]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c
Vlv2TbltDevicePkg: Sync the branch changes to Trunk,
[mirror_edk2.git] / MdeModulePkg / Core / Pei / Dispatcher / Dispatcher.c
1 /** @file
2 EFI PEI Core dispatch services
3
4 Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PeiMain.h"
16
17 ///
18 /// temporary memory is filled with this initial value during SEC phase
19 ///
20 #define INIT_CAR_VALUE 0x5AA55AA5
21
22 /**
23
24 Discover all Peims and optional Apriori file in one FV. There is at most one
25 Apriori file in one FV.
26
27
28 @param Private Pointer to the private data passed in from caller
29 @param CoreFileHandle The instance of PEI_CORE_FV_HANDLE.
30
31 **/
32 VOID
33 DiscoverPeimsAndOrderWithApriori (
34 IN PEI_CORE_INSTANCE *Private,
35 IN PEI_CORE_FV_HANDLE *CoreFileHandle
36 )
37 {
38 EFI_STATUS Status;
39 EFI_PEI_FILE_HANDLE FileHandle;
40 EFI_PEI_FILE_HANDLE AprioriFileHandle;
41 EFI_GUID *Apriori;
42 UINTN Index;
43 UINTN Index2;
44 UINTN PeimIndex;
45 UINTN PeimCount;
46 EFI_GUID *Guid;
47 EFI_PEI_FILE_HANDLE *TempFileHandles;
48 EFI_GUID *FileGuid;
49 EFI_PEI_FIRMWARE_VOLUME_PPI *FvPpi;
50 EFI_FV_FILE_INFO FileInfo;
51
52 FvPpi = CoreFileHandle->FvPpi;
53
54 //
55 // Walk the FV and find all the PEIMs and the Apriori file.
56 //
57 AprioriFileHandle = NULL;
58 Private->CurrentFvFileHandles[0] = NULL;
59 Guid = NULL;
60 FileHandle = NULL;
61 TempFileHandles = Private->FileHandles;
62 FileGuid = Private->FileGuid;
63
64 //
65 // If the current Fv has been scanned, directly get its cachable record.
66 //
67 if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {
68 CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv));
69 return;
70 }
71
72 //
73 // Go ahead to scan this Fv, and cache FileHandles within it.
74 //
75 Status = EFI_NOT_FOUND;
76 for (PeimCount = 0; PeimCount <= PcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {
77 Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle);
78 if (Status != EFI_SUCCESS || PeimCount == PcdGet32 (PcdPeiCoreMaxPeimPerFv)) {
79 break;
80 }
81
82 Private->CurrentFvFileHandles[PeimCount] = FileHandle;
83 }
84
85 //
86 // Check whether the count of files exceeds the max support files in a FV image
87 // If more files are required in a FV image, PcdPeiCoreMaxPeimPerFv can be set to a larger value in DSC file.
88 //
89 ASSERT ((Status != EFI_SUCCESS) || (PeimCount < PcdGet32 (PcdPeiCoreMaxPeimPerFv)));
90
91 //
92 // Get Apriori File handle
93 //
94 Private->AprioriCount = 0;
95 Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle);
96 if (!EFI_ERROR(Status) && AprioriFileHandle != NULL) {
97 //
98 // Read the Apriori file
99 //
100 Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);
101 if (!EFI_ERROR (Status)) {
102 //
103 // Calculate the number of PEIMs in the A Priori list
104 //
105 Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo);
106 ASSERT_EFI_ERROR (Status);
107 Private->AprioriCount = FileInfo.BufferSize;
108 if (IS_SECTION2 (FileInfo.Buffer)) {
109 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER2);
110 } else {
111 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER);
112 }
113 Private->AprioriCount /= sizeof (EFI_GUID);
114
115 for (Index = 0; Index < PeimCount; Index++) {
116 //
117 // Make an array of file name guids that matches the FileHandle array so we can convert
118 // quickly from file name to file handle
119 //
120 Status = FvPpi->GetFileInfo (FvPpi, Private->CurrentFvFileHandles[Index], &FileInfo);
121 CopyMem (&FileGuid[Index], &FileInfo.FileName, sizeof(EFI_GUID));
122 }
123
124 //
125 // Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.
126 // Add available PEIMs in Apriori file into TempFileHandles array at first.
127 //
128 Index2 = 0;
129 for (Index = 0; Index2 < Private->AprioriCount; Index++) {
130 while (Index2 < Private->AprioriCount) {
131 Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);
132 if (Guid != NULL) {
133 break;
134 }
135 }
136 if (Guid == NULL) {
137 break;
138 }
139 PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);
140 TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];
141
142 //
143 // Since we have copied the file handle we can remove it from this list.
144 //
145 Private->CurrentFvFileHandles[PeimIndex] = NULL;
146 }
147
148 //
149 // Update valid Aprioricount
150 //
151 Private->AprioriCount = Index;
152
153 //
154 // Add in any PEIMs not in the Apriori file
155 //
156 for (;Index < PeimCount; Index++) {
157 for (Index2 = 0; Index2 < PeimCount; Index2++) {
158 if (Private->CurrentFvFileHandles[Index2] != NULL) {
159 TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];
160 Private->CurrentFvFileHandles[Index2] = NULL;
161 break;
162 }
163 }
164 }
165 //
166 //Index the end of array contains re-range Pei moudle.
