]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
Add missing status code in several modules.
[mirror_edk2.git] / IntelFrameworkModulePkg / Csm / LegacyBiosDxe / LegacyBootSupport.c
1 /** @file
2
3 Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR>
4
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions
7 of the BSD License which accompanies this distribution. The
8 full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "LegacyBiosInterface.h"
17 #include <IndustryStandard/Pci.h>
18
19 #define BOOT_LEGACY_OS 0
20 #define BOOT_EFI_OS 1
21 #define BOOT_UNCONVENTIONAL_DEVICE 2
22
23 UINT32 mLoadOptionsSize = 0;
24 UINTN mBootMode = BOOT_LEGACY_OS;
25 VOID *mLoadOptions = NULL;
26 BBS_BBS_DEVICE_PATH *mBbsDevicePathPtr = NULL;
27 BBS_BBS_DEVICE_PATH mBbsDevicePathNode;
28 UDC_ATTRIBUTES mAttributes = { 0, 0, 0, 0 };
29 UINTN mBbsEntry = 0;
30 VOID *mBeerData = NULL;
31 VOID *mServiceAreaData = NULL;
32 UINT64 mLowWater = 0xffffffffffffffffULL;
33
34 extern BBS_TABLE *mBbsTable;
35
36 /**
37 Print the BBS Table.
38
39 @param BbsTable The BBS table.
40
41
42 **/
43 VOID
44 PrintBbsTable (
45 IN BBS_TABLE *BbsTable
46 )
47 {
48 UINT16 Index;
49 UINT16 SubIndex;
50 CHAR8 *String;
51
52 DEBUG ((EFI_D_INFO, "\n"));
53 DEBUG ((EFI_D_INFO, " NO Prio bb/dd/ff cl/sc Type Stat segm:offs mfgs:mfgo dess:deso\n"));
54 DEBUG ((EFI_D_INFO, "=================================================================\n"));
55 for (Index = 0; Index < MAX_BBS_ENTRIES; Index++) {
56 //
57 // Filter
58 //
59 if (BbsTable[Index].BootPriority == BBS_IGNORE_ENTRY) {
60 continue;
61 }
62
63 DEBUG ((
64 EFI_D_INFO,
65 " %02x: %04x %02x/%02x/%02x %02x/%02x %04x %04x",
66 (UINTN) Index,
67 (UINTN) BbsTable[Index].BootPriority,
68 (UINTN) BbsTable[Index].Bus,
69 (UINTN) BbsTable[Index].Device,
70 (UINTN) BbsTable[Index].Function,
71 (UINTN) BbsTable[Index].Class,
72 (UINTN) BbsTable[Index].SubClass,
73 (UINTN) BbsTable[Index].DeviceType,
74 (UINTN) * (UINT16 *) &BbsTable[Index].StatusFlags
75 ));
76 DEBUG ((
77 EFI_D_INFO,
78 " %04x:%04x %04x:%04x %04x:%04x",
79 (UINTN) BbsTable[Index].BootHandlerSegment,
80 (UINTN) BbsTable[Index].BootHandlerOffset,
81 (UINTN) BbsTable[Index].MfgStringSegment,
82 (UINTN) BbsTable[Index].MfgStringOffset,
83 (UINTN) BbsTable[Index].DescStringSegment,
84 (UINTN) BbsTable[Index].DescStringOffset
85 ));
86
87 //
88 // Print DescString
89 //
90 String = (CHAR8 *)(UINTN)((BbsTable[Index].DescStringSegment << 4) + BbsTable[Index].DescStringOffset);
91 if (String != NULL) {
92 DEBUG ((EFI_D_INFO," ("));
93 for (SubIndex = 0; String[SubIndex] != 0; SubIndex++) {
94 DEBUG ((EFI_D_INFO, "%c", String[SubIndex]));
95 }
96 DEBUG ((EFI_D_INFO,")"));
97 }
98 DEBUG ((EFI_D_INFO,"\n"));
99 }
100
101 DEBUG ((EFI_D_INFO, "\n"));
102
103 return ;
104 }
105
106 /**
107 Print the BBS Table.
108
109 @param HddInfo The HddInfo table.
110
111
112 **/
113 VOID
114 PrintHddInfo (
115 IN HDD_INFO *HddInfo
116 )
117 {
118 UINTN Index;
119
120 DEBUG ((EFI_D_INFO, "\n"));
121 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
122 DEBUG ((EFI_D_INFO, "Index - %04x\n", Index));
123 DEBUG ((EFI_D_INFO, " Status - %04x\n", (UINTN)HddInfo[Index].Status));
124 DEBUG ((EFI_D_INFO, " B/D/F - %02x/%02x/%02x\n", (UINTN)HddInfo[Index].Bus, (UINTN)HddInfo[Index].Device, (UINTN)HddInfo[Index].Function));
125 DEBUG ((EFI_D_INFO, " Command - %04x\n", HddInfo[Index].CommandBaseAddress));
126 DEBUG ((EFI_D_INFO, " Control - %04x\n", HddInfo[Index].ControlBaseAddress));
127 DEBUG ((EFI_D_INFO, " BusMaster - %04x\n", HddInfo[Index].BusMasterAddress));
128 DEBUG ((EFI_D_INFO, " HddIrq - %02x\n", HddInfo[Index].HddIrq));
129 DEBUG ((EFI_D_INFO, " IdentifyDrive[0].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[0].Raw[0]));
130 DEBUG ((EFI_D_INFO, " IdentifyDrive[1].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[1].Raw[0]));
131 }
132
133 DEBUG ((EFI_D_INFO, "\n"));
134
135 return ;
136 }
137
138 /**
139 Print the PCI Interrupt Line and Interrupt Pin registers.
140 **/
141 VOID
142 PrintPciInterruptRegister (
143 VOID
144 )
145 {
146 EFI_STATUS Status;
147 UINTN Index;
148 EFI_HANDLE *Handles;
149 UINTN HandleNum;
150 EFI_PCI_IO_PROTOCOL *PciIo;
151 UINT8 Interrupt[2];
152 UINTN Segment;
153 UINTN Bus;
154 UINTN Device;
155 UINTN Function;
156
157 gBS->LocateHandleBuffer (
158 ByProtocol,
159 &gEfiPciIoProtocolGuid,
160 NULL,
161 &HandleNum,
162 &Handles
163 );
164
165 Bus = 0;
166 Device = 0;
167 Function = 0;
168
169 DEBUG ((EFI_D_INFO, "\n"));
170 DEBUG ((EFI_D_INFO, " bb/dd/ff interrupt line interrupt pin\n"));
171 DEBUG ((EFI_D_INFO, "======================================\n"));
172 for (Index = 0; Index < HandleNum; Index++) {
173 Status = gBS->HandleProtocol (Handles[Index], &gEfiPciIoProtocolGuid, (VOID **) &PciIo);
174 if (!EFI_ERROR (Status)) {
175 Status = PciIo->Pci.Read (
176 PciIo,
177 EfiPciIoWidthUint8,
178 PCI_INT_LINE_OFFSET,
179 2,
180 Interrupt
181 );
182 }
183 if (!EFI_ERROR (Status)) {
184 Status = PciIo->GetLocation (
185 PciIo,
186 &Segment,
187 &Bus,
188 &Device,
189 &Function
190 );
191 }
192 if (!EFI_ERROR (Status)) {
193 DEBUG ((EFI_D_INFO, " %02x/%02x/%02x 0x%02x 0x%02x\n",
194 Bus, Device, Function, Interrupt[0], Interrupt[1]));
195 }
196 }
197 DEBUG ((EFI_D_INFO, "\n"));
198
199 if (Handles != NULL) {
200 FreePool (Handles);
201 }
202 }
203
204 /**
205 Identify drive data must be updated to actual parameters before boot.
206
207 @param IdentifyDriveData ATA Identify Data
208
209 **/
210 VOID
211 UpdateIdentifyDriveData (
212 IN UINT8 *IdentifyDriveData
213 );
214
215 /**
216 Update SIO data.
217
218 @param Private Legacy BIOS Instance data
219
220 @retval EFI_SUCCESS Removable media not present
221
222 **/
223 EFI_STATUS
224 UpdateSioData (
225 IN LEGACY_BIOS_INSTANCE *Private
226 )
227 {
228 EFI_STATUS Status;
229 UINTN Index;
230 UINTN Index1;
231 UINT8 LegacyInterrupts[16];
232 EFI_LEGACY_IRQ_ROUTING_ENTRY *RoutingTable;
233 UINTN RoutingTableEntries;
234 EFI_LEGACY_IRQ_PRIORITY_TABLE_ENTRY *IrqPriorityTable;
235 UINTN NumberPriorityEntries;
236 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
237 UINT8 HddIrq;
238 UINT16 LegacyInt;
239 UINT16 LegMask;
240 UINT32 Register;
241 UINTN HandleCount;
242 EFI_HANDLE *HandleBuffer;
243 EFI_ISA_IO_PROTOCOL *IsaIo;
244
245 LegacyInt = 0;
246 HandleBuffer = NULL;
247
248 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
249 LegacyBiosBuildSioData (Private);
250 SetMem (LegacyInterrupts, sizeof (LegacyInterrupts), 0);
251
252 //
253 // Create list of legacy interrupts.
