Attributes.DirectoryServiceValidity != 0) && (ServiceAreaData == NULL)) ||
1435 (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag) != 0) && (BeerData == NULL))
1436 ) {
1437 return EFI_INVALID_PARAMETER;
1438 }
1439
1440 UcdTable = (UD_TABLE *) AllocatePool (
1441 sizeof (UD_TABLE)
1442 );
1443 if (NULL == UcdTable) {
1444 return EFI_OUT_OF_RESOURCES;
1445 }
1446
1447 EfiToLegacy16BootTable->UnconventionalDeviceTable = (UINT32)(UINTN)UcdTable;
1448 UcdTable->Attributes = Attributes;
1449 UcdTable->BbsTableEntryNumberForParentDevice = (UINT8) BbsEntry;
1450 //
1451 // Force all existing BBS entries to DoNotBoot. This allows 16-bit CSM
1452 // to assign drive numbers but bot boot from. Only newly created entries
1453 // will be valid.
1454 //
1455 BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1456 for (Index = 0; Index < EfiToLegacy16BootTable->NumberBbsEntries; Index++) {
1457 BbsTable[Index].BootPriority = BBS_DO_NOT_BOOT_FROM;
1458 }
1459 //
1460 // If parent is onboard IDE then assign controller & device number
1461 // else they are 0.
1462 //
1463 if (BbsEntry < MAX_IDE_CONTROLLER * 2) {
1464 UcdTable->DeviceNumber = (UINT8) ((BbsEntry - 1) % 2);
1465 }
1466
1467 if (BeerData != NULL) {
1468 CopyMem (
1469 (VOID *) UcdTable->BeerData,
1470 BeerData,
1471 (UINTN) 128
1472 );
1473 }
1474
1475 if (ServiceAreaData != NULL) {
1476 CopyMem (
1477 (VOID *) UcdTable->ServiceAreaData,
1478 ServiceAreaData,
1479 (UINTN) 64
1480 );
1481 }
1482 //
1483 // For each new entry do the following:
1484 // 1. Increment current number of BBS entries
1485 // 2. Copy parent entry to new entry.
1486 // 3. Zero out BootHandler Offset & segment
1487 // 4. Set appropriate device type. BEV(0x80) for HDD diagnostics
1488 // and Floppy(0x01) for PARTIES boot.
1489 // 5. Assign new priority.
1490 //
1491 if ((Attributes.ExecuteHddDiagnosticsFlag) != 0) {
1492 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1493
1494 CopyMem (
1495 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1496 (VOID *) &BbsTable[BbsEntry].BootPriority,
1497 sizeof (BBS_TABLE)
1498 );
1499
1500 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1501 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1502 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x80;
1503
1504 UcdTable->BbsTableEntryNumberForHddDiag = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1505
1506 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1507 BootPriority += 1;
1508
1509 //
1510 // Set device type as BBS_TYPE_DEV for PARTIES diagnostic
1511 //
1512 mBbsDevicePathNode.DeviceType = BBS_TYPE_BEV;
1513 }
1514
1515 if (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag)) != 0) {
1516 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1517 CopyMem (
1518 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1519 (VOID *) &BbsTable[BbsEntry].BootPriority,
1520 sizeof (BBS_TABLE)
1521 );
1522
1523 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1524 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1525 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x01;
1526 UcdTable->BbsTableEntryNumberForBoot = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1527 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1528
1529 //
1530 // Set device type as BBS_TYPE_FLOPPY for PARTIES boot as floppy
1531 //
1532 mBbsDevicePathNode.DeviceType = BBS_TYPE_FLOPPY;
1533 }
1534 //
1535 // Build the BBS Device Path for this boot selection
1536 //
1537 mBbsDevicePathNode.Header.Type = BBS_DEVICE_PATH;
1538 mBbsDevicePathNode.Header.SubType = BBS_BBS_DP;
1539 SetDevicePathNodeLength (&mBbsDevicePathNode.Header, sizeof (BBS_BBS_DEVICE_PATH));
1540 mBbsDevicePathNode.StatusFlag = 0;
1541 mBbsDevicePathNode.String[0] = 0;
1542
1543 Status = GenericLegacyBoot (This);
1544 return Status;
1545 }
1546
1547 /**
1548 Attempt to legacy boot the BootOption. If the EFI contexted has been
1549 compromised this function will not return.
