]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkPkg/Include/Protocol/LegacyBios.h
36761da39740271d833abacfa23e9a323bc9b94c
[mirror_edk2.git] / IntelFrameworkPkg / Include / Protocol / LegacyBios.h
1 /** @file
2 The EFI Legacy BIOS Protocol is used to abstract legacy Option ROM usage
3 under EFI and Legacy OS boot. This file also includes all the related
4 COMPATIBILIY16 structures and defintions.
5
6 Note: The names for EFI_IA32_REGISTER_SET elements were picked to follow
7 well known naming conventions.
8
9 Thunk is the code that switches from 32-bit protected environment into the 16-bit real-mode
10 environment. Reverse thunk is the code that does the opposite.
11
12 Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
13 SPDX-License-Identifier: BSD-2-Clause-Patent
14
15 @par Revision Reference:
16 This protocol is defined in Framework for EFI Compatibility Support Module spec
17 Version 0.98.
18
19 **/
20
21 #ifndef _EFI_LEGACY_BIOS_H_
22 #define _EFI_LEGACY_BIOS_H_
23
24 ///
25 ///
26 ///
27 #pragma pack(1)
28
29 typedef UINT8 SERIAL_MODE;
30 typedef UINT8 PARALLEL_MODE;
31
32 #define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$')
33
34 ///
35 /// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx
36 /// physical address range. It is located on a 16-byte boundary and provides the physical address of the
37 /// entry point for the Compatibility16 functions. These functions provide the platform-specific
38 /// information that is required by the generic EfiCompatibility code. The functions are invoked via
39 /// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical
40 /// entry point.
41 ///
42 typedef struct {
43 ///
44 /// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte
45 /// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32.
46 ///
47 UINT32 Signature;
48
49 ///
50 /// The value required such that byte checksum of TableLength equals zero.
51 ///
52 UINT8 TableChecksum;
53
54 ///
55 /// The length of this table.
56 ///
57 UINT8 TableLength;
58
59 ///
60 /// The major EFI revision for which this table was generated.
61 ///
62 UINT8 EfiMajorRevision;
63
64 ///
65 /// The minor EFI revision for which this table was generated.
66 ///
67 UINT8 EfiMinorRevision;
68
69 ///
70 /// The major revision of this table.
71 ///
72 UINT8 TableMajorRevision;
73
74 ///
75 /// The minor revision of this table.
76 ///
77 UINT8 TableMinorRevision;
78
79 ///
80 /// Reserved for future usage.
81 ///
82 UINT16 Reserved;
83
84 ///
85 /// The segment of the entry point within the traditional BIOS for Compatibility16 functions.
86 ///
87 UINT16 Compatibility16CallSegment;
88
89 ///
90 /// The offset of the entry point within the traditional BIOS for Compatibility16 functions.
91 ///
92 UINT16 Compatibility16CallOffset;
93
94 ///
95 /// The segment of the entry point within the traditional BIOS for EfiCompatibility
96 /// to invoke the PnP installation check.
97 ///
98 UINT16 PnPInstallationCheckSegment;
99
100 ///
101 /// The Offset of the entry point within the traditional BIOS for EfiCompatibility
102 /// to invoke the PnP installation check.
103 ///
104 UINT16 PnPInstallationCheckOffset;
105
106 ///
107 /// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform
108 ///Innovation Framework for EFI Driver Execution Environment Core Interface Specification (DXE CIS).
109 ///
110 UINT32 EfiSystemTable;
111
112 ///
113 /// The address of an OEM-provided identifier string. The string is null terminated.
114 ///
115 UINT32 OemIdStringPointer;
116
117 ///
118 /// The 32-bit physical address where ACPI RSD PTR is stored within the traditional
119 /// BIOS. The remained of the ACPI tables are located at their EFI addresses. The size
120 /// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI
121 /// RSD PTR with either the ACPI 1.0b or 2.0 values.
122 ///
123 UINT32 AcpiRsdPtrPointer;
124
125 ///
126 /// The OEM revision number. Usage is undefined but provided for OEM module usage.
127 ///
128 UINT16 OemRevision;
129
130 ///
131 /// The 32-bit physical address where INT15 E820 data is stored within the traditional
132 /// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the
133 /// data to the indicated area.
134 ///
135 UINT32 E820Pointer;
136
137 ///
138 /// The length of the E820 data and is filled in by the EfiCompatibility code.
139 ///
140 UINT32 E820Length;
141
142 ///
143 /// The 32-bit physical address where the $PIR table is stored in the traditional BIOS.
144 /// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and
145 /// copy the data to the indicated area.
146 ///
147 UINT32 IrqRoutingTablePointer;
148
149 ///
150 /// The length of the $PIR table and is filled in by the EfiCompatibility code.
151 ///
152 UINT32 IrqRoutingTableLength;
153
154 ///
155 /// The 32-bit physical address where the MP table is stored in the traditional BIOS.
156 /// The EfiCompatibility code will fill in the MpTablePtr value and copy the data
157 /// to the indicated area.
158 ///
159 UINT32 MpTablePtr;
160
161 ///
162 /// The length of the MP table and is filled in by the EfiCompatibility code.
163 ///
164 UINT32 MpTableLength;
165
166 ///
167 /// The segment of the OEM-specific INT table/code.
168 ///
169 UINT16 OemIntSegment;
170
171 ///
172 /// The offset of the OEM-specific INT table/code.
173 ///
174 UINT16 OemIntOffset;
175
176 ///
177 /// The segment of the OEM-specific 32-bit table/code.
178 ///
179 UINT16 Oem32Segment;
180
181 ///
182 /// The offset of the OEM-specific 32-bit table/code.
183 ///
184 UINT16 Oem32Offset;
185
186 ///
187 /// The segment of the OEM-specific 16-bit table/code.
188 ///
189 UINT16 Oem16Segment;
190
191 ///
192 /// The offset of the OEM-specific 16-bit table/code.
193 ///
194 UINT16 Oem16Offset;
195
196 ///
197 /// The segment of the TPM binary passed to 16-bit CSM.
198 ///
199 UINT16 TpmSegment;
200
201 ///
202 /// The offset of the TPM binary passed to 16-bit CSM.
203 ///
204 UINT16 TpmOffset;
205
206 ///
207 /// A pointer to a string identifying the independent BIOS vendor.
208 ///
209 UINT32 IbvPointer;
210
211 ///
212 /// This field is NULL for all systems not supporting PCI Express. This field is the base
213 /// value of the start of the PCI Express memory-mapped configuration registers and
214 /// must be filled in prior to EfiCompatibility code issuing the Compatibility16 function
215 /// Compatibility16InitializeYourself().
216 /// Compatibility16InitializeYourself() is defined in Compatability16
217 /// Functions.
218 ///
219 UINT32 PciExpressBase;
220
221 ///
222 /// Maximum PCI bus number assigned.