167 //
168 TempFileHandles[Index] = NULL;
169
170 //
171 // Private->CurrentFvFileHandles is currently in PEIM in the FV order.
172 // We need to update it to start with files in the A Priori list and
173 // then the remaining files in PEIM order.
174 //
175 CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv));
176 }
177 }
178 //
179 // Cache the current Fv File Handle. So that we don't have to scan the Fv again.
180 // Instead, we can retrieve the file handles within this Fv from cachable data.
181 //
182 Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;
183 CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv));
184
185 }
186
187 //
188 // This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,
189 // This part of memory still need reserved on the very top of memory so that the DXE Core could
190 // use these memory for data initialization. This macro should be sync with the same marco
191 // defined in DXE Core.
192 //
193 #define MINIMUM_INITIAL_MEMORY_SIZE 0x10000
194 /**
195 This function is to test if the memory range described in resource HOB is available or not.
196
197 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the
198 memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is
199 available or not.
200
201 @param PrivateData Pointer to the private data passed in from caller
202 @param ResourceHob Pointer to a resource HOB which described the memory range described by the input resource HOB
203 **/
204 BOOLEAN
205 PeiLoadFixAddressIsMemoryRangeAvailable (
206 IN PEI_CORE_INSTANCE *PrivateData,
207 IN EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob
208 )
209 {
210 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
211 BOOLEAN IsAvailable;
212 EFI_PEI_HOB_POINTERS Hob;
213
214 IsAvailable = TRUE;
215 if (PrivateData == NULL || ResourceHob == NULL) {
216 return FALSE;
217 }
218 //
219 // test if the memory range describe in the HOB is already allocated.
220 //
221 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
222 //
223 // See if this is a memory allocation HOB
224 //
225 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
226 MemoryHob = Hob.MemoryAllocation;
227 if(MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart &&
228 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength) {
229 IsAvailable = FALSE;
230 break;
231 }
232 }
233 }
234
235 return IsAvailable;
236
237 }
238 /**
239 Hook function for Loading Module at Fixed Address feature
240
241 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is
242 configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When
243 feature is configured as Load Modules at Fixed Offset, the functino is to find the top address which is TOLM-TSEG in general.
244 And also the function will re-install PEI memory.
245
246 @param PrivateData Pointer to the private data passed in from caller
247
248 **/
249 VOID
250 PeiLoadFixAddressHook(
251 IN PEI_CORE_INSTANCE *PrivateData
252 )
253 {
254 EFI_PHYSICAL_ADDRESS TopLoadingAddress;
255 UINT64 PeiMemorySize;
256 UINT64 TotalReservedMemorySize;
257 UINT64 MemoryRangeEnd;
258 EFI_PHYSICAL_ADDRESS HighAddress;
259 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
260 EFI_HOB_RESOURCE_DESCRIPTOR *NextResourceHob;
261 EFI_HOB_RESOURCE_DESCRIPTOR *CurrentResourceHob;
262 EFI_PEI_HOB_POINTERS CurrentHob;
263 EFI_PEI_HOB_POINTERS Hob;
264 EFI_PEI_HOB_POINTERS NextHob;
265 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
266 //
267 // Initialize Local Variables
268 //
269 CurrentResourceHob = NULL;
270 ResourceHob = NULL;
271 NextResourceHob = NULL;
272 HighAddress = 0;
273 TopLoadingAddress = 0;
274 MemoryRangeEnd = 0;
275 CurrentHob.Raw = PrivateData->HobList.Raw;
276 PeiMemorySize = PrivateData->PhysicalMemoryLength;
277 //
278 // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size MINIMUM_INITIAL_MEMORY_SIZE
279 // then RuntimeCodePage range and Boot time code range.
280 //
281 TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber));
282 TotalReservedMemorySize+= EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)) ;
283 //
284 // PEI memory range lies below the top reserved memory
285 //
286 TotalReservedMemorySize += PeiMemorySize;
287
288 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber)));
289 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)));
290 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressPeiCodePageNumber)));
291 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize));
292 //
293 // Loop through the system memory typed hob to merge the adjacent memory range
294 //
295 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
296 //
297 // See if this is a resource descriptor HOB
298 //
299 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
300
301 ResourceHob = Hob.ResourceDescriptor;
302 //
303 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
304 //
305 if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY ||
306 ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS) {
307 continue;
308 }
309
310 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
311 if (NextHob.Raw == Hob.Raw){
312 continue;
313 }
314 //
315 // See if this is a resource descriptor HOB
316 //
317 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
318
319 NextResourceHob = NextHob.ResourceDescriptor;
320 //
321 // test if range described in this NextResourceHob is system memory and have the same attribute.
322 // Note: Here is a assumption that system memory should always be healthy even without test.
323 //
324 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
325 (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)){
326
327 //
328 // See if the memory range described in ResourceHob and NextResourceHob is adjacent
329 //
330 if ((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart &&
331 ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)||
332 (ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart&&
333 ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) {
334
335 MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength)>(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ?
336 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength):(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength);
337
338 ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ?