254 //
255 for (Index = 0; Index < 4; Index++) {
256 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Serial[Index].Irq;
257 }
258
259 for (Index = 4; Index < 7; Index++) {
260 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Parallel[Index - 4].Irq;
261 }
262
263 LegacyInterrupts[7] = EfiToLegacy16BootTable->SioData.Floppy.Irq;
264
265 //
266 // Get Legacy Hdd IRQs. If native mode treat as PCI
267 //
268 for (Index = 0; Index < 2; Index++) {
269 HddIrq = EfiToLegacy16BootTable->HddInfo[Index].HddIrq;
270 if ((HddIrq != 0) && ((HddIrq == 15) || (HddIrq == 14))) {
271 LegacyInterrupts[Index + 8] = HddIrq;
272 }
273 }
274
275 Private->LegacyBiosPlatform->GetRoutingTable (
276 Private->LegacyBiosPlatform,
277 (VOID *) &RoutingTable,
278 &RoutingTableEntries,
279 NULL,
280 NULL,
281 (VOID **) &IrqPriorityTable,
282 &NumberPriorityEntries
283 );
284 //
285 // Remove legacy interrupts from the list of PCI interrupts available.
286 //
287 for (Index = 0; Index <= 0x0b; Index++) {
288 for (Index1 = 0; Index1 <= NumberPriorityEntries; Index1++) {
289 if (LegacyInterrupts[Index] != 0) {
290 LegacyInt = (UINT16) (LegacyInt | (1 << LegacyInterrupts[Index]));
291 if (LegacyInterrupts[Index] == IrqPriorityTable[Index1].Irq) {
292 IrqPriorityTable[Index1].Used = LEGACY_USED;
293 }
294 }
295 }
296 }
297
298 Private->Legacy8259->GetMask (
299 Private->Legacy8259,
300 &LegMask,
301 NULL,
302 NULL,
303 NULL
304 );
305
306 //
307 // Set SIO interrupts and disable mouse. Let mouse driver
308 // re-enable it.
309 //
310 LegMask = (UINT16) ((LegMask &~LegacyInt) | 0x1000);
311 Private->Legacy8259->SetMask (
312 Private->Legacy8259,
313 &LegMask,
314 NULL,
315 NULL,
316 NULL
317 );
318
319 //
320 // Disable mouse in keyboard controller
321 //
322 Register = 0xA7;
323 Status = gBS->LocateHandleBuffer (
324 ByProtocol,
325 &gEfiIsaIoProtocolGuid,
326 NULL,
327 &HandleCount,
328 &HandleBuffer
329 );
330 if (EFI_ERROR (Status)) {
331 return Status;
332 }
333
334 for (Index = 0; Index < HandleCount; Index++) {
335 Status = gBS->HandleProtocol (
336 HandleBuffer[Index],
337 &gEfiIsaIoProtocolGuid,
338 (VOID **) &IsaIo
339 );
340 ASSERT_EFI_ERROR (Status);
341 IsaIo->Io.Write (IsaIo, EfiIsaIoWidthUint8, 0x64, 1, &Register);
342
343 }
344
345 if (HandleBuffer != NULL) {
346 FreePool (HandleBuffer);
347 }
348
349 return EFI_SUCCESS;
350
351 }
352
353 /**
354 Identify drive data must be updated to actual parameters before boot.
355 This requires updating the checksum, if it exists.
356
357 @param IdentifyDriveData ATA Identify Data
358 @param Checksum checksum of the ATA Identify Data
359
360 @retval EFI_SUCCESS checksum calculated
361 @retval EFI_SECURITY_VIOLATION IdentifyData invalid
362
363 **/
364 EFI_STATUS
365 CalculateIdentifyDriveChecksum (
366 IN UINT8 *IdentifyDriveData,
367 OUT UINT8 *Checksum
368 )
369 {
370 UINTN Index;
371 UINT8 LocalChecksum;
372 LocalChecksum = 0;
373 *Checksum = 0;
374 if (IdentifyDriveData[510] != 0xA5) {
375 return EFI_SECURITY_VIOLATION;
376 }
377
378 for (Index = 0; Index < 512; Index++) {
379 LocalChecksum = (UINT8) (LocalChecksum + IdentifyDriveData[Index]);
380 }
381
382 *Checksum = LocalChecksum;
383 return EFI_SUCCESS;
384 }
385
386
387 /**
388 Identify drive data must be updated to actual parameters before boot.
389
390 @param IdentifyDriveData ATA Identify Data
391
392
393 **/
394 VOID
395 UpdateIdentifyDriveData (
396 IN UINT8 *IdentifyDriveData
397 )
398 {
399 UINT16 NumberCylinders;
400 UINT16 NumberHeads;
401 UINT16 NumberSectorsTrack;
402 UINT32 CapacityInSectors;
403 UINT8 OriginalChecksum;
404 UINT8 FinalChecksum;
405 EFI_STATUS Status;
406 ATAPI_IDENTIFY *ReadInfo;
407
408 //
409 // Status indicates if Integrity byte is correct. Checksum should be
410 // 0 if valid.
411 //
412 ReadInfo = (ATAPI_IDENTIFY *) IdentifyDriveData;
413 Status = CalculateIdentifyDriveChecksum (IdentifyDriveData, &OriginalChecksum);
414 if (OriginalChecksum != 0) {
415 Status = EFI_SECURITY_VIOLATION;
416 }
417 //
418 // If NumberCylinders = 0 then do data(Controller present but don drive attached).
419 //
420 NumberCylinders = ReadInfo->Raw[1];
421 if (NumberCylinders != 0) {
422 ReadInfo->Raw[54] = NumberCylinders;
423
424 NumberHeads = ReadInfo->Raw[3];
425 ReadInfo->Raw[55] = NumberHeads;
426
427 NumberSectorsTrack = ReadInfo->Raw[6];
428 ReadInfo->Raw[56] = NumberSectorsTrack;
429
430 //
431 // Copy Multisector info and set valid bit.
432 //
433 ReadInfo->Raw[59] = (UINT16) (ReadInfo->Raw[47] + 0x100);
434 CapacityInSectors = (UINT32) ((UINT32) (NumberCylinders) * (UINT32) (NumberHeads) * (UINT32) (NumberSectorsTrack));
435 ReadInfo->Raw[57] = (UINT16) (CapacityInSectors >> 16);
436 ReadInfo->Raw[58] = (UINT16) (CapacityInSectors & 0xffff);
437 if (Status == EFI_SUCCESS) {
438 //
439 // Forece checksum byte to 0 and get new checksum.
440 //
441 ReadInfo->Raw[255] &= 0xff;
442 CalculateIdentifyDriveChecksum (IdentifyDriveData, &FinalChecksum);
443
444 //
445 // Force new checksum such that sum is 0.
446 //
447 FinalChecksum = (UINT8) ((UINT8)0 - FinalChecksum);
448 ReadInfo->Raw[255] = (UINT16) (ReadInfo->Raw[255] | (FinalChecksum << 8));
449 }
450 }
451 }
452
453 /**
454 Identify drive data must be updated to actual parameters before boot.
455 Do for all drives.
456
457 @param Private Legacy BIOS Instance data
458
459
460 **/
461 VOID
462 UpdateAllIdentifyDriveData (
463 IN LEGACY_BIOS_INSTANCE *Private
464 )
465 {
466 UINTN Index;
467 HDD_INFO *HddInfo;
468
469 HddInfo = &Private->IntThunk->EfiToLegacy16BootTable.HddInfo[0];
470
471 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
472 //
473 // Each controller can have 2 devices. Update for each device
474 //
475 if ((HddInfo[Index].Status & HDD_MASTER_IDE) != 0) {
476 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[0].Raw[0]));
477 }
478
479 if ((HddInfo[Index].Status & HDD_SLAVE_IDE) != 0) {
480 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[1].Raw[0]));
481 }
482 }
483 }
484
485 /**
486 Enable ide controller. This gets disabled when LegacyBoot.c is about
487 to run the Option ROMs.
488
489 @param Private Legacy BIOS Instance data
490
491
492 **/
493 VOID
494 EnableIdeController (
495 IN LEGACY_BIOS_INSTANCE *Private
496 )
497 {
498 EFI_PCI_IO_PROTOCOL *PciIo;
499 EFI_STATUS Status;
500 EFI_HANDLE IdeController;
501 UINT8 ByteBuffer;
502 UINTN HandleCount;
503 EFI_HANDLE *HandleBuffer;
504
505 Status = Private->LegacyBiosPlatform->GetPlatformHandle (
506 Private->LegacyBiosPlatform,
507 EfiGetPlatformIdeHandle,
508 0,
509 &HandleBuffer,
510 &HandleCount,
511 NULL
512 );
513 if (!EFI_ERROR (Status)) {
514 IdeController = HandleBuffer[0];
515 Status = gBS->HandleProtocol (
516 IdeController,
517 &gEfiPciIoProtocolGuid,
518 (VOID **) &PciIo
519 );
520 ByteBuffer = 0x1f;
521 if (!EFI_ERROR (Status)) {
522 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x04, 1, &ByteBuffer);
523 }
524 }
525 }
526
527
528 /**
529 Enable ide controller. This gets disabled when LegacyBoot.c is about
530 to run the Option ROMs.
