]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/PiSmmCore/Dispatcher.c
Add PI1.2.1 SAP2 support and UEFI231B mantis 896
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / Dispatcher.c
1 /** @file
2 SMM Driver Dispatcher.
3
4 Step #1 - When a FV protocol is added to the system every driver in the FV
5 is added to the mDiscoveredList. The Before, and After Depex are
6 pre-processed as drivers are added to the mDiscoveredList. If an Apriori
7 file exists in the FV those drivers are addeded to the
8 mScheduledQueue. The mFvHandleList is used to make sure a
9 FV is only processed once.
10
11 Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
12 start it. After mScheduledQueue is drained check the
13 mDiscoveredList to see if any item has a Depex that is ready to
14 be placed on the mScheduledQueue.
15
16 Step #3 - Adding to the mScheduledQueue requires that you process Before
17 and After dependencies. This is done recursively as the call to add
18 to the mScheduledQueue checks for Before and recursively adds
19 all Befores. It then addes the item that was passed in and then
20 processess the After dependecies by recursively calling the routine.
21
22 Dispatcher Rules:
23 The rules for the dispatcher are similar to the DXE dispatcher.
24
25 The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
26 is the state diagram for the DXE dispatcher
27
28 Depex - Dependency Expresion.
29
30 Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
31 This program and the accompanying materials are licensed and made available
32 under the terms and conditions of the BSD License which accompanies this
33 distribution. The full text of the license may be found at
34 http://opensource.org/licenses/bsd-license.php
35
36 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
37 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
38
39 **/
40
41 #include "PiSmmCore.h"
42
43 //
44 // SMM Dispatcher Data structures
45 //
46 #define KNOWN_HANDLE_SIGNATURE SIGNATURE_32('k','n','o','w')
47 typedef struct {
48 UINTN Signature;
49 LIST_ENTRY Link; // mFvHandleList
50 EFI_HANDLE Handle;
51 } KNOWN_HANDLE;
52
53 //
54 // Function Prototypes
55 //
56
57 /**
58 Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
59 must add any driver with a before dependency on InsertedDriverEntry first.
60 You do this by recursively calling this routine. After all the Befores are
61 processed you can add InsertedDriverEntry to the mScheduledQueue.
62 Then you can add any driver with an After dependency on InsertedDriverEntry
63 by recursively calling this routine.
64
65 @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
66
67 **/
68 VOID
69 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
70 IN EFI_SMM_DRIVER_ENTRY *InsertedDriverEntry
71 );
72
73 //
74 // The Driver List contains one copy of every driver that has been discovered.
75 // Items are never removed from the driver list. List of EFI_SMM_DRIVER_ENTRY
76 //
77 LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
78
79 //
80 // Queue of drivers that are ready to dispatch. This queue is a subset of the
81 // mDiscoveredList.list of EFI_SMM_DRIVER_ENTRY.
82 //
83 LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
84
85 //
86 // List of handles who's Fv's have been parsed and added to the mFwDriverList.
87 //
88 LIST_ENTRY mFvHandleList = INITIALIZE_LIST_HEAD_VARIABLE (mFvHandleList);
89
90 //
91 // Flag for the SMM Dispacher. TRUE if dispatcher is execuing.
92 //
93 BOOLEAN gDispatcherRunning = FALSE;
94
95 //
96 // Flag for the SMM Dispacher. TRUE if there is one or more SMM drivers ready to be dispatched
97 //
98 BOOLEAN gRequestDispatch = FALSE;
99
100 //
101 // List of file types supported by dispatcher
102 //
103 EFI_FV_FILETYPE mSmmFileTypes[] = {
104 EFI_FV_FILETYPE_SMM,
105 EFI_FV_FILETYPE_COMBINED_SMM_DXE
106 //
107 // Note: DXE core will process the FV image file, so skip it in SMM core
108 // EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE
109 //
110 };
111
112 typedef struct {
113 MEDIA_FW_VOL_FILEPATH_DEVICE_PATH File;
114 EFI_DEVICE_PATH_PROTOCOL End;
115 } FV_FILEPATH_DEVICE_PATH;
116
117 FV_FILEPATH_DEVICE_PATH mFvDevicePath;
118
119 //
120 // DXE Architecture Protocols
121 //
122 EFI_SECURITY_ARCH_PROTOCOL *mSecurity = NULL;
123 EFI_SECURITY2_ARCH_PROTOCOL *mSecurity2 = NULL;
124
125 //
126 // The global variable is defined for Loading modules at fixed address feature to track the SMM code
127 // memory range usage. It is a bit mapped array in which every bit indicates the correspoding
128 // memory page available or not.
129 //
130 GLOBAL_REMOVE_IF_UNREFERENCED UINT64 *mSmmCodeMemoryRangeUsageBitMap=NULL;
131
132 /**
133 To check memory usage bit map array to figure out if the memory range in which the image will be loaded is available or not. If
134 memory range is avaliable, the function will mark the correponding bits to 1 which indicates the memory range is used.
135 The function is only invoked when load modules at fixed address feature is enabled.
136
137 @param ImageBase The base addres the image will be loaded at.
138 @param ImageSize The size of the image
139
140 @retval EFI_SUCCESS The memory range the image will be loaded in is available
141 @retval EFI_NOT_FOUND The memory range the image will be loaded in is not available
142 **/
143 EFI_STATUS
144 CheckAndMarkFixLoadingMemoryUsageBitMap (
145 IN EFI_PHYSICAL_ADDRESS ImageBase,
146 IN UINTN ImageSize
147 )
148 {
149 UINT32 SmmCodePageNumber;
150 UINT64 SmmCodeSize;
151 EFI_PHYSICAL_ADDRESS SmmCodeBase;
152 UINTN BaseOffsetPageNumber;
153 UINTN TopOffsetPageNumber;
154 UINTN Index;
155 //
156 // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressSmmCodePageNumber
157 //
158 SmmCodePageNumber = PcdGet32(PcdLoadFixAddressSmmCodePageNumber);
159 SmmCodeSize = EFI_PAGES_TO_SIZE (SmmCodePageNumber);
160 SmmCodeBase = gLoadModuleAtFixAddressSmramBase;
161
162 //
163 // If the memory usage bit map is not initialized, do it. Every bit in the array
164 // indicate the status of the corresponding memory page, available or not
165 //
166 if (mSmmCodeMemoryRangeUsageBitMap == NULL) {
167 mSmmCodeMemoryRangeUsageBitMap = AllocateZeroPool(((SmmCodePageNumber / 64) + 1)*sizeof(UINT64));
168 }
169 //
170 // If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
171 //
172 if (mSmmCodeMemoryRangeUsageBitMap == NULL) {
173 return EFI_NOT_FOUND;
174 }
175 //
176 // see if the memory range for loading the image is in the SMM code range.