223 ///
224 UINT8 LastPciBus;
225
226 ///
227 /// Start Address of Upper Memory Area (UMA) to be set as Read/Write. If
228 /// UmaAddress is a valid address in the shadow RAM, it also indicates that the region
229 /// from 0xC0000 to (UmaAddress - 1) can be used for Option ROM.
230 ///
231 UINT32 UmaAddress;
232
233 ///
234 /// Upper Memory Area size in bytes to be set as Read/Write. If zero, no UMA region
235 /// will be set as Read/Write (i.e. all Shadow RAM is set as Read-Only).
236 ///
237 UINT32 UmaSize;
238
239 ///
240 /// Start Address of high memory that can be used for permanent allocation. If zero,
241 /// high memory is not available for permanent allocation.
242 ///
243 UINT32 HiPermanentMemoryAddress;
244
245 ///
246 /// Size of high memory that can be used for permanent allocation in bytes. If zero,
247 /// high memory is not available for permanent allocation.
248 ///
249 UINT32 HiPermanentMemorySize;
250 } EFI_COMPATIBILITY16_TABLE;
251
252 ///
253 /// Functions provided by the CSM binary which communicate between the EfiCompatibility
254 /// and Compatability16 code.
255 ///
256 /// Inconsistent with the specification here:
257 /// The member's name started with "Compatibility16" [defined in Intel Framework
258 /// Compatibility Support Module Specification / 0.97 version]
259 /// has been changed to "Legacy16" since keeping backward compatible.
260 ///
261 typedef enum {
262 ///
263 /// Causes the Compatibility16 code to do any internal initialization required.
264 /// Input:
265 /// AX = Compatibility16InitializeYourself
266 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_INIT_TABLE
267 /// Return:
268 /// AX = Return Status codes
269 ///
270 Legacy16InitializeYourself = 0x0000,
271
272 ///
273 /// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence.
274 /// Input:
275 /// AX = Compatibility16UpdateBbs
276 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE
277 /// Return:
278 /// AX = Returned status codes
279 ///
280 Legacy16UpdateBbs = 0x0001,
281
282 ///
283 /// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16
284 /// code is read/write.
285 /// Input:
286 /// AX = Compatibility16PrepareToBoot
287 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE structure
288 /// Return:
289 /// AX = Returned status codes
290 ///
291 Legacy16PrepareToBoot = 0x0002,
292
293 ///
294 /// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only.
295 /// Input:
296 /// AX = Compatibility16Boot
297 /// Output:
298 /// AX = Returned status codes
299 ///
300 Legacy16Boot = 0x0003,
301
302 ///
303 /// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is
304 /// stored in CMOS and is the priority number of the last attempted boot device.
305 /// Input:
306 /// AX = Compatibility16RetrieveLastBootDevice
307 /// Output:
308 /// AX = Returned status codes
309 /// BX = Priority number of the boot device.
310 ///
311 Legacy16RetrieveLastBootDevice = 0x0004,
312
313 ///
314 /// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM.
315 /// Input:
316 /// AX = Compatibility16DispatchOprom
317 /// ES:BX = Pointer to EFI_DISPATCH_OPROM_TABLE
318 /// Output:
319 /// AX = Returned status codes
320 /// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant.
321 ///
322 Legacy16DispatchOprom = 0x0005,
323
324 ///
325 /// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address
326 /// of that region.
327 /// Input:
328 /// AX = Compatibility16GetTableAddress
329 /// BX = Allocation region
330 /// 00 = Allocate from either 0xE0000 or 0xF0000 64 KB blocks.
331 /// Bit 0 = 1 Allocate from 0xF0000 64 KB block
332 /// Bit 1 = 1 Allocate from 0xE0000 64 KB block
333 /// CX = Requested length in bytes.
334 /// DX = Required address alignment. Bit mapped. First non-zero bit from the right is the alignment.
335 /// Output:
336 /// AX = Returned status codes
337 /// DS:BX = Address of the region
338 ///
339 Legacy16GetTableAddress = 0x0006,
340
341 ///
342 /// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state.
343 /// Input:
344 /// AX = Compatibility16SetKeyboardLeds
345 /// CL = LED status.
346 /// Bit 0 Scroll Lock 0 = Off
347 /// Bit 1 NumLock
348 /// Bit 2 Caps Lock
349 /// Output:
350 /// AX = Returned status codes
351 ///
352 Legacy16SetKeyboardLeds = 0x0007,
353
354 ///
355 /// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that
356 /// do not have an OpROM associated with them. An example is SATA.
357 /// Input:
358 /// AX = Compatibility16InstallPciHandler
359 /// ES:BX = Pointer to EFI_LEGACY_INSTALL_PCI_HANDLER structure
360 /// Output:
361 /// AX = Returned status codes
362 ///
363 Legacy16InstallPciHandler = 0x0008
364 } EFI_COMPATIBILITY_FUNCTIONS;
365
366
367 ///
368 /// EFI_DISPATCH_OPROM_TABLE
369 ///
370 typedef struct {
371 UINT16 PnPInstallationCheckSegment; ///< A pointer to the PnpInstallationCheck data structure.
372 UINT16 PnPInstallationCheckOffset; ///< A pointer to the PnpInstallationCheck data structure.
373 UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3.
374 UINT8 PciBus; ///< The PCI bus.
375 UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function.
376 UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may
377 ///< increase this number, if BBS-compliant devices also hook INTs in order to force the
378 ///< OpROM BIOS Setup to be executed.
379 UINT32 BbsTablePointer; ///< A pointer to the BBS table.
380 UINT16 RuntimeSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this
381 ///< means that the relocation of this run time code is not supported.
382 ///< Inconsistent with specification here:
383 ///< The member's name "OpromDestinationSegment" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version]
384 ///< has been changed to "RuntimeSegment" since keeping backward compatible.
385
386 } EFI_DISPATCH_OPROM_TABLE;
387
388 ///
389 /// EFI_TO_COMPATIBILITY16_INIT_TABLE
390 ///
391 typedef struct {
392 ///
393 /// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF.
394 ///
395 UINT32 BiosLessThan1MB;
396
397 ///
398 /// The starting address of the high memory block.
399 ///
400 UINT32 HiPmmMemory;
401
402 ///
403 /// The length of high memory block.
404 ///
405 UINT32 HiPmmMemorySizeInBytes;
406
407 ///
408 /// The segment of the reverse thunk call code.
409 ///
410 UINT16 ReverseThunkCallSegment;
411
412 ///
413 /// The offset of the reverse thunk call code.
414 ///
415 UINT16 ReverseThunkCallOffset;
416
417 ///
418 /// The number of E820 entries copied to the Compatibility16 BIOS.
419 ///
420 UINT32 NumberE820Entries;
421
422 ///
423 /// The amount of usable memory above 1 MB, e.g., E820 type 1 memory.
424 ///
425 UINT32 OsMemoryAbove1Mb;
426
427 ///
428 /// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM.
429 ///
430 UINT32 ThunkStart;
431
432 ///
433 /// The size of the thunk code.