339 ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart;
340
341
342 ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart);
343
344 ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED);
345 //
346 // Delete the NextResourceHob by marking it as unused.
347 //
348 GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED;
349
350 }
351 }
352 }
353 }
354 }
355 }
356 //
357 // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe
358 // the allocated memory range
359 //
360 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
361 //
362 // See if this is a memory allocation HOB
363 //
364 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
365 MemoryHob = Hob.MemoryAllocation;
366 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
367 //
368 // See if this is a resource descriptor HOB
369 //
370 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
371 NextResourceHob = NextHob.ResourceDescriptor;
372 //
373 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
374 //
375 if (NextResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY || NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS) {
376 continue;
377 }
378 //
379 // If the range describe in memory allocation HOB belongs to the memroy range described by the resource hob
380 //
381 if (MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart &&
382 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
383 //
384 // Build seperate resource hob for this allocated range
385 //
386 if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) {
387 BuildResourceDescriptorHob (
388 EFI_RESOURCE_SYSTEM_MEMORY,
389 NextResourceHob->ResourceAttribute,
390 NextResourceHob->PhysicalStart,
391 (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart)
392 );
393 }
394 if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
395 BuildResourceDescriptorHob (
396 EFI_RESOURCE_SYSTEM_MEMORY,
397 NextResourceHob->ResourceAttribute,
398 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength,
399 (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength))
400 );
401 }
402 NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
403 NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength;
404 break;
405 }
406 }
407 }
408 }
409 }
410
411 //
412 // Try to find and validate the TOP address.
413 //
414 if ((INT64)PcdGet64(PcdLoadModuleAtFixAddressEnable) > 0 ) {
415 //
416 // The LMFA feature is enabled as load module at fixed absolute address.
417 //
418 TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64(PcdLoadModuleAtFixAddressEnable);
419 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n"));
420 //
421 // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range
422 //
423 if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) {
424 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress));
425 ASSERT (FALSE);
426 }
427 //
428 // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies
429 //
430 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
431 //
432 // See if this is a resource descriptor HOB
433 //
434 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
435
436 ResourceHob = Hob.ResourceDescriptor;
437 //
438 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
439 //
440 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
441 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
442 //
443 // See if Top address specified by user is valid.
444 //
445 if (ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress &&
446 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress &&
447 PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
448 CurrentResourceHob = ResourceHob;
449 CurrentHob = Hob;
450 break;
451 }
452 }
453 }
454 }
455 if (CurrentResourceHob != NULL) {
456 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n", TopLoadingAddress));
457 TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE;
458 } else {
459 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n", TopLoadingAddress));
460 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n"));
461 //
462 // Print the recomended Top address range.
463 //
464 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
465 //
466 // See if this is a resource descriptor HOB
467 //
468 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
469
470 ResourceHob = Hob.ResourceDescriptor;
471 //
472 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
473 //
474 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
475 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
476 //
477 // See if Top address specified by user is valid.
478 //
479 if (ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
480 DEBUG ((EFI_D_INFO, "(0x%lx, 0x%lx)\n",
481 (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE),
482 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE)
483 ));
484 }
485 }
486 }
487 }
488 //
489 // Assert here
490 //
491 ASSERT (FALSE);
492 return;
493 }
494 } else {
495 //
496 // The LMFA feature is enabled as load module at fixed offset relative to TOLM
497 // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG)
498 //
499 //
500 // Search for a tested memory region that is below MAX_ADDRESS
501 //
502 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
503 //
504 // See if this is a resource descriptor HOB
505 //
506 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
507
508 ResourceHob = Hob.ResourceDescriptor;
509 //
510 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
511 //
512 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
513 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS &&
514 ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
515 //
516 // See if this is the highest largest system memory region below MaxAddress
517 //
518 if (ResourceHob->PhysicalStart > HighAddress) {
519 CurrentResourceHob = ResourceHob;
520 CurrentHob = Hob;
521 HighAddress = CurrentResourceHob->PhysicalStart;
522 }
523 }
524 }
525 }
526 if (CurrentResourceHob == NULL) {
527 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n"));
528 //
529 // Assert here
530 //
531 ASSERT (FALSE);
532 return;
533 } else {
534 TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength ;
535 }
536 }
537
538 if (CurrentResourceHob != NULL) {
539 //
540 // rebuild resource HOB for PEI memmory and reserved memory
541 //
542 BuildResourceDescriptorHob (
543 EFI_RESOURCE_SYSTEM_MEMORY,
544 (
545 EFI_RESOURCE_ATTRIBUTE_PRESENT |
546 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
547 EFI_RESOURCE_ATTRIBUTE_TESTED |
548 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
549 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
550 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
551 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
552 ),
553 (TopLoadingAddress - TotalReservedMemorySize),
554 TotalReservedMemorySize
555 );
556 //
557 // rebuild resource for the remain memory if necessary
558 //
559 if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) {
560 BuildResourceDescriptorHob (
561 EFI_RESOURCE_SYSTEM_MEMORY,
562 (
563 EFI_RESOURCE_ATTRIBUTE_PRESENT |
564 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
565 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
566 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
567 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
568 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
569 ),
570 CurrentResourceHob->PhysicalStart,
571 (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart)
572 );
573 }
574 if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength > TopLoadingAddress ) {
575 BuildResourceDescriptorHob (
576 EFI_RESOURCE_SYSTEM_MEMORY,
577 (
578 EFI_RESOURCE_ATTRIBUTE_PRESENT |
579 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
580 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
581 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
582 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
583 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
584 ),
585 TopLoadingAddress,
586 (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength - TopLoadingAddress)
587 );
588 }
589 //
590 // Delete CurrentHob by marking it as unused since the the memory range described by is rebuilt.