177 //
178 if (SmmCodeBase + SmmCodeSize < ImageBase + ImageSize || SmmCodeBase > ImageBase) {
179 return EFI_NOT_FOUND;
180 }
181 //
182 // Test if the memory is avalaible or not.
183 //
184 BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES((UINT32)(ImageBase - SmmCodeBase));
185 TopOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES((UINT32)(ImageBase + ImageSize - SmmCodeBase));
186 for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
187 if ((mSmmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64(1, (Index % 64))) != 0) {
188 //
189 // This page is already used.
190 //
191 return EFI_NOT_FOUND;
192 }
193 }
194
195 //
196 // Being here means the memory range is available. So mark the bits for the memory range
197 //
198 for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
199 mSmmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64(1, (Index % 64));
200 }
201 return EFI_SUCCESS;
202 }
203 /**
204 Get the fixed loadding address from image header assigned by build tool. This function only be called
205 when Loading module at Fixed address feature enabled.
206
207 @param ImageContext Pointer to the image context structure that describes the PE/COFF
208 image that needs to be examined by this function.
209 @retval EFI_SUCCESS An fixed loading address is assigned to this image by build tools .
210 @retval EFI_NOT_FOUND The image has no assigned fixed loadding address.
211
212 **/
213 EFI_STATUS
214 GetPeCoffImageFixLoadingAssignedAddress(
215 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
216 )
217 {
218 UINTN SectionHeaderOffset;
219 EFI_STATUS Status;
220 EFI_IMAGE_SECTION_HEADER SectionHeader;
221 EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
222 EFI_PHYSICAL_ADDRESS FixLoaddingAddress;
223 UINT16 Index;
224 UINTN Size;
225 UINT16 NumberOfSections;
226 UINT64 ValueInSectionHeader;
227
228 FixLoaddingAddress = 0;
229 Status = EFI_NOT_FOUND;
230
231 //
232 // Get PeHeader pointer
233 //
234 ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
235 SectionHeaderOffset = (UINTN)(
236 ImageContext->PeCoffHeaderOffset +
237 sizeof (UINT32) +
238 sizeof (EFI_IMAGE_FILE_HEADER) +
239 ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader
240 );
241 NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
242
243 //
244 // Get base address from the first section header that doesn't point to code section.
245 //
246 for (Index = 0; Index < NumberOfSections; Index++) {
247 //
248 // Read section header from file
249 //
250 Size = sizeof (EFI_IMAGE_SECTION_HEADER);
251 Status = ImageContext->ImageRead (
252 ImageContext->Handle,
253 SectionHeaderOffset,
254 &Size,
255 &SectionHeader
256 );
257 if (EFI_ERROR (Status)) {
258 return Status;
259 }
260
261 Status = EFI_NOT_FOUND;
262
263 if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
264 //
265 // Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields in the first section header
266 // that doesn't point to code section in image header.So there is an assumption that when the feature is enabled,
267 // if a module with a loading address assigned by tools, the PointerToRelocations & PointerToLineNumbers fields
268 // should not be Zero, or else, these 2 fileds should be set to Zero
269 //
270 ValueInSectionHeader = ReadUnaligned64((UINT64*)&SectionHeader.PointerToRelocations);
271 if (ValueInSectionHeader != 0) {
272 //
273 // Found first section header that doesn't point to code section in which uild tool saves the
274 // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
275 //
276 FixLoaddingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressSmramBase + (INT64)ValueInSectionHeader);
277 //
278 // Check if the memory range is avaliable.
279 //
280 Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoaddingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
281 if (!EFI_ERROR(Status)) {
282 //
283 // The assigned address is valid. Return the specified loadding address
284 //
285 ImageContext->ImageAddress = FixLoaddingAddress;
286 }
287 }
288 break;
289 }
290 SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
291 }
292 DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n", FixLoaddingAddress, Status));
293 return Status;
294 }
295 /**
296 Loads an EFI image into SMRAM.
297
298 @param DriverEntry EFI_SMM_DRIVER_ENTRY instance
299
300 @return EFI_STATUS
301
302 **/
303 EFI_STATUS
304 EFIAPI
305 SmmLoadImage (
306 IN OUT EFI_SMM_DRIVER_ENTRY *DriverEntry
307 )
308 {
309 UINT32 AuthenticationStatus;
310 UINTN FilePathSize;
311 VOID *Buffer;
312 UINTN Size;
313 UINTN PageCount;
314 EFI_GUID *NameGuid;
315 EFI_STATUS Status;
316 EFI_STATUS SecurityStatus;
317 EFI_HANDLE DeviceHandle;
318 EFI_PHYSICAL_ADDRESS DstBuffer;
319 EFI_DEVICE_PATH_PROTOCOL *FilePath;
320 EFI_DEVICE_PATH_PROTOCOL *OriginalFilePath;
321 EFI_DEVICE_PATH_PROTOCOL *HandleFilePath;
322 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
323 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
324 UINT64 Tick;
325
326 Tick = 0;
327 PERF_CODE (
328 Tick = GetPerformanceCounter ();
329 );
330
331 Buffer = NULL;
332 Size = 0;
333 Fv = DriverEntry->Fv;
334 NameGuid = &DriverEntry->FileName;
335 FilePath = DriverEntry->FvFileDevicePath;
336
337 OriginalFilePath = FilePath;
338 HandleFilePath = FilePath;
339 DeviceHandle = NULL;
340 SecurityStatus = EFI_SUCCESS;
341 Status = EFI_SUCCESS;
342 AuthenticationStatus = 0;
343
344 //
345 // Try to get the image device handle by checking the match protocol.