434 ///
435 UINT32 ThunkSizeInBytes;
436
437 ///
438 /// Starting address of memory under 1 MB.
439 ///
440 UINT32 LowPmmMemory;
441
442 ///
443 /// The length of low Memory block.
444 ///
445 UINT32 LowPmmMemorySizeInBytes;
446 } EFI_TO_COMPATIBILITY16_INIT_TABLE;
447
448 ///
449 /// DEVICE_PRODUCER_SERIAL.
450 ///
451 typedef struct {
452 UINT16 Address; ///< I/O address assigned to the serial port.
453 UINT8 Irq; ///< IRQ assigned to the serial port.
454 SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below.
455 } DEVICE_PRODUCER_SERIAL;
456
457 ///
458 /// DEVICE_PRODUCER_SERIAL's modes.
459 ///@{
460 #define DEVICE_SERIAL_MODE_NORMAL 0x00
461 #define DEVICE_SERIAL_MODE_IRDA 0x01
462 #define DEVICE_SERIAL_MODE_ASK_IR 0x02
463 #define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00
464 #define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10
465 ///@)
466
467 ///
468 /// DEVICE_PRODUCER_PARALLEL.
469 ///
470 typedef struct {
471 UINT16 Address; ///< I/O address assigned to the parallel port.
472 UINT8 Irq; ///< IRQ assigned to the parallel port.
473 UINT8 Dma; ///< DMA assigned to the parallel port.
474 PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below.
475 } DEVICE_PRODUCER_PARALLEL;
476
477 ///
478 /// DEVICE_PRODUCER_PARALLEL's modes.
479 ///@{
480 #define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00
481 #define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01
482 #define DEVICE_PARALLEL_MODE_MODE_EPP 0x02
483 #define DEVICE_PARALLEL_MODE_MODE_ECP 0x03
484 ///@}
485
486 ///
487 /// DEVICE_PRODUCER_FLOPPY
488 ///
489 typedef struct {
490 UINT16 Address; ///< I/O address assigned to the floppy.
491 UINT8 Irq; ///< IRQ assigned to the floppy.
492 UINT8 Dma; ///< DMA assigned to the floppy.
493 UINT8 NumberOfFloppy; ///< Number of floppies in the system.
494 } DEVICE_PRODUCER_FLOPPY;
495
496 ///
497 /// LEGACY_DEVICE_FLAGS
498 ///
499 typedef struct {
500 UINT32 A20Kybd : 1; ///< A20 controller by keyboard controller.
501 UINT32 A20Port90 : 1; ///< A20 controlled by port 0x92.
502 UINT32 Reserved : 30; ///< Reserved for future usage.
503 } LEGACY_DEVICE_FLAGS;
504
505 ///
506 /// DEVICE_PRODUCER_DATA_HEADER
507 ///
508 typedef struct {
509 DEVICE_PRODUCER_SERIAL Serial[4]; ///< Data for serial port x. Type DEVICE_PRODUCER_SERIAL is defined below.
510 DEVICE_PRODUCER_PARALLEL Parallel[3]; ///< Data for parallel port x. Type DEVICE_PRODUCER_PARALLEL is defined below.
511 DEVICE_PRODUCER_FLOPPY Floppy; ///< Data for floppy. Type DEVICE_PRODUCER_FLOPPY is defined below.
512 UINT8 MousePresent; ///< Flag to indicate if mouse is present.
513 LEGACY_DEVICE_FLAGS Flags; ///< Miscellaneous Boolean state information passed to CSM.
514 } DEVICE_PRODUCER_DATA_HEADER;
515
516 ///
517 /// ATAPI_IDENTIFY
518 ///
519 typedef struct {
520 UINT16 Raw[256]; ///< Raw data from the IDE IdentifyDrive command.
521 } ATAPI_IDENTIFY;
522
523 ///
524 /// HDD_INFO
525 ///
526 typedef struct {
527 ///
528 /// Status of IDE device. Values are defined below. There is one HDD_INFO structure
529 /// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index
530 /// 1 is slave.
531 ///
532 UINT16 Status;
533
534 ///
535 /// PCI bus of IDE controller.
536 ///
537 UINT32 Bus;
538
539 ///
540 /// PCI device of IDE controller.
541 ///
542 UINT32 Device;
543
544 ///
545 /// PCI function of IDE controller.
546 ///
547 UINT32 Function;
548
549 ///
550 /// Command ports base address.
551 ///
552 UINT16 CommandBaseAddress;
553
554 ///
555 /// Control ports base address.
556 ///
557 UINT16 ControlBaseAddress;
558
559 ///
560 /// Bus master address.
561 ///
562 UINT16 BusMasterAddress;
563
564 UINT8 HddIrq;
565
566 ///
567 /// Data that identifies the drive data; one per possible attached drive.
568 ///
569 ATAPI_IDENTIFY IdentifyDrive[2];
570 } HDD_INFO;
571
572 ///
573 /// HDD_INFO status bits
574 ///
575 #define HDD_PRIMARY 0x01
576 #define HDD_SECONDARY 0x02
577 #define HDD_MASTER_ATAPI_CDROM 0x04
578 #define HDD_SLAVE_ATAPI_CDROM 0x08
579 #define HDD_MASTER_IDE 0x20
580 #define HDD_SLAVE_IDE 0x40
581 #define HDD_MASTER_ATAPI_ZIPDISK 0x10
582 #define HDD_SLAVE_ATAPI_ZIPDISK 0x80
583
584 ///
585 /// BBS_STATUS_FLAGS;\.
586 ///
587 typedef struct {
588 UINT16 OldPosition : 4; ///< Prior priority.
589 UINT16 Reserved1 : 4; ///< Reserved for future use.
590 UINT16 Enabled : 1; ///< If 0, ignore this entry.
591 UINT16 Failed : 1; ///< 0 = Not known if boot failure occurred.
592 ///< 1 = Boot attempted failed.
593
594 ///
595 /// State of media present.
596 /// 00 = No bootable media is present in the device.
597 /// 01 = Unknown if a bootable media present.
598 /// 10 = Media is present and appears bootable.
599 /// 11 = Reserved.
600 ///
601 UINT16 MediaPresent : 2;
602 UINT16 Reserved2 : 4; ///< Reserved for future use.
603 } BBS_STATUS_FLAGS;
604
605 ///
606 /// BBS_TABLE, device type values & boot priority values.
607 ///
608 typedef struct {
609 ///
610 /// The boot priority for this boot device. Values are defined below.
611 ///
612 UINT16 BootPriority;
613
614 ///
615 /// The PCI bus for this boot device.
616 ///
617 UINT32 Bus;
618
619 ///
620 /// The PCI device for this boot device.
621 ///
622 UINT32 Device;
623
624 ///
625 /// The PCI function for the boot device.
626 ///
627 UINT32 Function;
628
629 ///
630 /// The PCI class for this boot device.
631 ///
632 UINT8 Class;
633
634 ///
635 /// The PCI Subclass for this boot device.