591 //
592 GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED;
593 }
594
595 //
596 // Cache the top address for Loading Module at Fixed Address feature
597 //
598 PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE;
599 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n", PrivateData->LoadModuleAtFixAddressTopAddress));
600 //
601 // reinstall the PEI memory relative to TopLoadingAddress
602 //
603 PrivateData->PhysicalMemoryBegin = TopLoadingAddress - TotalReservedMemorySize;
604 PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize;
605 }
606
607 /**
608 This routine is invoked in switch stack as PeiCore Entry.
609
610 @param SecCoreData Points to a data structure containing information about the PEI core's operating
611 environment, such as the size and location of temporary RAM, the stack location and
612 the BFV location.
613 @param Private Pointer to old core data that is used to initialize the
614 core's data areas.
615 **/
616 VOID
617 EFIAPI
618 PeiCoreEntry (
619 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
620 IN PEI_CORE_INSTANCE *Private
621 )
622 {
623 //
624 // Entry PEI Phase 2
625 //
626 PeiCore (SecCoreData, NULL, Private);
627 }
628
629 /**
630 Check SwitchStackSignal and switch stack if SwitchStackSignal is TRUE.
631
632 @param[in] SecCoreData Points to a data structure containing information about the PEI core's operating
633 environment, such as the size and location of temporary RAM, the stack location and
634 the BFV location.
635 @param[in] Private Pointer to the private data passed in from caller.
636
637 **/
638 VOID
639 PeiCheckAndSwitchStack (
640 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
641 IN PEI_CORE_INSTANCE *Private
642 )
643 {
644 VOID *LoadFixPeiCodeBegin;
645 EFI_STATUS Status;
646 CONST EFI_PEI_SERVICES **PeiServices;
647 UINT64 NewStackSize;
648 EFI_PHYSICAL_ADDRESS TopOfOldStack;
649 EFI_PHYSICAL_ADDRESS TopOfNewStack;
650 UINTN StackOffset;
651 BOOLEAN StackOffsetPositive;
652 EFI_PHYSICAL_ADDRESS TemporaryRamBase;
653 UINTN TemporaryRamSize;
654 UINTN TemporaryStackSize;
655 VOID *TemporaryStackBase;
656 UINTN PeiTemporaryRamSize;
657 VOID *PeiTemporaryRamBase;
658 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;
659 EFI_PHYSICAL_ADDRESS BaseOfNewHeap;
660 EFI_PHYSICAL_ADDRESS HoleMemBase;
661 UINTN HoleMemSize;
662 UINTN HeapTemporaryRamSize;
663 EFI_PHYSICAL_ADDRESS TempBase1;
664 UINTN TempSize1;
665 EFI_PHYSICAL_ADDRESS TempBase2;
666 UINTN TempSize2;
667 UINTN Index;
668
669 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
670
671 if (Private->SwitchStackSignal) {
672 //
673 // Before switch stack from temporary memory to permenent memory, calculate the heap and stack
674 // usage in temporary memory for debuging.
675 //
676 DEBUG_CODE_BEGIN ();
677 UINT32 *StackPointer;
678
679 for (StackPointer = (UINT32*)SecCoreData->StackBase;
680 (StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \
681 && (*StackPointer == INIT_CAR_VALUE);
682 StackPointer ++);
683
684 DEBUG ((EFI_D_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));
685 DEBUG ((EFI_D_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", Private->HobList.Raw, (UINT32)((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN) Private->HobList.Raw)));
686 DEBUG ((EFI_D_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
687 DEBUG ((EFI_D_INFO, " temporary memory stack ever used: %d bytes.\n",
688 (UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
689 ));
690 DEBUG ((EFI_D_INFO, " temporary memory heap used: %d bytes.\n",
691 (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)
692 ));
693 DEBUG_CODE_END ();
694
695 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
696 //
697 // Loading Module at Fixed Address is enabled
698 //
699 PeiLoadFixAddressHook (Private);
700
701 //
702 // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
703 //
704 LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));
705 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));
706 }
707
708 //
709 // Reserve the size of new stack at bottom of physical memory
710 //
711 // The size of new stack in permenent memory must be the same size
712 // or larger than the size of old stack in temporary memory.
713 // But if new stack is smaller than the size of old stack, we also reserve
714 // the size of old stack at bottom of permenent memory.
715 //
716 NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);
717 NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);
718 NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);
719 DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));
720 ASSERT (NewStackSize >= SecCoreData->StackSize);
721
722 //
723 // Calculate stack offset and heap offset between temporary memory and new permement
724 // memory seperately.