346 //
347 Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid, &HandleFilePath, &DeviceHandle);
348 if (EFI_ERROR(Status)) {
349 return Status;
350 }
351
352 //
353 // If the Security2 and Security Architectural Protocol has not been located yet, then attempt to locate it
354 //
355 if (mSecurity2 == NULL) {
356 gBS->LocateProtocol (&gEfiSecurity2ArchProtocolGuid, NULL, (VOID**)&mSecurity2);
357 }
358 if (mSecurity == NULL) {
359 gBS->LocateProtocol (&gEfiSecurityArchProtocolGuid, NULL, (VOID**)&mSecurity);
360 }
361 //
362 // When Security2 is installed, Security Architectural Protocol must be published.
363 //
364 ASSERT (mSecurity2 == NULL || mSecurity != NULL);
365
366 //
367 // Pull out just the file portion of the DevicePath for the LoadedImage FilePath
368 //
369 FilePath = OriginalFilePath;
370 Status = gBS->HandleProtocol (DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID **)&HandleFilePath);
371 if (!EFI_ERROR (Status)) {
372 FilePathSize = GetDevicePathSize (HandleFilePath) - sizeof(EFI_DEVICE_PATH_PROTOCOL);
373 FilePath = (EFI_DEVICE_PATH_PROTOCOL *) (((UINT8 *)FilePath) + FilePathSize );
374 }
375
376 //
377 // Try reading PE32 section firstly
378 //
379 Status = Fv->ReadSection (
380 Fv,
381 NameGuid,
382 EFI_SECTION_PE32,
383 0,
384 &Buffer,
385 &Size,
386 &AuthenticationStatus
387 );
388
389 if (EFI_ERROR (Status)) {
390 //
391 // Try reading TE section secondly
392 //
393 Buffer = NULL;
394 Size = 0;
395 Status = Fv->ReadSection (
396 Fv,
397 NameGuid,
398 EFI_SECTION_TE,
399 0,
400 &Buffer,
401 &Size,
402 &AuthenticationStatus
403 );
404 }
405
406 if (EFI_ERROR (Status)) {
407 if (Buffer != NULL) {
408 gBS->FreePool (Buffer);
409 }
410 return Status;
411 }
412
413 //
414 // Verify File Authentication through the Security2 Architectural Protocol
415 //
416 if (mSecurity2 != NULL) {
417 SecurityStatus = mSecurity2->FileAuthentication (
418 mSecurity2,
419 OriginalFilePath,
420 Buffer,
421 Size,
422 FALSE
423 );
424 }
425
426 //
427 // Verify the Authentication Status through the Security Architectural Protocol
428 // Only on images that have been read using Firmware Volume protocol.
429 // All SMM images are from FV protocol.
430 //
431 if (!EFI_ERROR (SecurityStatus) && (mSecurity != NULL)) {
432 SecurityStatus = mSecurity->FileAuthenticationState (
433 mSecurity,
434 AuthenticationStatus,
435 OriginalFilePath
436 );
437 }
438
439 if (EFI_ERROR (SecurityStatus) && SecurityStatus != EFI_SECURITY_VIOLATION) {
440 Status = SecurityStatus;
441 return Status;
442 }
443
444 //
445 // Initialize ImageContext
446 //
447 ImageContext.Handle = Buffer;
448 ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
449
450 //
451 // Get information about the image being loaded
452 //
453 Status = PeCoffLoaderGetImageInfo (&ImageContext);
454 if (EFI_ERROR (Status)) {
455 if (Buffer != NULL) {
456 gBS->FreePool (Buffer);
457 }
458 return Status;
459 }
460 //
461 // if Loading module at Fixed Address feature is enabled, then cut out a memory range started from TESG BASE
462 // to hold the Smm driver code
463 //
464 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
465 //
466 // Get the fixed loading address assigned by Build tool
467 //
468 Status = GetPeCoffImageFixLoadingAssignedAddress (&ImageContext);
469 if (!EFI_ERROR (Status)) {
470 //
471 // Since the memory range to load Smm core alreay been cut out, so no need to allocate and free this range
472 // following statements is to bypass SmmFreePages
473 //
474 PageCount = 0;
475 DstBuffer = (UINTN)gLoadModuleAtFixAddressSmramBase;
476 } else {
477 DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED ERROR: Failed to load module at fixed address. \n"));
478 //
479 // allocate the memory to load the SMM driver
480 //
481 PageCount = (UINTN)EFI_SIZE_TO_PAGES((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
482 DstBuffer = (UINTN)(-1);
483
484 Status = SmmAllocatePages (
485 AllocateMaxAddress,
486 EfiRuntimeServicesCode,
487 PageCount,
488 &DstBuffer
489 );
490 if (EFI_ERROR (Status)) {
491 if (Buffer != NULL) {
492 gBS->FreePool (Buffer);
493 }
494 return Status;
495 }
496 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
497 }
498 } else {
499 PageCount = (UINTN)EFI_SIZE_TO_PAGES((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
500 DstBuffer = (UINTN)(-1);
501
502 Status = SmmAllocatePages (
503 AllocateMaxAddress,
504 EfiRuntimeServicesCode,
505 PageCount,
506 &DstBuffer
507 );
508 if (EFI_ERROR (Status)) {
509 if (Buffer != NULL) {
510 gBS->FreePool (Buffer);
511 }
512 return Status;
513 }
514
515 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
516 }
517 //
518 // Align buffer on section boundry
519 //
520 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
521 ImageContext.ImageAddress &= ~(ImageContext.SectionAlignment - 1);
522
523 //
524 // Load the image to our new buffer
525 //
526 Status = PeCoffLoaderLoadImage (&ImageContext);
527 if (EFI_ERROR (Status)) {
528 if (Buffer != NULL) {
529 gBS->FreePool (Buffer);
530 }
531 SmmFreePages (DstBuffer, PageCount);
532 return Status;
533 }
534
535 //
536 // Relocate the image in our new buffer
537 //
538 Status = PeCoffLoaderRelocateImage (&ImageContext);
539 if (EFI_ERROR (Status)) {
540 if (Buffer != NULL) {
541 gBS->FreePool (Buffer);
542 }
543 SmmFreePages (DstBuffer, PageCount);
544 return Status;
545 }
546
547 //
548 // Flush the instruction cache so the image data are written before we execute it
549 //
550 InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);
551
552 //
553 // Save Image EntryPoint in DriverEntry
554 //
555 DriverEntry->ImageEntryPoint = ImageContext.EntryPoint;
556 DriverEntry->ImageBuffer = DstBuffer;
557 DriverEntry->NumberOfPage = PageCount;
558
559 //
560 // Allocate a Loaded Image Protocol in EfiBootServicesData
561 //
562 Status = gBS->AllocatePool (EfiBootServicesData, sizeof (EFI_LOADED_IMAGE_PROTOCOL), (VOID **)&DriverEntry->LoadedImage);
563 if (EFI_ERROR (Status)) {
564 if (Buffer != NULL) {
565 gBS->FreePool (Buffer);
566 }
567 SmmFreePages (DstBuffer, PageCount);
568 return Status;
569 }
570
571 //
572 // Fill in the remaining fields of the Loaded Image Protocol instance.