1550
1551 @param This Protocol instance pointer.
1552 @param BbsDevicePath EFI Device Path from BootXXXX variable.
1553 @param LoadOptionsSize Size of LoadOption in size.
1554 @param LoadOptions LoadOption from BootXXXX variable
1555
1556 @retval EFI_SUCCESS Removable media not present
1557
1558 **/
1559 EFI_STATUS
1560 EFIAPI
1561 LegacyBiosLegacyBoot (
1562 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1563 IN BBS_BBS_DEVICE_PATH *BbsDevicePath,
1564 IN UINT32 LoadOptionsSize,
1565 IN VOID *LoadOptions
1566 )
1567 {
1568 EFI_STATUS Status;
1569
1570 mBbsDevicePathPtr = BbsDevicePath;
1571 mLoadOptionsSize = LoadOptionsSize;
1572 mLoadOptions = LoadOptions;
1573 mBootMode = BOOT_LEGACY_OS;
1574 Status = GenericLegacyBoot (This);
1575
1576 return Status;
1577 }
1578
1579 /**
1580 Convert EFI Memory Type to E820 Memory Type.
1581
1582 @param Type EFI Memory Type
1583
1584 @return ACPI Memory Type for EFI Memory Type
1585
1586 **/
1587 EFI_ACPI_MEMORY_TYPE
1588 EfiMemoryTypeToE820Type (
1589 IN UINT32 Type
1590 )
1591 {
1592 switch (Type) {
1593 case EfiLoaderCode:
1594 case EfiLoaderData:
1595 case EfiBootServicesCode:
1596 case EfiBootServicesData:
1597 case EfiConventionalMemory:
1598 case EfiRuntimeServicesCode:
1599 case EfiRuntimeServicesData:
1600 return EfiAcpiAddressRangeMemory;
1601
1602 case EfiACPIReclaimMemory:
1603 return EfiAcpiAddressRangeACPI;
1604
1605 case EfiACPIMemoryNVS:
1606 return EfiAcpiAddressRangeNVS;
1607
1608 //
1609 // All other types map to reserved.
1610 // Adding the code just waists FLASH space.
1611 //
1612 // case EfiReservedMemoryType:
1613 // case EfiUnusableMemory:
1614 // case EfiMemoryMappedIO:
1615 // case EfiMemoryMappedIOPortSpace:
1616 // case EfiPalCode:
1617 //
1618 default:
1619 return EfiAcpiAddressRangeReserved;
1620 }
1621 }
1622
1623 /**
1624 Build the E820 table.
1625
1626 @param Private Legacy BIOS Instance data
1627 @param Size Size of E820 Table
1628
1629 @retval EFI_SUCCESS It should always work.
1630
1631 **/
1632 EFI_STATUS
1633 LegacyBiosBuildE820 (
1634 IN LEGACY_BIOS_INSTANCE *Private,
1635 OUT UINTN *Size
1636 )
1637 {
1638 EFI_STATUS Status;
1639 EFI_E820_ENTRY64 *E820Table;
1640 EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
1641 EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
1642 EFI_MEMORY_DESCRIPTOR *EfiEntry;
1643 EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
1644 EFI_MEMORY_DESCRIPTOR TempEfiEntry;
1645 UINTN EfiMemoryMapSize;
1646 UINTN EfiMapKey;
1647 UINTN EfiDescriptorSize;
1648 UINT32 EfiDescriptorVersion;
1649 UINTN Index;
1650 EFI_PEI_HOB_POINTERS Hob;
1651 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
1652 UINTN TempIndex;
1653 UINTN IndexSort;
1654 UINTN TempNextIndex;
1655 EFI_E820_ENTRY64 TempE820;
1656 EFI_ACPI_MEMORY_TYPE TempType;
1657 BOOLEAN ChangedFlag;
1658 UINTN Above1MIndex;
1659 UINT64 MemoryBlockLength;
1660
1661 E820Table = (EFI_E820_ENTRY64 *) Private->E820Table;
1662
1663 //
1664 // Get the EFI memory map.
