]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg/FaultTolerantWriteDxe: implement standalone MM version
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40 #define DNS_MAX_NAME_SIZE 255
41 #define DNS_MAX_MESSAGE_SIZE 512
42
43 //
44 // The address classification
45 //
46 #define IP4_ADDR_CLASSA 1 // Deprecated
47 #define IP4_ADDR_CLASSB 2 // Deprecated
48 #define IP4_ADDR_CLASSC 3 // Deprecated
49 #define IP4_ADDR_CLASSD 4
50 #define IP4_ADDR_CLASSE 5
51
52 #define IP4_MASK_NUM 33
53 #define IP6_PREFIX_NUM 129
54
55 #define IP4_MASK_MAX 32
56 #define IP6_PREFIX_MAX 128
57
58 #define IP6_HOP_BY_HOP 0
59 #define IP6_DESTINATION 60
60 #define IP6_ROUTING 43
61 #define IP6_FRAGMENT 44
62 #define IP6_AH 51
63 #define IP6_ESP 50
64 #define IP6_NO_NEXT_HEADER 59
65
66 #define IP_VERSION_4 4
67 #define IP_VERSION_6 6
68
69 #define IP6_PREFIX_LENGTH 64
70
71 //
72 // DNS QTYPE values
73 //
74 #define DNS_TYPE_A 1
75 #define DNS_TYPE_NS 2
76 #define DNS_TYPE_CNAME 5
77 #define DNS_TYPE_SOA 6
78 #define DNS_TYPE_WKS 11
79 #define DNS_TYPE_PTR 12
80 #define DNS_TYPE_HINFO 13
81 #define DNS_TYPE_MINFO 14
82 #define DNS_TYPE_MX 15
83 #define DNS_TYPE_TXT 16
84 #define DNS_TYPE_AAAA 28
85 #define DNS_TYPE_SRV_RR 33
86 #define DNS_TYPE_AXFR 252
87 #define DNS_TYPE_MAILB 253
88 #define DNS_TYPE_ANY 255
89
90 //
91 // DNS QCLASS values
92 //
93 #define DNS_CLASS_INET 1
94 #define DNS_CLASS_CH 3
95 #define DNS_CLASS_HS 4
96 #define DNS_CLASS_ANY 255
97
98 //
99 // Number of 100ns units time Interval for network media state detect
100 //
101 #define MEDIA_STATE_DETECT_TIME_INTERVAL 1000000U
102
103
104 #pragma pack(1)
105
106 //
107 // Ethernet head definition
108 //
109 typedef struct {
110 UINT8 DstMac [NET_ETHER_ADDR_LEN];
111 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
112 UINT16 EtherType;
113 } ETHER_HEAD;
114
115 //
116 // 802.1Q VLAN Tag Control Information
117 //
118 typedef union {
119 struct {
120 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
121 UINT16 Cfi : 1; // Canonical Format Indicator
122 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
123 } Bits;
124 UINT16 Uint16;
125 } VLAN_TCI;
126
127 #define VLAN_TCI_CFI_CANONICAL_MAC 0
128 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
129
130 //
131 // The EFI_IP4_HEADER is hard to use because the source and
132 // destination address are defined as EFI_IPv4_ADDRESS, which
133 // is a structure. Two structures can't be compared or masked
134 // directly. This is why there is an internal representation.
135 //
136 typedef struct {
137 UINT8 HeadLen : 4;
138 UINT8 Ver : 4;
139 UINT8 Tos;
140 UINT16 TotalLen;
141 UINT16 Id;
142 UINT16 Fragment;
143 UINT8 Ttl;
144 UINT8 Protocol;
145 UINT16 Checksum;
146 IP4_ADDR Src;
147 IP4_ADDR Dst;
148 } IP4_HEAD;
149
150
151 //
152 // ICMP head definition. Each ICMP message is categorized as either an error
153 // message or query message. Two message types have their own head format.
154 //
155 typedef struct {
156 UINT8 Type;
157 UINT8 Code;
158 UINT16 Checksum;
159 } IP4_ICMP_HEAD;
160
161 typedef struct {
162 IP4_ICMP_HEAD Head;
163 UINT32 Fourth; // 4th filed of the head, it depends on Type.
164 IP4_HEAD IpHead;
165 } IP4_ICMP_ERROR_HEAD;
166
167 typedef struct {
168 IP4_ICMP_HEAD Head;
169 UINT16 Id;
170 UINT16 Seq;
171 } IP4_ICMP_QUERY_HEAD;
172
173 typedef struct {
174 UINT8 Type;
175 UINT8 Code;
176 UINT16 Checksum;
177 } IP6_ICMP_HEAD;
178
179 typedef struct {
180 IP6_ICMP_HEAD Head;
181 UINT32 Fourth;
182 EFI_IP6_HEADER IpHead;
183 } IP6_ICMP_ERROR_HEAD;
184
185 typedef struct {
186 IP6_ICMP_HEAD Head;
187 UINT32 Fourth;
188 } IP6_ICMP_INFORMATION_HEAD;
189
190 //
191 // UDP header definition
192 //
193 typedef struct {
194 UINT16 SrcPort;
195 UINT16 DstPort;
196 UINT16 Length;
197 UINT16 Checksum;
198 } EFI_UDP_HEADER;
199
200 //
201 // TCP header definition
202 //
203 typedef struct {
204 TCP_PORTNO SrcPort;
205 TCP_PORTNO DstPort;
206 TCP_SEQNO Seq;
207 TCP_SEQNO Ack;
208 UINT8 Res : 4;
209 UINT8 HeadLen : 4;
210 UINT8 Flag;
211 UINT16 Wnd;
212 UINT16 Checksum;
213 UINT16 Urg;
214 } TCP_HEAD;
215
216 #pragma pack()
217
218 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
219 (CompareMem ((pMac1), (pMac2), Len) == 0)
220
221 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
222 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
223
224 #define NTOHL(x) SwapBytes32 (x)
225
226 #define HTONL(x) NTOHL(x)
227
228 #define NTOHS(x) SwapBytes16 (x)
229
230 #define HTONS(x) NTOHS(x)
231 #define NTOHLL(x) SwapBytes64 (x)
232 #define HTONLL(x) NTOHLL(x)
233 #define NTOHLLL(x) Ip6Swap128 (x)
234 #define HTONLLL(x) NTOHLLL(x)
235
236 //
237 // Test the IP's attribute, All the IPs are in host byte order.
238 //
239 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
240 #define IP4_IS_UNSPECIFIED(Ip) ((Ip) == 0)
241 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
242 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
243 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))
244
245 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
246
247 //
248 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
249 //
250 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
251 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
252 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
253
254 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
255
256 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
257 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
258 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
259
260 //
261 // The debug level definition. This value is also used as the
262 // syslog's severity level. Don't change it.
263 //
264 #define NETDEBUG_LEVEL_TRACE 5
265 #define NETDEBUG_LEVEL_WARNING 4
266 #define NETDEBUG_LEVEL_ERROR 3
267
268 //
269 // Network debug message is sent out as syslog packet.
270 //
271 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
272 #define NET_SYSLOG_PACKET_LEN 512
273 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
274 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
275
276 //
277 // The debug output expects the ASCII format string, Use %a to print ASCII
278 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
279 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
280 //
281 #define NET_DEBUG_TRACE(Module, PrintArg) \
282 NetDebugOutput ( \
283 NETDEBUG_LEVEL_TRACE, \
284 Module, \
285 __FILE__, \
286 __LINE__, \
287 NetDebugASPrint PrintArg \
288 )
289
290 #define NET_DEBUG_WARNING(Module, PrintArg) \
291 NetDebugOutput ( \
292 NETDEBUG_LEVEL_WARNING, \
293 Module, \
294 __FILE__, \
295 __LINE__, \
296 NetDebugASPrint PrintArg \
297 )
298
299 #define NET_DEBUG_ERROR(Module, PrintArg) \
300 NetDebugOutput ( \
301 NETDEBUG_LEVEL_ERROR, \
302 Module, \
303 __FILE__, \
304 __LINE__, \
305 NetDebugASPrint PrintArg \
306 )
307
308 /**
309 Allocate a buffer, then format the message to it. This is a
310 help function for the NET_DEBUG_XXX macros. The PrintArg of
311 these macros treats the variable length print parameters as a
312 single parameter, and pass it to the NetDebugASPrint. For
313 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
314 if extracted to:
315
316 NetDebugOutput (
317 NETDEBUG_LEVEL_TRACE,
318 "Tcp",
319 __FILE__,
320 __LINE__,
321 NetDebugASPrint ("State transit to %a\n", Name)
322 )
323
324 @param Format The ASCII format string.