573 // Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
574 //
575 DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
576 DriverEntry->LoadedImage->ParentHandle = gSmmCorePrivate->SmmIplImageHandle;
577 DriverEntry->LoadedImage->SystemTable = gST;
578 DriverEntry->LoadedImage->DeviceHandle = DeviceHandle;
579
580 //
581 // Make an EfiBootServicesData buffer copy of FilePath
582 //
583 Status = gBS->AllocatePool (EfiBootServicesData, GetDevicePathSize (FilePath), (VOID **)&DriverEntry->LoadedImage->FilePath);
584 if (EFI_ERROR (Status)) {
585 if (Buffer != NULL) {
586 gBS->FreePool (Buffer);
587 }
588 SmmFreePages (DstBuffer, PageCount);
589 return Status;
590 }
591 CopyMem (DriverEntry->LoadedImage->FilePath, FilePath, GetDevicePathSize (FilePath));
592
593 DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
594 DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize;
595 DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
596 DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
597
598 //
599 // Create a new image handle in the UEFI handle database for the SMM Driver
600 //
601 DriverEntry->ImageHandle = NULL;
602 Status = gBS->InstallMultipleProtocolInterfaces (
603 &DriverEntry->ImageHandle,
604 &gEfiLoadedImageProtocolGuid, DriverEntry->LoadedImage,
605 NULL
606 );
607
608 PERF_START (DriverEntry->ImageHandle, "LoadImage:", NULL, Tick);
609 PERF_END (DriverEntry->ImageHandle, "LoadImage:", NULL, 0);
610
611 //
612 // Print the load address and the PDB file name if it is available
613 //
614
615 DEBUG_CODE_BEGIN ();
616
617 UINTN Index;
618 UINTN StartIndex;
619 CHAR8 EfiFileName[256];
620
621
622 DEBUG ((DEBUG_INFO | DEBUG_LOAD,
623 "Loading SMM driver at 0x%11p EntryPoint=0x%11p ",
624 (VOID *)(UINTN) ImageContext.ImageAddress,
625 FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));
626
627
628 //
629 // Print Module Name by Pdb file path.
630 // Windows and Unix style file path are all trimmed correctly.
631 //
632 if (ImageContext.PdbPointer != NULL) {
633 StartIndex = 0;
634 for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
635 if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
636 StartIndex = Index + 1;
637 }
638 }
639 //
640 // Copy the PDB file name to our temporary string, and replace .pdb with .efi
641 // The PDB file name is limited in the range of 0~255.
642 // If the length is bigger than 255, trim the redudant characters to avoid overflow in array boundary.
643 //
644 for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
645 EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
646 if (EfiFileName[Index] == 0) {
647 EfiFileName[Index] = '.';
648 }
649 if (EfiFileName[Index] == '.') {
650 EfiFileName[Index + 1] = 'e';
651 EfiFileName[Index + 2] = 'f';
652 EfiFileName[Index + 3] = 'i';
653 EfiFileName[Index + 4] = 0;
654 break;
655 }
656 }
657
658 if (Index == sizeof (EfiFileName) - 4) {
659 EfiFileName[Index] = 0;
660 }
661 DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName)); // &Image->ImageContext.PdbPointer[StartIndex]));
662 }
663 DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
664
665 DEBUG_CODE_END ();
666
667 //
668 // Free buffer allocated by Fv->ReadSection.
669 //
670 // The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
671 // used the UEFI Boot Services AllocatePool() function
672 //
673 Status = gBS->FreePool(Buffer);
674 return Status;
675 }
676
677 /**
678 Preprocess dependency expression and update DriverEntry to reflect the
679 state of Before and After dependencies. If DriverEntry->Before
680 or DriverEntry->After is set it will never be cleared.
681
682 @param DriverEntry DriverEntry element to update .
683
684 @retval EFI_SUCCESS It always works.
685
686 **/
687 EFI_STATUS
688 SmmPreProcessDepex (
689 IN EFI_SMM_DRIVER_ENTRY *DriverEntry
690 )
691 {
692 UINT8 *Iterator;
693
694 Iterator = DriverEntry->Depex;
695 DriverEntry->Dependent = TRUE;
696
697 if (*Iterator == EFI_DEP_BEFORE) {
698 DriverEntry->Before = TRUE;
699 } else if (*Iterator == EFI_DEP_AFTER) {
700 DriverEntry->After = TRUE;
701 }
702
703 if (DriverEntry->Before || DriverEntry->After) {
704 CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
705 }
706
707 return EFI_SUCCESS;
708 }
709
710 /**
711 Read Depex and pre-process the Depex for Before and After. If Section Extraction
712 protocol returns an error via ReadSection defer the reading of the Depex.
713
714 @param DriverEntry Driver to work on.
