]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
NetworkPkg: Move Network library and drivers from MdeModulePkg to NetworkPkg
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.<BR>
6 SPDX-License-Identifier: BSD-2-Clause-Patent
7
8 **/
9
10 #ifndef _NET_LIB_H_
11 #define _NET_LIB_H_
12
13 #include <Protocol/Ip6.h>
14
15 #include <Library/BaseLib.h>
16 #include <Library/BaseMemoryLib.h>
17
18 typedef UINT32 IP4_ADDR;
19 typedef UINT32 TCP_SEQNO;
20 typedef UINT16 TCP_PORTNO;
21
22
23 #define NET_ETHER_ADDR_LEN 6
24 #define NET_IFTYPE_ETHERNET 0x01
25
26 #define NET_VLAN_TAG_LEN 4
27 #define ETHER_TYPE_VLAN 0x8100
28
29 #define EFI_IP_PROTO_UDP 0x11
30 #define EFI_IP_PROTO_TCP 0x06
31 #define EFI_IP_PROTO_ICMP 0x01
32 #define IP4_PROTO_IGMP 0x02
33 #define IP6_ICMP 58
34 #define DNS_MAX_NAME_SIZE 255
35 #define DNS_MAX_MESSAGE_SIZE 512
36
37 //
38 // The address classification
39 //
40 #define IP4_ADDR_CLASSA 1 // Deprecated
41 #define IP4_ADDR_CLASSB 2 // Deprecated
42 #define IP4_ADDR_CLASSC 3 // Deprecated
43 #define IP4_ADDR_CLASSD 4
44 #define IP4_ADDR_CLASSE 5
45
46 #define IP4_MASK_NUM 33
47 #define IP6_PREFIX_NUM 129
48
49 #define IP4_MASK_MAX 32
50 #define IP6_PREFIX_MAX 128
51
52 #define IP6_HOP_BY_HOP 0
53 #define IP6_DESTINATION 60
54 #define IP6_ROUTING 43
55 #define IP6_FRAGMENT 44
56 #define IP6_AH 51
57 #define IP6_ESP 50
58 #define IP6_NO_NEXT_HEADER 59
59
60 #define IP_VERSION_4 4
61 #define IP_VERSION_6 6
62
63 #define IP6_PREFIX_LENGTH 64
64
65 //
66 // DNS QTYPE values
67 //
68 #define DNS_TYPE_A 1
69 #define DNS_TYPE_NS 2
70 #define DNS_TYPE_CNAME 5
71 #define DNS_TYPE_SOA 6
72 #define DNS_TYPE_WKS 11
73 #define DNS_TYPE_PTR 12
74 #define DNS_TYPE_HINFO 13
75 #define DNS_TYPE_MINFO 14
76 #define DNS_TYPE_MX 15
77 #define DNS_TYPE_TXT 16
78 #define DNS_TYPE_AAAA 28
79 #define DNS_TYPE_SRV_RR 33
80 #define DNS_TYPE_AXFR 252
81 #define DNS_TYPE_MAILB 253
82 #define DNS_TYPE_ANY 255
83
84 //
85 // DNS QCLASS values
86 //
87 #define DNS_CLASS_INET 1
88 #define DNS_CLASS_CH 3
89 #define DNS_CLASS_HS 4
90 #define DNS_CLASS_ANY 255
91
92 //
93 // Number of 100ns units time Interval for network media state detect
94 //
95 #define MEDIA_STATE_DETECT_TIME_INTERVAL 1000000U
96
97
98 #pragma pack(1)
99
100 //
101 // Ethernet head definition
102 //
103 typedef struct {
104 UINT8 DstMac [NET_ETHER_ADDR_LEN];
105 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
106 UINT16 EtherType;
107 } ETHER_HEAD;
108
109 //
110 // 802.1Q VLAN Tag Control Information
111 //
112 typedef union {
113 struct {
114 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
115 UINT16 Cfi : 1; // Canonical Format Indicator
116 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
117 } Bits;
118 UINT16 Uint16;
119 } VLAN_TCI;
120
121 #define VLAN_TCI_CFI_CANONICAL_MAC 0
122 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
123
124 //
125 // The EFI_IP4_HEADER is hard to use because the source and
126 // destination address are defined as EFI_IPv4_ADDRESS, which
127 // is a structure. Two structures can't be compared or masked
128 // directly. This is why there is an internal representation.
129 //
130 typedef struct {
131 UINT8 HeadLen : 4;
132 UINT8 Ver : 4;
133 UINT8 Tos;
134 UINT16 TotalLen;
135 UINT16 Id;
136 UINT16 Fragment;
137 UINT8 Ttl;
138 UINT8 Protocol;
139 UINT16 Checksum;
140 IP4_ADDR Src;
141 IP4_ADDR Dst;
142 } IP4_HEAD;
143
144
145 //
146 // ICMP head definition. Each ICMP message is categorized as either an error
147 // message or query message. Two message types have their own head format.