325 @param ... The variable length parameter whose format is determined
326 by the Format string.
327
328 @return The buffer containing the formatted message,
329 or NULL if memory allocation failed.
330
331 **/
332 CHAR8 *
333 EFIAPI
334 NetDebugASPrint (
335 IN CHAR8 *Format,
336 ...
337 );
338
339 /**
340 Builds an UDP4 syslog packet and send it using SNP.
341
342 This function will locate a instance of SNP then send the message through it.
343 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
344
345 @param Level The severity level of the message.
346 @param Module The Module that generates the log.
347 @param File The file that contains the log.
348 @param Line The exact line that contains the log.
349 @param Message The user message to log.
350
351 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
352 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
353 @retval EFI_SUCCESS The log is discard because that it is more verbose
354 than the mNetDebugLevelMax. Or, it has been sent out.
355 **/
356 EFI_STATUS
357 EFIAPI
358 NetDebugOutput (
359 IN UINT32 Level,
360 IN UINT8 *Module,
361 IN UINT8 *File,
362 IN UINT32 Line,
363 IN UINT8 *Message
364 );
365
366
367 /**
368 Return the length of the mask.
369
370 Return the length of the mask. Valid values are 0 to 32.
371 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
372 NetMask is in the host byte order.
373
374 @param[in] NetMask The netmask to get the length from.
375
376 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
377
378 **/
379 INTN
380 EFIAPI
381 NetGetMaskLength (
382 IN IP4_ADDR NetMask
383 );
384
385 /**
386 Return the class of the IP address, such as class A, B, C.
387 Addr is in host byte order.
388
389 [ATTENTION]
390 Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.
391 Caller of this function could only check the returned value against
392 IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.
393
394 The address of class A starts with 0.
395 If the address belong to class A, return IP4_ADDR_CLASSA.
396 The address of class B starts with 10.
397 If the address belong to class B, return IP4_ADDR_CLASSB.
398 The address of class C starts with 110.
399 If the address belong to class C, return IP4_ADDR_CLASSC.
400 The address of class D starts with 1110.
401 If the address belong to class D, return IP4_ADDR_CLASSD.
402 The address of class E starts with 1111.
403 If the address belong to class E, return IP4_ADDR_CLASSE.
404
405
406 @param[in] Addr The address to get the class from.
407
408 @return IP address class, such as IP4_ADDR_CLASSA.
409
410 **/
411 INTN
412 EFIAPI
413 NetGetIpClass (
414 IN IP4_ADDR Addr
415 );
416
417 /**
418 Check whether the IP is a valid unicast address according to
419 the netmask.
420
421 ASSERT if NetMask is zero.
422
423 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address,
424 except when the originator is one of the endpoints of a point-to-point link with a 31-bit
425 mask (RFC3021), or a 32bit NetMask (all 0xFF) is used for special network environment (e.g.
426 PPP link).
427
428 @param[in] Ip The IP to check against.
429 @param[in] NetMask The mask of the IP.
430
431 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
432
433 **/
434 BOOLEAN
435 EFIAPI
436 NetIp4IsUnicast (
437 IN IP4_ADDR Ip,
438 IN IP4_ADDR NetMask
439 );
440
441 /**
442 Check whether the incoming IPv6 address is a valid unicast address.
443
444 ASSERT if Ip6 is NULL.
445
446 If the address is a multicast address has binary 0xFF at the start, it is not
447 a valid unicast address. If the address is unspecified ::, it is not a valid
448 unicast address to be assigned to any node. If the address is loopback address
449 ::1, it is also not a valid unicast address to be assigned to any physical
450 interface.
451
452 @param[in] Ip6 The IPv6 address to check against.
453
454 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
455
456 **/
457 BOOLEAN
458 EFIAPI
459 NetIp6IsValidUnicast (
460 IN EFI_IPv6_ADDRESS *Ip6
461 );
462
463
464 /**
465 Check whether the incoming Ipv6 address is the unspecified address or not.
466
467 ASSERT if Ip6 is NULL.
468
469 @param[in] Ip6 - Ip6 address, in network order.
470
471 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
472 @retval FALSE - The incoming Ipv6 address is not the unspecified address
473
474 **/
475 BOOLEAN
476 EFIAPI
477 NetIp6IsUnspecifiedAddr (
478 IN EFI_IPv6_ADDRESS *Ip6
479 );
480
481 /**
482 Check whether the incoming Ipv6 address is a link-local address.
483
484 ASSERT if Ip6 is NULL.
485
486 @param[in] Ip6 - Ip6 address, in network order.
487
488 @retval TRUE - The incoming Ipv6 address is a link-local address.
489 @retval FALSE - The incoming Ipv6 address is not a link-local address.
490
491 **/
492 BOOLEAN
493 EFIAPI
494 NetIp6IsLinkLocalAddr (
495 IN EFI_IPv6_ADDRESS *Ip6
496 );
497
498 /**
499 Check whether the Ipv6 address1 and address2 are on the connected network.
500
501 ASSERT if Ip1 or Ip2 is NULL.
502 ASSERT if PrefixLength exceeds or equals to IP6_PREFIX_MAX.
503
504 @param[in] Ip1 - Ip6 address1, in network order.
505 @param[in] Ip2 - Ip6 address2, in network order.
506 @param[in] PrefixLength - The prefix length of the checking net.
507
508 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
509 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
510
511 **/
512 BOOLEAN
513 EFIAPI
514 NetIp6IsNetEqual (
515 EFI_IPv6_ADDRESS *Ip1,
516 EFI_IPv6_ADDRESS *Ip2,
517 UINT8 PrefixLength
518 );
519
520 /**
521 Switches the endianess of an IPv6 address.
522
523 ASSERT if Ip6 is NULL.
524
525 This function swaps the bytes in a 128-bit IPv6 address to switch the value
526 from little endian to big endian or vice versa. The byte swapped value is
527 returned.
528
529 @param Ip6 Points to an IPv6 address.
530
531 @return The byte swapped IPv6 address.
532
533 **/
534 EFI_IPv6_ADDRESS *
535 EFIAPI
536 Ip6Swap128 (
537 EFI_IPv6_ADDRESS *Ip6
538 );
539
540 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
541
542
543 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
544
545 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
546 #define NET_IS_HEX(Ch) ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))
547 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
548 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
549 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
550
551 #define TICKS_PER_MS 10000U
552 #define TICKS_PER_SECOND 10000000U
553
554 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
555
556 /**
557 Extract a UINT32 from a byte stream.
558
559 ASSERT if Buf is NULL.
560
561 This function copies a UINT32 from a byte stream, and then converts it from Network
562 byte order to host byte order. Use this function to avoid alignment error.
563
564 @param[in] Buf The buffer to extract the UINT32.
565
566 @return The UINT32 extracted.
567
568 **/
569 UINT32
570 EFIAPI
571 NetGetUint32 (
572 IN UINT8 *Buf
573 );
574
575 /**
576 Puts a UINT32 into the byte stream in network byte order.
577
578 ASSERT if Buf is NULL.
579
580 Converts a UINT32 from host byte order to network byte order, then copies it to the
581 byte stream.
582
583 @param[in, out] Buf The buffer in which to put the UINT32.
584 @param[in] Data The data to be converted and put into the byte stream.
585
586 **/
587 VOID
588 EFIAPI
589 NetPutUint32 (
590 IN OUT UINT8 *Buf,
591 IN UINT32 Data
592 );
593
594 /**
595 Initialize a random seed using current time and monotonic count.
596
597 Get current time and monotonic count first. Then initialize a random seed
598 based on some basic mathematics operation on the hour, day, minute, second,
599 nanosecond and year of the current time and the monotonic count value.
600
601 @return The random seed initialized with current time.
602
603 **/
604 UINT32
605 EFIAPI
606 NetRandomInitSeed (
607 VOID
608 );
609
610
611 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
612 BASE_CR(Entry, Type, Field)
613
614 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
615 CR(Entry, Type, Field, Sig)
616
617 //
618 // Iterate through the double linked list. It is NOT delete safe
619 //
620 #define NET_LIST_FOR_EACH(Entry, ListHead) \
621 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
622
623 //
624 // Iterate through the double linked list. This is delete-safe.
625 // Don't touch NextEntry. Also, don't use this macro if list
626 // entries other than the Entry may be deleted when processing
627 // the current Entry.
628 //
629 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
630 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
631 Entry != (ListHead); \
632 Entry = NextEntry, NextEntry = Entry->ForwardLink \
633 )
634
635 //
636 // Make sure the list isn't empty before getting the first/last record.