725 //
726 TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;
727 TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;
728 if (TopOfNewStack >= TopOfOldStack) {
729 StackOffsetPositive = TRUE;
730 StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);
731 } else {
732 StackOffsetPositive = FALSE;
733 StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);
734 }
735 Private->StackOffsetPositive = StackOffsetPositive;
736 Private->StackOffset = StackOffset;
737
738 //
739 // Build Stack HOB that describes the permanent memory stack
740 //
741 DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));
742 BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);
743
744 //
745 // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address
746 //
747 TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;
748 TemporaryRamSize = SecCoreData->TemporaryRamSize;
749 TemporaryStackSize = SecCoreData->StackSize;
750 TemporaryStackBase = SecCoreData->StackBase;
751 PeiTemporaryRamSize = SecCoreData->PeiTemporaryRamSize;
752 PeiTemporaryRamBase = SecCoreData->PeiTemporaryRamBase;
753
754 //
755 // TemporaryRamSupportPpi is produced by platform's SEC
756 //
757 Status = PeiServicesLocatePpi (
758 &gEfiTemporaryRamSupportPpiGuid,
759 0,
760 NULL,
761 (VOID**)&TemporaryRamSupportPpi
762 );
763 if (!EFI_ERROR (Status)) {
764 //
765 // Heap Offset
766 //
767 BaseOfNewHeap = TopOfNewStack;
768 if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
769 Private->HeapOffsetPositive = TRUE;
770 Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase);
771 } else {
772 Private->HeapOffsetPositive = FALSE;
773 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap);
774 }
775
776 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64) Private->HeapOffset, (UINT64) Private->StackOffset));
777
778 //
779 // Calculate new HandOffTable and PrivateData address in permanent memory's stack
780 //
781 if (StackOffsetPositive) {
782 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);
783 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);
784 } else {
785 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);
786 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);
787 }
788
789 //
790 // Temporary Ram Support PPI is provided by platform, it will copy
791 // temporary memory to permenent memory and do stack switching.
792 // After invoking Temporary Ram Support PPI, the following code's
793 // stack is in permanent memory.
794 //
795 TemporaryRamSupportPpi->TemporaryRamMigration (
796 PeiServices,
797 TemporaryRamBase,
798 (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),
799 TemporaryRamSize
800 );
801
802 //
803 // Entry PEI Phase 2
804 //
805 PeiCore (SecCoreData, NULL, Private);
806 } else {
807 //
808 // Migrate the PEI Services Table pointer from temporary RAM to permanent RAM.
809 //
810 MigratePeiServicesTablePointer ();
811
812 //
813 // Heap Offset
814 //
815 BaseOfNewHeap = TopOfNewStack;
816 HoleMemBase = TopOfNewStack;
817 HoleMemSize = TemporaryRamSize - PeiTemporaryRamSize - TemporaryStackSize;
818 if (HoleMemSize != 0) {
819 //
820 // Make sure HOB List start address is 8 byte alignment.
821 //
822 BaseOfNewHeap = ALIGN_VALUE (BaseOfNewHeap + HoleMemSize, 8);
823 }
824 if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
825 Private->HeapOffsetPositive = TRUE;
826 Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase);
827 } else {
828 Private->HeapOffsetPositive = FALSE;
829 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap);
830 }
831
832 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64) Private->HeapOffset, (UINT64) Private->StackOffset));
833
834 //
835 // Migrate Heap
836 //
837 HeapTemporaryRamSize = (UINTN) (Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - Private->HobList.HandoffInformationTable->EfiMemoryBottom);
838 ASSERT (BaseOfNewHeap + HeapTemporaryRamSize <= Private->FreePhysicalMemoryTop);
839 CopyMem ((UINT8 *) (UINTN) BaseOfNewHeap, (UINT8 *) PeiTemporaryRamBase, HeapTemporaryRamSize);
840
841 //
842 // Migrate Stack
843 //
844 CopyMem ((UINT8 *) (UINTN) (TopOfNewStack - TemporaryStackSize), TemporaryStackBase, TemporaryStackSize);
845
846 //
847 // Copy Hole Range Data
848 // Convert PPI from Hole.
849 //
850 if (HoleMemSize != 0) {
851 //
852 // Prepare Hole
853 //
854 if (PeiTemporaryRamBase < TemporaryStackBase) {
855 TempBase1 = (EFI_PHYSICAL_ADDRESS) (UINTN) PeiTemporaryRamBase;
856 TempSize1 = PeiTemporaryRamSize;
857 TempBase2 = (EFI_PHYSICAL_ADDRESS) (UINTN) TemporaryStackBase;
858 TempSize2 = TemporaryStackSize;
859 } else {
860 TempBase1 = (EFI_PHYSICAL_ADDRESS) (UINTN) TemporaryStackBase;
861 TempSize1 = TemporaryStackSize;
862 TempBase2 =(EFI_PHYSICAL_ADDRESS) (UINTN) PeiTemporaryRamBase;
863 TempSize2 = PeiTemporaryRamSize;
864 }
865 if (TemporaryRamBase < TempBase1) {
866 Private->HoleData[0].Base = TemporaryRamBase;
867 Private->HoleData[0].Size = (UINTN) (TempBase1 - TemporaryRamBase);
868 }
869 if (TempBase1 + TempSize1 < TempBase2) {
870 Private->HoleData[1].Base = TempBase1 + TempSize1;
871 Private->HoleData[1].Size = (UINTN) (TempBase2 - TempBase1 - TempSize1);
872 }
873 if (TempBase2 + TempSize2 < TemporaryRamBase + TemporaryRamSize) {
874 Private->HoleData[2].Base = TempBase2 + TempSize2;
875 Private->HoleData[2].Size = (UINTN) (TemporaryRamBase + TemporaryRamSize - TempBase2 - TempSize2);
876 }
877
878 //
879 // Copy Hole Range data.
