]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/PiSmmCore/Dispatcher.c
MdeModulePkg/PiSmmCore: Add MemoryAttributes support.
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / Dispatcher.c
1 /** @file
2 SMM Driver Dispatcher.
3
4 Step #1 - When a FV protocol is added to the system every driver in the FV
5 is added to the mDiscoveredList. The Before, and After Depex are
6 pre-processed as drivers are added to the mDiscoveredList. If an Apriori
7 file exists in the FV those drivers are addeded to the
8 mScheduledQueue. The mFvHandleList is used to make sure a
9 FV is only processed once.
10
11 Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
12 start it. After mScheduledQueue is drained check the
13 mDiscoveredList to see if any item has a Depex that is ready to
14 be placed on the mScheduledQueue.
15
16 Step #3 - Adding to the mScheduledQueue requires that you process Before
17 and After dependencies. This is done recursively as the call to add
18 to the mScheduledQueue checks for Before and recursively adds
19 all Befores. It then addes the item that was passed in and then
20 processess the After dependecies by recursively calling the routine.
21
22 Dispatcher Rules:
23 The rules for the dispatcher are similar to the DXE dispatcher.
24
25 The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
26 is the state diagram for the DXE dispatcher
27
28 Depex - Dependency Expresion.
29
30 Copyright (c) 2014, Hewlett-Packard Development Company, L.P.
31 Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
32 This program and the accompanying materials are licensed and made available
33 under the terms and conditions of the BSD License which accompanies this
34 distribution. The full text of the license may be found at
35 http://opensource.org/licenses/bsd-license.php
36
37 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
38 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
39
40 **/
41
42 #include "PiSmmCore.h"
43
44 //
45 // SMM Dispatcher Data structures
46 //
47 #define KNOWN_HANDLE_SIGNATURE SIGNATURE_32('k','n','o','w')
48 typedef struct {
49 UINTN Signature;
50 LIST_ENTRY Link; // mFvHandleList
51 EFI_HANDLE Handle;
52 } KNOWN_HANDLE;
53
54 //
55 // Function Prototypes
56 //
57
58 /**
59 Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
60 must add any driver with a before dependency on InsertedDriverEntry first.
61 You do this by recursively calling this routine. After all the Befores are
62 processed you can add InsertedDriverEntry to the mScheduledQueue.
63 Then you can add any driver with an After dependency on InsertedDriverEntry
64 by recursively calling this routine.
65
66 @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
67
68 **/
69 VOID
70 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
71 IN EFI_SMM_DRIVER_ENTRY *InsertedDriverEntry
72 );
73
74 //
75 // The Driver List contains one copy of every driver that has been discovered.
76 // Items are never removed from the driver list. List of EFI_SMM_DRIVER_ENTRY
77 //
78 LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
79
80 //
81 // Queue of drivers that are ready to dispatch. This queue is a subset of the
82 // mDiscoveredList.list of EFI_SMM_DRIVER_ENTRY.
83 //
84 LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
85
86 //
87 // List of handles who's Fv's have been parsed and added to the mFwDriverList.
88 //
89 LIST_ENTRY mFvHandleList = INITIALIZE_LIST_HEAD_VARIABLE (mFvHandleList);
90
91 //
92 // Flag for the SMM Dispacher. TRUE if dispatcher is execuing.
93 //
94 BOOLEAN gDispatcherRunning = FALSE;
95
96 //
97 // Flag for the SMM Dispacher. TRUE if there is one or more SMM drivers ready to be dispatched
98 //
99 BOOLEAN gRequestDispatch = FALSE;
100
101 //
102 // List of file types supported by dispatcher
103 //
104 EFI_FV_FILETYPE mSmmFileTypes[] = {
105 EFI_FV_FILETYPE_SMM,
106 EFI_FV_FILETYPE_COMBINED_SMM_DXE,
107 EFI_FV_FILETYPE_SMM_CORE,
108 //
109 // Note: DXE core will process the FV image file, so skip it in SMM core
110 // EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE
111 //
112 };
113
114 typedef struct {
115 MEDIA_FW_VOL_FILEPATH_DEVICE_PATH File;
116 EFI_DEVICE_PATH_PROTOCOL End;
117 } FV_FILEPATH_DEVICE_PATH;
118
119 FV_FILEPATH_DEVICE_PATH mFvDevicePath;
120
121 //
122 // DXE Architecture Protocols
123 //
124 EFI_SECURITY_ARCH_PROTOCOL *mSecurity = NULL;
125 EFI_SECURITY2_ARCH_PROTOCOL *mSecurity2 = NULL;
126
127 //
128 // The global variable is defined for Loading modules at fixed address feature to track the SMM code
129 // memory range usage. It is a bit mapped array in which every bit indicates the corresponding
130 // memory page available or not.
131 //
132 GLOBAL_REMOVE_IF_UNREFERENCED UINT64 *mSmmCodeMemoryRangeUsageBitMap=NULL;
133
134 /**
135 To check memory usage bit map array to figure out if the memory range in which the image will be loaded is available or not. If
136 memory range is available, the function will mark the corresponding bits to 1 which indicates the memory range is used.
137 The function is only invoked when load modules at fixed address feature is enabled.
138
139 @param ImageBase The base address the image will be loaded at.
140 @param ImageSize The size of the image
141
142 @retval EFI_SUCCESS The memory range the image will be loaded in is available
143 @retval EFI_NOT_FOUND The memory range the image will be loaded in is not available
144 **/
145 EFI_STATUS
146 CheckAndMarkFixLoadingMemoryUsageBitMap (
147 IN EFI_PHYSICAL_ADDRESS ImageBase,
148 IN UINTN ImageSize
149 )
150 {
151 UINT32 SmmCodePageNumber;
152 UINT64 SmmCodeSize;
153 EFI_PHYSICAL_ADDRESS SmmCodeBase;
154 UINTN BaseOffsetPageNumber;
155 UINTN TopOffsetPageNumber;
156 UINTN Index;
157 //
158 // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressSmmCodePageNumber
159 //
160 SmmCodePageNumber = PcdGet32(PcdLoadFixAddressSmmCodePageNumber);
161 SmmCodeSize = EFI_PAGES_TO_SIZE (SmmCodePageNumber);
162 SmmCodeBase = gLoadModuleAtFixAddressSmramBase;
163
164 //
165 // If the memory usage bit map is not initialized, do it. Every bit in the array
166 // indicate the status of the corresponding memory page, available or not
167 //
168 if (mSmmCodeMemoryRangeUsageBitMap == NULL) {
169 mSmmCodeMemoryRangeUsageBitMap = AllocateZeroPool(((SmmCodePageNumber / 64) + 1)*sizeof(UINT64));
170 }
171 //
172 // If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
173 //
174 if (mSmmCodeMemoryRangeUsageBitMap == NULL) {
175 return EFI_NOT_FOUND;
176 }
177 //
178 // see if the memory range for loading the image is in the SMM code range.