148 //
149 typedef struct {
150 UINT8 Type;
151 UINT8 Code;
152 UINT16 Checksum;
153 } IP4_ICMP_HEAD;
154
155 typedef struct {
156 IP4_ICMP_HEAD Head;
157 UINT32 Fourth; // 4th filed of the head, it depends on Type.
158 IP4_HEAD IpHead;
159 } IP4_ICMP_ERROR_HEAD;
160
161 typedef struct {
162 IP4_ICMP_HEAD Head;
163 UINT16 Id;
164 UINT16 Seq;
165 } IP4_ICMP_QUERY_HEAD;
166
167 typedef struct {
168 UINT8 Type;
169 UINT8 Code;
170 UINT16 Checksum;
171 } IP6_ICMP_HEAD;
172
173 typedef struct {
174 IP6_ICMP_HEAD Head;
175 UINT32 Fourth;
176 EFI_IP6_HEADER IpHead;
177 } IP6_ICMP_ERROR_HEAD;
178
179 typedef struct {
180 IP6_ICMP_HEAD Head;
181 UINT32 Fourth;
182 } IP6_ICMP_INFORMATION_HEAD;
183
184 //
185 // UDP header definition
186 //
187 typedef struct {
188 UINT16 SrcPort;
189 UINT16 DstPort;
190 UINT16 Length;
191 UINT16 Checksum;
192 } EFI_UDP_HEADER;
193
194 //
195 // TCP header definition
196 //
197 typedef struct {
198 TCP_PORTNO SrcPort;
199 TCP_PORTNO DstPort;
200 TCP_SEQNO Seq;
201 TCP_SEQNO Ack;
202 UINT8 Res : 4;
203 UINT8 HeadLen : 4;
204 UINT8 Flag;
205 UINT16 Wnd;
206 UINT16 Checksum;
207 UINT16 Urg;
208 } TCP_HEAD;
209
210 #pragma pack()
211
212 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
213 (CompareMem ((pMac1), (pMac2), Len) == 0)
214
215 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
216 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
217
218 #define NTOHL(x) SwapBytes32 (x)
219
220 #define HTONL(x) NTOHL(x)
221
222 #define NTOHS(x) SwapBytes16 (x)
223
224 #define HTONS(x) NTOHS(x)
225 #define NTOHLL(x) SwapBytes64 (x)
226 #define HTONLL(x) NTOHLL(x)
227 #define NTOHLLL(x) Ip6Swap128 (x)
228 #define HTONLLL(x) NTOHLLL(x)
229
230 //
231 // Test the IP's attribute, All the IPs are in host byte order.
232 //
233 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
234 #define IP4_IS_UNSPECIFIED(Ip) ((Ip) == 0)
235 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
236 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
237 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))
238
239 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
240
241 //
242 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
243 //
244 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
245 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
246 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
247
248 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
249
250 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
251 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
252 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
253
254 //
255 // The debug level definition. This value is also used as the
256 // syslog's severity level. Don't change it.
257 //
258 #define NETDEBUG_LEVEL_TRACE 5
259 #define NETDEBUG_LEVEL_WARNING 4
260 #define NETDEBUG_LEVEL_ERROR 3
261
262 //
263 // Network debug message is sent out as syslog packet.
264 //
265 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
266 #define NET_SYSLOG_PACKET_LEN 512
267 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
268 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
269
270 //
271 // The debug output expects the ASCII format string, Use %a to print ASCII
272 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
273 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
274 //
275 #define NET_DEBUG_TRACE(Module, PrintArg) \
276 NetDebugOutput ( \
277 NETDEBUG_LEVEL_TRACE, \
278 Module, \
279 __FILE__, \
280 __LINE__, \
281 NetDebugASPrint PrintArg \
282 )
283
284 #define NET_DEBUG_WARNING(Module, PrintArg) \
285 NetDebugOutput ( \
286 NETDEBUG_LEVEL_WARNING, \
287 Module, \
288 __FILE__, \
289 __LINE__, \
290 NetDebugASPrint PrintArg \
291 )
292
293 #define NET_DEBUG_ERROR(Module, PrintArg) \
294 NetDebugOutput ( \
295 NETDEBUG_LEVEL_ERROR, \
296 Module, \
297 __FILE__, \
298 __LINE__, \
299 NetDebugASPrint PrintArg \
300 )
301
302 /**
303 Allocate a buffer, then format the message to it. This is a
304 help function for the NET_DEBUG_XXX macros. The PrintArg of
305 these macros treats the variable length print parameters as a
306 single parameter, and pass it to the NetDebugASPrint. For
307 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
308 if extracted to:
309
310 NetDebugOutput (
311 NETDEBUG_LEVEL_TRACE,
312 "Tcp",
313 __FILE__,
314 __LINE__,
315 NetDebugASPrint ("State transit to %a\n", Name)
316 )
317
318 @param Format The ASCII format string.