636 ///
637 UINT8 SubClass;
638
639 ///
640 /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
641 ///
642 UINT16 MfgStringOffset;
643
644 ///
645 /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
646 ///
647 UINT16 MfgStringSegment;
648
649 ///
650 /// BBS device type. BBS device types are defined below.
651 ///
652 UINT16 DeviceType;
653
654 ///
655 /// Status of this boot device. Type BBS_STATUS_FLAGS is defined below.
656 ///
657 BBS_STATUS_FLAGS StatusFlags;
658
659 ///
660 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
661 /// BCV devices.
662 ///
663 UINT16 BootHandlerOffset;
664
665 ///
666 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
667 /// BCV devices.
668 ///
669 UINT16 BootHandlerSegment;
670
671 ///
672 /// Segment:offset address of an ASCIIZ description string describing this device.
673 ///
674 UINT16 DescStringOffset;
675
676 ///
677 /// Segment:offset address of an ASCIIZ description string describing this device.
678 ///
679 UINT16 DescStringSegment;
680
681 ///
682 /// Reserved.
683 ///
684 UINT32 InitPerReserved;
685
686 ///
687 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
688 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
689 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
690 ///
691 UINT32 AdditionalIrq13Handler;
692
693 ///
694 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
695 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
696 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
697 ///
698 UINT32 AdditionalIrq18Handler;
699
700 ///
701 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
702 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
703 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
704 ///
705 UINT32 AdditionalIrq19Handler;
706
707 ///
708 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
709 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
710 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
711 ///
712 UINT32 AdditionalIrq40Handler;
713 UINT8 AssignedDriveNumber;
714 UINT32 AdditionalIrq41Handler;
715 UINT32 AdditionalIrq46Handler;
716 UINT32 IBV1;
717 UINT32 IBV2;
718 } BBS_TABLE;
719
720 ///
721 /// BBS device type values
722 ///@{
723 #define BBS_FLOPPY 0x01
724 #define BBS_HARDDISK 0x02
725 #define BBS_CDROM 0x03
726 #define BBS_PCMCIA 0x04
727 #define BBS_USB 0x05
728 #define BBS_EMBED_NETWORK 0x06
729 #define BBS_BEV_DEVICE 0x80
730 #define BBS_UNKNOWN 0xff
731 ///@}
732
733 ///
734 /// BBS boot priority values
735 ///@{
736 #define BBS_DO_NOT_BOOT_FROM 0xFFFC
737 #define BBS_LOWEST_PRIORITY 0xFFFD
738 #define BBS_UNPRIORITIZED_ENTRY 0xFFFE
739 #define BBS_IGNORE_ENTRY 0xFFFF
740 ///@}
741
742 ///
743 /// SMM_ATTRIBUTES
744 ///
745 typedef struct {
746 ///
747 /// Access mechanism used to generate the soft SMI. Defined types are below. The other
748 /// values are reserved for future usage.
749 ///
750 UINT16 Type : 3;
751
752 ///
753 /// The size of "port" in bits. Defined values are below.
754 ///
755 UINT16 PortGranularity : 3;
756
757 ///
758 /// The size of data in bits. Defined values are below.
759 ///
760 UINT16 DataGranularity : 3;
761
762 ///
763 /// Reserved for future use.
764 ///
765 UINT16 Reserved : 7;
766 } SMM_ATTRIBUTES;
767
768 ///
769 /// SMM_ATTRIBUTES type values.
770 ///@{
771 #define STANDARD_IO 0x00
772 #define STANDARD_MEMORY 0x01
773 ///@}
774
775 ///
776 /// SMM_ATTRIBUTES port size constants.
777 ///@{
778 #define PORT_SIZE_8 0x00
779 #define PORT_SIZE_16 0x01
780 #define PORT_SIZE_32 0x02
781 #define PORT_SIZE_64 0x03
782 ///@}
783
784 ///
785 /// SMM_ATTRIBUTES data size constants.
786 ///@{
787 #define DATA_SIZE_8 0x00
788 #define DATA_SIZE_16 0x01
789 #define DATA_SIZE_32 0x02
790 #define DATA_SIZE_64 0x03
791 ///@}
792
793 ///
794 /// SMM_FUNCTION & relating constants.
795 ///
796 typedef struct {
797 UINT16 Function : 15;
798 UINT16 Owner : 1;
799 } SMM_FUNCTION;
800
801 ///
802 /// SMM_FUNCTION Function constants.
803 ///@{
804 #define INT15_D042 0x0000
805 #define GET_USB_BOOT_INFO 0x0001
806 #define DMI_PNP_50_57 0x0002
807 ///@}
808
809 ///
810 /// SMM_FUNCTION Owner constants.
811 ///@{
812 #define STANDARD_OWNER 0x0
813 #define OEM_OWNER 0x1
814 ///@}
815
816 ///
817 /// This structure assumes both port and data sizes are 1. SmmAttribute must be
818 /// properly to reflect that assumption.
819 ///
820 typedef struct {
821 ///
822 /// Describes the access mechanism, SmmPort, and SmmData sizes. Type
823 /// SMM_ATTRIBUTES is defined below.
824 ///
825 SMM_ATTRIBUTES SmmAttributes;
826
827 ///
828 /// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below.
829 ///
830 SMM_FUNCTION SmmFunction;
831
832 ///
833 /// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes.
834 ///
835 UINT8 SmmPort;
836
837 ///
838 /// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes.
839 ///
840 UINT8 SmmData;
841 } SMM_ENTRY;
842
843 ///
844 /// SMM_TABLE
845 ///
846 typedef struct {
847 UINT16 NumSmmEntries; ///< Number of entries represented by SmmEntry.
848 SMM_ENTRY SmmEntry; ///< One entry per function. Type SMM_ENTRY is defined below.
849 } SMM_TABLE;
850
851 ///
852 /// UDC_ATTRIBUTES
853 ///
854 typedef struct {
855 ///
856 /// This bit set indicates that the ServiceAreaData is valid.
857 ///
858 UINT8 DirectoryServiceValidity : 1;
859
860 ///
861 /// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if
862 /// DirectoryServiceValidity is 0.
863 ///
864 UINT8 RabcaUsedFlag : 1;
865
866 ///
867 /// This bit set indicates to execute hard disk diagnostics.
868 ///
869 UINT8 ExecuteHddDiagnosticsFlag : 1;
870
871 ///
872 /// Reserved for future use. Set to 0.
873 ///
874 UINT8 Reserved : 5;
875 } UDC_ATTRIBUTES;
876
877 ///
878 /// UD_TABLE
879 ///
880 typedef struct {
881 ///
882 /// This field contains the bit-mapped attributes of the PARTIES information. Type
883 /// UDC_ATTRIBUTES is defined below.
884 ///
885 UDC_ATTRIBUTES Attributes;
886
887 ///
888 /// This field contains the zero-based device on which the selected
889 /// ServiceDataArea is present. It is 0 for master and 1 for the slave device.