179 //
180 if (SmmCodeBase + SmmCodeSize < ImageBase + ImageSize || SmmCodeBase > ImageBase) {
181 return EFI_NOT_FOUND;
182 }
183 //
184 // Test if the memory is avalaible or not.
185 //
186 BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES((UINT32)(ImageBase - SmmCodeBase));
187 TopOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES((UINT32)(ImageBase + ImageSize - SmmCodeBase));
188 for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
189 if ((mSmmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64(1, (Index % 64))) != 0) {
190 //
191 // This page is already used.
192 //
193 return EFI_NOT_FOUND;
194 }
195 }
196
197 //
198 // Being here means the memory range is available. So mark the bits for the memory range
199 //
200 for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
201 mSmmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64(1, (Index % 64));
202 }
203 return EFI_SUCCESS;
204 }
205 /**
206 Get the fixed loading address from image header assigned by build tool. This function only be called
207 when Loading module at Fixed address feature enabled.
208
209 @param ImageContext Pointer to the image context structure that describes the PE/COFF
210 image that needs to be examined by this function.
211 @retval EFI_SUCCESS An fixed loading address is assigned to this image by build tools .
212 @retval EFI_NOT_FOUND The image has no assigned fixed loading address.
213
214 **/
215 EFI_STATUS
216 GetPeCoffImageFixLoadingAssignedAddress(
217 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
218 )
219 {
220 UINTN SectionHeaderOffset;
221 EFI_STATUS Status;
222 EFI_IMAGE_SECTION_HEADER SectionHeader;
223 EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
224 EFI_PHYSICAL_ADDRESS FixLoadingAddress;
225 UINT16 Index;
226 UINTN Size;
227 UINT16 NumberOfSections;
228 UINT64 ValueInSectionHeader;
229
230 FixLoadingAddress = 0;
231 Status = EFI_NOT_FOUND;
232
233 //
234 // Get PeHeader pointer
235 //
236 ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
237 SectionHeaderOffset = (UINTN)(
238 ImageContext->PeCoffHeaderOffset +
239 sizeof (UINT32) +
240 sizeof (EFI_IMAGE_FILE_HEADER) +
241 ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader
242 );
243 NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
244
245 //
246 // Get base address from the first section header that doesn't point to code section.
247 //
248 for (Index = 0; Index < NumberOfSections; Index++) {
249 //
250 // Read section header from file
251 //
252 Size = sizeof (EFI_IMAGE_SECTION_HEADER);
253 Status = ImageContext->ImageRead (
254 ImageContext->Handle,
255 SectionHeaderOffset,
256 &Size,
257 &SectionHeader
258 );
259 if (EFI_ERROR (Status)) {
260 return Status;
261 }
262
263 Status = EFI_NOT_FOUND;
264
265 if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
266 //
267 // Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields in the first section header
268 // that doesn't point to code section in image header.So there is an assumption that when the feature is enabled,
269 // if a module with a loading address assigned by tools, the PointerToRelocations & PointerToLineNumbers fields
270 // should not be Zero, or else, these 2 fields should be set to Zero
271 //
272 ValueInSectionHeader = ReadUnaligned64((UINT64*)&SectionHeader.PointerToRelocations);
273 if (ValueInSectionHeader != 0) {
274 //
275 // Found first section header that doesn't point to code section in which build tool saves the
276 // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
277 //
278 FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressSmramBase + (INT64)ValueInSectionHeader);
279 //
280 // Check if the memory range is available.
281 //
282 Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoadingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
283 if (!EFI_ERROR(Status)) {
284 //
285 // The assigned address is valid. Return the specified loading address
286 //
287 ImageContext->ImageAddress = FixLoadingAddress;
288 }
289 }
290 break;
291 }
292 SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
293 }
294 DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n", FixLoadingAddress, Status));
295 return Status;
296 }
297 /**
298 Loads an EFI image into SMRAM.
299
300 @param DriverEntry EFI_SMM_DRIVER_ENTRY instance
301
302 @return EFI_STATUS
303
304 **/
305 EFI_STATUS
306 EFIAPI
307 SmmLoadImage (
308 IN OUT EFI_SMM_DRIVER_ENTRY *DriverEntry
309 )
310 {
311 UINT32 AuthenticationStatus;
312 UINTN FilePathSize;
313 VOID *Buffer;
314 UINTN Size;
315 UINTN PageCount;
316 EFI_GUID *NameGuid;
317 EFI_STATUS Status;
318 EFI_STATUS SecurityStatus;
319 EFI_HANDLE DeviceHandle;
320 EFI_PHYSICAL_ADDRESS DstBuffer;
321 EFI_DEVICE_PATH_PROTOCOL *FilePath;
322 EFI_DEVICE_PATH_PROTOCOL *OriginalFilePath;
323 EFI_DEVICE_PATH_PROTOCOL *HandleFilePath;
324 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
325 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
326 UINT64 Tick;
327
328 Tick = 0;
329 PERF_CODE (
330 Tick = GetPerformanceCounter ();
331 );
332
333 Buffer = NULL;
334 Size = 0;
335 Fv = DriverEntry->Fv;
336 NameGuid = &DriverEntry->FileName;
337 FilePath = DriverEntry->FvFileDevicePath;
338
339 OriginalFilePath = FilePath;
340 HandleFilePath = FilePath;
341 DeviceHandle = NULL;
342 SecurityStatus = EFI_SUCCESS;
343 Status = EFI_SUCCESS;
344 AuthenticationStatus = 0;
345
346 //
347 // Try to get the image device handle by checking the match protocol.
348 //
349 Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid, &HandleFilePath, &DeviceHandle);
350 if (EFI_ERROR(Status)) {
351 return Status;
352 }
353
354 //
355 // If the Security2 and Security Architectural Protocol has not been located yet, then attempt to locate it
356 //
357 if (mSecurity2 == NULL) {
358 gBS->LocateProtocol (&gEfiSecurity2ArchProtocolGuid, NULL, (VOID**)&mSecurity2);
359 }
360 if (mSecurity == NULL) {
361 gBS->LocateProtocol (&gEfiSecurityArchProtocolGuid, NULL, (VOID**)&mSecurity);
362 }
363 //
364 // When Security2 is installed, Security Architectural Protocol must be published.