531
532 @param Private Legacy BIOS Instance data
533
534
535 **/
536 VOID
537 EnableAllControllers (
538 IN LEGACY_BIOS_INSTANCE *Private
539 )
540 {
541 UINTN HandleCount;
542 EFI_HANDLE *HandleBuffer;
543 UINTN Index;
544 EFI_PCI_IO_PROTOCOL *PciIo;
545 PCI_TYPE01 PciConfigHeader;
546 EFI_STATUS Status;
547
548 //
549 //
550 //
551 EnableIdeController (Private);
552
553 //
554 // Assumption is table is built from low bus to high bus numbers.
555 //
556 Status = gBS->LocateHandleBuffer (
557 ByProtocol,
558 &gEfiPciIoProtocolGuid,
559 NULL,
560 &HandleCount,
561 &HandleBuffer
562 );
563 ASSERT_EFI_ERROR (Status);
564
565 for (Index = 0; Index < HandleCount; Index++) {
566 Status = gBS->HandleProtocol (
567 HandleBuffer[Index],
568 &gEfiPciIoProtocolGuid,
569 (VOID **) &PciIo
570 );
571 ASSERT_EFI_ERROR (Status);
572
573 PciIo->Pci.Read (
574 PciIo,
575 EfiPciIoWidthUint32,
576 0,
577 sizeof (PciConfigHeader) / sizeof (UINT32),
578 &PciConfigHeader
579 );
580
581 //
582 // We do not enable PPB here. This is for HotPlug Consideration.
583 // The Platform HotPlug Driver is responsible for Padding enough hot plug
584 // resources. It is also responsible for enable this bridge. If it
585 // does not pad it. It will cause some early Windows fail to installation.
586 // If the platform driver does not pad resource for PPB, PPB should be in
587 // un-enabled state to let Windows know that this PPB is not configured by
588 // BIOS. So Windows will allocate default resource for PPB.
589 //
590 // The reason for why we enable the command register is:
591 // The CSM will use the IO bar to detect some IRQ status, if the command
592 // is disabled, the IO resource will be out of scope.
593 // For example:
594 // We installed a legacy IRQ handle for a PCI IDE controller. When IRQ
595 // comes up, the handle will check the IO space to identify is the
596 // controller generated the IRQ source.
597 // If the IO command is not enabled, the IRQ handler will has wrong
598 // information. It will cause IRQ storm when the correctly IRQ handler fails
599 // to run.
600 //
601 if (!(IS_PCI_VGA (&PciConfigHeader) ||
602 IS_PCI_OLD_VGA (&PciConfigHeader) ||
603 IS_PCI_IDE (&PciConfigHeader) ||
604 IS_PCI_P2P (&PciConfigHeader) ||
605 IS_PCI_P2P_SUB (&PciConfigHeader) ||
606 IS_PCI_LPC (&PciConfigHeader) )) {
607
608 PciConfigHeader.Hdr.Command |= 0x1f;
609
610 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 4, 1, &PciConfigHeader.Hdr.Command);
611 }
612 }
613 }
614
615 /**
616 The following routines are identical in operation, so combine
617 for code compaction:
618 EfiGetPlatformBinaryGetMpTable
619 EfiGetPlatformBinaryGetOemIntData
620 EfiGetPlatformBinaryGetOem32Data
621 EfiGetPlatformBinaryGetOem16Data
622
623 @param This Protocol instance pointer.
624 @param Id Table/Data identifier
625
626 @retval EFI_SUCCESS Success
627 @retval EFI_INVALID_PARAMETER Invalid ID
628 @retval EFI_OUT_OF_RESOURCES no resource to get data or table
629
630 **/
631 EFI_STATUS
632 LegacyGetDataOrTable (
633 IN EFI_LEGACY_BIOS_PROTOCOL *This,
634 IN EFI_GET_PLATFORM_INFO_MODE Id
635 )
636 {
637 VOID *Table;
638 UINT32 TablePtr;
639 UINTN TableSize;
640 UINTN Alignment;
641 UINTN Location;
642 EFI_STATUS Status;
643 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
644 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
645 EFI_IA32_REGISTER_SET Regs;
646 LEGACY_BIOS_INSTANCE *Private;
647
648 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
649
650 LegacyBiosPlatform = Private->LegacyBiosPlatform;
651 Legacy16Table = Private->Legacy16Table;
652
653 //
654 // Phase 1 - get an address allocated in 16-bit code
655 //
656 while (TRUE) {
657 switch (Id) {
658 case EfiGetPlatformBinaryMpTable:
659 case EfiGetPlatformBinaryOemIntData:
660 case EfiGetPlatformBinaryOem32Data:
661 case EfiGetPlatformBinaryOem16Data:
662 {
663 Status = LegacyBiosPlatform->GetPlatformInfo (
664 LegacyBiosPlatform,
665 Id,
666 (VOID *) &Table,
667 &TableSize,
668 &Location,
669 &Alignment,
670 0,
671 0
672 );
673 DEBUG ((EFI_D_INFO, "LegacyGetDataOrTable - ID: %x, %r\n", (UINTN)Id, Status));
674 DEBUG ((EFI_D_INFO, " Table - %x, Size - %x, Location - %x, Alignment - %x\n", (UINTN)Table, (UINTN)TableSize, (UINTN)Location, (UINTN)Alignment));
675 break;
676 }
677
678 default:
679 {
680 return EFI_INVALID_PARAMETER;
681 }
682 }
683
684 if (EFI_ERROR (Status)) {
685 return Status;
686 }
687
688 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
689 Regs.X.AX = Legacy16GetTableAddress;
690 Regs.X.CX = (UINT16) TableSize;
691 Regs.X.BX = (UINT16) Location;
692 Regs.X.DX = (UINT16) Alignment;
693 Private->LegacyBios.FarCall86 (
694 This,
695 Private->Legacy16CallSegment,
696 Private->Legacy16CallOffset,
697 &Regs,
698 NULL,
699 0
700 );
701
702 if (Regs.X.AX != 0) {
703 DEBUG ((EFI_D_ERROR, "Table ID %x length insufficient\n", Id));
704 return EFI_OUT_OF_RESOURCES;
705 } else {
706 break;
707 }
708 }
709 //
710 // Phase 2 Call routine second time with address to allow address adjustment
711 //
712 Status = LegacyBiosPlatform->GetPlatformInfo (
713 LegacyBiosPlatform,
714 Id,
715 (VOID *) &Table,
716 &TableSize,
717 &Location,
718 &Alignment,
719 Regs.X.DS,
720 Regs.X.BX
721 );
722 switch (Id) {
723 case EfiGetPlatformBinaryMpTable:
724 {
725 Legacy16Table->MpTablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
726 Legacy16Table->MpTableLength = (UINT32)TableSize;
727 DEBUG ((EFI_D_INFO, "MP table in legacy region - %x\n", (UINTN)Legacy16Table->MpTablePtr));
728 break;
729 }
730
731 case EfiGetPlatformBinaryOemIntData:
732 {
733
734 Legacy16Table->OemIntSegment = Regs.X.DS;
735 Legacy16Table->OemIntOffset = Regs.X.BX;
736 DEBUG ((EFI_D_INFO, "OemInt table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->OemIntSegment, (UINTN)Legacy16Table->OemIntOffset));
737 break;
738 }
739
740 case EfiGetPlatformBinaryOem32Data:
741 {
742 Legacy16Table->Oem32Segment = Regs.X.DS;
743 Legacy16Table->Oem32Offset = Regs.X.BX;
744 DEBUG ((EFI_D_INFO, "Oem32 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem32Segment, (UINTN)Legacy16Table->Oem32Offset));
745 break;
746 }
747
748 case EfiGetPlatformBinaryOem16Data:
749 {
750 //
751 // Legacy16Table->Oem16Segment = Regs.X.DS;
752 // Legacy16Table->Oem16Offset = Regs.X.BX;
753 DEBUG ((EFI_D_INFO, "Oem16 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem16Segment, (UINTN)Legacy16Table->Oem16Offset));
754 break;
755 }
756
757 default:
758 {
759 return EFI_INVALID_PARAMETER;
760 }
761 }
762
763 if (EFI_ERROR (Status)) {
764 return Status;
765 }
766 //
767 // Phase 3 Copy table to final location
768 //
769 TablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
770
771 CopyMem (
772 (VOID *) (UINTN)TablePtr,
773 Table,
774 TableSize
775 );
776
777 return EFI_SUCCESS;
778 }
779
780
781 /**
782 Assign drive number to legacy HDD drives prior to booting an EFI
783 aware OS so the OS can access drives without an EFI driver.
784 Note: BBS compliant drives ARE NOT available until this call by
785 either shell or EFI.
786
787 @param This Protocol instance pointer.