1665 //
1666 EfiMemoryMapSize = 0;
1667 EfiMemoryMap = NULL;
1668 Status = gBS->GetMemoryMap (
1669 &EfiMemoryMapSize,
1670 EfiMemoryMap,
1671 &EfiMapKey,
1672 &EfiDescriptorSize,
1673 &EfiDescriptorVersion
1674 );
1675 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1676
1677 do {
1678 //
1679 // Use size returned back plus 1 descriptor for the AllocatePool.
1680 // We don't just multiply by 2 since the "for" loop below terminates on
1681 // EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
1682 // we process bogus entries and create bogus E820 entries.
1683 //
1684 EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
1685 ASSERT (EfiMemoryMap != NULL);
1686 Status = gBS->GetMemoryMap (
1687 &EfiMemoryMapSize,
1688 EfiMemoryMap,
1689 &EfiMapKey,
1690 &EfiDescriptorSize,
1691 &EfiDescriptorVersion
1692 );
1693 if (EFI_ERROR (Status)) {
1694 FreePool (EfiMemoryMap);
1695 }
1696 } while (Status == EFI_BUFFER_TOO_SMALL);
1697
1698 ASSERT_EFI_ERROR (Status);
1699
1700 //
1701 // Punch in the E820 table for memory less than 1 MB.
1702 // Assume ZeroMem () has been done on data structure.
1703 //
1704 //
1705 // First entry is 0 to (640k - EBDA)
1706 //
1707 E820Table[0].BaseAddr = 0;
1708 E820Table[0].Length = (UINT64) ((*(UINT16 *) (UINTN)0x40E) << 4);
1709 E820Table[0].Type = EfiAcpiAddressRangeMemory;
1710
1711 //
1712 // Second entry is (640k - EBDA) to 640k
1713 //
1714 E820Table[1].BaseAddr = E820Table[0].Length;
1715 E820Table[1].Length = (UINT64) ((640 * 1024) - E820Table[0].Length);
1716 E820Table[1].Type = EfiAcpiAddressRangeReserved;
1717
1718 //
1719 // Third Entry is legacy BIOS
1720 // DO NOT CLAIM region from 0xA0000-0xDFFFF. OS can use free areas
1721 // to page in memory under 1MB.
1722 // Omit region from 0xE0000 to start of BIOS, if any. This can be
1723 // used for a multiple reasons including OPROMS.
1724 //
1725
1726 //
1727 // The CSM binary image size is not the actually size that CSM binary used,
1728 // to avoid memory corrupt, we declare the 0E0000 - 0FFFFF is used by CSM binary.