880 //
881 for (Index = 0; Index < HOLE_MAX_NUMBER; Index ++) {
882 if (Private->HoleData[Index].Size > 0) {
883 if (HoleMemBase > Private->HoleData[Index].Base) {
884 Private->HoleData[Index].OffsetPositive = TRUE;
885 Private->HoleData[Index].Offset = (UINTN) (HoleMemBase - Private->HoleData[Index].Base);
886 } else {
887 Private->HoleData[Index].OffsetPositive = FALSE;
888 Private->HoleData[Index].Offset = (UINTN) (Private->HoleData[Index].Base - HoleMemBase);
889 }
890 CopyMem ((VOID *) (UINTN) HoleMemBase, (VOID *) (UINTN) Private->HoleData[Index].Base, Private->HoleData[Index].Size);
891 HoleMemBase = HoleMemBase + Private->HoleData[Index].Size;
892 }
893 }
894 }
895
896 //
897 // Switch new stack
898 //
899 SwitchStack (
900 (SWITCH_STACK_ENTRY_POINT)(UINTN)PeiCoreEntry,
901 (VOID *) SecCoreData,
902 (VOID *) Private,
903 (VOID *) (UINTN) TopOfNewStack
904 );
905 }
906
907 //
908 // Code should not come here
909 //
910 ASSERT (FALSE);
911 }
912 }
913
914 /**
915 Conduct PEIM dispatch.
916
917 @param SecCoreData Points to a data structure containing information about the PEI core's operating
918 environment, such as the size and location of temporary RAM, the stack location and
919 the BFV location.
920 @param Private Pointer to the private data passed in from caller
921
922 **/
923 VOID
924 PeiDispatcher (
925 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
926 IN PEI_CORE_INSTANCE *Private
927 )
928 {
929 EFI_STATUS Status;
930 UINT32 Index1;
931 UINT32 Index2;
932 CONST EFI_PEI_SERVICES **PeiServices;
933 EFI_PEI_FILE_HANDLE PeimFileHandle;
934 UINTN FvCount;
935 UINTN PeimCount;
936 UINT32 AuthenticationState;
937 EFI_PHYSICAL_ADDRESS EntryPoint;
938 EFI_PEIM_ENTRY_POINT2 PeimEntryPoint;
939 UINTN SaveCurrentPeimCount;
940 UINTN SaveCurrentFvCount;
941 EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;
942 EFI_FV_FILE_INFO FvFileInfo;
943 PEI_CORE_FV_HANDLE *CoreFvHandle;
944
945 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
946 PeimEntryPoint = NULL;
947 PeimFileHandle = NULL;
948 EntryPoint = 0;
949
950 if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME || PcdGetBool (PcdShadowPeimOnS3Boot))) {
951 //
952 // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile
953 // update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.
954 //
955 SaveCurrentPeimCount = Private->CurrentPeimCount;
956 SaveCurrentFvCount = Private->CurrentPeimFvCount;
957 SaveCurrentFileHandle = Private->CurrentFileHandle;
958
959 for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {
960 for (Index2 = 0; (Index2 < PcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {
961 if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {
962 PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];
963 Private->CurrentFileHandle = PeimFileHandle;
964 Private->CurrentPeimFvCount = Index1;
965 Private->CurrentPeimCount = Index2;
966 Status = PeiLoadImage (
967 (CONST EFI_PEI_SERVICES **) &Private->Ps,
968 PeimFileHandle,
969 PEIM_STATE_REGISITER_FOR_SHADOW,
970 &EntryPoint,
971 &AuthenticationState
972 );
973 if (Status == EFI_SUCCESS) {
974 //
975 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
976 //
977 Private->Fv[Index1].PeimState[Index2]++;
978 //
979 // Call the PEIM entry point
980 //
981 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
982
983 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
984 PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);
985 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
986 }
987
988 //
989 // Process the Notify list and dispatch any notifies for
990 // newly installed PPIs.
991 //
992 ProcessNotifyList (Private);
993 }
994 }
995 }
996 Private->CurrentFileHandle = SaveCurrentFileHandle;
997 Private->CurrentPeimFvCount = SaveCurrentFvCount;
998 Private->CurrentPeimCount = SaveCurrentPeimCount;
999 }
1000
1001 //
1002 // This is the main dispatch loop. It will search known FVs for PEIMs and
1003 // attempt to dispatch them. If any PEIM gets dispatched through a single
1004 // pass of the dispatcher, it will start over from the Bfv again to see
1005 // if any new PEIMs dependencies got satisfied. With a well ordered
1006 // FV where PEIMs are found in the order their dependencies are also
1007 // satisfied, this dipatcher should run only once.