788
789 @retval EFI_SUCCESS Drive numbers assigned
790
791 **/
792 EFI_STATUS
793 GenericLegacyBoot (
794 IN EFI_LEGACY_BIOS_PROTOCOL *This
795 )
796 {
797 EFI_STATUS Status;
798 LEGACY_BIOS_INSTANCE *Private;
799 EFI_IA32_REGISTER_SET Regs;
800 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
801 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
802 UINTN CopySize;
803 VOID *AcpiPtr;
804 HDD_INFO *HddInfo;
805 HDD_INFO *LocalHddInfo;
806 UINTN Index;
807 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
808 UINT32 *BdaPtr;
809 UINT16 HddCount;
810 UINT16 BbsCount;
811 BBS_TABLE *LocalBbsTable;
812 UINT32 *BaseVectorMaster;
813 EFI_TIME BootTime;
814 UINT32 LocalTime;
815 EFI_HANDLE IdeController;
816 UINTN HandleCount;
817 EFI_HANDLE *HandleBuffer;
818 VOID *SmbiosTable;
819 VOID *AcpiTable;
820 UINTN ShadowAddress;
821 UINT32 Granularity;
822
823 LocalHddInfo = NULL;
824 HddCount = 0;
825 BbsCount = 0;
826 LocalBbsTable = NULL;
827
828 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
829 DEBUG_CODE (
830 DEBUG ((EFI_D_ERROR, "Start of legacy boot\n"));
831 );
832
833 Legacy16Table = Private->Legacy16Table;
834 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
835 HddInfo = &EfiToLegacy16BootTable->HddInfo[0];
836
837 LegacyBiosPlatform = Private->LegacyBiosPlatform;
838
839 EfiToLegacy16BootTable->MajorVersion = EFI_TO_LEGACY_MAJOR_VERSION;
840 EfiToLegacy16BootTable->MinorVersion = EFI_TO_LEGACY_MINOR_VERSION;
841
842 //
843 // If booting to a legacy OS then force HDD drives to the appropriate
844 // boot mode by calling GetIdeHandle.
845 // A reconnect -r can force all HDDs back to native mode.
846 //
847 IdeController = NULL;
848 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
849 Status = LegacyBiosPlatform->GetPlatformHandle (
850 Private->LegacyBiosPlatform,
851 EfiGetPlatformIdeHandle,
852 0,
853 &HandleBuffer,
854 &HandleCount,
855 NULL
856 );
857 if (!EFI_ERROR (Status)) {
858 IdeController = HandleBuffer[0];
859 }
860 }
861 //
862 // Unlock the Legacy BIOS region
863 //
864 Private->LegacyRegion->UnLock (
865 Private->LegacyRegion,
866 0xE0000,
867 0x20000,
868 &Granularity
869 );
870
871 //
872 // Reconstruct the Legacy16 boot memory map
873 //
874 LegacyBiosBuildE820 (Private, &CopySize);
875 if (CopySize > Private->Legacy16Table->E820Length) {
876 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
877 Regs.X.AX = Legacy16GetTableAddress;
878 Regs.X.CX = (UINT16) CopySize;
879 Private->LegacyBios.FarCall86 (
880 &Private->LegacyBios,
881 Private->Legacy16Table->Compatibility16CallSegment,
882 Private->Legacy16Table->Compatibility16CallOffset,
883 &Regs,
884 NULL,
885 0
886 );
887
888 Private->Legacy16Table->E820Pointer = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
889 Private->Legacy16Table->E820Length = (UINT32) CopySize;
890 if (Regs.X.AX != 0) {
891 DEBUG ((EFI_D_ERROR, "Legacy16 E820 length insufficient\n"));
892 } else {
893 CopyMem (
894 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
895 Private->E820Table,
896 CopySize
897 );
898 }
899 } else {
900 CopyMem (
901 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
902 Private->E820Table,
903 CopySize
904 );
905 Private->Legacy16Table->E820Length = (UINT32) CopySize;
906 }
907 //
908 // Get SMBIOS and ACPI table pointers
909 //
910 SmbiosTable = NULL;
911 EfiGetSystemConfigurationTable (
912 &gEfiSmbiosTableGuid,
913 &SmbiosTable
914 );
915 //
916 // We do not ASSERT if SmbiosTable not found. It is possbile that a platform does not produce SmbiosTable.
917 //
918 if (SmbiosTable == NULL) {
919 DEBUG ((EFI_D_INFO, "Smbios table is not found!\n"));
920 }
921 EfiToLegacy16BootTable->SmbiosTable = (UINT32)(UINTN)SmbiosTable;
922
923 AcpiTable = NULL;
924 Status = EfiGetSystemConfigurationTable (
925 &gEfiAcpi20TableGuid,
926 &AcpiTable
927 );
928 if (EFI_ERROR (Status)) {
929 Status = EfiGetSystemConfigurationTable (
930 &gEfiAcpi10TableGuid,
931 &AcpiTable
932 );
933 }
934 //
935 // We do not ASSERT if AcpiTable not found. It is possbile that a platform does not produce AcpiTable.
936 //
937 if (AcpiTable == NULL) {
938 DEBUG ((EFI_D_INFO, "ACPI table is not found!\n"));
939 }
940 EfiToLegacy16BootTable->AcpiTable = (UINT32)(UINTN)AcpiTable;
941
942 //
943 // Get RSD Ptr table rev at offset 15 decimal
944 // Rev = 0 Length is 20 decimal
945 // Rev != 0 Length is UINT32 at offset 20 decimal
946 //
947 if (AcpiTable != NULL) {
948
949 AcpiPtr = AcpiTable;
950 if (*((UINT8 *) AcpiPtr + 15) == 0) {
951 CopySize = 20;
952 } else {
953 AcpiPtr = ((UINT8 *) AcpiPtr + 20);
954 CopySize = (*(UINT32 *) AcpiPtr);
955 }
956
957 CopyMem (
958 (VOID *)(UINTN) Private->Legacy16Table->AcpiRsdPtrPointer,
959 AcpiTable,
960 CopySize
961 );
962 }
963 //
964 // Make sure all PCI Interrupt Line register are programmed to match 8259
965 //
966 PciProgramAllInterruptLineRegisters (Private);
967
968 //
969 // Unlock the Legacy BIOS region as PciProgramAllInterruptLineRegisters
970 // can lock it.
971 //
972 Private->LegacyRegion->UnLock (
973 Private->LegacyRegion,
974 Private->BiosStart,
975 Private->LegacyBiosImageSize,
976 &Granularity
977 );
978
979 //
980 // Configure Legacy Device Magic
981 //
982 // Only do this code if booting legacy OS
983 //
984 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
985 UpdateSioData (Private);
986 }
987 //
988 // Setup BDA and EBDA standard areas before Legacy Boot
989 //
990 LegacyBiosCompleteBdaBeforeBoot (Private);
991 LegacyBiosCompleteStandardCmosBeforeBoot (Private);
992
993 //
994 // We must build IDE data, if it hasn't been done, before PciShadowRoms
995 // to insure EFI drivers are connected.
996 //
997 LegacyBiosBuildIdeData (Private, &HddInfo, 1);
998 UpdateAllIdentifyDriveData (Private);
999
1000 //
1001 // Clear IO BAR, if IDE controller in legacy mode.
1002 //
1003 InitLegacyIdeController (IdeController);
1004
1005 //
1006 // Generate number of ticks since midnight for BDA. DOS requires this
1007 // for its time. We have to make assumptions as to how long following
1008 // code takes since after PciShadowRoms PciIo is gone. Place result in
1009 // 40:6C-6F
1010 //
1011 // Adjust value by 1 second.
1012 //
1013 gRT->GetTime (&BootTime, NULL);
1014 LocalTime = BootTime.Hour * 3600 + BootTime.Minute * 60 + BootTime.Second;
1015 LocalTime += 1;
1016
1017 //
1018 // Multiply result by 18.2 for number of ticks since midnight.
1019 // Use 182/10 to avoid floating point math.
1020 //
1021 LocalTime = (LocalTime * 182) / 10;
1022 BdaPtr = (UINT32 *) (UINTN)0x46C;
1023 *BdaPtr = LocalTime;
1024
1025 //
1026 // Shadow PCI ROMs. We must do this near the end since this will kick
1027 // of Native EFI drivers that may be needed to collect info for Legacy16
1028 //
1029 // WARNING: PciIo is gone after this call.
1030 //
1031 PciShadowRoms (Private);
1032
1033 //
1034 // Shadow PXE base code, BIS etc.
1035 //
1036 Private->LegacyRegion->UnLock (Private->LegacyRegion, 0xc0000, 0x40000, &Granularity);
1037 ShadowAddress = Private->OptionRom;
1038 Private->LegacyBiosPlatform->PlatformHooks (
1039 Private->LegacyBiosPlatform,
1040 EfiPlatformHookShadowServiceRoms,
1041 0,
1042 0,
1043 &ShadowAddress,
1044 Legacy16Table,
1045 NULL
1046 );
1047 Private->OptionRom = (UINT32)ShadowAddress;
1048 //
1049 // Register Legacy SMI Handler
1050 //
1051 LegacyBiosPlatform->SmmInit (
1052 LegacyBiosPlatform,
1053 EfiToLegacy16BootTable
1054 );
1055
1056 //
1057 // Let platform code know the boot options
1058 //
1059 LegacyBiosGetBbsInfo (
1060 This,
1061 &HddCount,
1062 &LocalHddInfo,
1063 &BbsCount,
1064 &LocalBbsTable
1065 );
1066
1067 DEBUG_CODE (
1068 PrintPciInterruptRegister ();
1069 PrintBbsTable (LocalBbsTable);
1070 PrintHddInfo (LocalHddInfo);
1071 );
1072 //
1073 // If drive wasn't spun up then BuildIdeData may have found new drives.
1074 // Need to update BBS boot priority.