365 //
366 ASSERT (mSecurity2 == NULL || mSecurity != NULL);
367
368 //
369 // Pull out just the file portion of the DevicePath for the LoadedImage FilePath
370 //
371 FilePath = OriginalFilePath;
372 Status = gBS->HandleProtocol (DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID **)&HandleFilePath);
373 if (!EFI_ERROR (Status)) {
374 FilePathSize = GetDevicePathSize (HandleFilePath) - sizeof(EFI_DEVICE_PATH_PROTOCOL);
375 FilePath = (EFI_DEVICE_PATH_PROTOCOL *) (((UINT8 *)FilePath) + FilePathSize );
376 }
377
378 //
379 // Try reading PE32 section firstly
380 //
381 Status = Fv->ReadSection (
382 Fv,
383 NameGuid,
384 EFI_SECTION_PE32,
385 0,
386 &Buffer,
387 &Size,
388 &AuthenticationStatus
389 );
390
391 if (EFI_ERROR (Status)) {
392 //
393 // Try reading TE section secondly
394 //
395 Buffer = NULL;
396 Size = 0;
397 Status = Fv->ReadSection (
398 Fv,
399 NameGuid,
400 EFI_SECTION_TE,
401 0,
402 &Buffer,
403 &Size,
404 &AuthenticationStatus
405 );
406 }
407
408 if (EFI_ERROR (Status)) {
409 if (Buffer != NULL) {
410 gBS->FreePool (Buffer);
411 }
412 return Status;
413 }
414
415 //
416 // Verify File Authentication through the Security2 Architectural Protocol
417 //
418 if (mSecurity2 != NULL) {
419 SecurityStatus = mSecurity2->FileAuthentication (
420 mSecurity2,
421 OriginalFilePath,
422 Buffer,
423 Size,
424 FALSE
425 );
426 }
427
428 //
429 // Verify the Authentication Status through the Security Architectural Protocol
430 // Only on images that have been read using Firmware Volume protocol.
431 // All SMM images are from FV protocol.
432 //
433 if (!EFI_ERROR (SecurityStatus) && (mSecurity != NULL)) {
434 SecurityStatus = mSecurity->FileAuthenticationState (
435 mSecurity,
436 AuthenticationStatus,
437 OriginalFilePath
438 );
439 }
440
441 if (EFI_ERROR (SecurityStatus) && SecurityStatus != EFI_SECURITY_VIOLATION) {
442 Status = SecurityStatus;
443 return Status;
444 }
445
446 //
447 // Initialize ImageContext
448 //
449 ImageContext.Handle = Buffer;
450 ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
451
452 //
453 // Get information about the image being loaded
454 //
455 Status = PeCoffLoaderGetImageInfo (&ImageContext);
456 if (EFI_ERROR (Status)) {
457 if (Buffer != NULL) {
458 gBS->FreePool (Buffer);
459 }
460 return Status;
461 }
462 //
463 // if Loading module at Fixed Address feature is enabled, then cut out a memory range started from TESG BASE
464 // to hold the Smm driver code
465 //
466 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
467 //
468 // Get the fixed loading address assigned by Build tool
469 //
470 Status = GetPeCoffImageFixLoadingAssignedAddress (&ImageContext);
471 if (!EFI_ERROR (Status)) {
472 //
473 // Since the memory range to load Smm core alreay been cut out, so no need to allocate and free this range
474 // following statements is to bypass SmmFreePages
475 //
476 PageCount = 0;
477 DstBuffer = (UINTN)gLoadModuleAtFixAddressSmramBase;
478 } else {
479 DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED ERROR: Failed to load module at fixed address. \n"));
480 //
481 // allocate the memory to load the SMM driver
482 //
483 PageCount = (UINTN)EFI_SIZE_TO_PAGES((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
484 DstBuffer = (UINTN)(-1);
485
486 Status = SmmAllocatePages (
487 AllocateMaxAddress,
488 EfiRuntimeServicesCode,
489 PageCount,
490 &DstBuffer
491 );
492 if (EFI_ERROR (Status)) {
493 if (Buffer != NULL) {
494 gBS->FreePool (Buffer);
495 }
496 return Status;
497 }
498 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
499 }
500 } else {
501 PageCount = (UINTN)EFI_SIZE_TO_PAGES((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
502 DstBuffer = (UINTN)(-1);
503
504 Status = SmmAllocatePages (
505 AllocateMaxAddress,
506 EfiRuntimeServicesCode,
507 PageCount,
508 &DstBuffer
509 );
510 if (EFI_ERROR (Status)) {
511 if (Buffer != NULL) {
512 gBS->FreePool (Buffer);
513 }
514 return Status;
515 }
516
517 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
518 }
519 //
520 // Align buffer on section boundary
521 //
522 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
523 ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));
524
525 //
526 // Load the image to our new buffer
527 //
528 Status = PeCoffLoaderLoadImage (&ImageContext);
529 if (EFI_ERROR (Status)) {
530 if (Buffer != NULL) {
531 gBS->FreePool (Buffer);
532 }
533 SmmFreePages (DstBuffer, PageCount);
534 return Status;
535 }
536
537 //
538 // Relocate the image in our new buffer
539 //
540 Status = PeCoffLoaderRelocateImage (&ImageContext);
541 if (EFI_ERROR (Status)) {
542 if (Buffer != NULL) {
543 gBS->FreePool (Buffer);
544 }
545 SmmFreePages (DstBuffer, PageCount);
546 return Status;
547 }
548
549 //
550 // Flush the instruction cache so the image data are written before we execute it
551 //
552 InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);
553
554 //
555 // Save Image EntryPoint in DriverEntry
556 //
557 DriverEntry->ImageEntryPoint = ImageContext.EntryPoint;
558 DriverEntry->ImageBuffer = DstBuffer;
559 DriverEntry->NumberOfPage = PageCount;
560
561 //
562 // Allocate a Loaded Image Protocol in EfiBootServicesData
563 //
564 Status = gBS->AllocatePool (EfiBootServicesData, sizeof (EFI_LOADED_IMAGE_PROTOCOL), (VOID **)&DriverEntry->LoadedImage);
565 if (EFI_ERROR (Status)) {
566 if (Buffer != NULL) {
567 gBS->FreePool (Buffer);
568 }
569 SmmFreePages (DstBuffer, PageCount);
570 return Status;
571 }
572
573 ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
574 //
575 // Fill in the remaining fields of the Loaded Image Protocol instance.