1008 //
1009 do {
1010 //
1011 // In case that reenter PeiCore happens, the last pass record is still available.
1012 //
1013 if (!Private->PeimDispatcherReenter) {
1014 Private->PeimNeedingDispatch = FALSE;
1015 Private->PeimDispatchOnThisPass = FALSE;
1016 } else {
1017 Private->PeimDispatcherReenter = FALSE;
1018 }
1019
1020 for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {
1021 CoreFvHandle = FindNextCoreFvHandle (Private, FvCount);
1022 ASSERT (CoreFvHandle != NULL);
1023
1024 //
1025 // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it.
1026 //
1027 if (CoreFvHandle->FvPpi == NULL) {
1028 continue;
1029 }
1030
1031 Private->CurrentPeimFvCount = FvCount;
1032
1033 if (Private->CurrentPeimCount == 0) {
1034 //
1035 // When going through each FV, at first, search Apriori file to
1036 // reorder all PEIMs to ensure the PEIMs in Apriori file to get
1037 // dispatch at first.
1038 //
1039 DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle);
1040 }
1041
1042 //
1043 // Start to dispatch all modules within the current Fv.
1044 //
1045 for (PeimCount = Private->CurrentPeimCount;
1046 (PeimCount < PcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);
1047 PeimCount++) {
1048 Private->CurrentPeimCount = PeimCount;
1049 PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];
1050
1051 if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {
1052 if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {
1053 Private->PeimNeedingDispatch = TRUE;
1054 } else {
1055 Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo);
1056 ASSERT_EFI_ERROR (Status);
1057 if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
1058 //
1059 // For Fv type file, Produce new FV PPI and FV hob
1060 //
1061 Status = ProcessFvFile (Private, &Private->Fv[FvCount], PeimFileHandle);
1062 if (Status == EFI_SUCCESS) {
1063 //
1064 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
1065 //
1066 Private->Fv[FvCount].PeimState[PeimCount]++;
1067 Private->PeimDispatchOnThisPass = TRUE;
1068 }
1069 } else {
1070 //
1071 // For PEIM driver, Load its entry point
1072 //
1073 Status = PeiLoadImage (
1074 PeiServices,
1075 PeimFileHandle,
1076 PEIM_STATE_NOT_DISPATCHED,
1077 &EntryPoint,
1078 &AuthenticationState
1079 );
1080 if (Status == EFI_SUCCESS) {
1081 //
1082 // The PEIM has its dependencies satisfied, and its entry point
1083 // has been found, so invoke it.
1084 //
1085 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
1086
1087 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
1088 EFI_PROGRESS_CODE,
1089 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN),
1090 (VOID *)(&PeimFileHandle),
1091 sizeof (PeimFileHandle)
1092 );
1093
1094 Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle, AuthenticationState);
1095 if (Status != EFI_SECURITY_VIOLATION) {
1096 //
1097 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
1098 //
1099 Private->Fv[FvCount].PeimState[PeimCount]++;
1100 //
1101 // Call the PEIM entry point for PEIM driver
1102 //
1103 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
1104 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
1105 Private->PeimDispatchOnThisPass = TRUE;
1106 }
1107
1108 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
1109 EFI_PROGRESS_CODE,
1110 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END),
1111 (VOID *)(&PeimFileHandle),
1112 sizeof (PeimFileHandle)
1113 );
1114 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
1115
1116 }
1117 }
1118
1119 PeiCheckAndSwitchStack (SecCoreData, Private);
1120
1121 //
1122 // Process the Notify list and dispatch any notifies for
1123 // newly installed PPIs.
1124 //
1125 ProcessNotifyList (Private);
1126
1127 //
1128 // Recheck SwitchStackSignal after ProcessNotifyList()
1129 // in case PeiInstallPeiMemory() is done in a callback with
1130 // EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH.
1131 //
1132 PeiCheckAndSwitchStack (SecCoreData, Private);
1133
1134 if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) && \
1135 (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME || PcdGetBool (PcdShadowPeimOnS3Boot))) {
1136 //
1137 // If memory is availble we shadow images by default for performance reasons.
1138 // We call the entry point a 2nd time so the module knows it's shadowed.
1139 //
1140 //PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);
1141 if ((Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) && !PcdGetBool (PcdShadowPeimOnBoot)) {
1142 //
1143 // Load PEIM into Memory for Register for shadow PEIM.
1144 //
1145 Status = PeiLoadImage (
1146 PeiServices,
1147 PeimFileHandle,
1148 PEIM_STATE_REGISITER_FOR_SHADOW,
1149 &EntryPoint,
1150 &AuthenticationState
1151 );
1152 if (Status == EFI_SUCCESS) {
1153 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
1154 }
1155 }
1156 ASSERT (PeimEntryPoint != NULL);
1157 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
1158 //PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);
1159
1160 //
1161 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
1162 //
1163 Private->Fv[FvCount].PeimState[PeimCount]++;
1164
1165 //
1166 // Process the Notify list and dispatch any notifies for
1167 // newly installed PPIs.