715
716 @retval EFI_SUCCESS Depex read and preprossesed
717 @retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error
718 and Depex reading needs to be retried.
719 @retval Error DEPEX not found.
720
721 **/
722 EFI_STATUS
723 SmmGetDepexSectionAndPreProccess (
724 IN EFI_SMM_DRIVER_ENTRY *DriverEntry
725 )
726 {
727 EFI_STATUS Status;
728 EFI_SECTION_TYPE SectionType;
729 UINT32 AuthenticationStatus;
730 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
731
732 Fv = DriverEntry->Fv;
733
734 //
735 // Grab Depex info, it will never be free'ed.
736 // (Note: DriverEntry->Depex is in DXE memory)
737 //
738 SectionType = EFI_SECTION_SMM_DEPEX;
739 Status = Fv->ReadSection (
740 DriverEntry->Fv,
741 &DriverEntry->FileName,
742 SectionType,
743 0,
744 &DriverEntry->Depex,
745 (UINTN *)&DriverEntry->DepexSize,
746 &AuthenticationStatus
747 );
748 if (EFI_ERROR (Status)) {
749 if (Status == EFI_PROTOCOL_ERROR) {
750 //
751 // The section extraction protocol failed so set protocol error flag
752 //
753 DriverEntry->DepexProtocolError = TRUE;
754 } else {
755 //
756 // If no Depex assume depend on all architectural protocols
757 //
758 DriverEntry->Depex = NULL;
759 DriverEntry->Dependent = TRUE;
760 DriverEntry->DepexProtocolError = FALSE;
761 }
762 } else {
763 //
764 // Set Before and After state information based on Depex
765 // Driver will be put in Dependent state
766 //
767 SmmPreProcessDepex (DriverEntry);
768 DriverEntry->DepexProtocolError = FALSE;
769 }
770
771 return Status;
772 }
773
774 /**
775 This is the main Dispatcher for SMM and it exits when there are no more
776 drivers to run. Drain the mScheduledQueue and load and start a PE
777 image for each driver. Search the mDiscoveredList to see if any driver can
778 be placed on the mScheduledQueue. If no drivers are placed on the
779 mScheduledQueue exit the function.
780
781 @retval EFI_SUCCESS All of the SMM Drivers that could be dispatched
782 have been run and the SMM Entry Point has been
783 registered.
784 @retval EFI_NOT_READY The SMM Driver that registered the SMM Entry Point
785 was just dispatched.
786 @retval EFI_NOT_FOUND There are no SMM Drivers available to be dispatched.
787 @retval EFI_ALREADY_STARTED The SMM Dispatcher is already running
788
789 **/
790 EFI_STATUS
791 SmmDispatcher (
792 VOID
793 )
794 {
795 EFI_STATUS Status;
796 LIST_ENTRY *Link;
797 EFI_SMM_DRIVER_ENTRY *DriverEntry;
798 BOOLEAN ReadyToRun;
799 BOOLEAN PreviousSmmEntryPointRegistered;
800
801 if (!gRequestDispatch) {
802 return EFI_NOT_FOUND;
803 }
804
805 if (gDispatcherRunning) {
806 //
807 // If the dispatcher is running don't let it be restarted.
808 //
809 return EFI_ALREADY_STARTED;
810 }
811
812 gDispatcherRunning = TRUE;
813
814 do {
815 //
816 // Drain the Scheduled Queue
817 //
818 while (!IsListEmpty (&mScheduledQueue)) {
819 DriverEntry = CR (
820 mScheduledQueue.ForwardLink,
821 EFI_SMM_DRIVER_ENTRY,
822 ScheduledLink,
823 EFI_SMM_DRIVER_ENTRY_SIGNATURE
824 );
825
826 //
827 // Load the SMM Driver image into memory. If the Driver was transitioned from
828 // Untrused to Scheduled it would have already been loaded so we may need to
829 // skip the LoadImage
830 //
831 if (DriverEntry->ImageHandle == NULL) {
832 Status = SmmLoadImage (DriverEntry);
833
834 //
835 // Update the driver state to reflect that it's been loaded
836 //
837 if (EFI_ERROR (Status)) {
838 //
839 // The SMM Driver could not be loaded, and do not attempt to load or start it again.
840 // Take driver from Scheduled to Initialized.
841 //
842 DriverEntry->Initialized = TRUE;
843 DriverEntry->Scheduled = FALSE;
844 RemoveEntryList (&DriverEntry->ScheduledLink);
845
846 //
847 // If it's an error don't try the StartImage
848 //
849 continue;
850 }
851 }
852
853 DriverEntry->Scheduled = FALSE;
854 DriverEntry->Initialized = TRUE;
855 RemoveEntryList (&DriverEntry->ScheduledLink);
856
857 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
858 EFI_PROGRESS_CODE,
859 EFI_SOFTWARE_SMM_DRIVER | EFI_SW_PC_INIT_BEGIN,
860 &DriverEntry->ImageHandle,
861 sizeof (DriverEntry->ImageHandle)
862 );
863
864 //
865 // Cache state of SmmEntryPointRegistered before calling entry point
866 //
867 PreviousSmmEntryPointRegistered = gSmmCorePrivate->SmmEntryPointRegistered;
868
869 //
870 // For each SMM driver, pass NULL as ImageHandle
871 //
872 PERF_START (DriverEntry->ImageHandle, "StartImage:", NULL, 0);
873 Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)(DriverEntry->ImageHandle, gST);
874 PERF_END (DriverEntry->ImageHandle, "StartImage:", NULL, 0);
875 if (EFI_ERROR(Status)){
876 SmmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
877 }
878
879 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
880 EFI_PROGRESS_CODE,
881 EFI_SOFTWARE_SMM_DRIVER | EFI_SW_PC_INIT_END,
882 &DriverEntry->ImageHandle,
883 sizeof (DriverEntry->ImageHandle)
884 );
885
886 if (!PreviousSmmEntryPointRegistered && gSmmCorePrivate->SmmEntryPointRegistered) {
887 //
888 // Return immediately if the SMM Entry Point was registered by the SMM
889 // Driver that was just dispatched. The SMM IPL will reinvoke the SMM
890 // Core Dispatcher. This is required so SMM Mode may be enabled as soon
891 // as all the dependent SMM Drivers for SMM Mode have been dispatched.