890 ///
891 UINT8 DeviceNumber;
892
893 ///
894 /// This field contains the zero-based index into the BbsTable for the parent device.
895 /// This index allows the user to reference the parent device information such as PCI
896 /// bus, device function.
897 ///
898 UINT8 BbsTableEntryNumberForParentDevice;
899
900 ///
901 /// This field contains the zero-based index into the BbsTable for the boot entry.
902 ///
903 UINT8 BbsTableEntryNumberForBoot;
904
905 ///
906 /// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry.
907 ///
908 UINT8 BbsTableEntryNumberForHddDiag;
909
910 ///
911 /// The raw Beer data.
912 ///
913 UINT8 BeerData[128];
914
915 ///
916 /// The raw data of selected service area.
917 ///
918 UINT8 ServiceAreaData[64];
919 } UD_TABLE;
920
921 #define EFI_TO_LEGACY_MAJOR_VERSION 0x02
922 #define EFI_TO_LEGACY_MINOR_VERSION 0x00
923 #define MAX_IDE_CONTROLLER 8
924
925 ///
926 /// EFI_TO_COMPATIBILITY16_BOOT_TABLE
927 ///
928 typedef struct {
929 UINT16 MajorVersion; ///< The EfiCompatibility major version number.
930 UINT16 MinorVersion; ///< The EfiCompatibility minor version number.
931 UINT32 AcpiTable; ///< The location of the RSDT ACPI table. < 4G range.
932 UINT32 SmbiosTable; ///< The location of the SMBIOS table in EFI memory. < 4G range.
933 UINT32 SmbiosTableLength;
934 //
935 // Legacy SIO state
936 //
937 DEVICE_PRODUCER_DATA_HEADER SioData; ///< Standard traditional device information.
938 UINT16 DevicePathType; ///< The default boot type.
939 UINT16 PciIrqMask; ///< Mask of which IRQs have been assigned to PCI.
940 UINT32 NumberE820Entries; ///< Number of E820 entries. The number can change from the
941 ///< Compatibility16InitializeYourself() function.
942 //
943 // Controller & Drive Identify[2] per controller information
944 //
945 HDD_INFO HddInfo[MAX_IDE_CONTROLLER]; ///< Hard disk drive information, including raw Identify Drive data.
946 UINT32 NumberBbsEntries; ///< Number of entries in the BBS table
947 UINT32 BbsTable; ///< A pointer to the BBS table. Type BBS_TABLE is defined below.
948 UINT32 SmmTable; ///< A pointer to the SMM table. Type SMM_TABLE is defined below.
949 UINT32 OsMemoryAbove1Mb; ///< The amount of usable memory above 1 MB, i.e. E820 type 1 memory. This value can
950 ///< differ from the value in EFI_TO_COMPATIBILITY16_INIT_TABLE as more
951 ///< memory may have been discovered.
952 UINT32 UnconventionalDeviceTable; ///< Information to boot off an unconventional device like a PARTIES partition. Type
953 ///< UD_TABLE is defined below.
954 } EFI_TO_COMPATIBILITY16_BOOT_TABLE;
955
956 ///
957 /// EFI_LEGACY_INSTALL_PCI_HANDLER
958 ///
959 typedef struct {
960 UINT8 PciBus; ///< The PCI bus of the device.
961 UINT8 PciDeviceFun; ///< The PCI device in bits 7:3 and function in bits 2:0.
962 UINT8 PciSegment; ///< The PCI segment of the device.
963 UINT8 PciClass; ///< The PCI class code of the device.
964 UINT8 PciSubclass; ///< The PCI subclass code of the device.
965 UINT8 PciInterface; ///< The PCI interface code of the device.
966 //
967 // Primary section
968 //
969 UINT8 PrimaryIrq; ///< The primary device IRQ.
970 UINT8 PrimaryReserved; ///< Reserved.
971 UINT16 PrimaryControl; ///< The primary device control I/O base.
972 UINT16 PrimaryBase; ///< The primary device I/O base.
973 UINT16 PrimaryBusMaster; ///< The primary device bus master I/O base.
974 //
975 // Secondary Section
976 //
977 UINT8 SecondaryIrq; ///< The secondary device IRQ.
978 UINT8 SecondaryReserved; ///< Reserved.
979 UINT16 SecondaryControl; ///< The secondary device control I/O base.
980 UINT16 SecondaryBase; ///< The secondary device I/O base.
981 UINT16 SecondaryBusMaster; ///< The secondary device bus master I/O base.
982 } EFI_LEGACY_INSTALL_PCI_HANDLER;
983
984 //
985 // Restore default pack value
986 //
987 #pragma pack()
988
989 #define EFI_LEGACY_BIOS_PROTOCOL_GUID \
990 { \
991 0xdb9a1e3d, 0x45cb, 0x4abb, {0x85, 0x3b, 0xe5, 0x38, 0x7f, 0xdb, 0x2e, 0x2d } \
992 }
993
994 typedef struct _EFI_LEGACY_BIOS_PROTOCOL EFI_LEGACY_BIOS_PROTOCOL;
995
996 ///
997 /// Flags returned by CheckPciRom().
998 ///
999 #define NO_ROM 0x00
1000 #define ROM_FOUND 0x01
1001 #define VALID_LEGACY_ROM 0x02
1002 #define ROM_WITH_CONFIG 0x04 ///< Not defined in the Framework CSM Specification.
1003
1004 ///
1005 /// The following macros do not appear in the Framework CSM Specification and
1006 /// are kept for backward compatibility only. They convert 32-bit address (_Adr)
1007 /// to Segment:Offset 16-bit form.