637 //
638 #define NET_LIST_HEAD(ListHead, Type, Field) \
639 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
640
641 #define NET_LIST_TAIL(ListHead, Type, Field) \
642 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
643
644
645 /**
646 Remove the first node entry on the list, and return the removed node entry.
647
648 Removes the first node entry from a doubly linked list. It is up to the caller of
649 this function to release the memory used by the first node, if that is required. On
650 exit, the removed node is returned.
651
652 If Head is NULL, then ASSERT().
653 If Head was not initialized, then ASSERT().
654 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
655 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
656 then ASSERT().
657
658 @param[in, out] Head The list header.
659
660 @return The first node entry that is removed from the list, NULL if the list is empty.
661
662 **/
663 LIST_ENTRY *
664 EFIAPI
665 NetListRemoveHead (
666 IN OUT LIST_ENTRY *Head
667 );
668
669 /**
670 Remove the last node entry on the list and return the removed node entry.
671
672 Removes the last node entry from a doubly linked list. It is up to the caller of
673 this function to release the memory used by the first node, if that is required. On
674 exit, the removed node is returned.
675
676 If Head is NULL, then ASSERT().
677 If Head was not initialized, then ASSERT().
678 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
679 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
680 then ASSERT().
681
682 @param[in, out] Head The list head.
683
684 @return The last node entry that is removed from the list, NULL if the list is empty.
685
686 **/
687 LIST_ENTRY *
688 EFIAPI
689 NetListRemoveTail (
690 IN OUT LIST_ENTRY *Head
691 );
692
693 /**
694 Insert a new node entry after a designated node entry of a doubly linked list.
695
696 ASSERT if PrevEntry or NewEntry is NULL.
697
698 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
699 of the doubly linked list.
700
701 @param[in, out] PrevEntry The entry after which to insert.
702 @param[in, out] NewEntry The new entry to insert.
703
704 **/
705 VOID
706 EFIAPI
707 NetListInsertAfter (
708 IN OUT LIST_ENTRY *PrevEntry,
709 IN OUT LIST_ENTRY *NewEntry
710 );
711
712 /**
713 Insert a new node entry before a designated node entry of a doubly linked list.
714
715 ASSERT if PostEntry or NewEntry is NULL.
716
717 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
718 of the doubly linked list.
719
720 @param[in, out] PostEntry The entry to insert before.
721 @param[in, out] NewEntry The new entry to insert.
722
723 **/
724 VOID
725 EFIAPI
726 NetListInsertBefore (
727 IN OUT LIST_ENTRY *PostEntry,
728 IN OUT LIST_ENTRY *NewEntry
729 );
730
731 /**
732 Callback function which provided by user to remove one node in NetDestroyLinkList process.
733
734 @param[in] Entry The entry to be removed.
735 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
736
737 @retval EFI_SUCCESS The entry has been removed successfully.
738 @retval Others Fail to remove the entry.
739
740 **/
741 typedef
742 EFI_STATUS
743 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
744 IN LIST_ENTRY *Entry,
745 IN VOID *Context OPTIONAL
746 );
747
748 /**
749 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
750
751 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
752 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
753 has been removed from the list or not.
754 If it has been removed, then restart the traversal from the head.
755 If it hasn't been removed, then continue with the next node directly.
756 This function will end the iterate and return the CallBack's last return value if error happens,
757 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
758
759 @param[in] List The head of the list.
760 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
761 @param[in] Context Pointer to the callback function's context: corresponds to the
762 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
763 @param[out] ListLength The length of the link list if the function returns successfully.
764
765 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
766 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
767 @retval Others Return the CallBack's last return value.
768
769 **/
770 EFI_STATUS
771 EFIAPI
772 NetDestroyLinkList (
773 IN LIST_ENTRY *List,
774 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
775 IN VOID *Context, OPTIONAL
776 OUT UINTN *ListLength OPTIONAL
777 );
778
779 /**
780 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
781
782 @param[in] Handle Handle to be checked.
783 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
784 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
785 if NumberOfChildren is 0.
786
787 @retval TRUE Found the input Handle in ChildHandleBuffer.
788 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
789
790 **/
791 BOOLEAN
792 EFIAPI
793 NetIsInHandleBuffer (
794 IN EFI_HANDLE Handle,
795 IN UINTN NumberOfChildren,
796 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
797 );
798
799 //
800 // Object container: EFI network stack spec defines various kinds of
801 // tokens. The drivers can share code to manage those objects.
802 //
803 typedef struct {
804 LIST_ENTRY Link;
805 VOID *Key;
806 VOID *Value;
807 } NET_MAP_ITEM;
808
809 typedef struct {
810 LIST_ENTRY Used;
811 LIST_ENTRY Recycled;
812 UINTN Count;
813 } NET_MAP;
814
815 #define NET_MAP_INCREAMENT 64
816
817 /**
818 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
819
820 Initialize the forward and backward links of two head nodes donated by Map->Used
821 and Map->Recycled of two doubly linked lists.
822 Initializes the count of the <Key, Value> pairs in the netmap to zero.
823
824 If Map is NULL, then ASSERT().
825 If the address of Map->Used is NULL, then ASSERT().
826 If the address of Map->Recycled is NULl, then ASSERT().
827
828 @param[in, out] Map The netmap to initialize.
829
830 **/
831 VOID
832 EFIAPI
833 NetMapInit (
834 IN OUT NET_MAP *Map
835 );
836
837 /**
838 To clean up the netmap, that is, release allocated memories.
839
840 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
841 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
842 The number of the <Key, Value> pairs in the netmap is set to zero.
843
844 If Map is NULL, then ASSERT().
845
846 @param[in, out] Map The netmap to clean up.
847
848 **/
849 VOID
850 EFIAPI
851 NetMapClean (
852 IN OUT NET_MAP *Map
853 );
854
855 /**
856 Test whether the netmap is empty and return true if it is.
857
858 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
859
860 If Map is NULL, then ASSERT().
861
862 @param[in] Map The net map to test.
863
864 @return TRUE if the netmap is empty, otherwise FALSE.
865
866 **/
867 BOOLEAN
868 EFIAPI
869 NetMapIsEmpty (
870 IN NET_MAP *Map
871 );
872
873 /**
874 Return the number of the <Key, Value> pairs in the netmap.
875
876 If Map is NULL, then ASSERT().
877
878 @param[in] Map The netmap to get the entry number.
879
880 @return The entry number in the netmap.
881
882 **/
883 UINTN
884 EFIAPI
885 NetMapGetCount (
886 IN NET_MAP *Map
887 );
888
889 /**
890 Allocate an item to save the <Key, Value> pair to the head of the netmap.
891
892 Allocate an item to save the <Key, Value> pair and add corresponding node entry
893 to the beginning of the Used doubly linked list. The number of the <Key, Value>
894 pairs in the netmap increase by 1.
895
896 If Map is NULL, then ASSERT().
897 If Key is NULL, then ASSERT().
898
899 @param[in, out] Map The netmap to insert into.
900 @param[in] Key The user's key.
901 @param[in] Value The user's value for the key.
902
903 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
904 @retval EFI_SUCCESS The item is inserted to the head.
905
906 **/
907 EFI_STATUS
908 EFIAPI
909 NetMapInsertHead (
910 IN OUT NET_MAP *Map,
911 IN VOID *Key,
912 IN VOID *Value OPTIONAL
913 );
914
915 /**
916 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
917
918 Allocate an item to save the <Key, Value> pair and add corresponding node entry
919 to the tail of the Used doubly linked list. The number of the <Key, Value>
920 pairs in the netmap increase by 1.
921
922 If Map is NULL, then ASSERT().
923 If Key is NULL, then ASSERT().
924
925 @param[in, out] Map The netmap to insert into.
926 @param[in] Key The user's key.
927 @param[in] Value The user's value for the key.
928
929 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
930 @retval EFI_SUCCESS The item is inserted to the tail.
931
932 **/
933 EFI_STATUS
934 EFIAPI
935 NetMapInsertTail (
936 IN OUT NET_MAP *Map,
937 IN VOID *Key,
938 IN VOID *Value OPTIONAL
939 );
940
941 /**
942 Finds the key in the netmap and returns the point to the item containing the Key.
943
944 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
945 item with the key to search. It returns the point to the item contains the Key if found.
946
947 If Map is NULL, then ASSERT().
948 If Key is NULL, then ASSERT().
949
950 @param[in] Map The netmap to search within.
951 @param[in] Key The key to search.
952
953 @return The point to the item contains the Key, or NULL if Key isn't in the map.