892 // Once the SMM Entry Point has been registered, then SMM Mode will be
893 // used.
894 //
895 gRequestDispatch = TRUE;
896 gDispatcherRunning = FALSE;
897 return EFI_NOT_READY;
898 }
899 }
900
901 //
902 // Search DriverList for items to place on Scheduled Queue
903 //
904 ReadyToRun = FALSE;
905 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
906 DriverEntry = CR (Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
907
908 if (DriverEntry->DepexProtocolError){
909 //
910 // If Section Extraction Protocol did not let the Depex be read before retry the read
911 //
912 Status = SmmGetDepexSectionAndPreProccess (DriverEntry);
913 }
914
915 if (DriverEntry->Dependent) {
916 if (SmmIsSchedulable (DriverEntry)) {
917 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
918 ReadyToRun = TRUE;
919 }
920 }
921 }
922 } while (ReadyToRun);
923
924 //
925 // If there is no more SMM driver to dispatch, stop the dispatch request
926 //
927 gRequestDispatch = FALSE;
928 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
929 DriverEntry = CR (Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
930
931 if (!DriverEntry->Initialized){
932 //
933 // We have SMM driver pending to dispatch
934 //
935 gRequestDispatch = TRUE;
936 break;
937 }
938 }
939
940 gDispatcherRunning = FALSE;
941
942 return EFI_SUCCESS;
943 }
944
945 /**
946 Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
947 must add any driver with a before dependency on InsertedDriverEntry first.
948 You do this by recursively calling this routine. After all the Befores are
949 processed you can add InsertedDriverEntry to the mScheduledQueue.
950 Then you can add any driver with an After dependency on InsertedDriverEntry
951 by recursively calling this routine.
952
953 @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
954
955 **/
956 VOID
957 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
958 IN EFI_SMM_DRIVER_ENTRY *InsertedDriverEntry
959 )
960 {
961 LIST_ENTRY *Link;
962 EFI_SMM_DRIVER_ENTRY *DriverEntry;
963
964 //
965 // Process Before Dependency
966 //
967 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
968 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
969 if (DriverEntry->Before && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
970 DEBUG ((DEBUG_DISPATCH, "Evaluate SMM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
971 DEBUG ((DEBUG_DISPATCH, " BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
972 if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
973 //
974 // Recursively process BEFORE
975 //
976 DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
977 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
978 } else {
979 DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
980 }
981 }
982 }
983
984 //
985 // Convert driver from Dependent to Scheduled state
986 //
987
988 InsertedDriverEntry->Dependent = FALSE;
989 InsertedDriverEntry->Scheduled = TRUE;
990 InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
991
992
993 //
994 // Process After Dependency
995 //
996 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
997 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
998 if (DriverEntry->After && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
999 DEBUG ((DEBUG_DISPATCH, "Evaluate SMM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
1000 DEBUG ((DEBUG_DISPATCH, " AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
1001 if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
1002 //
1003 // Recursively process AFTER
1004 //
1005 DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
1006 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
1007 } else {
1008 DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
1009 }
1010 }
1011 }
1012 }
1013
1014 /**
1015 Return TRUE if the Fv has been processed, FALSE if not.
1016
1017 @param FvHandle The handle of a FV that's being tested
1018
1019 @retval TRUE Fv protocol on FvHandle has been processed
1020 @retval FALSE Fv protocol on FvHandle has not yet been
1021 processed
1022
1023 **/
1024 BOOLEAN
1025 FvHasBeenProcessed (
1026 IN EFI_HANDLE FvHandle
1027 )
1028 {
1029 LIST_ENTRY *Link;
1030 KNOWN_HANDLE *KnownHandle;
1031
1032 for (Link = mFvHandleList.ForwardLink; Link != &mFvHandleList; Link = Link->ForwardLink) {
1033 KnownHandle = CR(Link, KNOWN_HANDLE, Link, KNOWN_HANDLE_SIGNATURE);
1034 if (KnownHandle->Handle == FvHandle) {
1035 return TRUE;
1036 }
1037 }
1038 return FALSE;
1039 }
1040
1041 /**
1042 Remember that Fv protocol on FvHandle has had it's drivers placed on the
1043 mDiscoveredList. This fucntion adds entries on the mFvHandleList. Items are
1044 never removed/freed from the mFvHandleList.
1045
1046 @param FvHandle The handle of a FV that has been processed
1047
1048 **/
1049 VOID
1050 FvIsBeingProcesssed (
1051 IN EFI_HANDLE FvHandle
1052 )
1053 {
1054 KNOWN_HANDLE *KnownHandle;
1055
1056 KnownHandle = AllocatePool (sizeof (KNOWN_HANDLE));
1057 ASSERT (KnownHandle != NULL);
1058
1059 KnownHandle->Signature = KNOWN_HANDLE_SIGNATURE;
1060 KnownHandle->Handle = FvHandle;
1061 InsertTailList (&mFvHandleList, &KnownHandle->Link);
1062 }
1063
1064 /**
1065 Convert FvHandle and DriverName into an EFI device path
1066
1067 @param Fv Fv protocol, needed to read Depex info out of
1068 FLASH.
1069 @param FvHandle Handle for Fv, needed in the
1070 EFI_SMM_DRIVER_ENTRY so that the PE image can be
1071 read out of the FV at a later time.
1072 @param DriverName Name of driver to add to mDiscoveredList.