1729 //
1730 E820Table[2].BaseAddr = 0xE0000;
1731 E820Table[2].Length = 0x20000;
1732 E820Table[2].Type = EfiAcpiAddressRangeReserved;
1733
1734 Above1MIndex = 2;
1735
1736 //
1737 // Process the EFI map to produce E820 map;
1738 //
1739
1740 //
1741 // Sort memory map from low to high
1742 //
1743 EfiEntry = EfiMemoryMap;
1744 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1745 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1746 while (EfiEntry < EfiMemoryMapEnd) {
1747 while (NextEfiEntry < EfiMemoryMapEnd) {
1748 if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
1749 CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1750 CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1751 CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1752 }
1753
1754 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
1755 }
1756
1757 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1758 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1759 }
1760
1761 EfiEntry = EfiMemoryMap;
1762 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1763 for (Index = Above1MIndex; (EfiEntry < EfiMemoryMapEnd) && (Index < EFI_MAX_E820_ENTRY - 1); ) {
1764 MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
1765 if ((EfiEntry->PhysicalStart + MemoryBlockLength) < 0x100000) {
1766 //
1767 // Skip the memory block is under 1MB
1768 //
1769 } else {
1770 if (EfiEntry->PhysicalStart < 0x100000) {
1771 //
1772 // When the memory block spans below 1MB, ensure the memory block start address is at least 1MB
1773 //
1774 MemoryBlockLength -= 0x100000 - EfiEntry->PhysicalStart;
1775 EfiEntry->PhysicalStart = 0x100000;
1776 }
1777
1778 //
1779 // Convert memory type to E820 type
1780 //
1781 TempType = EfiMemoryTypeToE820Type (EfiEntry->Type);
1782
1783 if ((E820Table[Index].Type == TempType) && (EfiEntry->PhysicalStart == (E820Table[Index].BaseAddr + E820Table[Index].Length))) {
1784 //
1785 // Grow an existing entry
1786 //
1787 E820Table[Index].Length += MemoryBlockLength;
1788 } else {
1789 //
1790 // Make a new entry
1791 //
1792 ++Index;
1793 E820Table[Index].BaseAddr = EfiEntry->PhysicalStart;
1794 E820Table[Index].Length = MemoryBlockLength;
1795 E820Table[Index].Type = TempType;
1796 }
1797 }
1798 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1799 }
1800
1801 FreePool (EfiMemoryMap);
1802
1803 //
1804 // Process the reserved memory map to produce E820 map ;
1805 //
1806 for (Hob.Raw = GetHobList (); !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
1807 if (Hob.Raw != NULL && GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
1808 ResourceHob = Hob.ResourceDescriptor;
1809 if (((ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_MAPPED_IO) ||
1810 (ResourceHob->ResourceType == EFI_RESOURCE_FIRMWARE_DEVICE) ||
1811 (ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_RESERVED) ) &&
1812 (ResourceHob->PhysicalStart > 0x100000) &&
1813 (Index < EFI_MAX_E820_ENTRY - 1)) {
1814 ++Index;
1815 E820Table[Index].BaseAddr = ResourceHob->PhysicalStart;
1816 E820Table[Index].Length = ResourceHob->ResourceLength;
1817 E820Table[Index].Type = EfiAcpiAddressRangeReserved;
1818 }
1819 }
1820 }
1821
1822 Index ++;
1823 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1824 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1825 Private->NumberE820Entries = (UINT32)Index;
1826 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1827
1828 //
1829 // Sort E820Table from low to high
1830 //
1831 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1832 ChangedFlag = FALSE;