1008 ///
1009 ///@{
1010 #define EFI_SEGMENT(_Adr) (UINT16) ((UINT16) (((UINTN) (_Adr)) >> 4) & 0xf000)
1011 #define EFI_OFFSET(_Adr) (UINT16) (((UINT16) ((UINTN) (_Adr))) & 0xffff)
1012 ///@}
1013
1014 #define CARRY_FLAG 0x01
1015
1016 ///
1017 /// EFI_EFLAGS_REG
1018 ///
1019 typedef struct {
1020 UINT32 CF:1;
1021 UINT32 Reserved1:1;
1022 UINT32 PF:1;
1023 UINT32 Reserved2:1;
1024 UINT32 AF:1;
1025 UINT32 Reserved3:1;
1026 UINT32 ZF:1;
1027 UINT32 SF:1;
1028 UINT32 TF:1;
1029 UINT32 IF:1;
1030 UINT32 DF:1;
1031 UINT32 OF:1;
1032 UINT32 IOPL:2;
1033 UINT32 NT:1;
1034 UINT32 Reserved4:2;
1035 UINT32 VM:1;
1036 UINT32 Reserved5:14;
1037 } EFI_EFLAGS_REG;
1038
1039 ///
1040 /// EFI_DWORD_REGS
1041 ///
1042 typedef struct {
1043 UINT32 EAX;
1044 UINT32 EBX;
1045 UINT32 ECX;
1046 UINT32 EDX;
1047 UINT32 ESI;
1048 UINT32 EDI;
1049 EFI_EFLAGS_REG EFlags;
1050 UINT16 ES;
1051 UINT16 CS;
1052 UINT16 SS;
1053 UINT16 DS;
1054 UINT16 FS;
1055 UINT16 GS;
1056 UINT32 EBP;
1057 UINT32 ESP;
1058 } EFI_DWORD_REGS;
1059
1060 ///
1061 /// EFI_FLAGS_REG
1062 ///
1063 typedef struct {
1064 UINT16 CF:1;
1065 UINT16 Reserved1:1;
1066 UINT16 PF:1;
1067 UINT16 Reserved2:1;
1068 UINT16 AF:1;
1069 UINT16 Reserved3:1;
1070 UINT16 ZF:1;
1071 UINT16 SF:1;
1072 UINT16 TF:1;
1073 UINT16 IF:1;
1074 UINT16 DF:1;
1075 UINT16 OF:1;
1076 UINT16 IOPL:2;
1077 UINT16 NT:1;
1078 UINT16 Reserved4:1;
1079 } EFI_FLAGS_REG;
1080
1081 ///
1082 /// EFI_WORD_REGS
1083 ///
1084 typedef struct {
1085 UINT16 AX;
1086 UINT16 ReservedAX;
1087 UINT16 BX;
1088 UINT16 ReservedBX;
1089 UINT16 CX;
1090 UINT16 ReservedCX;
1091 UINT16 DX;
1092 UINT16 ReservedDX;
1093 UINT16 SI;
1094 UINT16 ReservedSI;
1095 UINT16 DI;
1096 UINT16 ReservedDI;
1097 EFI_FLAGS_REG Flags;
1098 UINT16 ReservedFlags;
1099 UINT16 ES;
1100 UINT16 CS;
1101 UINT16 SS;
1102 UINT16 DS;
1103 UINT16 FS;
1104 UINT16 GS;
1105 UINT16 BP;
1106 UINT16 ReservedBP;
1107 UINT16 SP;
1108 UINT16 ReservedSP;
1109 } EFI_WORD_REGS;
1110
1111 ///
1112 /// EFI_BYTE_REGS
1113 ///
1114 typedef struct {
1115 UINT8 AL, AH;
1116 UINT16 ReservedAX;
1117 UINT8 BL, BH;
1118 UINT16 ReservedBX;
1119 UINT8 CL, CH;
1120 UINT16 ReservedCX;
1121 UINT8 DL, DH;
1122 UINT16 ReservedDX;
1123 } EFI_BYTE_REGS;
1124
1125 ///
1126 /// EFI_IA32_REGISTER_SET
1127 ///
1128 typedef union {
1129 EFI_DWORD_REGS E;
1130 EFI_WORD_REGS X;
1131 EFI_BYTE_REGS H;
1132 } EFI_IA32_REGISTER_SET;
1133
1134 /**
1135 Thunk to 16-bit real mode and execute a software interrupt with a vector
1136 of BiosInt. Regs will contain the 16-bit register context on entry and
1137 exit.
1138
1139 @param[in] This The protocol instance pointer.
1140 @param[in] BiosInt The processor interrupt vector to invoke.
1141 @param[in,out] Reg Register contexted passed into (and returned) from thunk to
1142 16-bit mode.
1143
1144 @retval TRUE Thunk completed with no BIOS errors in the target code. See Regs for status.
1145 @retval FALSE There was a BIOS error in the target code.
1146 **/
1147 typedef
1148 BOOLEAN
1149 (EFIAPI *EFI_LEGACY_BIOS_INT86)(
1150 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1151 IN UINT8 BiosInt,
1152 IN OUT EFI_IA32_REGISTER_SET *Regs
1153 );
1154
1155 /**
1156 Thunk to 16-bit real mode and call Segment:Offset. Regs will contain the
1157 16-bit register context on entry and exit. Arguments can be passed on
1158 the Stack argument
1159
1160 @param[in] This The protocol instance pointer.
1161 @param[in] Segment The segemnt of 16-bit mode call.
1162 @param[in] Offset The offset of 16-bit mdoe call.
1163 @param[in] Reg Register contexted passed into (and returned) from thunk to
1164 16-bit mode.
1165 @param[in] Stack The caller allocated stack used to pass arguments.
1166 @param[in] StackSize The size of Stack in bytes.
1167
1168 @retval FALSE Thunk completed with no BIOS errors in the target code. See Regs for status. @retval TRUE There was a BIOS error in the target code.
1169 **/
1170 typedef
1171 BOOLEAN
1172 (EFIAPI *EFI_LEGACY_BIOS_FARCALL86)(
1173 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1174 IN UINT16 Segment,
1175 IN UINT16 Offset,
1176 IN EFI_IA32_REGISTER_SET *Regs,
1177 IN VOID *Stack,
1178 IN UINTN StackSize
1179 );
1180
1181 /**
1182 Test to see if a legacy PCI ROM exists for this device. Optionally return
1183 the Legacy ROM instance for this PCI device.
1184
1185 @param[in] This The protocol instance pointer.
1186 @param[in] PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded
1187 @param[out] RomImage Return the legacy PCI ROM for this device.
1188 @param[out] RomSize The size of ROM Image.
1189 @param[out] Flags Indicates if ROM found and if PC-AT. Multiple bits can be set as follows:
1190 - 00 = No ROM.
1191 - 01 = ROM Found.
1192 - 02 = ROM is a valid legacy ROM.
1193
1194 @retval EFI_SUCCESS The Legacy Option ROM available for this device
1195 @retval EFI_UNSUPPORTED The Legacy Option ROM is not supported.
1196
1197 **/
1198 typedef
1199 EFI_STATUS
1200 (EFIAPI *EFI_LEGACY_BIOS_CHECK_ROM)(
1201 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1202 IN EFI_HANDLE PciHandle,
1203 OUT VOID **RomImage, OPTIONAL
1204 OUT UINTN *RomSize, OPTIONAL
1205 OUT UINTN *Flags
1206 );
1207
1208 /**
1209 Load a legacy PC-AT OPROM on the PciHandle device. Return information
1210 about how many disks were added by the OPROM and the shadow address and
1211 size. DiskStart & DiskEnd are INT 13h drive letters. Thus 0x80 is C:
1212
1213 @param[in] This The protocol instance pointer.
1214 @param[in] PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded.
1215 This value is NULL if RomImage is non-NULL. This is the normal
1216 case.
1217 @param[in] RomImage A PCI PC-AT ROM image. This argument is non-NULL if there is
1218 no hardware associated with the ROM and thus no PciHandle,
1219 otherwise is must be NULL.
1220 Example is PXE base code.
1221 @param[out] Flags The type of ROM discovered. Multiple bits can be set, as follows:
1222 - 00 = No ROM.
1223 - 01 = ROM found.
1224 - 02 = ROM is a valid legacy ROM.