576 // Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
577 //
578 DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
579 DriverEntry->LoadedImage->ParentHandle = gSmmCorePrivate->SmmIplImageHandle;
580 DriverEntry->LoadedImage->SystemTable = gST;
581 DriverEntry->LoadedImage->DeviceHandle = DeviceHandle;
582
583 DriverEntry->SmmLoadedImage.Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
584 DriverEntry->SmmLoadedImage.ParentHandle = gSmmCorePrivate->SmmIplImageHandle;
585 DriverEntry->SmmLoadedImage.SystemTable = gST;
586 DriverEntry->SmmLoadedImage.DeviceHandle = DeviceHandle;
587
588 //
589 // Make an EfiBootServicesData buffer copy of FilePath
590 //
591 Status = gBS->AllocatePool (EfiBootServicesData, GetDevicePathSize (FilePath), (VOID **)&DriverEntry->LoadedImage->FilePath);
592 if (EFI_ERROR (Status)) {
593 if (Buffer != NULL) {
594 gBS->FreePool (Buffer);
595 }
596 SmmFreePages (DstBuffer, PageCount);
597 return Status;
598 }
599 CopyMem (DriverEntry->LoadedImage->FilePath, FilePath, GetDevicePathSize (FilePath));
600
601 DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
602 DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize;
603 DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
604 DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
605
606 //
607 // Make a buffer copy of FilePath
608 //
609 Status = SmmAllocatePool (EfiRuntimeServicesData, GetDevicePathSize(FilePath), (VOID **)&DriverEntry->SmmLoadedImage.FilePath);
610 if (EFI_ERROR (Status)) {
611 if (Buffer != NULL) {
612 gBS->FreePool (Buffer);
613 }
614 gBS->FreePool (DriverEntry->LoadedImage->FilePath);
615 SmmFreePages (DstBuffer, PageCount);
616 return Status;
617 }
618 CopyMem (DriverEntry->SmmLoadedImage.FilePath, FilePath, GetDevicePathSize(FilePath));
619
620 DriverEntry->SmmLoadedImage.ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
621 DriverEntry->SmmLoadedImage.ImageSize = ImageContext.ImageSize;
622 DriverEntry->SmmLoadedImage.ImageCodeType = EfiRuntimeServicesCode;
623 DriverEntry->SmmLoadedImage.ImageDataType = EfiRuntimeServicesData;
624
625 //
626 // Create a new image handle in the UEFI handle database for the SMM Driver
627 //
628 DriverEntry->ImageHandle = NULL;
629 Status = gBS->InstallMultipleProtocolInterfaces (
630 &DriverEntry->ImageHandle,
631 &gEfiLoadedImageProtocolGuid, DriverEntry->LoadedImage,
632 NULL
633 );
634
635 //
636 // Create a new image handle in the SMM handle database for the SMM Driver
637 //
638 DriverEntry->SmmImageHandle = NULL;
639 Status = SmmInstallProtocolInterface (
640 &DriverEntry->SmmImageHandle,
641 &gEfiLoadedImageProtocolGuid,
642 EFI_NATIVE_INTERFACE,
643 &DriverEntry->SmmLoadedImage
644 );
645
646 PERF_START (DriverEntry->ImageHandle, "LoadImage:", NULL, Tick);
647 PERF_END (DriverEntry->ImageHandle, "LoadImage:", NULL, 0);
648
649 //
650 // Print the load address and the PDB file name if it is available
651 //
652
653 DEBUG_CODE_BEGIN ();
654
655 UINTN Index;
656 UINTN StartIndex;
657 CHAR8 EfiFileName[256];
658
659
660 DEBUG ((DEBUG_INFO | DEBUG_LOAD,
661 "Loading SMM driver at 0x%11p EntryPoint=0x%11p ",
662 (VOID *)(UINTN) ImageContext.ImageAddress,
663 FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));
664
665
666 //
667 // Print Module Name by Pdb file path.
668 // Windows and Unix style file path are all trimmed correctly.
669 //
670 if (ImageContext.PdbPointer != NULL) {
671 StartIndex = 0;
672 for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
673 if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
674 StartIndex = Index + 1;
675 }
676 }
677 //
678 // Copy the PDB file name to our temporary string, and replace .pdb with .efi
679 // The PDB file name is limited in the range of 0~255.
680 // If the length is bigger than 255, trim the redudant characters to avoid overflow in array boundary.
681 //
682 for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
683 EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
684 if (EfiFileName[Index] == 0) {
685 EfiFileName[Index] = '.';
686 }
687 if (EfiFileName[Index] == '.') {
688 EfiFileName[Index + 1] = 'e';
689 EfiFileName[Index + 2] = 'f';
690 EfiFileName[Index + 3] = 'i';
691 EfiFileName[Index + 4] = 0;
692 break;
693 }
694 }
695
696 if (Index == sizeof (EfiFileName) - 4) {
697 EfiFileName[Index] = 0;
698 }
699 DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName)); // &Image->ImageContext.PdbPointer[StartIndex]));
700 }
701 DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
702
703 DEBUG_CODE_END ();
704
705 //
706 // Free buffer allocated by Fv->ReadSection.
707 //
708 // The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
709 // used the UEFI Boot Services AllocatePool() function
710 //
711 Status = gBS->FreePool(Buffer);
712 if (!EFI_ERROR (Status) && EFI_ERROR (SecurityStatus)) {
713 Status = SecurityStatus;
714 }
715 return Status;
716 }
717
718 /**
719 Preprocess dependency expression and update DriverEntry to reflect the
720 state of Before and After dependencies. If DriverEntry->Before
721 or DriverEntry->After is set it will never be cleared.
722
723 @param DriverEntry DriverEntry element to update .
724
725 @retval EFI_SUCCESS It always works.
726
727 **/
728 EFI_STATUS
729 SmmPreProcessDepex (
730 IN EFI_SMM_DRIVER_ENTRY *DriverEntry
731 )
732 {
733 UINT8 *Iterator;
734
735 Iterator = DriverEntry->Depex;
736 DriverEntry->Dependent = TRUE;
737
738 if (*Iterator == EFI_DEP_BEFORE) {
739 DriverEntry->Before = TRUE;
740 } else if (*Iterator == EFI_DEP_AFTER) {
741 DriverEntry->After = TRUE;
742 }
743
744 if (DriverEntry->Before || DriverEntry->After) {
745 CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
746 }
747
748 return EFI_SUCCESS;
749 }
750
751 /**
752 Read Depex and pre-process the Depex for Before and After. If Section Extraction
753 protocol returns an error via ReadSection defer the reading of the Depex.
754
755 @param DriverEntry Driver to work on.
756
757 @retval EFI_SUCCESS Depex read and preprossesed
758 @retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error
759 and Depex reading needs to be retried.
760 @retval Error DEPEX not found.
761
762 **/
763 EFI_STATUS
764 SmmGetDepexSectionAndPreProccess (
765 IN EFI_SMM_DRIVER_ENTRY *DriverEntry
766 )
767 {
768 EFI_STATUS Status;
769 EFI_SECTION_TYPE SectionType;
770 UINT32 AuthenticationStatus;
771 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
772
773 Fv = DriverEntry->Fv;
774
775 //
776 // Grab Depex info, it will never be free'ed.