1833 for (TempNextIndex = 1; TempNextIndex < Index - TempIndex; TempNextIndex++) {
1834 if (E820Table[TempNextIndex - 1].BaseAddr > E820Table[TempNextIndex].BaseAddr) {
1835 ChangedFlag = TRUE;
1836 TempE820.BaseAddr = E820Table[TempNextIndex - 1].BaseAddr;
1837 TempE820.Length = E820Table[TempNextIndex - 1].Length;
1838 TempE820.Type = E820Table[TempNextIndex - 1].Type;
1839
1840 E820Table[TempNextIndex - 1].BaseAddr = E820Table[TempNextIndex].BaseAddr;
1841 E820Table[TempNextIndex - 1].Length = E820Table[TempNextIndex].Length;
1842 E820Table[TempNextIndex - 1].Type = E820Table[TempNextIndex].Type;
1843
1844 E820Table[TempNextIndex].BaseAddr = TempE820.BaseAddr;
1845 E820Table[TempNextIndex].Length = TempE820.Length;
1846 E820Table[TempNextIndex].Type = TempE820.Type;
1847 }
1848 }
1849
1850 if (!ChangedFlag) {
1851 break;
1852 }
1853 }
1854
1855 //
1856 // Remove the overlap range
1857 //
1858 for (TempIndex = 1; TempIndex < Index; TempIndex++) {
1859 if (E820Table[TempIndex - 1].BaseAddr <= E820Table[TempIndex].BaseAddr &&
1860 ((E820Table[TempIndex - 1].BaseAddr + E820Table[TempIndex - 1].Length) >=
1861 (E820Table[TempIndex].BaseAddr +E820Table[TempIndex].Length))) {
1862 //
1863 //Overlap range is found
1864 //
1865 ASSERT (E820Table[TempIndex - 1].Type == E820Table[TempIndex].Type);
1866
1867 if (TempIndex == Index - 1) {
1868 E820Table[TempIndex].BaseAddr = 0;
1869 E820Table[TempIndex].Length = 0;
1870 E820Table[TempIndex].Type = (EFI_ACPI_MEMORY_TYPE) 0;
1871 Index--;
1872 break;
1873 } else {
1874 for (IndexSort = TempIndex; IndexSort < Index - 1; IndexSort ++) {
1875 E820Table[IndexSort].BaseAddr = E820Table[IndexSort + 1].BaseAddr;
1876 E820Table[IndexSort].Length = E820Table[IndexSort + 1].Length;
1877 E820Table[IndexSort].Type = E820Table[IndexSort + 1].Type;
1878 }
1879 Index--;
1880 }
1881 }
1882 }
1883
1884
1885
1886 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1887 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1888 Private->NumberE820Entries = (UINT32)Index;
1889 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1890
1891 //
1892 // Determine OS usable memory above 1Mb
1893 //
1894 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb = 0x0000;
1895 for (TempIndex = Above1MIndex; TempIndex < Index; TempIndex++) {
1896 if (E820Table[TempIndex].BaseAddr >= 0x100000 && E820Table[TempIndex].BaseAddr < 0x100000000ULL) { // not include above 4G memory
1897 //
1898 // ACPIReclaimMemory is also usable memory for ACPI OS, after OS dumps all ACPI tables.
1899 //
1900 if ((E820Table[TempIndex].Type == EfiAcpiAddressRangeMemory) || (E820Table[TempIndex].Type == EfiAcpiAddressRangeACPI)) {
1901 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb += (UINT32) (E820Table[TempIndex].Length);
1902 } else {
1903 break; // break at first not normal memory, because SMM may use reserved memory.
1904 }
1905 }
1906 }
1907
1908 Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb = Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb;
1909
1910 //
1911 // Print DEBUG information
1912 //
1913 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1914 DEBUG((EFI_D_INFO, "E820[%2d]: 0x%16lx ---- 0x%16lx, Type = 0x%x \n",
1915 TempIndex,
1916 E820Table[TempIndex].BaseAddr,
1917 (E820Table[TempIndex].BaseAddr + E820Table[TempIndex].Length),
1918 E820Table[TempIndex].Type
1919 ));
1920 }
1921
1922 return EFI_SUCCESS;
1923 }
1924
1925
1926 /**
1927 Fill in the standard BDA and EBDA stuff prior to legacy Boot
1928
1929 @param Private Legacy BIOS Instance data
1930
1931 @retval EFI_SUCCESS It should always work.