1225 @param[out] DiskStart The disk number of first device hooked by the ROM. If DiskStart
1226 is the same as DiskEnd no disked were hooked.
1227 @param[out] DiskEnd disk number of the last device hooked by the ROM.
1228 @param[out] RomShadowAddress Shadow address of PC-AT ROM.
1229 @param[out] RomShadowSize Size of RomShadowAddress in bytes.
1230
1231 @retval EFI_SUCCESS Thunk completed, see Regs for status.
1232 @retval EFI_INVALID_PARAMETER PciHandle not found
1233
1234 **/
1235 typedef
1236 EFI_STATUS
1237 (EFIAPI *EFI_LEGACY_BIOS_INSTALL_ROM)(
1238 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1239 IN EFI_HANDLE PciHandle,
1240 IN VOID **RomImage,
1241 OUT UINTN *Flags,
1242 OUT UINT8 *DiskStart, OPTIONAL
1243 OUT UINT8 *DiskEnd, OPTIONAL
1244 OUT VOID **RomShadowAddress, OPTIONAL
1245 OUT UINT32 *ShadowedRomSize OPTIONAL
1246 );
1247
1248 /**
1249 This function attempts to traditionally boot the specified BootOption. If the EFI context has
1250 been compromised, this function will not return. This procedure is not used for loading an EFI-aware
1251 OS off a traditional device. The following actions occur:
1252 - Get EFI SMBIOS data structures, convert them to a traditional format, and copy to
1253 Compatibility16.
1254 - Get a pointer to ACPI data structures and copy the Compatibility16 RSD PTR to F0000 block.
1255 - Find the traditional SMI handler from a firmware volume and register the traditional SMI
1256 handler with the EFI SMI handler.
1257 - Build onboard IDE information and pass this information to the Compatibility16 code.
1258 - Make sure all PCI Interrupt Line registers are programmed to match 8259.
1259 - Reconfigure SIO devices from EFI mode (polled) into traditional mode (interrupt driven).
1260 - Shadow all PCI ROMs.
1261 - Set up BDA and EBDA standard areas before the legacy boot.
1262 - Construct the Compatibility16 boot memory map and pass it to the Compatibility16 code.
1263 - Invoke the Compatibility16 table function Compatibility16PrepareToBoot(). This
1264 invocation causes a thunk into the Compatibility16 code, which sets all appropriate internal
1265 data structures. The boot device list is a parameter.
1266 - Invoke the Compatibility16 Table function Compatibility16Boot(). This invocation
1267 causes a thunk into the Compatibility16 code, which does an INT19.
1268 - If the Compatibility16Boot() function returns, then the boot failed in a graceful
1269 manner--meaning that the EFI code is still valid. An ungraceful boot failure causes a reset because the state
1270 of EFI code is unknown.
1271
1272 @param[in] This The protocol instance pointer.
1273 @param[in] BootOption The EFI Device Path from BootXXXX variable.
1274 @param[in] LoadOptionSize The size of LoadOption in size.
1275 @param[in] LoadOption LThe oadOption from BootXXXX variable.
1276
1277 @retval EFI_DEVICE_ERROR Failed to boot from any boot device and memory is uncorrupted. Note: This function normally does not returns. It will either boot the OS or reset the system if memory has been "corrupted" by loading a boot sector and passing control to it.
1278 **/
1279 typedef
1280 EFI_STATUS
1281 (EFIAPI *EFI_LEGACY_BIOS_BOOT)(
1282 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1283 IN BBS_BBS_DEVICE_PATH *BootOption,
1284 IN UINT32 LoadOptionsSize,
1285 IN VOID *LoadOptions
1286 );
1287
1288 /**
1289 This function takes the Leds input parameter and sets/resets the BDA accordingly.
1290 Leds is also passed to Compatibility16 code, in case any special processing is required.
1291 This function is normally called from EFI Setup drivers that handle user-selectable
1292 keyboard options such as boot with NUM LOCK on/off. This function does not
1293 touch the keyboard or keyboard LEDs but only the BDA.
1294
1295 @param[in] This The protocol instance pointer.
1296 @param[in] Leds The status of current Scroll, Num & Cap lock LEDS:
1297 - Bit 0 is Scroll Lock 0 = Not locked.
1298 - Bit 1 is Num Lock.
1299 - Bit 2 is Caps Lock.
1300
1301 @retval EFI_SUCCESS The BDA was updated successfully.
1302
1303 **/
1304 typedef
1305 EFI_STATUS
1306 (EFIAPI *EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS)(
1307 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1308 IN UINT8 Leds
1309 );
1310
1311 /**
1312 Retrieve legacy BBS info and assign boot priority.
1313
1314 @param[in] This The protocol instance pointer.
1315 @param[out] HddCount The number of HDD_INFO structures.
1316 @param[out] HddInfo Onboard IDE controller information.
1317 @param[out] BbsCount The number of BBS_TABLE structures.
1318 @param[in,out] BbsTable Points to List of BBS_TABLE.
1319
1320 @retval EFI_SUCCESS Tables were returned.
1321
1322 **/
1323 typedef
1324 EFI_STATUS
1325 (EFIAPI *EFI_LEGACY_BIOS_GET_BBS_INFO)(
1326 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1327 OUT UINT16 *HddCount,
1328 OUT HDD_INFO **HddInfo,
1329 OUT UINT16 *BbsCount,
1330 IN OUT BBS_TABLE **BbsTable
1331 );
1332
1333 /**
1334 Assign drive number to legacy HDD drives prior to booting an EFI
1335 aware OS so the OS can access drives without an EFI driver.
1336
1337 @param[in] This The protocol instance pointer.
1338 @param[out] BbsCount The number of BBS_TABLE structures
1339 @param[out] BbsTable List of BBS entries
1340
1341 @retval EFI_SUCCESS Drive numbers assigned.
1342
1343 **/
1344 typedef
1345 EFI_STATUS
1346 (EFIAPI *EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI)(
1347 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1348 OUT UINT16 *BbsCount,
1349 OUT BBS_TABLE **BbsTable
1350 );
1351
1352 /**
1353 To boot from an unconventional device like parties and/or execute
1354 HDD diagnostics.
1355
1356 @param[in] This The protocol instance pointer.
1357 @param[in] Attributes How to interpret the other input parameters.
1358 @param[in] BbsEntry The 0-based index into the BbsTable for the parent
1359 device.
1360 @param[in] BeerData A pointer to the 128 bytes of ram BEER data.
1361 @param[in] ServiceAreaData A pointer to the 64 bytes of raw Service Area data. The
1362 caller must provide a pointer to the specific Service
1363 Area and not the start all Service Areas.
1364
1365 @retval EFI_INVALID_PARAMETER If error. Does NOT return if no error.
1366
1367 **/
1368 typedef
1369 EFI_STATUS
1370 (EFIAPI *EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE)(
1371 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1372 IN UDC_ATTRIBUTES Attributes,
1373 IN UINTN BbsEntry,
1374 IN VOID *BeerData,
1375 IN VOID *ServiceAreaData
1376 );
1377
1378 /**
1379 Shadow all legacy16 OPROMs that haven't been shadowed.
1380 Warning: Use this with caution. This routine disconnects all EFI
1381 drivers. If used externally, then the caller must re-connect EFI
1382 drivers.