954
955 **/
956 NET_MAP_ITEM *
957 EFIAPI
958 NetMapFindKey (
959 IN NET_MAP *Map,
960 IN VOID *Key
961 );
962
963 /**
964 Remove the node entry of the item from the netmap and return the key of the removed item.
965
966 Remove the node entry of the item from the Used doubly linked list of the netmap.
967 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
968 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
969 Value will point to the value of the item. It returns the key of the removed item.
970
971 If Map is NULL, then ASSERT().
972 If Item is NULL, then ASSERT().
973 if item in not in the netmap, then ASSERT().
974
975 @param[in, out] Map The netmap to remove the item from.
976 @param[in, out] Item The item to remove.
977 @param[out] Value The variable to receive the value if not NULL.
978
979 @return The key of the removed item.
980
981 **/
982 VOID *
983 EFIAPI
984 NetMapRemoveItem (
985 IN OUT NET_MAP *Map,
986 IN OUT NET_MAP_ITEM *Item,
987 OUT VOID **Value OPTIONAL
988 );
989
990 /**
991 Remove the first node entry on the netmap and return the key of the removed item.
992
993 Remove the first node entry from the Used doubly linked list of the netmap.
994 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
995 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
996 parameter Value will point to the value of the item. It returns the key of the removed item.
997
998 If Map is NULL, then ASSERT().
999 If the Used doubly linked list is empty, then ASSERT().
1000
1001 @param[in, out] Map The netmap to remove the head from.
1002 @param[out] Value The variable to receive the value if not NULL.
1003
1004 @return The key of the item removed.
1005
1006 **/
1007 VOID *
1008 EFIAPI
1009 NetMapRemoveHead (
1010 IN OUT NET_MAP *Map,
1011 OUT VOID **Value OPTIONAL
1012 );
1013
1014 /**
1015 Remove the last node entry on the netmap and return the key of the removed item.
1016
1017 Remove the last node entry from the Used doubly linked list of the netmap.
1018 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
1019 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
1020 parameter Value will point to the value of the item. It returns the key of the removed item.
1021
1022 If Map is NULL, then ASSERT().
1023 If the Used doubly linked list is empty, then ASSERT().
1024
1025 @param[in, out] Map The netmap to remove the tail from.
1026 @param[out] Value The variable to receive the value if not NULL.
1027
1028 @return The key of the item removed.
1029
1030 **/
1031 VOID *
1032 EFIAPI
1033 NetMapRemoveTail (
1034 IN OUT NET_MAP *Map,
1035 OUT VOID **Value OPTIONAL
1036 );
1037
1038 typedef
1039 EFI_STATUS
1040 (EFIAPI *NET_MAP_CALLBACK) (
1041 IN NET_MAP *Map,
1042 IN NET_MAP_ITEM *Item,
1043 IN VOID *Arg
1044 );
1045
1046 /**
1047 Iterate through the netmap and call CallBack for each item.
1048
1049 It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
1050 from the loop. It returns the CallBack's last return value. This function is
1051 delete safe for the current item.
1052
1053 If Map is NULL, then ASSERT().
1054 If CallBack is NULL, then ASSERT().
1055
1056 @param[in] Map The Map to iterate through.
1057 @param[in] CallBack The callback function to call for each item.
1058 @param[in] Arg The opaque parameter to the callback.
1059
1060 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
1061 returns EFI_SUCCESS.
1062 @retval Others It returns the CallBack's last return value.
1063
1064 **/
1065 EFI_STATUS
1066 EFIAPI
1067 NetMapIterate (
1068 IN NET_MAP *Map,
1069 IN NET_MAP_CALLBACK CallBack,
1070 IN VOID *Arg OPTIONAL
1071 );
1072
1073
1074 //
1075 // Helper functions to implement driver binding and service binding protocols.
1076 //
1077 /**
1078 Create a child of the service that is identified by ServiceBindingGuid.
1079
1080 Get the ServiceBinding Protocol first, then use it to create a child.
1081
1082 If ServiceBindingGuid is NULL, then ASSERT().
1083 If ChildHandle is NULL, then ASSERT().
1084
1085 @param[in] Controller The controller which has the service installed.
1086 @param[in] Image The image handle used to open service.
1087 @param[in] ServiceBindingGuid The service's Guid.
1088 @param[in, out] ChildHandle The handle to receive the created child.
1089
1090 @retval EFI_SUCCESS The child was successfully created.
1091 @retval Others Failed to create the child.
1092
1093 **/
1094 EFI_STATUS
1095 EFIAPI
1096 NetLibCreateServiceChild (
1097 IN EFI_HANDLE Controller,
1098 IN EFI_HANDLE Image,
1099 IN EFI_GUID *ServiceBindingGuid,
1100 IN OUT EFI_HANDLE *ChildHandle
1101 );
1102
1103 /**
1104 Destroy a child of the service that is identified by ServiceBindingGuid.
1105
1106 Get the ServiceBinding Protocol first, then use it to destroy a child.
1107
1108 If ServiceBindingGuid is NULL, then ASSERT().
1109
1110 @param[in] Controller The controller which has the service installed.
1111 @param[in] Image The image handle used to open service.
1112 @param[in] ServiceBindingGuid The service's Guid.
1113 @param[in] ChildHandle The child to destroy.
1114
1115 @retval EFI_SUCCESS The child was destroyed.
1116 @retval Others Failed to destroy the child.
1117
1118 **/
1119 EFI_STATUS
1120 EFIAPI
1121 NetLibDestroyServiceChild (
1122 IN EFI_HANDLE Controller,
1123 IN EFI_HANDLE Image,
1124 IN EFI_GUID *ServiceBindingGuid,
1125 IN EFI_HANDLE ChildHandle
1126 );
1127
1128 /**
1129 Get handle with Simple Network Protocol installed on it.
1130
1131 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1132 If Simple Network Protocol is already installed on the ServiceHandle, the
1133 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1134 try to find its parent handle with SNP installed.
1135
1136 @param[in] ServiceHandle The handle where network service binding protocols are
1137 installed on.
1138 @param[out] Snp The pointer to store the address of the SNP instance.
1139 This is an optional parameter that may be NULL.
1140
1141 @return The SNP handle, or NULL if not found.
1142
1143 **/
1144 EFI_HANDLE
1145 EFIAPI
1146 NetLibGetSnpHandle (
1147 IN EFI_HANDLE ServiceHandle,
1148 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1149 );
1150
1151 /**
1152 Retrieve VLAN ID of a VLAN device handle.
1153
1154 Search VLAN device path node in Device Path of specified ServiceHandle and
1155 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1156 is not a VLAN device handle, and 0 will be returned.
1157
1158 @param[in] ServiceHandle The handle where network service binding protocols are
1159 installed on.
1160
1161 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1162
1163 **/
1164 UINT16
1165 EFIAPI
1166 NetLibGetVlanId (
1167 IN EFI_HANDLE ServiceHandle
1168 );
1169
1170 /**
1171 Find VLAN device handle with specified VLAN ID.
1172
1173 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1174 This function will append VLAN device path node to the parent device path,
1175 and then use LocateDevicePath() to find the correct VLAN device handle.
1176
1177 @param[in] ControllerHandle The handle where network service binding protocols are
1178 installed on.
1179 @param[in] VlanId The configured VLAN ID for the VLAN device.
1180
1181 @return The VLAN device handle, or NULL if not found.
1182
1183 **/
1184 EFI_HANDLE
1185 EFIAPI
1186 NetLibGetVlanHandle (
1187 IN EFI_HANDLE ControllerHandle,
1188 IN UINT16 VlanId
1189 );
1190
1191 /**
1192 Get MAC address associated with the network service handle.
1193
1194 If MacAddress is NULL, then ASSERT().
1195 If AddressSize is NULL, then ASSERT().
1196
1197 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1198 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1199 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1200
1201 @param[in] ServiceHandle The handle where network service binding protocols are
1202 installed on.
1203 @param[out] MacAddress The pointer to store the returned MAC address.
1204 @param[out] AddressSize The length of returned MAC address.
1205
1206 @retval EFI_SUCCESS MAC address was returned successfully.
1207 @retval Others Failed to get SNP mode data.
1208
1209 **/
1210 EFI_STATUS
1211 EFIAPI
1212 NetLibGetMacAddress (
1213 IN EFI_HANDLE ServiceHandle,
1214 OUT EFI_MAC_ADDRESS *MacAddress,
1215 OUT UINTN *AddressSize
1216 );
1217
1218 /**
1219 Convert MAC address of the NIC associated with specified Service Binding Handle
1220 to a unicode string. Callers are responsible for freeing the string storage.