1073
1074 @return Pointer to device path constructed from FvHandle and DriverName
1075
1076 **/
1077 EFI_DEVICE_PATH_PROTOCOL *
1078 SmmFvToDevicePath (
1079 IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
1080 IN EFI_HANDLE FvHandle,
1081 IN EFI_GUID *DriverName
1082 )
1083 {
1084 EFI_STATUS Status;
1085 EFI_DEVICE_PATH_PROTOCOL *FvDevicePath;
1086 EFI_DEVICE_PATH_PROTOCOL *FileNameDevicePath;
1087
1088 //
1089 // Remember the device path of the FV
1090 //
1091 Status = gBS->HandleProtocol (FvHandle, &gEfiDevicePathProtocolGuid, (VOID **)&FvDevicePath);
1092 if (EFI_ERROR (Status)) {
1093 FileNameDevicePath = NULL;
1094 } else {
1095 //
1096 // Build a device path to the file in the FV to pass into gBS->LoadImage
1097 //
1098 EfiInitializeFwVolDevicepathNode (&mFvDevicePath.File, DriverName);
1099 SetDevicePathEndNode (&mFvDevicePath.End);
1100
1101 //
1102 // Note: FileNameDevicePath is in DXE memory
1103 //
1104 FileNameDevicePath = AppendDevicePath (
1105 FvDevicePath,
1106 (EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath
1107 );
1108 }
1109 return FileNameDevicePath;
1110 }
1111
1112 /**
1113 Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
1114 and initilize any state variables. Read the Depex from the FV and store it
1115 in DriverEntry. Pre-process the Depex to set the Before and After state.
1116 The Discovered list is never free'ed and contains booleans that represent the
1117 other possible SMM driver states.
1118
1119 @param Fv Fv protocol, needed to read Depex info out of
1120 FLASH.
1121 @param FvHandle Handle for Fv, needed in the
1122 EFI_SMM_DRIVER_ENTRY so that the PE image can be
1123 read out of the FV at a later time.
1124 @param DriverName Name of driver to add to mDiscoveredList.
1125
1126 @retval EFI_SUCCESS If driver was added to the mDiscoveredList.
1127 @retval EFI_ALREADY_STARTED The driver has already been started. Only one
1128 DriverName may be active in the system at any one
1129 time.
1130
1131 **/
1132 EFI_STATUS
1133 SmmAddToDriverList (
1134 IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
1135 IN EFI_HANDLE FvHandle,
1136 IN EFI_GUID *DriverName
1137 )
1138 {
1139 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1140
1141 //
1142 // Create the Driver Entry for the list. ZeroPool initializes lots of variables to
1143 // NULL or FALSE.
1144 //
1145 DriverEntry = AllocateZeroPool (sizeof (EFI_SMM_DRIVER_ENTRY));
1146 ASSERT (DriverEntry != NULL);
1147
1148 DriverEntry->Signature = EFI_SMM_DRIVER_ENTRY_SIGNATURE;
1149 CopyGuid (&DriverEntry->FileName, DriverName);
1150 DriverEntry->FvHandle = FvHandle;
1151 DriverEntry->Fv = Fv;
1152 DriverEntry->FvFileDevicePath = SmmFvToDevicePath (Fv, FvHandle, DriverName);
1153
1154 SmmGetDepexSectionAndPreProccess (DriverEntry);
1155
1156 InsertTailList (&mDiscoveredList, &DriverEntry->Link);
1157 gRequestDispatch = TRUE;
1158
1159 return EFI_SUCCESS;
1160 }
1161
1162 /**
1163 This function is the main entry point for an SMM handler dispatch
1164 or communicate-based callback.
1165
1166 Event notification that is fired every time a FV dispatch protocol is added.
1167 More than one protocol may have been added when this event is fired, so you
1168 must loop on SmmLocateHandle () to see how many protocols were added and
1169 do the following to each FV:
1170 If the Fv has already been processed, skip it. If the Fv has not been
1171 processed then mark it as being processed, as we are about to process it.
1172 Read the Fv and add any driver in the Fv to the mDiscoveredList.The
1173 mDiscoveredList is never free'ed and contains variables that define
1174 the other states the SMM driver transitions to..
1175 While you are at it read the A Priori file into memory.
1176 Place drivers in the A Priori list onto the mScheduledQueue.
1177
1178 @param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
1179 @param Context Points to an optional handler context which was specified when the handler was registered.
1180 @param CommBuffer A pointer to a collection of data in memory that will
1181 be conveyed from a non-SMM environment into an SMM environment.
1182 @param CommBufferSize The size of the CommBuffer.
1183
1184 @return Status Code
1185
1186 **/
1187 EFI_STATUS
1188 EFIAPI
1189 SmmDriverDispatchHandler (
1190 IN EFI_HANDLE DispatchHandle,
1191 IN CONST VOID *Context, OPTIONAL
1192 IN OUT VOID *CommBuffer, OPTIONAL
1193 IN OUT UINTN *CommBufferSize OPTIONAL
1194 )
1195 {
1196 EFI_STATUS Status;
1197 UINTN HandleCount;
1198 EFI_HANDLE *HandleBuffer;
1199 EFI_STATUS GetNextFileStatus;
1200 EFI_STATUS SecurityStatus;
1201 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
1202 EFI_DEVICE_PATH_PROTOCOL *FvDevicePath;
1203 EFI_HANDLE FvHandle;
1204 EFI_GUID NameGuid;
1205 UINTN Key;
1206 EFI_FV_FILETYPE Type;
1207 EFI_FV_FILE_ATTRIBUTES Attributes;
1208 UINTN Size;
1209 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1210 EFI_GUID *AprioriFile;
1211 UINTN AprioriEntryCount;
1212 UINTN Index;
1213 LIST_ENTRY *Link;
1214 UINT32 AuthenticationStatus;
1215 UINTN SizeOfBuffer;
1216
1217 HandleBuffer = NULL;
1218 Status = gBS->LocateHandleBuffer (
1219 ByProtocol,
1220 &gEfiFirmwareVolume2ProtocolGuid,
1221 NULL,
1222 &HandleCount,
1223 &HandleBuffer
1224 );
1225 if (EFI_ERROR (Status)) {
1226 return EFI_NOT_FOUND;
1227 }
1228
1229 for (Index = 0; Index < HandleCount; Index++) {
1230 FvHandle = HandleBuffer[Index];
1231
1232 if (FvHasBeenProcessed (FvHandle)) {
1233 //
1234 // This Fv has already been processed so lets skip it!
1235 //
1236 continue;
1237 }
1238
1239 //
1240 // Since we are about to process this Fv mark it as processed.