1383
1384 @param[in] This The protocol instance pointer.
1385
1386 @retval EFI_SUCCESS OPROMs were shadowed.
1387
1388 **/
1389 typedef
1390 EFI_STATUS
1391 (EFIAPI *EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS)(
1392 IN EFI_LEGACY_BIOS_PROTOCOL *This
1393 );
1394
1395 /**
1396 Get a region from the LegacyBios for S3 usage.
1397
1398 @param[in] This The protocol instance pointer.
1399 @param[in] LegacyMemorySize The size of required region.
1400 @param[in] Region The region to use.
1401 00 = Either 0xE0000 or 0xF0000 block.
1402 - Bit0 = 1 0xF0000 block.
1403 - Bit1 = 1 0xE0000 block.
1404 @param[in] Alignment Address alignment. Bit mapped. The first non-zero
1405 bit from right is alignment.
1406 @param[out] LegacyMemoryAddress The Region Assigned
1407
1408 @retval EFI_SUCCESS The Region was assigned.
1409 @retval EFI_ACCESS_DENIED The function was previously invoked.
1410 @retval Other The Region was not assigned.
1411
1412 **/
1413 typedef
1414 EFI_STATUS
1415 (EFIAPI *EFI_LEGACY_BIOS_GET_LEGACY_REGION)(
1416 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1417 IN UINTN LegacyMemorySize,
1418 IN UINTN Region,
1419 IN UINTN Alignment,
1420 OUT VOID **LegacyMemoryAddress
1421 );
1422
1423 /**
1424 Get a region from the LegacyBios for Tiano usage. Can only be invoked once.
1425
1426 @param[in] This The protocol instance pointer.
1427 @param[in] LegacyMemorySize The size of data to copy.
1428 @param[in] LegacyMemoryAddress The Legacy Region destination address.
1429 Note: must be in region assigned by
1430 LegacyBiosGetLegacyRegion.
1431 @param[in] LegacyMemorySourceAddress The source of the data to copy.
1432
1433 @retval EFI_SUCCESS The Region assigned.
1434 @retval EFI_ACCESS_DENIED Destination was outside an assigned region.
1435
1436 **/
1437 typedef
1438 EFI_STATUS
1439 (EFIAPI *EFI_LEGACY_BIOS_COPY_LEGACY_REGION)(
1440 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1441 IN UINTN LegacyMemorySize,
1442 IN VOID *LegacyMemoryAddress,
1443 IN VOID *LegacyMemorySourceAddress
1444 );
1445
1446 ///
1447 /// Abstracts the traditional BIOS from the rest of EFI. The LegacyBoot()
1448 /// member function allows the BDS to support booting a traditional OS.
1449 /// EFI thunks drivers that make EFI bindings for BIOS INT services use
1450 /// all the other member functions.
1451 ///
1452 struct _EFI_LEGACY_BIOS_PROTOCOL {
1453 ///
1454 /// Performs traditional software INT. See the Int86() function description.
1455 ///
1456 EFI_LEGACY_BIOS_INT86 Int86;
1457
1458 ///
1459 /// Performs a far call into Compatibility16 or traditional OpROM code.
1460 ///
1461 EFI_LEGACY_BIOS_FARCALL86 FarCall86;
1462
1463 ///
1464 /// Checks if a traditional OpROM exists for this device.
1465 ///
1466 EFI_LEGACY_BIOS_CHECK_ROM CheckPciRom;
1467
1468 ///
1469 /// Loads a traditional OpROM in traditional OpROM address space.
1470 ///
1471 EFI_LEGACY_BIOS_INSTALL_ROM InstallPciRom;
1472
1473 ///
1474 /// Boots a traditional OS.
1475 ///
1476 EFI_LEGACY_BIOS_BOOT LegacyBoot;
1477
1478 ///
1479 /// Updates BDA to reflect the current EFI keyboard LED status.
1480 ///
1481 EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS UpdateKeyboardLedStatus;
1482
1483 ///
1484 /// Allows an external agent, such as BIOS Setup, to get the BBS data.
1485 ///
1486 EFI_LEGACY_BIOS_GET_BBS_INFO GetBbsInfo;
1487
1488 ///
1489 /// Causes all legacy OpROMs to be shadowed.
1490 ///
1491 EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS ShadowAllLegacyOproms;
1492
1493 ///
1494 /// Performs all actions prior to boot. Used when booting an EFI-aware OS
1495 /// rather than a legacy OS.
1496 ///
1497 EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI PrepareToBootEfi;
1498
1499 ///
1500 /// Allows EFI to reserve an area in the 0xE0000 or 0xF0000 block.
1501 ///
1502 EFI_LEGACY_BIOS_GET_LEGACY_REGION GetLegacyRegion;
1503
1504 ///
1505 /// Allows EFI to copy data to the area specified by GetLegacyRegion.
1506 ///
1507 EFI_LEGACY_BIOS_COPY_LEGACY_REGION CopyLegacyRegion;
1508
1509 ///
1510 /// Allows the user to boot off an unconventional device such as a PARTIES partition.
1511 ///
1512 EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE BootUnconventionalDevice;
1513 };
1514
1515 //
1516 // Legacy BIOS needs to access memory in page 0 (0-4095), which is disabled if
1517 // NULL pointer detection feature is enabled. Following macro can be used to
1518 // enable/disable page 0 before/after accessing it.
1519 //
1520 #define ACCESS_PAGE0_CODE(statements) \
1521 do { \
1522 EFI_STATUS Status_; \
1523 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Desc_; \
1524 \
1525 Desc_.Attributes = 0; \
1526 Status_ = gDS->GetMemorySpaceDescriptor (0, &Desc_); \
1527 ASSERT_EFI_ERROR (Status_); \
1528 if ((Desc_.Attributes & EFI_MEMORY_RP) != 0) { \
1529 Status_ = gDS->SetMemorySpaceAttributes ( \
1530 0, \
1531 EFI_PAGES_TO_SIZE(1), \
1532 Desc_.Attributes & ~(UINT64)EFI_MEMORY_RP \
1533 ); \
1534 ASSERT_EFI_ERROR (Status_); \
1535 } \
1536 \
1537 { \
1538 statements; \
1539 } \
1540 \
1541 if ((Desc_.Attributes & EFI_MEMORY_RP) != 0) { \
1542 Status_ = gDS->SetMemorySpaceAttributes ( \
1543 0, \
1544 EFI_PAGES_TO_SIZE(1), \
1545 Desc_.Attributes \
1546 ); \
1547 ASSERT_EFI_ERROR (Status_); \
1548 } \
1549 } while (FALSE)
1550
1551 extern EFI_GUID gEfiLegacyBiosProtocolGuid;
1552
1553 #endif