777 // (Note: DriverEntry->Depex is in DXE memory)
778 //
779 SectionType = EFI_SECTION_SMM_DEPEX;
780 Status = Fv->ReadSection (
781 DriverEntry->Fv,
782 &DriverEntry->FileName,
783 SectionType,
784 0,
785 &DriverEntry->Depex,
786 (UINTN *)&DriverEntry->DepexSize,
787 &AuthenticationStatus
788 );
789 if (EFI_ERROR (Status)) {
790 if (Status == EFI_PROTOCOL_ERROR) {
791 //
792 // The section extraction protocol failed so set protocol error flag
793 //
794 DriverEntry->DepexProtocolError = TRUE;
795 } else {
796 //
797 // If no Depex assume depend on all architectural protocols
798 //
799 DriverEntry->Depex = NULL;
800 DriverEntry->Dependent = TRUE;
801 DriverEntry->DepexProtocolError = FALSE;
802 }
803 } else {
804 //
805 // Set Before and After state information based on Depex
806 // Driver will be put in Dependent state
807 //
808 SmmPreProcessDepex (DriverEntry);
809 DriverEntry->DepexProtocolError = FALSE;
810 }
811
812 return Status;
813 }
814
815 /**
816 This is the main Dispatcher for SMM and it exits when there are no more
817 drivers to run. Drain the mScheduledQueue and load and start a PE
818 image for each driver. Search the mDiscoveredList to see if any driver can
819 be placed on the mScheduledQueue. If no drivers are placed on the
820 mScheduledQueue exit the function.
821
822 @retval EFI_SUCCESS All of the SMM Drivers that could be dispatched
823 have been run and the SMM Entry Point has been
824 registered.
825 @retval EFI_NOT_READY The SMM Driver that registered the SMM Entry Point
826 was just dispatched.
827 @retval EFI_NOT_FOUND There are no SMM Drivers available to be dispatched.
828 @retval EFI_ALREADY_STARTED The SMM Dispatcher is already running
829
830 **/
831 EFI_STATUS
832 SmmDispatcher (
833 VOID
834 )
835 {
836 EFI_STATUS Status;
837 LIST_ENTRY *Link;
838 EFI_SMM_DRIVER_ENTRY *DriverEntry;
839 BOOLEAN ReadyToRun;
840 BOOLEAN PreviousSmmEntryPointRegistered;
841
842 if (!gRequestDispatch) {
843 return EFI_NOT_FOUND;
844 }
845
846 if (gDispatcherRunning) {
847 //
848 // If the dispatcher is running don't let it be restarted.
849 //
850 return EFI_ALREADY_STARTED;
851 }
852
853 gDispatcherRunning = TRUE;
854
855 do {
856 //
857 // Drain the Scheduled Queue
858 //
859 while (!IsListEmpty (&mScheduledQueue)) {
860 DriverEntry = CR (
861 mScheduledQueue.ForwardLink,
862 EFI_SMM_DRIVER_ENTRY,
863 ScheduledLink,
864 EFI_SMM_DRIVER_ENTRY_SIGNATURE
865 );
866
867 //
868 // Load the SMM Driver image into memory. If the Driver was transitioned from
869 // Untrused to Scheduled it would have already been loaded so we may need to
870 // skip the LoadImage
871 //
872 if (DriverEntry->ImageHandle == NULL) {
873 Status = SmmLoadImage (DriverEntry);
874
875 //
876 // Update the driver state to reflect that it's been loaded
877 //
878 if (EFI_ERROR (Status)) {
879 //
880 // The SMM Driver could not be loaded, and do not attempt to load or start it again.
881 // Take driver from Scheduled to Initialized.
882 //
883 DriverEntry->Initialized = TRUE;
884 DriverEntry->Scheduled = FALSE;
885 RemoveEntryList (&DriverEntry->ScheduledLink);
886
887 //
888 // If it's an error don't try the StartImage
889 //
890 continue;
891 }
892 }
893
894 DriverEntry->Scheduled = FALSE;
895 DriverEntry->Initialized = TRUE;
896 RemoveEntryList (&DriverEntry->ScheduledLink);
897
898 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
899 EFI_PROGRESS_CODE,
900 EFI_SOFTWARE_SMM_DRIVER | EFI_SW_PC_INIT_BEGIN,
901 &DriverEntry->ImageHandle,
902 sizeof (DriverEntry->ImageHandle)
903 );
904
905 //
906 // Cache state of SmmEntryPointRegistered before calling entry point
907 //
908 PreviousSmmEntryPointRegistered = gSmmCorePrivate->SmmEntryPointRegistered;
909
910 //
911 // For each SMM driver, pass NULL as ImageHandle
912 //
913 RegisterSmramProfileImage (DriverEntry, TRUE);
914 PERF_START (DriverEntry->ImageHandle, "StartImage:", NULL, 0);
915 Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)(DriverEntry->ImageHandle, gST);
916 PERF_END (DriverEntry->ImageHandle, "StartImage:", NULL, 0);
917 if (EFI_ERROR(Status)){
918 UnregisterSmramProfileImage (DriverEntry, TRUE);
919 SmmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
920 //
921 // Uninstall LoadedImage
922 //
923 Status = gBS->UninstallProtocolInterface (
924 DriverEntry->ImageHandle,
925 &gEfiLoadedImageProtocolGuid,
926 DriverEntry->LoadedImage
927 );
928 if (!EFI_ERROR (Status)) {
929 if (DriverEntry->LoadedImage->FilePath != NULL) {
930 gBS->FreePool (DriverEntry->LoadedImage->FilePath);
931 }
932 gBS->FreePool (DriverEntry->LoadedImage);
933 }
934 Status = SmmUninstallProtocolInterface (
935 DriverEntry->SmmImageHandle,
936 &gEfiLoadedImageProtocolGuid,
937 &DriverEntry->SmmLoadedImage
938 );
939 if (!EFI_ERROR(Status)) {
940 if (DriverEntry->SmmLoadedImage.FilePath != NULL) {
941 SmmFreePool (DriverEntry->SmmLoadedImage.FilePath);
942 }
943 }
944 }
945
946 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
947 EFI_PROGRESS_CODE,
948 EFI_SOFTWARE_SMM_DRIVER | EFI_SW_PC_INIT_END,
949 &DriverEntry->ImageHandle,
950 sizeof (DriverEntry->ImageHandle)
951 );
952
953 if (!PreviousSmmEntryPointRegistered && gSmmCorePrivate->SmmEntryPointRegistered) {
954 //
955 // Return immediately if the SMM Entry Point was registered by the SMM
956 // Driver that was just dispatched. The SMM IPL will reinvoke the SMM
957 // Core Dispatcher. This is required so SMM Mode may be enabled as soon
958 // as all the dependent SMM Drivers for SMM Mode have been dispatched.