1221
1222 If MacString is NULL, then ASSERT().
1223
1224 Locate simple network protocol associated with the Service Binding Handle and
1225 get the mac address from SNP. Then convert the mac address into a unicode
1226 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1227 Plus one unicode character for the null-terminator.
1228
1229 @param[in] ServiceHandle The handle where network service binding protocol is
1230 installed.
1231 @param[in] ImageHandle The image handle used to act as the agent handle to
1232 get the simple network protocol. This parameter is
1233 optional and may be NULL.
1234 @param[out] MacString The pointer to store the address of the string
1235 representation of the mac address.
1236
1237 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1238 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1239 @retval Others Failed to open the simple network protocol.
1240
1241 **/
1242 EFI_STATUS
1243 EFIAPI
1244 NetLibGetMacString (
1245 IN EFI_HANDLE ServiceHandle,
1246 IN EFI_HANDLE ImageHandle, OPTIONAL
1247 OUT CHAR16 **MacString
1248 );
1249
1250 /**
1251 Detect media status for specified network device.
1252
1253 If MediaPresent is NULL, then ASSERT().
1254
1255 The underlying UNDI driver may or may not support reporting media status from
1256 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1257 will try to invoke Snp->GetStatus() to get the media status. If media is already
1258 present, it returns directly. If media is not present, it will stop SNP and then
1259 restart SNP to get the latest media status. This provides an opportunity to get
1260 the correct media status for old UNDI driver, which doesn't support reporting
1261 media status from GET_STATUS command.
1262 Note: there are two limitations for the current algorithm:
1263 1) For UNDI with this capability, when the cable is not attached, there will
1264 be an redundant Stop/Start() process.
1265 2) for UNDI without this capability, in case that network cable is attached when
1266 Snp->Initialize() is invoked while network cable is unattached later,
1267 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1268 apps to wait for timeout time.
1269
1270 @param[in] ServiceHandle The handle where network service binding protocols are
1271 installed.
1272 @param[out] MediaPresent The pointer to store the media status.
1273
1274 @retval EFI_SUCCESS Media detection success.
1275 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1276 @retval EFI_UNSUPPORTED The network device does not support media detection.
1277 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1278
1279 **/
1280 EFI_STATUS
1281 EFIAPI
1282 NetLibDetectMedia (
1283 IN EFI_HANDLE ServiceHandle,
1284 OUT BOOLEAN *MediaPresent
1285 );
1286
1287 /**
1288 Detect media state for a network device. This routine will wait for a period of time at
1289 a specified checking interval when a certain network is under connecting until connection
1290 process finishes or timeout. If Aip protocol is supported by low layer drivers, three kinds
1291 of media states can be detected: EFI_SUCCESS, EFI_NOT_READY and EFI_NO_MEDIA, represents
1292 connected state, connecting state and no media state respectively. When function detects
1293 the current state is EFI_NOT_READY, it will loop to wait for next time's check until state
1294 turns to be EFI_SUCCESS or EFI_NO_MEDIA. If Aip protocol is not supported, function will
1295 call NetLibDetectMedia() and return state directly.
1296
1297 @param[in] ServiceHandle The handle where network service binding protocols are
1298 installed on.
1299 @param[in] Timeout The maximum number of 100ns units to wait when network
1300 is connecting. Zero value means detect once and return
1301 immediately.
1302 @param[out] MediaState The pointer to the detected media state.
1303
1304 @retval EFI_SUCCESS Media detection success.
1305 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle or
1306 MediaState pointer is NULL.
1307 @retval EFI_DEVICE_ERROR A device error occurred.
1308 @retval EFI_TIMEOUT Network is connecting but timeout.
1309
1310 **/
1311 EFI_STATUS
1312 EFIAPI
1313 NetLibDetectMediaWaitTimeout (
1314 IN EFI_HANDLE ServiceHandle,
1315 IN UINT64 Timeout,
1316 OUT EFI_STATUS *MediaState
1317 );
1318
1319
1320 /**
1321 Create an IPv4 device path node.
1322
1323 If Node is NULL, then ASSERT().
1324
1325 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1326 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1327 The length of the IPv4 device path node in bytes is 19.
1328 Get other information from parameters to make up the whole IPv4 device path node.
1329
1330 @param[in, out] Node The pointer to the IPv4 device path node.
1331 @param[in] Controller The controller handle.
1332 @param[in] LocalIp The local IPv4 address.
1333 @param[in] LocalPort The local port.
1334 @param[in] RemoteIp The remote IPv4 address.
1335 @param[in] RemotePort The remote port.
1336 @param[in] Protocol The protocol type in the IP header.
1337 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1338
1339 **/
1340 VOID
1341 EFIAPI
1342 NetLibCreateIPv4DPathNode (
1343 IN OUT IPv4_DEVICE_PATH *Node,
1344 IN EFI_HANDLE Controller,
1345 IN IP4_ADDR LocalIp,
1346 IN UINT16 LocalPort,
1347 IN IP4_ADDR RemoteIp,
1348 IN UINT16 RemotePort,
1349 IN UINT16 Protocol,
1350 IN BOOLEAN UseDefaultAddress
1351 );
1352
1353 /**
1354 Create an IPv6 device path node.
1355
1356 If Node is NULL, then ASSERT().
1357 If LocalIp is NULL, then ASSERT().
1358 If RemoteIp is NULL, then ASSERT().
1359
1360 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1361 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1362 The length of the IPv6 device path node in bytes is 43.
1363 Get other information from parameters to make up the whole IPv6 device path node.
1364
1365 @param[in, out] Node The pointer to the IPv6 device path node.
1366 @param[in] Controller The controller handle.
1367 @param[in] LocalIp The local IPv6 address.
1368 @param[in] LocalPort The local port.
1369 @param[in] RemoteIp The remote IPv6 address.
1370 @param[in] RemotePort The remote port.
1371 @param[in] Protocol The protocol type in the IP header.
1372
1373 **/
1374 VOID
1375 EFIAPI
1376 NetLibCreateIPv6DPathNode (
1377 IN OUT IPv6_DEVICE_PATH *Node,
1378 IN EFI_HANDLE Controller,
1379 IN EFI_IPv6_ADDRESS *LocalIp,
1380 IN UINT16 LocalPort,
1381 IN EFI_IPv6_ADDRESS *RemoteIp,
1382 IN UINT16 RemotePort,
1383 IN UINT16 Protocol
1384 );
1385
1386
1387 /**
1388 Find the UNDI/SNP handle from controller and protocol GUID.
1389
1390 If ProtocolGuid is NULL, then ASSERT().
1391
1392 For example, IP will open an MNP child to transmit/receive
1393 packets. When MNP is stopped, IP should also be stopped. IP
1394 needs to find its own private data that is related the IP's
1395 service binding instance that is installed on the UNDI/SNP handle.
1396 The controller is then either an MNP or an ARP child handle. Note that
1397 IP opens these handles using BY_DRIVER. Use that information to get the
1398 UNDI/SNP handle.
1399
1400 @param[in] Controller The protocol handle to check.
1401 @param[in] ProtocolGuid The protocol that is related with the handle.
1402
1403 @return The UNDI/SNP handle or NULL for errors.
1404
1405 **/
1406 EFI_HANDLE
1407 EFIAPI
1408 NetLibGetNicHandle (
1409 IN EFI_HANDLE Controller,
1410 IN EFI_GUID *ProtocolGuid
1411 );
1412
1413 /**
1414 This is the default unload handle for all the network drivers.
1415
1416 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1417 Uninstall all the protocols installed in the driver entry point.
1418
1419 @param[in] ImageHandle The drivers' driver image.
1420
1421 @retval EFI_SUCCESS The image is unloaded.
1422 @retval Others Failed to unload the image.
1423
1424 **/
1425 EFI_STATUS
1426 EFIAPI
1427 NetLibDefaultUnload (
1428 IN EFI_HANDLE ImageHandle
1429 );
1430
1431 /**
1432 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1433
1434 @param[in] String The pointer to the Ascii string.
1435 @param[out] Ip4Address The pointer to the converted IPv4 address.
1436
1437 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1438 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip4Address is NULL.
1439
1440 **/
1441 EFI_STATUS
1442 EFIAPI
1443 NetLibAsciiStrToIp4 (
1444 IN CONST CHAR8 *String,
1445 OUT EFI_IPv4_ADDRESS *Ip4Address
1446 );
1447
1448 /**
1449 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1450 string is defined in RFC 4291 - Text Representation of Addresses.