1932
1933 **/
1934 EFI_STATUS
1935 LegacyBiosCompleteBdaBeforeBoot (
1936 IN LEGACY_BIOS_INSTANCE *Private
1937 )
1938 {
1939 BDA_STRUC *Bda;
1940 UINT16 MachineConfig;
1941 DEVICE_PRODUCER_DATA_HEADER *SioPtr;
1942
1943 Bda = (BDA_STRUC *) ((UINTN) 0x400);
1944 MachineConfig = 0;
1945
1946 SioPtr = &(Private->IntThunk->EfiToLegacy16BootTable.SioData);
1947 Bda->Com1 = SioPtr->Serial[0].Address;
1948 Bda->Com2 = SioPtr->Serial[1].Address;
1949 Bda->Com3 = SioPtr->Serial[2].Address;
1950 Bda->Com4 = SioPtr->Serial[3].Address;
1951
1952 if (SioPtr->Serial[0].Address != 0x00) {
1953 MachineConfig += 0x200;
1954 }
1955
1956 if (SioPtr->Serial[1].Address != 0x00) {
1957 MachineConfig += 0x200;
1958 }
1959
1960 if (SioPtr->Serial[2].Address != 0x00) {
1961 MachineConfig += 0x200;
1962 }
1963
1964 if (SioPtr->Serial[3].Address != 0x00) {
1965 MachineConfig += 0x200;
1966 }
1967
1968 Bda->Lpt1 = SioPtr->Parallel[0].Address;
1969 Bda->Lpt2 = SioPtr->Parallel[1].Address;
1970 Bda->Lpt3 = SioPtr->Parallel[2].Address;
1971
1972 if (SioPtr->Parallel[0].Address != 0x00) {
1973 MachineConfig += 0x4000;
1974 }
1975
1976 if (SioPtr->Parallel[1].Address != 0x00) {
1977 MachineConfig += 0x4000;
1978 }
1979
1980 if (SioPtr->Parallel[2].Address != 0x00) {
1981 MachineConfig += 0x4000;
1982 }
1983
1984 Bda->NumberOfDrives = (UINT8) (Bda->NumberOfDrives + Private->IdeDriveCount);
1985 if (SioPtr->Floppy.NumberOfFloppy != 0x00) {
1986 MachineConfig = (UINT16) (MachineConfig + 0x01 + (SioPtr->Floppy.NumberOfFloppy - 1) * 0x40);
1987 Bda->FloppyXRate = 0x07;
1988 }
1989
1990 Bda->Lpt1_2Timeout = 0x1414;
1991 Bda->Lpt3_4Timeout = 0x1414;
1992 Bda->Com1_2Timeout = 0x0101;
1993 Bda->Com3_4Timeout = 0x0101;
1994
1995 //
1996 // Force VGA and Coprocessor, indicate 101/102 keyboard
1997 //
1998 MachineConfig = (UINT16) (MachineConfig + 0x00 + 0x02 + (SioPtr->MousePresent * 0x04));
1999 Bda->MachineConfig = MachineConfig;
2000
2001 return EFI_SUCCESS;
2002 }
2003
2004 /**
2005 Fill in the standard BDA for Keyboard LEDs
2006
2007 @param This Protocol instance pointer.
2008 @param Leds Current LED status
2009
2010 @retval EFI_SUCCESS It should always work.