959 // Once the SMM Entry Point has been registered, then SMM Mode will be
960 // used.
961 //
962 gRequestDispatch = TRUE;
963 gDispatcherRunning = FALSE;
964 return EFI_NOT_READY;
965 }
966 }
967
968 //
969 // Search DriverList for items to place on Scheduled Queue
970 //
971 ReadyToRun = FALSE;
972 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
973 DriverEntry = CR (Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
974
975 if (DriverEntry->DepexProtocolError){
976 //
977 // If Section Extraction Protocol did not let the Depex be read before retry the read
978 //
979 Status = SmmGetDepexSectionAndPreProccess (DriverEntry);
980 }
981
982 if (DriverEntry->Dependent) {
983 if (SmmIsSchedulable (DriverEntry)) {
984 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
985 ReadyToRun = TRUE;
986 }
987 }
988 }
989 } while (ReadyToRun);
990
991 //
992 // If there is no more SMM driver to dispatch, stop the dispatch request
993 //
994 gRequestDispatch = FALSE;
995 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
996 DriverEntry = CR (Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
997
998 if (!DriverEntry->Initialized){
999 //
1000 // We have SMM driver pending to dispatch
1001 //
1002 gRequestDispatch = TRUE;
1003 break;
1004 }
1005 }
1006
1007 gDispatcherRunning = FALSE;
1008
1009 return EFI_SUCCESS;
1010 }
1011
1012 /**
1013 Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
1014 must add any driver with a before dependency on InsertedDriverEntry first.
1015 You do this by recursively calling this routine. After all the Befores are
1016 processed you can add InsertedDriverEntry to the mScheduledQueue.
1017 Then you can add any driver with an After dependency on InsertedDriverEntry
1018 by recursively calling this routine.
1019
1020 @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
1021
1022 **/
1023 VOID
1024 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
1025 IN EFI_SMM_DRIVER_ENTRY *InsertedDriverEntry
1026 )
1027 {
1028 LIST_ENTRY *Link;
1029 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1030
1031 //
1032 // Process Before Dependency
1033 //
1034 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
1035 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1036 if (DriverEntry->Before && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
1037 DEBUG ((DEBUG_DISPATCH, "Evaluate SMM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
1038 DEBUG ((DEBUG_DISPATCH, " BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
1039 if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
1040 //
1041 // Recursively process BEFORE
1042 //
1043 DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
1044 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
1045 } else {
1046 DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
1047 }
1048 }
1049 }
1050
1051 //
1052 // Convert driver from Dependent to Scheduled state
1053 //
1054
1055 InsertedDriverEntry->Dependent = FALSE;
1056 InsertedDriverEntry->Scheduled = TRUE;
1057 InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
1058
1059
1060 //
1061 // Process After Dependency
1062 //
1063 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
1064 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1065 if (DriverEntry->After && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
1066 DEBUG ((DEBUG_DISPATCH, "Evaluate SMM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
1067 DEBUG ((DEBUG_DISPATCH, " AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
1068 if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
1069 //
1070 // Recursively process AFTER
1071 //
1072 DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
1073 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
1074 } else {
1075 DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
1076 }
1077 }
1078 }
1079 }
1080
1081 /**
1082 Return TRUE if the Fv has been processed, FALSE if not.
1083
1084 @param FvHandle The handle of a FV that's being tested
1085
1086 @retval TRUE Fv protocol on FvHandle has been processed
1087 @retval FALSE Fv protocol on FvHandle has not yet been
1088 processed
1089
1090 **/
1091 BOOLEAN
1092 FvHasBeenProcessed (
1093 IN EFI_HANDLE FvHandle
1094 )
1095 {
1096 LIST_ENTRY *Link;
1097 KNOWN_HANDLE *KnownHandle;
1098
1099 for (Link = mFvHandleList.ForwardLink; Link != &mFvHandleList; Link = Link->ForwardLink) {
1100 KnownHandle = CR(Link, KNOWN_HANDLE, Link, KNOWN_HANDLE_SIGNATURE);
1101 if (KnownHandle->Handle == FvHandle) {
1102 return TRUE;
1103 }
1104 }
1105 return FALSE;
1106 }
1107
1108 /**
1109 Remember that Fv protocol on FvHandle has had it's drivers placed on the
1110 mDiscoveredList. This fucntion adds entries on the mFvHandleList. Items are
1111 never removed/freed from the mFvHandleList.
1112
1113 @param FvHandle The handle of a FV that has been processed
1114
1115 **/
1116 VOID
1117 FvIsBeingProcesssed (
1118 IN EFI_HANDLE FvHandle
1119 )
1120 {
1121 KNOWN_HANDLE *KnownHandle;
1122
1123 KnownHandle = AllocatePool (sizeof (KNOWN_HANDLE));
1124 ASSERT (KnownHandle != NULL);
1125
1126 KnownHandle->Signature = KNOWN_HANDLE_SIGNATURE;
1127 KnownHandle->Handle = FvHandle;
1128 InsertTailList (&mFvHandleList, &KnownHandle->Link);
1129 }
1130
1131 /**
1132 Convert FvHandle and DriverName into an EFI device path
1133
1134 @param Fv Fv protocol, needed to read Depex info out of
1135 FLASH.
1136 @param FvHandle Handle for Fv, needed in the
1137 EFI_SMM_DRIVER_ENTRY so that the PE image can be
1138 read out of the FV at a later time.
1139 @param DriverName Name of driver to add to mDiscoveredList.
1140
1141 @return Pointer to device path constructed from FvHandle and DriverName
1142
1143 **/
1144 EFI_DEVICE_PATH_PROTOCOL *
1145 SmmFvToDevicePath (
1146 IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
1147 IN EFI_HANDLE FvHandle,
1148 IN EFI_GUID *DriverName
1149 )
1150 {
1151 EFI_STATUS Status;
1152 EFI_DEVICE_PATH_PROTOCOL *FvDevicePath;
1153 EFI_DEVICE_PATH_PROTOCOL *FileNameDevicePath;
1154
1155 //
1156 // Remember the device path of the FV
1157 //
1158 Status = gBS->HandleProtocol (FvHandle, &gEfiDevicePathProtocolGuid, (VOID **)&FvDevicePath);
1159 if (EFI_ERROR (Status)) {
1160 FileNameDevicePath = NULL;
1161 } else {
1162 //
1163 // Build a device path to the file in the FV to pass into gBS->LoadImage
1164 //
1165 EfiInitializeFwVolDevicepathNode (&mFvDevicePath.File, DriverName);
1166 SetDevicePathEndNode (&mFvDevicePath.End);
1167
1168 //
1169 // Note: FileNameDevicePath is in DXE memory
1170 //
1171 FileNameDevicePath = AppendDevicePath (
1172 FvDevicePath,
1173 (EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath
1174 );
1175 }
1176 return FileNameDevicePath;
1177 }
1178
1179 /**
1180 Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
1181 and initilize any state variables. Read the Depex from the FV and store it
1182 in DriverEntry. Pre-process the Depex to set the Before and After state.