1451
1452 @param[in] String The pointer to the Ascii string.
1453 @param[out] Ip6Address The pointer to the converted IPv6 address.
1454
1455 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1456 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1457
1458 **/
1459 EFI_STATUS
1460 EFIAPI
1461 NetLibAsciiStrToIp6 (
1462 IN CONST CHAR8 *String,
1463 OUT EFI_IPv6_ADDRESS *Ip6Address
1464 );
1465
1466 /**
1467 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1468
1469 @param[in] String The pointer to the Ascii string.
1470 @param[out] Ip4Address The pointer to the converted IPv4 address.
1471
1472 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1473 @retval EFI_INVALID_PARAMETER The string is mal-formatted or Ip4Address is NULL.
1474
1475 **/
1476 EFI_STATUS
1477 EFIAPI
1478 NetLibStrToIp4 (
1479 IN CONST CHAR16 *String,
1480 OUT EFI_IPv4_ADDRESS *Ip4Address
1481 );
1482
1483 /**
1484 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1485 the string is defined in RFC 4291 - Text Representation of Addresses.
1486
1487 @param[in] String The pointer to the Ascii string.
1488 @param[out] Ip6Address The pointer to the converted IPv6 address.
1489
1490 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1491 @retval EFI_INVALID_PARAMETER The string is malformatted or Ip6Address is NULL.
1492
1493 **/
1494 EFI_STATUS
1495 EFIAPI
1496 NetLibStrToIp6 (
1497 IN CONST CHAR16 *String,
1498 OUT EFI_IPv6_ADDRESS *Ip6Address
1499 );
1500
1501 /**
1502 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1503 The format of the string is defined in RFC 4291 - Text Representation of Addresses
1504 Prefixes: ipv6-address/prefix-length.
1505
1506 @param[in] String The pointer to the Ascii string.
1507 @param[out] Ip6Address The pointer to the converted IPv6 address.
1508 @param[out] PrefixLength The pointer to the converted prefix length.
1509
1510 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1511 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1512
1513 **/
1514 EFI_STATUS
1515 EFIAPI
1516 NetLibStrToIp6andPrefix (
1517 IN CONST CHAR16 *String,
1518 OUT EFI_IPv6_ADDRESS *Ip6Address,
1519 OUT UINT8 *PrefixLength
1520 );
1521
1522 /**
1523
1524 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1525 The text representation of address is defined in RFC 4291.
1526
1527 @param[in] Ip6Address The pointer to the IPv6 address.
1528 @param[out] String The buffer to return the converted string.
1529 @param[in] StringSize The length in bytes of the input String.
1530
1531 @retval EFI_SUCCESS Convert to string successfully.
1532 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1533 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1534 updated with the size needed to complete the request.
1535 **/
1536 EFI_STATUS
1537 EFIAPI
1538 NetLibIp6ToStr (
1539 IN EFI_IPv6_ADDRESS *Ip6Address,
1540 OUT CHAR16 *String,
1541 IN UINTN StringSize
1542 );
1543
1544 //
1545 // Various signatures
1546 //
1547 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1548 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1549 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1550
1551
1552 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1553 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1554 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1555 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1556
1557 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1558 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1559
1560 //
1561 // Single memory block in the vector.
1562 //
1563 typedef struct {
1564 UINT32 Len; // The block's length
1565 UINT8 *Bulk; // The block's Data
1566 } NET_BLOCK;
1567
1568 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1569
1570 //
1571 //NET_VECTOR contains several blocks to hold all packet's
1572 //fragments and other house-keeping stuff for sharing. It
1573 //doesn't specify the where actual packet fragment begins.
1574 //
1575 typedef struct {
1576 UINT32 Signature;
1577 INTN RefCnt; // Reference count to share NET_VECTOR.
1578 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1579 VOID *Arg; // opaque argument to Free
1580 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1581 UINT32 Len; // Total length of the associated BLOCKs
1582
1583 UINT32 BlockNum;
1584 NET_BLOCK Block[1];
1585 } NET_VECTOR;
1586
1587 //
1588 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1589 //where the actual fragment begins and ends
1590 //
1591 typedef struct {
1592 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1593 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1594 UINT8 *Head; // 1st byte of the data in the block
1595 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1596 UINT32 Size; // The size of the data
1597 } NET_BLOCK_OP;
1598
1599 typedef union {
1600 IP4_HEAD *Ip4;
1601 EFI_IP6_HEADER *Ip6;
1602 } NET_IP_HEAD;
1603
1604 //
1605 //NET_BUF is the buffer manage structure used by the
1606 //network stack. Every network packet may be fragmented. The Vector points to
1607 //memory blocks used by each fragment, and BlockOp
1608 //specifies where each fragment begins and ends.
1609 //
1610 //It also contains an opaque area for the protocol to store
1611 //per-packet information. Protocol must be careful not
1612 //to overwrite the members after that.
1613 //
1614 typedef struct {
1615 UINT32 Signature;
1616 INTN RefCnt;
1617 LIST_ENTRY List; // The List this NET_BUF is on
1618
1619 NET_IP_HEAD Ip; // Network layer header, for fast access
1620 TCP_HEAD *Tcp; // Transport layer header, for fast access
1621 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1622 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1623
1624 NET_VECTOR *Vector; // The vector containing the packet
1625
1626 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1627 UINT32 TotalSize; // Total size of the actual packet
1628 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1629 } NET_BUF;
1630
1631 //
1632 //A queue of NET_BUFs. It is a thin extension of
1633 //NET_BUF functions.
1634 //
1635 typedef struct {
1636 UINT32 Signature;
1637 INTN RefCnt;
1638 LIST_ENTRY List; // The List this buffer queue is on
1639
1640 LIST_ENTRY BufList; // list of queued buffers
1641 UINT32 BufSize; // total length of DATA in the buffers
1642 UINT32 BufNum; // total number of buffers on the chain
1643 } NET_BUF_QUEUE;
1644
1645 //
1646 // Pseudo header for TCP and UDP checksum
1647 //
1648 #pragma pack(1)
1649 typedef struct {
1650 IP4_ADDR SrcIp;
1651 IP4_ADDR DstIp;
1652 UINT8 Reserved;
1653 UINT8 Protocol;
1654 UINT16 Len;
1655 } NET_PSEUDO_HDR;
1656
1657 typedef struct {
1658 EFI_IPv6_ADDRESS SrcIp;
1659 EFI_IPv6_ADDRESS DstIp;
1660 UINT32 Len;
1661 UINT32 Reserved:24;
1662 UINT32 NextHeader:8;
1663 } NET_IP6_PSEUDO_HDR;
1664 #pragma pack()
1665
1666 //
1667 // The fragment entry table used in network interfaces. This is
1668 // the same as NET_BLOCK now. Use two different to distinguish
1669 // the two in case that NET_BLOCK be enhanced later.
1670 //
1671 typedef struct {
1672 UINT32 Len;
1673 UINT8 *Bulk;
1674 } NET_FRAGMENT;
1675
1676 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1677 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1678 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1679
1680 #define NET_BUF_SHARED(Buf) \
1681 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1682
1683 #define NET_VECTOR_SIZE(BlockNum) \
1684 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1685
1686 #define NET_BUF_SIZE(BlockOpNum) \
1687 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1688
1689 #define NET_HEADSPACE(BlockOp) \
1690 ((UINTN)((BlockOp)->Head) - (UINTN)((BlockOp)->BlockHead))
1691
1692 #define NET_TAILSPACE(BlockOp) \
1693 ((UINTN)((BlockOp)->BlockTail) - (UINTN)((BlockOp)->Tail))
1694
1695 /**
1696 Allocate a single block NET_BUF. Upon allocation, all the
1697 free space is in the tail room.
1698
1699 @param[in] Len The length of the block.
1700
1701 @return The pointer to the allocated NET_BUF, or NULL if the
1702 allocation failed due to resource limitations.
1703
1704 **/
1705 NET_BUF *
1706 EFIAPI
1707 NetbufAlloc (
1708 IN UINT32 Len
1709 );
1710
1711 /**
1712 Free the net buffer and its associated NET_VECTOR.
1713
1714 Decrease the reference count of the net buffer by one. Free the associated net
1715 vector and itself if the reference count of the net buffer is decreased to 0.
1716 The net vector free operation decreases the reference count of the net
1717 vector by one, and performs the resource free operation when the reference count
1718 of the net vector is 0.
1719
1720 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1721
1722 **/
1723 VOID
1724 EFIAPI
1725 NetbufFree (
1726 IN NET_BUF *Nbuf
1727 );
1728
1729 /**
1730 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1731 buffer.