1075 //
1076 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
1077 if ((LocalHddInfo[Index].IdentifyDrive[0].Raw[0] != 0) &&
1078 (LocalBbsTable[2 * Index + 1].BootPriority == BBS_IGNORE_ENTRY)
1079 ) {
1080 LocalBbsTable[2 * Index + 1].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1081 }
1082
1083 if ((LocalHddInfo[Index].IdentifyDrive[1].Raw[0] != 0) &&
1084 (LocalBbsTable[2 * Index + 2].BootPriority == BBS_IGNORE_ENTRY)
1085 ) {
1086 LocalBbsTable[2 * Index + 2].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1087 }
1088 }
1089
1090 Private->LegacyRegion->UnLock (
1091 Private->LegacyRegion,
1092 0xc0000,
1093 0x40000,
1094 &Granularity
1095 );
1096
1097 LegacyBiosPlatform->PrepareToBoot (
1098 LegacyBiosPlatform,
1099 mBbsDevicePathPtr,
1100 mBbsTable,
1101 mLoadOptionsSize,
1102 mLoadOptions,
1103 (VOID *) &Private->IntThunk->EfiToLegacy16BootTable
1104 );
1105
1106 //
1107 // If no boot device return to BDS
1108 //
1109 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1110 for (Index = 0; Index < BbsCount; Index++){
1111 if ((LocalBbsTable[Index].BootPriority != BBS_DO_NOT_BOOT_FROM) &&
1112 (LocalBbsTable[Index].BootPriority != BBS_UNPRIORITIZED_ENTRY) &&
1113 (LocalBbsTable[Index].BootPriority != BBS_IGNORE_ENTRY)) {
1114 break;
1115 }
1116 }
1117 if (Index == BbsCount) {
1118 return EFI_DEVICE_ERROR;
1119 }
1120 }
1121 //
1122 // Let the Legacy16 code know the device path type for legacy boot
1123 //
1124 EfiToLegacy16BootTable->DevicePathType = mBbsDevicePathPtr->DeviceType;
1125
1126 //
1127 // Copy MP table, if it exists.
1128 //
1129 LegacyGetDataOrTable (This, EfiGetPlatformBinaryMpTable);
1130
1131 if (!Private->LegacyBootEntered) {
1132 //
1133 // Copy OEM INT Data, if it exists. Note: This code treats any data
1134 // as a bag of bits and knows nothing of the contents nor cares.
1135 // Contents are IBV specific.
1136 //
1137 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOemIntData);
1138
1139 //
1140 // Copy OEM16 Data, if it exists.Note: This code treats any data
1141 // as a bag of bits and knows nothing of the contents nor cares.
1142 // Contents are IBV specific.
1143 //
1144 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem16Data);
1145
1146 //
1147 // Copy OEM32 Data, if it exists.Note: This code treats any data
1148 // as a bag of bits and knows nothing of the contents nor cares.
1149 // Contents are IBV specific.
1150 //
1151 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem32Data);
1152 }
1153
1154 //
1155 // Call into Legacy16 code to prepare for INT 19h
1156 //
1157 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1158 Regs.X.AX = Legacy16PrepareToBoot;
1159
1160 //
1161 // Pass in handoff data
1162 //
1163 Regs.X.ES = NORMALIZE_EFI_SEGMENT ((UINTN)EfiToLegacy16BootTable);
1164 Regs.X.BX = NORMALIZE_EFI_OFFSET ((UINTN)EfiToLegacy16BootTable);
1165
1166 Private->LegacyBios.FarCall86 (
1167 This,
1168 Private->Legacy16CallSegment,
1169 Private->Legacy16CallOffset,
1170 &Regs,
1171 NULL,
1172 0
1173 );
1174
1175 if (Regs.X.AX != 0) {
1176 return EFI_DEVICE_ERROR;
1177 }
1178 //
1179 // Lock the Legacy BIOS region
1180 //
1181 Private->LegacyRegion->Lock (
1182 Private->LegacyRegion,
1183 0xc0000,
1184 0x40000,
1185 &Granularity
1186 );
1187 //
1188 // Lock attributes of the Legacy Region if chipset supports
1189 //
1190 Private->LegacyRegion->BootLock (
1191 Private->LegacyRegion,
1192 0xc0000,
1193 0x40000,
1194 &Granularity
1195 );
1196
1197 //
1198 // Call into Legacy16 code to do the INT 19h
1199 //
1200 EnableAllControllers (Private);
1201 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1202 //
1203 // Report Status Code to indicate legacy boot event will be signalled
1204 //
1205 REPORT_STATUS_CODE (
1206 EFI_PROGRESS_CODE,
1207 (EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT)
1208 );
1209
1210 //
1211 // Signal all the events that are waiting on EVT_SIGNAL_LEGACY_BOOT
1212 //
1213 EfiSignalEventLegacyBoot ();
1214 DEBUG ((EFI_D_INFO, "Legacy INT19 Boot...\n"));
1215
1216 //
1217 // Disable DXE Timer while executing in real mode
1218 //
1219 Private->Timer->SetTimerPeriod (Private->Timer, 0);
1220
1221 //
1222 // Save and disable interrupt of debug timer
1223 //
1224 SaveAndSetDebugTimerInterrupt (FALSE);
1225
1226
1227 //
1228 // Put the 8259 into its legacy mode by reprogramming the vector bases
1229 //
1230 Private->Legacy8259->SetVectorBase (Private->Legacy8259, LEGACY_MODE_BASE_VECTOR_MASTER, LEGACY_MODE_BASE_VECTOR_SLAVE);
1231 //
1232 // PC History
1233 // The original PC used INT8-F for master PIC. Since these mapped over
1234 // processor exceptions TIANO moved the master PIC to INT68-6F.
1235 // We need to set these back to the Legacy16 unexpected interrupt(saved
1236 // in LegacyBios.c) since some OS see that these have values different from
1237 // what is expected and invoke them. Since the legacy OS corrupts EFI
1238 // memory, there is no handler for these interrupts and OS blows up.
1239 //
1240 // We need to save the TIANO values for the rare case that the Legacy16
1241 // code cannot boot but knows memory hasn't been destroyed.
1242 //
1243 // To compound the problem, video takes over one of these INTS and must be
1244 // be left.
1245 // @bug - determine if video hooks INT(in which case we must find new
1246 // set of TIANO vectors) or takes it over.
1247 //
1248 //
1249 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1250 for (Index = 0; Index < 8; Index++) {
1251 Private->ThunkSavedInt[Index] = BaseVectorMaster[Index];
1252 if (Private->ThunkSeg == (UINT16) (BaseVectorMaster[Index] >> 16)) {
1253 BaseVectorMaster[Index] = (UINT32) (Private->BiosUnexpectedInt);
1254 }
1255 }
1256
1257 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1258 Regs.X.AX = Legacy16Boot;
1259
1260 Private->LegacyBios.FarCall86 (
1261 This,
1262 Private->Legacy16CallSegment,
1263 Private->Legacy16CallOffset,
1264 &Regs,
1265 NULL,
1266 0
1267 );
1268
1269 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1270 for (Index = 0; Index < 8; Index++) {
1271 BaseVectorMaster[Index] = Private->ThunkSavedInt[Index];
1272 }
1273 }
1274 Private->LegacyBootEntered = TRUE;
1275 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1276 //
1277 // Should never return unless never passed control to 0:7c00(first stage
1278 // OS loader) and only then if no bootable device found.
1279 //
1280 return EFI_DEVICE_ERROR;
1281 } else {
1282 //
1283 // If boot to EFI then expect to return to caller
1284 //
1285 return EFI_SUCCESS;
1286 }
1287 }
1288
1289
1290 /**
1291 Assign drive number to legacy HDD drives prior to booting an EFI
1292 aware OS so the OS can access drives without an EFI driver.
1293 Note: BBS compliant drives ARE NOT available until this call by
1294 either shell or EFI.
1295
1296 @param This Protocol instance pointer.
1297 @param BbsCount Number of BBS_TABLE structures
1298 @param BbsTable List BBS entries
1299
1300 @retval EFI_SUCCESS Drive numbers assigned
1301
1302 **/
1303 EFI_STATUS
1304 EFIAPI
1305 LegacyBiosPrepareToBootEfi (
1306 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1307 OUT UINT16 *BbsCount,
1308 OUT BBS_TABLE **BbsTable
1309 )
1310 {
1311 EFI_STATUS Status;
1312 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1313 LEGACY_BIOS_INSTANCE *Private;
1314
1315 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1316 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1317 mBootMode = BOOT_EFI_OS;
1318 mBbsDevicePathPtr = NULL;
1319 Status = GenericLegacyBoot (This);
1320 *BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1321 *BbsCount = (UINT16) (sizeof (Private->IntThunk->BbsTable) / sizeof (BBS_TABLE));
1322 return Status;
1323 }
1324
1325 /**
1326 To boot from an unconventional device like parties and/or execute HDD diagnostics.
1327
1328 @param This Protocol instance pointer.
1329 @param Attributes How to interpret the other input parameters
1330 @param BbsEntry The 0-based index into the BbsTable for the parent
1331 device.
1332 @param BeerData Pointer to the 128 bytes of ram BEER data.
1333 @param ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
1334 caller must provide a pointer to the specific Service
1335 Area and not the start all Service Areas.
1336
1337 @retval EFI_INVALID_PARAMETER if error. Does NOT return if no error.