1183 The Discovered list is never free'ed and contains booleans that represent the
1184 other possible SMM driver states.
1185
1186 @param Fv Fv protocol, needed to read Depex info out of
1187 FLASH.
1188 @param FvHandle Handle for Fv, needed in the
1189 EFI_SMM_DRIVER_ENTRY so that the PE image can be
1190 read out of the FV at a later time.
1191 @param DriverName Name of driver to add to mDiscoveredList.
1192
1193 @retval EFI_SUCCESS If driver was added to the mDiscoveredList.
1194 @retval EFI_ALREADY_STARTED The driver has already been started. Only one
1195 DriverName may be active in the system at any one
1196 time.
1197
1198 **/
1199 EFI_STATUS
1200 SmmAddToDriverList (
1201 IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
1202 IN EFI_HANDLE FvHandle,
1203 IN EFI_GUID *DriverName
1204 )
1205 {
1206 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1207
1208 //
1209 // Create the Driver Entry for the list. ZeroPool initializes lots of variables to
1210 // NULL or FALSE.
1211 //
1212 DriverEntry = AllocateZeroPool (sizeof (EFI_SMM_DRIVER_ENTRY));
1213 ASSERT (DriverEntry != NULL);
1214
1215 DriverEntry->Signature = EFI_SMM_DRIVER_ENTRY_SIGNATURE;
1216 CopyGuid (&DriverEntry->FileName, DriverName);
1217 DriverEntry->FvHandle = FvHandle;
1218 DriverEntry->Fv = Fv;
1219 DriverEntry->FvFileDevicePath = SmmFvToDevicePath (Fv, FvHandle, DriverName);
1220
1221 SmmGetDepexSectionAndPreProccess (DriverEntry);
1222
1223 InsertTailList (&mDiscoveredList, &DriverEntry->Link);
1224 gRequestDispatch = TRUE;
1225
1226 return EFI_SUCCESS;
1227 }
1228
1229 /**
1230 This function is the main entry point for an SMM handler dispatch
1231 or communicate-based callback.
1232
1233 Event notification that is fired every time a FV dispatch protocol is added.
1234 More than one protocol may have been added when this event is fired, so you
1235 must loop on SmmLocateHandle () to see how many protocols were added and
1236 do the following to each FV:
1237 If the Fv has already been processed, skip it. If the Fv has not been
1238 processed then mark it as being processed, as we are about to process it.
1239 Read the Fv and add any driver in the Fv to the mDiscoveredList.The
1240 mDiscoveredList is never free'ed and contains variables that define
1241 the other states the SMM driver transitions to..
1242 While you are at it read the A Priori file into memory.
1243 Place drivers in the A Priori list onto the mScheduledQueue.
1244
1245 @param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
1246 @param Context Points to an optional handler context which was specified when the handler was registered.
1247 @param CommBuffer A pointer to a collection of data in memory that will
1248 be conveyed from a non-SMM environment into an SMM environment.
1249 @param CommBufferSize The size of the CommBuffer.
1250
1251 @return Status Code
1252
1253 **/
1254 EFI_STATUS
1255 EFIAPI
1256 SmmDriverDispatchHandler (
1257 IN EFI_HANDLE DispatchHandle,
1258 IN CONST VOID *Context, OPTIONAL
1259 IN OUT VOID *CommBuffer, OPTIONAL
1260 IN OUT UINTN *CommBufferSize OPTIONAL
1261 )
1262 {
1263 EFI_STATUS Status;
1264 UINTN HandleCount;
1265 EFI_HANDLE *HandleBuffer;
1266 EFI_STATUS GetNextFileStatus;
1267 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
1268 EFI_DEVICE_PATH_PROTOCOL *FvDevicePath;
1269 EFI_HANDLE FvHandle;
1270 EFI_GUID NameGuid;
1271 UINTN Key;
1272 EFI_FV_FILETYPE Type;
1273 EFI_FV_FILE_ATTRIBUTES Attributes;
1274 UINTN Size;
1275 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1276 EFI_GUID *AprioriFile;
1277 UINTN AprioriEntryCount;
1278 UINTN HandleIndex;
1279 UINTN SmmTypeIndex;
1280 UINTN AprioriIndex;
1281 LIST_ENTRY *Link;
1282 UINT32 AuthenticationStatus;
1283 UINTN SizeOfBuffer;
1284
1285 HandleBuffer = NULL;
1286 Status = gBS->LocateHandleBuffer (
1287 ByProtocol,
1288 &gEfiFirmwareVolume2ProtocolGuid,
1289 NULL,
1290 &HandleCount,
1291 &HandleBuffer
1292 );
1293 if (EFI_ERROR (Status)) {
1294 return EFI_NOT_FOUND;
1295 }
1296
1297 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
1298 FvHandle = HandleBuffer[HandleIndex];
1299
1300 if (FvHasBeenProcessed (FvHandle)) {
1301 //
1302 // This Fv has already been processed so lets skip it!
1303 //
1304 continue;
1305 }
1306
1307 //
1308 // Since we are about to process this Fv mark it as processed.
1309 //
1310 FvIsBeingProcesssed (FvHandle);
1311
1312 Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&Fv);
1313 if (EFI_ERROR (Status)) {
1314 //
1315 // FvHandle must have a Firmware Volume2 Protocol thus we should never get here.
1316 //
1317 ASSERT (FALSE);
1318 continue;
1319 }
1320
1321 Status = gBS->HandleProtocol (FvHandle, &gEfiDevicePathProtocolGuid, (VOID **)&FvDevicePath);
1322 if (EFI_ERROR (Status)) {
1323 //
1324 // The Firmware volume doesn't have device path, can't be dispatched.
1325 //
1326 continue;
1327 }
1328
1329 //
1330 // Discover Drivers in FV and add them to the Discovered Driver List.