1732
1733 For example, this function can be used to retrieve the IP header in the packet. It
1734 also can be used to get the fragment that contains the byte used
1735 mainly by the library implementation itself.
1736
1737 @param[in] Nbuf The pointer to the net buffer.
1738 @param[in] Offset The offset of the byte.
1739 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1740 Offset.
1741
1742 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1743 if there is no such data in the net buffer.
1744
1745 **/
1746 UINT8 *
1747 EFIAPI
1748 NetbufGetByte (
1749 IN NET_BUF *Nbuf,
1750 IN UINT32 Offset,
1751 OUT UINT32 *Index OPTIONAL
1752 );
1753
1754 /**
1755 Create a copy of the net buffer that shares the associated net vector.
1756
1757 The reference count of the newly created net buffer is set to 1. The reference
1758 count of the associated net vector is increased by one.
1759
1760 @param[in] Nbuf The pointer to the net buffer to be cloned.
1761
1762 @return The pointer to the cloned net buffer, or NULL if the
1763 allocation failed due to resource limitations.
1764
1765 **/
1766 NET_BUF *
1767 EFIAPI
1768 NetbufClone (
1769 IN NET_BUF *Nbuf
1770 );
1771
1772 /**
1773 Create a duplicated copy of the net buffer with data copied and HeadSpace
1774 bytes of head space reserved.
1775
1776 The duplicated net buffer will allocate its own memory to hold the data of the
1777 source net buffer.
1778
1779 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1780 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1781 NULL, a new net buffer is allocated.
1782 @param[in] HeadSpace The length of the head space to reserve.
1783
1784 @return The pointer to the duplicated net buffer, or NULL if
1785 the allocation failed due to resource limitations.
1786
1787 **/
1788 NET_BUF *
1789 EFIAPI
1790 NetbufDuplicate (
1791 IN NET_BUF *Nbuf,
1792 IN OUT NET_BUF *Duplicate OPTIONAL,
1793 IN UINT32 HeadSpace
1794 );
1795
1796 /**
1797 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1798 Offset.
1799
1800 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1801 is shared. This function exists to perform IP packet fragmentation.
1802
1803 @param[in] Nbuf The pointer to the net buffer to be extracted.
1804 @param[in] Offset Starting point of the data to be included in the new
1805 net buffer.
1806 @param[in] Len The bytes of data to be included in the new net buffer.
1807 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1808
1809 @return The pointer to the cloned net buffer, or NULL if the
1810 allocation failed due to resource limitations.
1811
1812 **/
1813 NET_BUF *
1814 EFIAPI
1815 NetbufGetFragment (
1816 IN NET_BUF *Nbuf,
1817 IN UINT32 Offset,
1818 IN UINT32 Len,
1819 IN UINT32 HeadSpace
1820 );
1821
1822 /**
1823 Reserve some space in the header room of the net buffer.
1824
1825 Upon allocation, all the space is in the tail room of the buffer. Call this
1826 function to move space to the header room. This function is quite limited
1827 in that it can only reserve space from the first block of an empty NET_BUF not
1828 built from the external. However, it should be enough for the network stack.
1829
1830 @param[in, out] Nbuf The pointer to the net buffer.
1831 @param[in] Len The length of buffer to be reserved from the header.
1832
1833 **/
1834 VOID
1835 EFIAPI
1836 NetbufReserve (
1837 IN OUT NET_BUF *Nbuf,
1838 IN UINT32 Len
1839 );
1840
1841 /**
1842 Allocate Len bytes of space from the header or tail of the buffer.
1843
1844 @param[in, out] Nbuf The pointer to the net buffer.
1845 @param[in] Len The length of the buffer to be allocated.
1846 @param[in] FromHead The flag to indicate whether to reserve the data
1847 from head (TRUE) or tail (FALSE).
1848
1849 @return The pointer to the first byte of the allocated buffer,
1850 or NULL, if there is no sufficient space.
1851
1852 **/
1853 UINT8*
1854 EFIAPI
1855 NetbufAllocSpace (
1856 IN OUT NET_BUF *Nbuf,
1857 IN UINT32 Len,
1858 IN BOOLEAN FromHead
1859 );
1860
1861 /**
1862 Trim Len bytes from the header or the tail of the net buffer.
1863
1864 @param[in, out] Nbuf The pointer to the net buffer.
1865 @param[in] Len The length of the data to be trimmed.
1866 @param[in] FromHead The flag to indicate whether trim data is from the
1867 head (TRUE) or the tail (FALSE).
1868
1869 @return The length of the actual trimmed data, which may be less
1870 than Len if the TotalSize of Nbuf is less than Len.
1871
1872 **/
1873 UINT32
1874 EFIAPI
1875 NetbufTrim (
1876 IN OUT NET_BUF *Nbuf,
1877 IN UINT32 Len,
1878 IN BOOLEAN FromHead
1879 );
1880
1881 /**
1882 Copy Len bytes of data from the specific offset of the net buffer to the
1883 destination memory.
1884
1885 The Len bytes of data may cross several fragments of the net buffer.
1886
1887 @param[in] Nbuf The pointer to the net buffer.
1888 @param[in] Offset The sequence number of the first byte to copy.
1889 @param[in] Len The length of the data to copy.
1890 @param[in] Dest The destination of the data to copy to.
1891
1892 @return The length of the actual copied data, or 0 if the offset
1893 specified exceeds the total size of net buffer.
1894
1895 **/
1896 UINT32
1897 EFIAPI
1898 NetbufCopy (
1899 IN NET_BUF *Nbuf,
1900 IN UINT32 Offset,
1901 IN UINT32 Len,
1902 IN UINT8 *Dest
1903 );
1904
1905 /**
1906 Build a NET_BUF from external blocks.
1907
1908 A new NET_BUF structure will be created from external blocks. An additional block
1909 of memory will be allocated to hold reserved HeadSpace bytes of header room
1910 and existing HeadLen bytes of header, but the external blocks are shared by the
1911 net buffer to avoid data copying.
1912
1913 @param[in] ExtFragment The pointer to the data block.
1914 @param[in] ExtNum The number of the data blocks.
1915 @param[in] HeadSpace The head space to be reserved.
1916 @param[in] HeadLen The length of the protocol header. The function
1917 pulls this amount of data into a linear block.
1918 @param[in] ExtFree The pointer to the caller-provided free function.
1919 @param[in] Arg The argument passed to ExtFree when ExtFree is
1920 called.
1921
1922 @return The pointer to the net buffer built from the data blocks,
1923 or NULL if the allocation failed due to resource
1924 limit.
1925
1926 **/
1927 NET_BUF *
1928 EFIAPI
1929 NetbufFromExt (
1930 IN NET_FRAGMENT *ExtFragment,
1931 IN UINT32 ExtNum,
1932 IN UINT32 HeadSpace,
1933 IN UINT32 HeadLen,
1934 IN NET_VECTOR_EXT_FREE ExtFree,
1935 IN VOID *Arg OPTIONAL
1936 );
1937
1938 /**
1939 Build a fragment table to contain the fragments in the net buffer. This is the
1940 opposite operation of the NetbufFromExt.
1941
1942 @param[in] Nbuf Points to the net buffer.
1943 @param[in, out] ExtFragment The pointer to the data block.
1944 @param[in, out] ExtNum The number of the data blocks.
1945
1946 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1947 ExtNum.
1948 @retval EFI_SUCCESS The fragment table was built successfully.
1949
1950 **/
1951 EFI_STATUS
1952 EFIAPI
1953 NetbufBuildExt (
1954 IN NET_BUF *Nbuf,
1955 IN OUT NET_FRAGMENT *ExtFragment,
1956 IN OUT UINT32 *ExtNum
1957 );
1958
1959 /**
1960 Build a net buffer from a list of net buffers.
1961
1962 All the fragments will be collected from the list of NEW_BUF, and then a new
1963 net buffer will be created through NetbufFromExt.
1964
1965 @param[in] BufList A List of the net buffer.
1966 @param[in] HeadSpace The head space to be reserved.
1967 @param[in] HeaderLen The length of the protocol header. The function
1968 pulls this amount of data into a linear block.
1969 @param[in] ExtFree The pointer to the caller provided free function.
1970 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1971
1972 @return The pointer to the net buffer built from the list of net
1973 buffers.
1974
1975 **/
1976 NET_BUF *
1977 EFIAPI
1978 NetbufFromBufList (
1979 IN LIST_ENTRY *BufList,
1980 IN UINT32 HeadSpace,
1981 IN UINT32 HeaderLen,
1982 IN NET_VECTOR_EXT_FREE ExtFree,
1983 IN VOID *Arg OPTIONAL
1984 );
1985
1986 /**
1987 Free a list of net buffers.
1988
1989 @param[in, out] Head The pointer to the head of linked net buffers.