1338
1339 ***/
1340 EFI_STATUS
1341 EFIAPI
1342 LegacyBiosBootUnconventionalDevice (
1343 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1344 IN UDC_ATTRIBUTES Attributes,
1345 IN UINTN BbsEntry,
1346 IN VOID *BeerData,
1347 IN VOID *ServiceAreaData
1348 )
1349 {
1350 EFI_STATUS Status;
1351 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1352 LEGACY_BIOS_INSTANCE *Private;
1353 UD_TABLE *UcdTable;
1354 UINTN Index;
1355 UINT16 BootPriority;
1356 BBS_TABLE *BbsTable;
1357
1358 BootPriority = 0;
1359 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1360 mBootMode = BOOT_UNCONVENTIONAL_DEVICE;
1361 mBbsDevicePathPtr = &mBbsDevicePathNode;
1362 mAttributes = Attributes;
1363 mBbsEntry = BbsEntry;
1364 mBeerData = BeerData, mServiceAreaData = ServiceAreaData;
1365
1366 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1367
1368 //
1369 // Do input parameter checking
1370 //
1371 if ((Attributes.DirectoryServiceValidity == 0) &&
1372 (Attributes.RabcaUsedFlag == 0) &&
1373 (Attributes.ExecuteHddDiagnosticsFlag == 0)
1374 ) {
1375 return EFI_INVALID_PARAMETER;
1376 }
1377
1378 if (((Attributes.DirectoryServiceValidity != 0) && (ServiceAreaData == NULL)) ||
1379 (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag) != 0) && (BeerData == NULL))
1380 ) {
1381 return EFI_INVALID_PARAMETER;
1382 }
1383
1384 UcdTable = (UD_TABLE *) AllocatePool (
1385 sizeof (UD_TABLE)
1386 );
1387 if (NULL == UcdTable) {
1388 return EFI_OUT_OF_RESOURCES;
1389 }
1390
1391 EfiToLegacy16BootTable->UnconventionalDeviceTable = (UINT32)(UINTN)UcdTable;
1392 UcdTable->Attributes = Attributes;
1393 UcdTable->BbsTableEntryNumberForParentDevice = (UINT8) BbsEntry;
1394 //
1395 // Force all existing BBS entries to DoNotBoot. This allows 16-bit CSM
1396 // to assign drive numbers but bot boot from. Only newly created entries
1397 // will be valid.
1398 //
1399 BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1400 for (Index = 0; Index < EfiToLegacy16BootTable->NumberBbsEntries; Index++) {
1401 BbsTable[Index].BootPriority = BBS_DO_NOT_BOOT_FROM;
1402 }
1403 //
1404 // If parent is onboard IDE then assign controller & device number
1405 // else they are 0.
1406 //
1407 if (BbsEntry < MAX_IDE_CONTROLLER * 2) {
1408 UcdTable->DeviceNumber = (UINT8) ((BbsEntry - 1) % 2);
1409 }
1410
1411 if (BeerData != NULL) {
1412 CopyMem (
1413 (VOID *) UcdTable->BeerData,
1414 BeerData,
1415 (UINTN) 128
1416 );
1417 }
1418
1419 if (ServiceAreaData != NULL) {
1420 CopyMem (
1421 (VOID *) UcdTable->ServiceAreaData,
1422 ServiceAreaData,
1423 (UINTN) 64
1424 );
1425 }
1426 //
1427 // For each new entry do the following:
1428 // 1. Increment current number of BBS entries
1429 // 2. Copy parent entry to new entry.
1430 // 3. Zero out BootHandler Offset & segment
1431 // 4. Set appropriate device type. BEV(0x80) for HDD diagnostics
1432 // and Floppy(0x01) for PARTIES boot.
1433 // 5. Assign new priority.
1434 //
1435 if ((Attributes.ExecuteHddDiagnosticsFlag) != 0) {
1436 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1437
1438 CopyMem (
1439 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1440 (VOID *) &BbsTable[BbsEntry].BootPriority,
1441 sizeof (BBS_TABLE)
1442 );
1443
1444 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1445 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1446 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x80;
1447
1448 UcdTable->BbsTableEntryNumberForHddDiag = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1449
1450 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1451 BootPriority += 1;
1452
1453 //
1454 // Set device type as BBS_TYPE_DEV for PARTIES diagnostic
1455 //
1456 mBbsDevicePathNode.DeviceType = BBS_TYPE_BEV;
1457 }
1458
1459 if (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag)) != 0) {
1460 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1461 CopyMem (
1462 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1463 (VOID *) &BbsTable[BbsEntry].BootPriority,
1464 sizeof (BBS_TABLE)
1465 );
1466
1467 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1468 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1469 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x01;
1470 UcdTable->BbsTableEntryNumberForBoot = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1471 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1472
1473 //
1474 // Set device type as BBS_TYPE_FLOPPY for PARTIES boot as floppy
1475 //
1476 mBbsDevicePathNode.DeviceType = BBS_TYPE_FLOPPY;
1477 }
1478 //
1479 // Build the BBS Device Path for this boot selection
1480 //
1481 mBbsDevicePathNode.Header.Type = BBS_DEVICE_PATH;
1482 mBbsDevicePathNode.Header.SubType = BBS_BBS_DP;
1483 SetDevicePathNodeLength (&mBbsDevicePathNode.Header, sizeof (BBS_BBS_DEVICE_PATH));
1484 mBbsDevicePathNode.StatusFlag = 0;
1485 mBbsDevicePathNode.String[0] = 0;
1486
1487 Status = GenericLegacyBoot (This);
1488 return Status;
1489 }
1490
1491 /**
1492 Attempt to legacy boot the BootOption. If the EFI contexted has been
1493 compromised this function will not return.
1494
1495 @param This Protocol instance pointer.
1496 @param BbsDevicePath EFI Device Path from BootXXXX variable.
1497 @param LoadOptionsSize Size of LoadOption in size.
1498 @param LoadOptions LoadOption from BootXXXX variable
1499
1500 @retval EFI_SUCCESS Removable media not present
1501
1502 **/
1503 EFI_STATUS
1504 EFIAPI
1505 LegacyBiosLegacyBoot (
1506 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1507 IN BBS_BBS_DEVICE_PATH *BbsDevicePath,
1508 IN UINT32 LoadOptionsSize,
1509 IN VOID *LoadOptions
1510 )
1511 {
1512 EFI_STATUS Status;
1513
1514 mBbsDevicePathPtr = BbsDevicePath;
1515 mLoadOptionsSize = LoadOptionsSize;
1516 mLoadOptions = LoadOptions;
1517 mBootMode = BOOT_LEGACY_OS;
1518 Status = GenericLegacyBoot (This);
1519
1520 return Status;
1521 }
1522
1523 /**
1524 Convert EFI Memory Type to E820 Memory Type.
1525
1526 @param Type EFI Memory Type
1527
1528 @return ACPI Memory Type for EFI Memory Type
1529
1530 **/
1531 EFI_ACPI_MEMORY_TYPE
1532 EfiMemoryTypeToE820Type (
1533 IN UINT32 Type
1534 )
1535 {
1536 switch (Type) {
1537 case EfiLoaderCode:
1538 case EfiLoaderData:
1539 case EfiBootServicesCode:
1540 case EfiBootServicesData:
1541 case EfiConventionalMemory:
1542 case EfiRuntimeServicesCode:
1543 case EfiRuntimeServicesData:
1544 return EfiAcpiAddressRangeMemory;
1545
1546 case EfiACPIReclaimMemory:
1547 return EfiAcpiAddressRangeACPI;
1548
1549 case EfiACPIMemoryNVS:
1550 return EfiAcpiAddressRangeNVS;
1551
1552 //
1553 // All other types map to reserved.
1554 // Adding the code just waists FLASH space.
1555 //
1556 // case EfiReservedMemoryType:
1557 // case EfiUnusableMemory:
1558 // case EfiMemoryMappedIO:
1559 // case EfiMemoryMappedIOPortSpace:
1560 // case EfiPalCode:
1561 //
1562 default:
1563 return EfiAcpiAddressRangeReserved;
1564 }
1565 }
1566
1567 /**
1568 Build the E820 table.
1569
1570 @param Private Legacy BIOS Instance data
1571 @param Size Size of E820 Table
1572
1573 @retval EFI_SUCCESS It should always work.
1574
1575 **/
1576 EFI_STATUS
1577 LegacyBiosBuildE820 (
1578 IN LEGACY_BIOS_INSTANCE *Private,
1579 OUT UINTN *Size
1580 )
1581 {
1582 EFI_STATUS Status;
1583 EFI_E820_ENTRY64 *E820Table;
1584 EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
1585 EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
1586 EFI_MEMORY_DESCRIPTOR *EfiEntry;
1587 EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
1588 EFI_MEMORY_DESCRIPTOR TempEfiEntry;
1589 UINTN EfiMemoryMapSize;
1590 UINTN EfiMapKey;
1591 UINTN EfiDescriptorSize;
1592 UINT32 EfiDescriptorVersion;
1593 UINTN Index;
1594 EFI_PEI_HOB_POINTERS Hob;
1595 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
1596 UINTN TempIndex;
1597 UINTN IndexSort;
1598 UINTN TempNextIndex;
1599 EFI_E820_ENTRY64 TempE820;
1600 EFI_ACPI_MEMORY_TYPE TempType;
1601 BOOLEAN ChangedFlag;
1602 UINTN Above1MIndex;
1603 UINT64 MemoryBlockLength;
1604
1605 E820Table = (EFI_E820_ENTRY64 *) Private->E820Table;
1606
1607 //
1608 // Get the EFI memory map.