1241 //
1242 FvIsBeingProcesssed (FvHandle);
1243
1244 Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&Fv);
1245 if (EFI_ERROR (Status)) {
1246 //
1247 // FvHandle must have a Firmware Volume2 Protocol thus we should never get here.
1248 //
1249 ASSERT (FALSE);
1250 continue;
1251 }
1252
1253 Status = gBS->HandleProtocol (FvHandle, &gEfiDevicePathProtocolGuid, (VOID **)&FvDevicePath);
1254 if (EFI_ERROR (Status)) {
1255 //
1256 // The Firmware volume doesn't have device path, can't be dispatched.
1257 //
1258 continue;
1259 }
1260
1261 //
1262 // If the Security Architectural Protocol has not been located yet, then attempt to locate it
1263 //
1264 if (mSecurity == NULL) {
1265 gBS->LocateProtocol (&gEfiSecurityArchProtocolGuid, NULL, (VOID**)&mSecurity);
1266 }
1267
1268 //
1269 // Evaluate the authentication status of the Firmware Volume through
1270 // Security Architectural Protocol
1271 //
1272 if (mSecurity != NULL) {
1273 SecurityStatus = mSecurity->FileAuthenticationState (
1274 mSecurity,
1275 0,
1276 FvDevicePath
1277 );
1278 if (SecurityStatus != EFI_SUCCESS) {
1279 //
1280 // Security check failed. The firmware volume should not be used for any purpose.
1281 //
1282 continue;
1283 }
1284 }
1285
1286 //
1287 // Discover Drivers in FV and add them to the Discovered Driver List.
1288 // Process EFI_FV_FILETYPE_SMM type and then EFI_FV_FILETYPE_COMBINED_SMM_DXE
1289 //
1290 for (Index = 0; Index < sizeof (mSmmFileTypes)/sizeof (EFI_FV_FILETYPE); Index++) {
1291 //
1292 // Initialize the search key
1293 //
1294 Key = 0;
1295 do {
1296 Type = mSmmFileTypes[Index];
1297 GetNextFileStatus = Fv->GetNextFile (
1298 Fv,
1299 &Key,
1300 &Type,
1301 &NameGuid,
1302 &Attributes,
1303 &Size
1304 );
1305 if (!EFI_ERROR (GetNextFileStatus)) {
1306 SmmAddToDriverList (Fv, FvHandle, &NameGuid);
1307 }
1308 } while (!EFI_ERROR (GetNextFileStatus));
1309 }
1310
1311 //
1312 // Read the array of GUIDs from the Apriori file if it is present in the firmware volume
1313 // (Note: AprioriFile is in DXE memory)
1314 //
1315 AprioriFile = NULL;
1316 Status = Fv->ReadSection (
1317 Fv,
1318 &gAprioriGuid,
1319 EFI_SECTION_RAW,
1320 0,
1321 (VOID **)&AprioriFile,
1322 &SizeOfBuffer,
1323 &AuthenticationStatus
1324 );
1325 if (!EFI_ERROR (Status)) {
1326 AprioriEntryCount = SizeOfBuffer / sizeof (EFI_GUID);
1327 } else {
1328 AprioriEntryCount = 0;
1329 }
1330
1331 //
1332 // Put drivers on Apriori List on the Scheduled queue. The Discovered List includes
1333 // drivers not in the current FV and these must be skipped since the a priori list
1334 // is only valid for the FV that it resided in.
1335 //
1336
1337 for (Index = 0; Index < AprioriEntryCount; Index++) {
1338 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
1339 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1340 if (CompareGuid (&DriverEntry->FileName, &AprioriFile[Index]) &&
1341 (FvHandle == DriverEntry->FvHandle)) {
1342 DriverEntry->Dependent = FALSE;
1343 DriverEntry->Scheduled = TRUE;
1344 InsertTailList (&mScheduledQueue, &DriverEntry->ScheduledLink);
1345 DEBUG ((DEBUG_DISPATCH, "Evaluate SMM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
1346 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));
1347 break;
1348 }
1349 }
1350 }
1351
1352 //
1353 // Free data allocated by Fv->ReadSection ()
1354 //
1355 // The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
1356 // used the UEFI Boot Services AllocatePool() function
1357 //
1358 gBS->FreePool (AprioriFile);
1359 }
1360
1361 //
1362 // Execute the SMM Dispatcher on any newly discovered FVs and previously
1363 // discovered SMM drivers that have been discovered but not dispatched.
1364 //
1365 Status = SmmDispatcher ();
1366
1367 //
1368 // Check to see if CommBuffer and CommBufferSize are valid
1369 //
1370 if (CommBuffer != NULL && CommBufferSize != NULL) {
1371 if (*CommBufferSize > 0) {
1372 if (Status == EFI_NOT_READY) {
1373 //
1374 // If a the SMM Core Entry Point was just registered, then set flag to
1375 // request the SMM Dispatcher to be restarted.
1376 //
1377 *(UINT8 *)CommBuffer = COMM_BUFFER_SMM_DISPATCH_RESTART;
1378 } else if (!EFI_ERROR (Status)) {
1379 //
1380 // Set the flag to show that the SMM Dispatcher executed without errors
1381 //
1382 *(UINT8 *)CommBuffer = COMM_BUFFER_SMM_DISPATCH_SUCCESS;
1383 } else {
1384 //
1385 // Set the flag to show that the SMM Dispatcher encountered an error
1386 //
1387 *(UINT8 *)CommBuffer = COMM_BUFFER_SMM_DISPATCH_ERROR;
1388 }
1389 }
1390 }
1391
1392 return EFI_SUCCESS;
1393 }
1394
1395 /**
1396 Traverse the discovered list for any drivers that were discovered but not loaded
1397 because the dependency experessions evaluated to false.
1398
1399 **/
1400 VOID
1401 SmmDisplayDiscoveredNotDispatched (
1402 VOID
1403 )
1404 {
1405 LIST_ENTRY *Link;
1406 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1407
1408 for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
1409 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1410 if (DriverEntry->Dependent) {
1411 DEBUG ((DEBUG_LOAD, "SMM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
1412 }
1413 }
1414 }