1990
1991 **/
1992 VOID
1993 EFIAPI
1994 NetbufFreeList (
1995 IN OUT LIST_ENTRY *Head
1996 );
1997
1998 /**
1999 Initiate the net buffer queue.
2000
2001 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
2002
2003 **/
2004 VOID
2005 EFIAPI
2006 NetbufQueInit (
2007 IN OUT NET_BUF_QUEUE *NbufQue
2008 );
2009
2010 /**
2011 Allocate and initialize a net buffer queue.
2012
2013 @return The pointer to the allocated net buffer queue, or NULL if the
2014 allocation failed due to resource limit.
2015
2016 **/
2017 NET_BUF_QUEUE *
2018 EFIAPI
2019 NetbufQueAlloc (
2020 VOID
2021 );
2022
2023 /**
2024 Free a net buffer queue.
2025
2026 Decrease the reference count of the net buffer queue by one. The real resource
2027 free operation isn't performed until the reference count of the net buffer
2028 queue is decreased to 0.
2029
2030 @param[in] NbufQue The pointer to the net buffer queue to be freed.
2031
2032 **/
2033 VOID
2034 EFIAPI
2035 NetbufQueFree (
2036 IN NET_BUF_QUEUE *NbufQue
2037 );
2038
2039 /**
2040 Remove a net buffer from the head in the specific queue and return it.
2041
2042 @param[in, out] NbufQue The pointer to the net buffer queue.
2043
2044 @return The pointer to the net buffer removed from the specific queue,
2045 or NULL if there is no net buffer in the specific queue.
2046
2047 **/
2048 NET_BUF *
2049 EFIAPI
2050 NetbufQueRemove (
2051 IN OUT NET_BUF_QUEUE *NbufQue
2052 );
2053
2054 /**
2055 Append a net buffer to the net buffer queue.
2056
2057 @param[in, out] NbufQue The pointer to the net buffer queue.
2058 @param[in, out] Nbuf The pointer to the net buffer to be appended.
2059
2060 **/
2061 VOID
2062 EFIAPI
2063 NetbufQueAppend (
2064 IN OUT NET_BUF_QUEUE *NbufQue,
2065 IN OUT NET_BUF *Nbuf
2066 );
2067
2068 /**
2069 Copy Len bytes of data from the net buffer queue at the specific offset to the
2070 destination memory.
2071
2072 The copying operation is the same as NetbufCopy, but applies to the net buffer
2073 queue instead of the net buffer.
2074
2075 @param[in] NbufQue The pointer to the net buffer queue.
2076 @param[in] Offset The sequence number of the first byte to copy.
2077 @param[in] Len The length of the data to copy.
2078 @param[out] Dest The destination of the data to copy to.
2079
2080 @return The length of the actual copied data, or 0 if the offset
2081 specified exceeds the total size of net buffer queue.
2082
2083 **/
2084 UINT32
2085 EFIAPI
2086 NetbufQueCopy (
2087 IN NET_BUF_QUEUE *NbufQue,
2088 IN UINT32 Offset,
2089 IN UINT32 Len,
2090 OUT UINT8 *Dest
2091 );
2092
2093 /**
2094 Trim Len bytes of data from the buffer queue and free any net buffer
2095 that is completely trimmed.
2096
2097 The trimming operation is the same as NetbufTrim but applies to the net buffer
2098 queue instead of the net buffer.
2099
2100 @param[in, out] NbufQue The pointer to the net buffer queue.
2101 @param[in] Len The length of the data to trim.
2102
2103 @return The actual length of the data trimmed.
2104
2105 **/
2106 UINT32
2107 EFIAPI
2108 NetbufQueTrim (
2109 IN OUT NET_BUF_QUEUE *NbufQue,
2110 IN UINT32 Len
2111 );
2112
2113
2114 /**
2115 Flush the net buffer queue.
2116
2117 @param[in, out] NbufQue The pointer to the queue to be flushed.
2118
2119 **/
2120 VOID
2121 EFIAPI
2122 NetbufQueFlush (
2123 IN OUT NET_BUF_QUEUE *NbufQue
2124 );
2125
2126 /**
2127 Compute the checksum for a bulk of data.
2128
2129 @param[in] Bulk The pointer to the data.
2130 @param[in] Len The length of the data, in bytes.
2131
2132 @return The computed checksum.
2133
2134 **/
2135 UINT16
2136 EFIAPI
2137 NetblockChecksum (
2138 IN UINT8 *Bulk,
2139 IN UINT32 Len
2140 );
2141
2142 /**
2143 Add two checksums.
2144
2145 @param[in] Checksum1 The first checksum to be added.
2146 @param[in] Checksum2 The second checksum to be added.
2147
2148 @return The new checksum.
2149
2150 **/
2151 UINT16
2152 EFIAPI
2153 NetAddChecksum (
2154 IN UINT16 Checksum1,
2155 IN UINT16 Checksum2
2156 );
2157
2158 /**
2159 Compute the checksum for a NET_BUF.
2160
2161 @param[in] Nbuf The pointer to the net buffer.
2162
2163 @return The computed checksum.
2164
2165 **/
2166 UINT16
2167 EFIAPI
2168 NetbufChecksum (
2169 IN NET_BUF *Nbuf
2170 );
2171
2172 /**
2173 Compute the checksum for TCP/UDP pseudo header.
2174
2175 Src and Dst are in network byte order, and Len is in host byte order.
2176
2177 @param[in] Src The source address of the packet.
2178 @param[in] Dst The destination address of the packet.
2179 @param[in] Proto The protocol type of the packet.
2180 @param[in] Len The length of the packet.
2181
2182 @return The computed checksum.
2183
2184 **/
2185 UINT16
2186 EFIAPI
2187 NetPseudoHeadChecksum (
2188 IN IP4_ADDR Src,
2189 IN IP4_ADDR Dst,
2190 IN UINT8 Proto,
2191 IN UINT16 Len
2192 );
2193
2194 /**
2195 Compute the checksum for the TCP6/UDP6 pseudo header.
2196
2197 Src and Dst are in network byte order, and Len is in host byte order.
2198
2199 @param[in] Src The source address of the packet.
2200 @param[in] Dst The destination address of the packet.
2201 @param[in] NextHeader The protocol type of the packet.
2202 @param[in] Len The length of the packet.
2203
2204 @return The computed checksum.
2205
2206 **/
2207 UINT16
2208 EFIAPI
2209 NetIp6PseudoHeadChecksum (
2210 IN EFI_IPv6_ADDRESS *Src,
2211 IN EFI_IPv6_ADDRESS *Dst,
2212 IN UINT8 NextHeader,
2213 IN UINT32 Len
2214 );
2215
2216 /**
2217 The function frees the net buffer which allocated by the IP protocol. It releases
2218 only the net buffer and doesn't call the external free function.
2219
2220 This function should be called after finishing the process of mIpSec->ProcessExt()
2221 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2222 buffer for the ESP, so there needs a function to free the old net buffer.
2223
2224 @param[in] Nbuf The network buffer to be freed.
2225
2226 **/
2227 VOID
2228 NetIpSecNetbufFree (
2229 NET_BUF *Nbuf
2230 );
2231
2232 /**
2233 This function obtains the system guid from the smbios table.
2234
2235 If SystemGuid is NULL, then ASSERT().
2236
2237 @param[out] SystemGuid The pointer of the returned system guid.
2238
2239 @retval EFI_SUCCESS Successfully obtained the system guid.
2240 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2241
2242 **/
2243 EFI_STATUS
2244 EFIAPI
2245 NetLibGetSystemGuid (
2246 OUT EFI_GUID *SystemGuid
2247 );
2248
2249 /**
2250 Create Dns QName according the queried domain name.
2251
2252 If DomainName is NULL, then ASSERT().
2253
2254 QName is a domain name represented as a sequence of labels,
2255 where each label consists of a length octet followed by that
2256 number of octets. The QName terminates with the zero
2257 length octet for the null label of the root. Caller should
2258 take responsibility to free the buffer in returned pointer.
2259
2260 @param DomainName The pointer to the queried domain name string.
2261
2262 @retval NULL Failed to fill QName.
2263 @return QName filled successfully.
2264
2265 **/
2266 CHAR8 *
2267 EFIAPI
2268 NetLibCreateDnsQName (
2269 IN CHAR16 *DomainName
2270 );
2271
2272 #endif