1609 //
1610 EfiMemoryMapSize = 0;
1611 EfiMemoryMap = NULL;
1612 Status = gBS->GetMemoryMap (
1613 &EfiMemoryMapSize,
1614 EfiMemoryMap,
1615 &EfiMapKey,
1616 &EfiDescriptorSize,
1617 &EfiDescriptorVersion
1618 );
1619 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1620
1621 do {
1622 //
1623 // Use size returned back plus 1 descriptor for the AllocatePool.
1624 // We don't just multiply by 2 since the "for" loop below terminates on
1625 // EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
1626 // we process bogus entries and create bogus E820 entries.
1627 //
1628 EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
1629 ASSERT (EfiMemoryMap != NULL);
1630 Status = gBS->GetMemoryMap (
1631 &EfiMemoryMapSize,
1632 EfiMemoryMap,
1633 &EfiMapKey,
1634 &EfiDescriptorSize,
1635 &EfiDescriptorVersion
1636 );
1637 if (EFI_ERROR (Status)) {
1638 FreePool (EfiMemoryMap);
1639 }
1640 } while (Status == EFI_BUFFER_TOO_SMALL);
1641
1642 ASSERT_EFI_ERROR (Status);
1643
1644 //
1645 // Punch in the E820 table for memory less than 1 MB.
1646 // Assume ZeroMem () has been done on data structure.
1647 //
1648 //
1649 // First entry is 0 to (640k - EBDA)
1650 //
1651 E820Table[0].BaseAddr = 0;
1652 E820Table[0].Length = (UINT64) ((*(UINT16 *) (UINTN)0x40E) << 4);
1653 E820Table[0].Type = EfiAcpiAddressRangeMemory;
1654
1655 //
1656 // Second entry is (640k - EBDA) to 640k
1657 //
1658 E820Table[1].BaseAddr = E820Table[0].Length;
1659 E820Table[1].Length = (UINT64) ((640 * 1024) - E820Table[0].Length);
1660 E820Table[1].Type = EfiAcpiAddressRangeReserved;
1661
1662 //
1663 // Third Entry is legacy BIOS
1664 // DO NOT CLAIM region from 0xA0000-0xDFFFF. OS can use free areas
1665 // to page in memory under 1MB.
1666 // Omit region from 0xE0000 to start of BIOS, if any. This can be
1667 // used for a multiple reasons including OPROMS.
1668 //
1669
1670 //
1671 // The CSM binary image size is not the actually size that CSM binary used,
1672 // to avoid memory corrupt, we declare the 0E0000 - 0FFFFF is used by CSM binary.
1673 //
1674 E820Table[2].BaseAddr = 0xE0000;
1675 E820Table[2].Length = 0x20000;
1676 E820Table[2].Type = EfiAcpiAddressRangeReserved;
1677
1678 Above1MIndex = 2;
1679
1680 //
1681 // Process the EFI map to produce E820 map;
1682 //
1683
1684 //
1685 // Sort memory map from low to high
1686 //
1687 EfiEntry = EfiMemoryMap;
1688 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1689 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1690 while (EfiEntry < EfiMemoryMapEnd) {
1691 while (NextEfiEntry < EfiMemoryMapEnd) {
1692 if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
1693 CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1694 CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1695 CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1696 }
1697
1698 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
1699 }
1700
1701 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1702 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1703 }
1704
1705 EfiEntry = EfiMemoryMap;
1706 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1707 for (Index = Above1MIndex; (EfiEntry < EfiMemoryMapEnd) && (Index < EFI_MAX_E820_ENTRY - 1); ) {
1708 MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
1709 if ((EfiEntry->PhysicalStart + MemoryBlockLength) < 0x100000) {
1710 //
1711 // Skip the memory block is under 1MB
1712 //
1713 } else {
1714 if (EfiEntry->PhysicalStart < 0x100000) {
1715 //
1716 // When the memory block spans below 1MB, ensure the memory block start address is at least 1MB
1717 //
1718 MemoryBlockLength -= 0x100000 - EfiEntry->PhysicalStart;
1719 EfiEntry->PhysicalStart = 0x100000;
1720 }
1721
1722 //
1723 // Convert memory type to E820 type
1724 //
1725 TempType = EfiMemoryTypeToE820Type (EfiEntry->Type);
1726
1727 if ((E820Table[Index].Type == TempType) && (EfiEntry->PhysicalStart == (E820Table[Index].BaseAddr + E820Table[Index].Length))) {
1728 //
1729 // Grow an existing entry
1730 //
1731 E820Table[Index].Length += MemoryBlockLength;
1732 } else {
1733 //
1734 // Make a new entry
1735 //
1736 ++Index;
1737 E820Table[Index].BaseAddr = EfiEntry->PhysicalStart;
1738 E820Table[Index].Length = MemoryBlockLength;
1739 E820Table[Index].Type = TempType;
1740 }
1741 }
1742 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1743 }
1744
1745 FreePool (EfiMemoryMap);
1746
1747 //
1748 // Process the reserved memory map to produce E820 map ;
1749 //
1750 for (Hob.Raw = GetHobList (); !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
1751 if (Hob.Raw != NULL && GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
1752 ResourceHob = Hob.ResourceDescriptor;
1753 if (((ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_MAPPED_IO) ||
1754 (ResourceHob->ResourceType == EFI_RESOURCE_FIRMWARE_DEVICE) ||
1755 (ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_RESERVED) ) &&
1756 (ResourceHob->PhysicalStart > 0x100000) &&
1757 (Index < EFI_MAX_E820_ENTRY - 1)) {
1758 ++Index;
1759 E820Table[Index].BaseAddr = ResourceHob->PhysicalStart;
1760 E820Table[Index].Length = ResourceHob->ResourceLength;
1761 E820Table[Index].Type = EfiAcpiAddressRangeReserved;
1762 }
1763 }
1764 }
1765
1766 Index ++;
1767 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1768 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1769 Private->NumberE820Entries = (UINT32)Index;
1770 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1771
1772 //
1773 // Sort E820Table from low to high
1774 //
1775 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1776 ChangedFlag = FALSE;
1777 for (TempNextIndex = 1; TempNextIndex < Index - TempIndex; TempNextIndex++) {
1778 if (E820Table[TempNextIndex - 1].BaseAddr > E820Table[TempNextIndex].BaseAddr) {
1779 ChangedFlag = TRUE;
1780 TempE820.BaseAddr = E820Table[TempNextIndex - 1].BaseAddr;
1781 TempE820.Length = E820Table[TempNextIndex - 1].Length;
1782 TempE820.Type = E820Table[TempNextIndex - 1].Type;
1783
1784 E820Table[TempNextIndex - 1].BaseAddr = E820Table[TempNextIndex].BaseAddr;
1785 E820Table[TempNextIndex - 1].Length = E820Table[TempNextIndex].Length;
1786 E820Table[TempNextIndex - 1].Type = E820Table[TempNextIndex].Type;
1787
1788 E820Table[TempNextIndex].BaseAddr = TempE820.BaseAddr;
1789 E820Table[TempNextIndex].Length = TempE820.Length;
1790 E820Table[TempNextIndex].Type = TempE820.Type;
1791 }
1792 }
1793
1794 if (!ChangedFlag) {
1795 break;
1796 }
1797 }
1798
1799 //
1800 // Remove the overlap range
1801 //
1802 for (TempIndex = 1; TempIndex < Index; TempIndex++) {
1803 if (E820Table[TempIndex - 1].BaseAddr <= E820Table[TempIndex].BaseAddr &&
1804 ((E820Table[TempIndex - 1].BaseAddr + E820Table[TempIndex - 1].Length) >=
1805 (E820Table[TempIndex].BaseAddr +E820Table[TempIndex].Length))) {
1806 //
1807 //Overlap range is found
1808 //
1809 ASSERT (E820Table[TempIndex - 1].Type == E820Table[TempIndex].Type);
1810
1811 if (TempIndex == Index - 1) {
1812 E820Table[TempIndex].BaseAddr = 0;
1813 E820Table[TempIndex].Length = 0;
1814 E820Table[TempIndex].Type = (EFI_ACPI_MEMORY_TYPE) 0;
1815 Index--;
1816 break;
1817 } else {
1818 for (IndexSort = TempIndex; IndexSort < Index - 1; IndexSort ++) {
1819 E820Table[IndexSort].BaseAddr = E820Table[IndexSort + 1].BaseAddr;
1820 E820Table[IndexSort].Length = E820Table[IndexSort + 1].Length;
1821 E820Table[IndexSort].Type = E820Table[IndexSort + 1].Type;
1822 }
1823 Index--;
1824 }
1825 }
1826 }
1827
1828
1829
1830 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1831 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1832 Private->NumberE820Entries = (UINT32)Index;
1833 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1834
1835 //
1836 // Determine OS usable memory above 1Mb
1837 //
1838 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb = 0x0000;
1839 for (TempIndex = Above1MIndex; TempIndex < Index; TempIndex++) {
1840 if (E820Table[TempIndex].BaseAddr >= 0x100000 && E820Table[TempIndex].BaseAddr < 0x100000000ULL) { // not include above 4G memory
1841 //
1842 // ACPIReclaimMemory is also usable memory for ACPI OS, after OS dumps all ACPI tables.