2011
2012 **/
2013 EFI_STATUS
2014 EFIAPI
2015 LegacyBiosUpdateKeyboardLedStatus (
2016 IN EFI_LEGACY_BIOS_PROTOCOL *This,
2017 IN UINT8 Leds
2018 )
2019 {
2020 LEGACY_BIOS_INSTANCE *Private;
2021 BDA_STRUC *Bda;
2022 UINT8 LocalLeds;
2023 EFI_IA32_REGISTER_SET Regs;
2024
2025 Bda = (BDA_STRUC *) ((UINTN) 0x400);
2026
2027 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
2028 LocalLeds = Leds;
2029 Bda->LedStatus = (UINT8) ((Bda->LedStatus &~0x07) | LocalLeds);
2030 LocalLeds = (UINT8) (LocalLeds << 4);
2031 Bda->ShiftStatus = (UINT8) ((Bda->ShiftStatus &~0x70) | LocalLeds);
2032 LocalLeds = (UINT8) (Leds & 0x20);
2033 Bda->KeyboardStatus = (UINT8) ((Bda->KeyboardStatus &~0x20) | LocalLeds);
2034 //
2035 // Call into Legacy16 code to allow it to do any processing
2036 //
2037 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
2038 Regs.X.AX = Legacy16SetKeyboardLeds;
2039 Regs.H.CL = Leds;
2040
2041 Private->LegacyBios.FarCall86 (
2042 &Private->LegacyBios,
2043 Private->Legacy16Table->Compatibility16CallSegment,
2044 Private->Legacy16Table->Compatibility16CallOffset,
2045 &Regs,
2046 NULL,
2047 0
2048 );
2049
2050 return EFI_SUCCESS;
2051 }
2052
2053
2054 /**
2055 Fill in the standard CMOS stuff prior to legacy Boot
2056
2057 @param Private Legacy BIOS Instance data
2058
2059 @retval EFI_SUCCESS It should always work.
2060
2061 **/
2062 EFI_STATUS
2063 LegacyBiosCompleteStandardCmosBeforeBoot (
2064 IN LEGACY_BIOS_INSTANCE *Private
2065 )
2066 {
2067 UINT8 Bda;
2068 UINT8 Floppy;
2069 UINT32 Size;
2070
2071 //
2072 // Update CMOS locations
2073 // 10 floppy
2074 // 12,19,1A - ignore as OS don't use them and there is no standard due
2075 // to large capacity drives
2076 // CMOS 14 = BDA 40:10 plus bit 3(display enabled)
2077 //
2078 Bda = (UINT8)(*((UINT8 *)((UINTN)0x410)) | BIT3);
2079
2080 //
2081 // Force display enabled
2082 //
2083 Floppy = 0x00;
2084 if ((Bda & BIT0) != 0) {
2085 Floppy = BIT6;
2086 }
2087
2088 //
2089 // Check if 2.88MB floppy set
2090 //
2091 if ((Bda & (BIT7 | BIT6)) != 0) {
2092 Floppy = (UINT8)(Floppy | BIT1);
2093 }
2094
2095 LegacyWriteStandardCmos (CMOS_10, Floppy);
2096 LegacyWriteStandardCmos (CMOS_14, Bda);
2097
2098 //
2099 // Force Status Register A to set rate selection bits and divider
2100 //
2101 LegacyWriteStandardCmos (CMOS_0A, 0x26);
2102
2103 //
2104 // redo memory size since it can change
2105 //
2106 Size = (15 * SIZE_1MB) >> 10;
2107 if (Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb < (15 * SIZE_1MB)) {
2108 Size = Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb >> 10;
2109 }
2110
2111 LegacyWriteStandardCmos (CMOS_17, (UINT8)(Size & 0xFF));
2112 LegacyWriteStandardCmos (CMOS_30, (UINT8)(Size & 0xFF));
2113 LegacyWriteStandardCmos (CMOS_18, (UINT8)(Size >> 8));
2114 LegacyWriteStandardCmos (CMOS_31, (UINT8)(Size >> 8));
2115
2116 LegacyCalculateWriteStandardCmosChecksum ();
2117
2118 return EFI_SUCCESS;
2119 }
2120
2121 /**
2122 Relocate this image under 4G memory for IPF.
2123
2124 @param ImageHandle Handle of driver image.
2125 @param SystemTable Pointer to system table.
2126
2127 @retval EFI_SUCCESS Image successfully relocated.
2128 @retval EFI_ABORTED Failed to relocate image.
2129
2130 **/
2131 EFI_STATUS
2132 RelocateImageUnder4GIfNeeded (
2133 IN EFI_HANDLE ImageHandle,
2134 IN EFI_SYSTEM_TABLE *SystemTable
2135 )
2136 {
2137 return EFI_SUCCESS;
2138 }