1168 //
1169 ProcessNotifyList (Private);
1170 }
1171 }
1172 }
1173 }
1174
1175 //
1176 // We set to NULL here to optimize the 2nd entry to this routine after
1177 // memory is found. This reprevents rescanning of the FV. We set to
1178 // NULL here so we start at the begining of the next FV
1179 //
1180 Private->CurrentFileHandle = NULL;
1181 Private->CurrentPeimCount = 0;
1182 //
1183 // Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL
1184 //
1185 SetMem (Private->CurrentFvFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv), 0);
1186 }
1187
1188 //
1189 // Before making another pass, we should set Private->CurrentPeimFvCount =0 to go
1190 // through all the FV.
1191 //
1192 Private->CurrentPeimFvCount = 0;
1193
1194 //
1195 // PeimNeedingDispatch being TRUE means we found a PEIM that did not get
1196 // dispatched. So we need to make another pass
1197 //
1198 // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM on this
1199 // pass. If we did not dispatch a PEIM there is no point in trying again
1200 // as it will fail the next time too (nothing has changed).
1201 //
1202 } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);
1203
1204 }
1205
1206 /**
1207 Initialize the Dispatcher's data members
1208
1209 @param PrivateData PeiCore's private data structure
1210 @param OldCoreData Old data from SecCore
1211 NULL if being run in non-permament memory mode.
1212 @param SecCoreData Points to a data structure containing information about the PEI core's operating
1213 environment, such as the size and location of temporary RAM, the stack location and
1214 the BFV location.
1215
1216 @return None.
1217
1218 **/
1219 VOID
1220 InitializeDispatcherData (
1221 IN PEI_CORE_INSTANCE *PrivateData,
1222 IN PEI_CORE_INSTANCE *OldCoreData,
1223 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData
1224 )
1225 {
1226 if (OldCoreData == NULL) {
1227 PrivateData->PeimDispatcherReenter = FALSE;
1228 PeiInitializeFv (PrivateData, SecCoreData);
1229 } else {
1230 PeiReinitializeFv (PrivateData);
1231 }
1232
1233 return;
1234 }
1235
1236 /**
1237 This routine parses the Dependency Expression, if available, and
1238 decides if the module can be executed.
1239
1240
1241 @param Private PeiCore's private data structure
1242 @param FileHandle PEIM's file handle
1243 @param PeimCount Peim count in all dispatched PEIMs.
1244
1245 @retval TRUE Can be dispatched
1246 @retval FALSE Cannot be dispatched
1247
1248 **/
1249 BOOLEAN
1250 DepexSatisfied (
1251 IN PEI_CORE_INSTANCE *Private,
1252 IN EFI_PEI_FILE_HANDLE FileHandle,
1253 IN UINTN PeimCount
1254 )
1255 {
1256 EFI_STATUS Status;
1257 VOID *DepexData;
1258 EFI_FV_FILE_INFO FileInfo;
1259
1260 Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo);
1261 if (EFI_ERROR (Status)) {
1262 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n"));
1263 } else {
1264 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName));
1265 }
1266
1267 if (PeimCount < Private->AprioriCount) {
1268 //
1269 // If its in the A priori file then we set Depex to TRUE
1270 //
1271 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));
1272 return TRUE;
1273 }
1274
1275 //
1276 // Depex section not in the encapsulated section.
1277 //
1278 Status = PeiServicesFfsFindSectionData (
1279 EFI_SECTION_PEI_DEPEX,
1280 FileHandle,
1281 (VOID **)&DepexData
1282 );
1283
1284 if (EFI_ERROR (Status)) {
1285 //
1286 // If there is no DEPEX, assume the module can be executed
1287 //
1288 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (No DEPEX)\n"));
1289 return TRUE;
1290 }
1291
1292 //
1293 // Evaluate a given DEPEX
1294 //
1295 return PeimDispatchReadiness (&Private->Ps, DepexData);
1296 }
1297
1298 /**
1299 This routine enable a PEIM to register itself to shadow when PEI Foundation
1300 discovery permanent memory.
1301
1302 @param FileHandle File handle of a PEIM.
1303
1304 @retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself.
1305 @retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself.
1306 @retval EFI_SUCCESS Successfully to register itself.
1307
1308 **/
1309 EFI_STATUS
1310 EFIAPI
1311 PeiRegisterForShadow (
1312 IN EFI_PEI_FILE_HANDLE FileHandle
1313 )
1314 {
1315 PEI_CORE_INSTANCE *Private;
1316 Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());
1317
1318 if (Private->CurrentFileHandle != FileHandle) {
1319 //
1320 // The FileHandle must be for the current PEIM
1321 //
1322 return EFI_NOT_FOUND;
1323 }
1324
1325 if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {
1326 //
1327 // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started
1328 //
1329 return EFI_ALREADY_STARTED;
1330 }
1331
1332 Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;
1333
1334 return EFI_SUCCESS;
1335 }
1336
1337
1338