1843 //
1844 if ((E820Table[TempIndex].Type == EfiAcpiAddressRangeMemory) || (E820Table[TempIndex].Type == EfiAcpiAddressRangeACPI)) {
1845 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb += (UINT32) (E820Table[TempIndex].Length);
1846 } else {
1847 break; // break at first not normal memory, because SMM may use reserved memory.
1848 }
1849 }
1850 }
1851
1852 Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb = Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb;
1853
1854 //
1855 // Print DEBUG information
1856 //
1857 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1858 DEBUG((EFI_D_INFO, "E820[%2d]: 0x%16lx ---- 0x%16lx, Type = 0x%x \n",
1859 TempIndex,
1860 E820Table[TempIndex].BaseAddr,
1861 (E820Table[TempIndex].BaseAddr + E820Table[TempIndex].Length),
1862 E820Table[TempIndex].Type
1863 ));
1864 }
1865
1866 return EFI_SUCCESS;
1867 }
1868
1869
1870 /**
1871 Fill in the standard BDA and EBDA stuff prior to legacy Boot
1872
1873 @param Private Legacy BIOS Instance data
1874
1875 @retval EFI_SUCCESS It should always work.
1876
1877 **/
1878 EFI_STATUS
1879 LegacyBiosCompleteBdaBeforeBoot (
1880 IN LEGACY_BIOS_INSTANCE *Private
1881 )
1882 {
1883 BDA_STRUC *Bda;
1884 UINT16 MachineConfig;
1885 DEVICE_PRODUCER_DATA_HEADER *SioPtr;
1886
1887 Bda = (BDA_STRUC *) ((UINTN) 0x400);
1888 MachineConfig = 0;
1889
1890 SioPtr = &(Private->IntThunk->EfiToLegacy16BootTable.SioData);
1891 Bda->Com1 = SioPtr->Serial[0].Address;
1892 Bda->Com2 = SioPtr->Serial[1].Address;
1893 Bda->Com3 = SioPtr->Serial[2].Address;
1894 Bda->Com4 = SioPtr->Serial[3].Address;
1895
1896 if (SioPtr->Serial[0].Address != 0x00) {
1897 MachineConfig += 0x200;
1898 }
1899
1900 if (SioPtr->Serial[1].Address != 0x00) {
1901 MachineConfig += 0x200;
1902 }
1903
1904 if (SioPtr->Serial[2].Address != 0x00) {
1905 MachineConfig += 0x200;
1906 }
1907
1908 if (SioPtr->Serial[3].Address != 0x00) {
1909 MachineConfig += 0x200;
1910 }
1911
1912 Bda->Lpt1 = SioPtr->Parallel[0].Address;
1913 Bda->Lpt2 = SioPtr->Parallel[1].Address;
1914 Bda->Lpt3 = SioPtr->Parallel[2].Address;
1915
1916 if (SioPtr->Parallel[0].Address != 0x00) {
1917 MachineConfig += 0x4000;
1918 }
1919
1920 if (SioPtr->Parallel[1].Address != 0x00) {
1921 MachineConfig += 0x4000;
1922 }
1923
1924 if (SioPtr->Parallel[2].Address != 0x00) {
1925 MachineConfig += 0x4000;
1926 }
1927
1928 Bda->NumberOfDrives = (UINT8) (Bda->NumberOfDrives + Private->IdeDriveCount);
1929 if (SioPtr->Floppy.NumberOfFloppy != 0x00) {
1930 MachineConfig = (UINT16) (MachineConfig + 0x01 + (SioPtr->Floppy.NumberOfFloppy - 1) * 0x40);
1931 Bda->FloppyXRate = 0x07;
1932 }
1933
1934 Bda->Lpt1_2Timeout = 0x1414;
1935 Bda->Lpt3_4Timeout = 0x1414;
1936 Bda->Com1_2Timeout = 0x0101;
1937 Bda->Com3_4Timeout = 0x0101;
1938
1939 //
1940 // Force VGA and Coprocessor, indicate 101/102 keyboard
1941 //
1942 MachineConfig = (UINT16) (MachineConfig + 0x00 + 0x02 + (SioPtr->MousePresent * 0x04));
1943 Bda->MachineConfig = MachineConfig;
1944
1945 return EFI_SUCCESS;
1946 }
1947
1948 /**
1949 Fill in the standard BDA for Keyboard LEDs
1950
1951 @param This Protocol instance pointer.
1952 @param Leds Current LED status
1953
1954 @retval EFI_SUCCESS It should always work.
1955
1956 **/
1957 EFI_STATUS
1958 EFIAPI
1959 LegacyBiosUpdateKeyboardLedStatus (
1960 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1961 IN UINT8 Leds
1962 )
1963 {
1964 LEGACY_BIOS_INSTANCE *Private;
1965 BDA_STRUC *Bda;
1966 UINT8 LocalLeds;
1967 EFI_IA32_REGISTER_SET Regs;
1968
1969 Bda = (BDA_STRUC *) ((UINTN) 0x400);
1970
1971 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1972 LocalLeds = Leds;
1973 Bda->LedStatus = (UINT8) ((Bda->LedStatus &~0x07) | LocalLeds);
1974 LocalLeds = (UINT8) (LocalLeds << 4);
1975 Bda->ShiftStatus = (UINT8) ((Bda->ShiftStatus &~0x70) | LocalLeds);
1976 LocalLeds = (UINT8) (Leds & 0x20);
1977 Bda->KeyboardStatus = (UINT8) ((Bda->KeyboardStatus &~0x20) | LocalLeds);
1978 //
1979 // Call into Legacy16 code to allow it to do any processing
1980 //
1981 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1982 Regs.X.AX = Legacy16SetKeyboardLeds;
1983 Regs.H.CL = Leds;
1984
1985 Private->LegacyBios.FarCall86 (
1986 &Private->LegacyBios,
1987 Private->Legacy16Table->Compatibility16CallSegment,
1988 Private->Legacy16Table->Compatibility16CallOffset,
1989 &Regs,
1990 NULL,
1991 0
1992 );
1993
1994 return EFI_SUCCESS;
1995 }
1996
1997
1998 /**
1999 Fill in the standard CMOS stuff prior to legacy Boot
2000
2001 @param Private Legacy BIOS Instance data
2002
2003 @retval EFI_SUCCESS It should always work.
2004
2005 **/
2006 EFI_STATUS
2007 LegacyBiosCompleteStandardCmosBeforeBoot (
2008 IN LEGACY_BIOS_INSTANCE *Private
2009 )
2010 {
2011 UINT8 Bda;
2012 UINT8 Floppy;
2013 UINT32 Size;
2014
2015 //
2016 // Update CMOS locations
2017 // 10 floppy
2018 // 12,19,1A - ignore as OS don't use them and there is no standard due
2019 // to large capacity drives
2020 // CMOS 14 = BDA 40:10 plus bit 3(display enabled)
2021 //
2022 Bda = (UINT8)(*((UINT8 *)((UINTN)0x410)) | BIT3);
2023
2024 //
2025 // Force display enabled
2026 //
2027 Floppy = 0x00;
2028 if ((Bda & BIT0) != 0) {
2029 Floppy = BIT6;
2030 }
2031
2032 //
2033 // Check if 2.88MB floppy set
2034 //
2035 if ((Bda & (BIT7 | BIT6)) != 0) {
2036 Floppy = (UINT8)(Floppy | BIT1);
2037 }
2038
2039 LegacyWriteStandardCmos (CMOS_10, Floppy);
2040 LegacyWriteStandardCmos (CMOS_14, Bda);
2041
2042 //
2043 // Force Status Register A to set rate selection bits and divider
2044 //
2045 LegacyWriteStandardCmos (CMOS_0A, 0x26);
2046
2047 //
2048 // redo memory size since it can change
2049 //
2050 Size = 15 * SIZE_1MB;
2051 if (Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb < (15 * SIZE_1MB)) {
2052 Size = Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb >> 10;
2053 }
2054
2055 LegacyWriteStandardCmos (CMOS_17, (UINT8)(Size & 0xFF));
2056 LegacyWriteStandardCmos (CMOS_30, (UINT8)(Size & 0xFF));
2057 LegacyWriteStandardCmos (CMOS_18, (UINT8)(Size >> 8));
2058 LegacyWriteStandardCmos (CMOS_31, (UINT8)(Size >> 8));
2059
2060 LegacyCalculateWriteStandardCmosChecksum ();
2061
2062 return EFI_SUCCESS;
2063 }
2064
2065 /**
2066 Relocate this image under 4G memory for IPF.
2067
2068 @param ImageHandle Handle of driver image.
2069 @param SystemTable Pointer to system table.
2070
2071 @retval EFI_SUCCESS Image successfully relocated.
2072 @retval EFI_ABORTED Failed to relocate image.
2073
2074 **/
2075 EFI_STATUS
2076 RelocateImageUnder4GIfNeeded (
2077 IN EFI_HANDLE ImageHandle,
2078 IN EFI_SYSTEM_TABLE *SystemTable
2079 )
2080 {
2081 return EFI_SUCCESS;
2082 }