1331 // Process EFI_FV_FILETYPE_SMM type and then EFI_FV_FILETYPE_COMBINED_SMM_DXE
1332 // EFI_FV_FILETYPE_SMM_CORE is processed to produce a Loaded Image protocol for the core
1333 //
1334 for (SmmTypeIndex = 0; SmmTypeIndex < sizeof (mSmmFileTypes)/sizeof (EFI_FV_FILETYPE); SmmTypeIndex++) {
1335 //
1336 // Initialize the search key
1337 //
1338 Key = 0;
1339 do {
1340 Type = mSmmFileTypes[SmmTypeIndex];
1341 GetNextFileStatus = Fv->GetNextFile (
1342 Fv,
1343 &Key,
1344 &Type,
1345 &NameGuid,
1346 &Attributes,
1347 &Size
1348 );
1349 if (!EFI_ERROR (GetNextFileStatus)) {
1350 if (Type == EFI_FV_FILETYPE_SMM_CORE) {
1351 //
1352 // If this is the SMM core fill in it's DevicePath & DeviceHandle
1353 //
1354 if (mSmmCoreLoadedImage->FilePath == NULL) {
1355 //
1356 // Maybe one special FV contains only one SMM_CORE module, so its device path must
1357 // be initialized completely.
1358 //
1359 EfiInitializeFwVolDevicepathNode (&mFvDevicePath.File, &NameGuid);
1360 SetDevicePathEndNode (&mFvDevicePath.End);
1361
1362 //
1363 // Make an EfiBootServicesData buffer copy of FilePath
1364 //
1365 Status = gBS->AllocatePool (
1366 EfiBootServicesData,
1367 GetDevicePathSize ((EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath),
1368 (VOID **)&mSmmCoreLoadedImage->FilePath
1369 );
1370 ASSERT_EFI_ERROR (Status);
1371 CopyMem (mSmmCoreLoadedImage->FilePath, &mFvDevicePath, GetDevicePathSize ((EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath));
1372
1373 mSmmCoreLoadedImage->DeviceHandle = FvHandle;
1374 }
1375 if (mSmmCoreDriverEntry->SmmLoadedImage.FilePath == NULL) {
1376 //
1377 // Maybe one special FV contains only one SMM_CORE module, so its device path must
1378 // be initialized completely.
1379 //
1380 EfiInitializeFwVolDevicepathNode (&mFvDevicePath.File, &NameGuid);
1381 SetDevicePathEndNode (&mFvDevicePath.End);
1382
1383 //
1384 // Make a buffer copy FilePath
1385 //
1386 Status = SmmAllocatePool (
1387 EfiRuntimeServicesData,
1388 GetDevicePathSize ((EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath),
1389 (VOID **)&mSmmCoreDriverEntry->SmmLoadedImage.FilePath
1390 );
1391 ASSERT_EFI_ERROR (Status);
1392 CopyMem (mSmmCoreDriverEntry->SmmLoadedImage.FilePath, &mFvDevicePath, GetDevicePathSize((EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath));
1393
1394 mSmmCoreDriverEntry->SmmLoadedImage.DeviceHandle = FvHandle;
1395 }
1396 } else {
1397 SmmAddToDriverList (Fv, FvHandle, &NameGuid);
1398 }
1399 }
1400 } while (!EFI_ERROR (GetNextFileStatus));
1401 }
1402
1403 //
1404 // Read the array of GUIDs from the Apriori file if it is present in the firmware volume
1405 // (Note: AprioriFile is in DXE memory)
1406 //
1407 AprioriFile = NULL;
1408 Status = Fv->ReadSection (
1409 Fv,
1410 &gAprioriGuid,
1411 EFI_SECTION_RAW,
1412 0,
1413 (VOID **)&AprioriFile,
1414 &SizeOfBuffer,
1415 &AuthenticationStatus
1416 );
1417 if (!EFI_ERROR (Status)) {
1418 AprioriEntryCount = SizeOfBuffer / sizeof (EFI_GUID);
1419 } else {
1420 AprioriEntryCount = 0;
1421 }
1422
1423 //
1424 // Put drivers on Apriori List on the Scheduled queue. The Discovered List includes
1425 // drivers not in the current FV and these must be skipped since the a priori list
1426 // is only valid for the FV that it resided in.
1427 //
1428
1429 for (AprioriIndex = 0; AprioriIndex < AprioriEntryCount; AprioriIndex++) {
1430 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
1431 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1432 if (CompareGuid (&DriverEntry->FileName, &AprioriFile[AprioriIndex]) &&
1433 (FvHandle == DriverEntry->FvHandle)) {
1434 DriverEntry->Dependent = FALSE;
1435 DriverEntry->Scheduled = TRUE;
1436 InsertTailList (&mScheduledQueue, &DriverEntry->ScheduledLink);
1437 DEBUG ((DEBUG_DISPATCH, "Evaluate SMM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
1438 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));
1439 break;
1440 }
1441 }
1442 }
1443
1444 //
1445 // Free data allocated by Fv->ReadSection ()
1446 //
1447 // The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
1448 // used the UEFI Boot Services AllocatePool() function
1449 //
1450 gBS->FreePool (AprioriFile);
1451 }
1452
1453 //
1454 // Execute the SMM Dispatcher on any newly discovered FVs and previously
1455 // discovered SMM drivers that have been discovered but not dispatched.
1456 //
1457 Status = SmmDispatcher ();
1458
1459 //
1460 // Check to see if CommBuffer and CommBufferSize are valid
1461 //
1462 if (CommBuffer != NULL && CommBufferSize != NULL) {
1463 if (*CommBufferSize > 0) {
1464 if (Status == EFI_NOT_READY) {
1465 //
1466 // If a the SMM Core Entry Point was just registered, then set flag to
1467 // request the SMM Dispatcher to be restarted.
1468 //
1469 *(UINT8 *)CommBuffer = COMM_BUFFER_SMM_DISPATCH_RESTART;
1470 } else if (!EFI_ERROR (Status)) {
1471 //
1472 // Set the flag to show that the SMM Dispatcher executed without errors
1473 //
1474 *(UINT8 *)CommBuffer = COMM_BUFFER_SMM_DISPATCH_SUCCESS;
1475 } else {
1476 //
1477 // Set the flag to show that the SMM Dispatcher encountered an error
1478 //
1479 *(UINT8 *)CommBuffer = COMM_BUFFER_SMM_DISPATCH_ERROR;
1480 }
1481 }
1482 }
1483
1484 return EFI_SUCCESS;
1485 }
1486
1487 /**
1488 Traverse the discovered list for any drivers that were discovered but not loaded
1489 because the dependency experessions evaluated to false.
1490
1491 **/
1492 VOID
1493 SmmDisplayDiscoveredNotDispatched (
1494 VOID
1495 )
1496 {
1497 LIST_ENTRY *Link;
1498 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1499
1500 for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
1501 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1502 if (DriverEntry->Dependent) {
1503 DEBUG ((DEBUG_LOAD, "SMM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
1504 }
1505 }
1506 }