319 @param ... The variable length parameter whose format is determined
320 by the Format string.
321
322 @return The buffer containing the formatted message,
323 or NULL if memory allocation failed.
324
325 **/
326 CHAR8 *
327 EFIAPI
328 NetDebugASPrint (
329 IN CHAR8 *Format,
330 ...
331 );
332
333 /**
334 Builds an UDP4 syslog packet and send it using SNP.
335
336 This function will locate a instance of SNP then send the message through it.
337 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
338
339 @param Level The severity level of the message.
340 @param Module The Module that generates the log.
341 @param File The file that contains the log.
342 @param Line The exact line that contains the log.
343 @param Message The user message to log.
344
345 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
346 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
347 @retval EFI_SUCCESS The log is discard because that it is more verbose
348 than the mNetDebugLevelMax. Or, it has been sent out.
349 **/
350 EFI_STATUS
351 EFIAPI
352 NetDebugOutput (
353 IN UINT32 Level,
354 IN UINT8 *Module,
355 IN UINT8 *File,
356 IN UINT32 Line,
357 IN UINT8 *Message
358 );
359
360
361 /**
362 Return the length of the mask.
363
364 Return the length of the mask. Valid values are 0 to 32.
365 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
366 NetMask is in the host byte order.
367
368 @param[in] NetMask The netmask to get the length from.
369
370 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
371
372 **/
373 INTN
374 EFIAPI
375 NetGetMaskLength (
376 IN IP4_ADDR NetMask
377 );
378
379 /**
380 Return the class of the IP address, such as class A, B, C.
381 Addr is in host byte order.
382
383 [ATTENTION]
384 Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.
385 Caller of this function could only check the returned value against
386 IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.
387
388 The address of class A starts with 0.
389 If the address belong to class A, return IP4_ADDR_CLASSA.
390 The address of class B starts with 10.
391 If the address belong to class B, return IP4_ADDR_CLASSB.
392 The address of class C starts with 110.
393 If the address belong to class C, return IP4_ADDR_CLASSC.
394 The address of class D starts with 1110.
395 If the address belong to class D, return IP4_ADDR_CLASSD.
396 The address of class E starts with 1111.
397 If the address belong to class E, return IP4_ADDR_CLASSE.
398
399
400 @param[in] Addr The address to get the class from.
401
402 @return IP address class, such as IP4_ADDR_CLASSA.
403
404 **/
405 INTN
406 EFIAPI
407 NetGetIpClass (
408 IN IP4_ADDR Addr
409 );
410
411 /**
412 Check whether the IP is a valid unicast address according to
413 the netmask.
414
415 ASSERT if NetMask is zero.
416
417 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address,
418 except when the originator is one of the endpoints of a point-to-point link with a 31-bit
419 mask (RFC3021), or a 32bit NetMask (all 0xFF) is used for special network environment (e.g.
420 PPP link).
421
422 @param[in] Ip The IP to check against.
423 @param[in] NetMask The mask of the IP.
424
425 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
426
427 **/
428 BOOLEAN
429 EFIAPI
430 NetIp4IsUnicast (
431 IN IP4_ADDR Ip,
432 IN IP4_ADDR NetMask
433 );
434
435 /**
436 Check whether the incoming IPv6 address is a valid unicast address.
437
438 ASSERT if Ip6 is NULL.
439
440 If the address is a multicast address has binary 0xFF at the start, it is not
441 a valid unicast address. If the address is unspecified ::, it is not a valid
442 unicast address to be assigned to any node. If the address is loopback address
443 ::1, it is also not a valid unicast address to be assigned to any physical
444 interface.
445
446 @param[in] Ip6 The IPv6 address to check against.
447
448 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
449
450 **/
451 BOOLEAN
452 EFIAPI
453 NetIp6IsValidUnicast (
454 IN EFI_IPv6_ADDRESS *Ip6
455 );
456
457
458 /**
459 Check whether the incoming Ipv6 address is the unspecified address or not.
460
461 ASSERT if Ip6 is NULL.
462
463 @param[in] Ip6 - Ip6 address, in network order.
464
465 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
466 @retval FALSE - The incoming Ipv6 address is not the unspecified address
467
468 **/
469 BOOLEAN
470 EFIAPI
471 NetIp6IsUnspecifiedAddr (
472 IN EFI_IPv6_ADDRESS *Ip6
473 );
474
475 /**
476 Check whether the incoming Ipv6 address is a link-local address.
477
478 ASSERT if Ip6 is NULL.
479
480 @param[in] Ip6 - Ip6 address, in network order.
481
482 @retval TRUE - The incoming Ipv6 address is a link-local address.
483 @retval FALSE - The incoming Ipv6 address is not a link-local address.
484
485 **/
486 BOOLEAN
487 EFIAPI
488 NetIp6IsLinkLocalAddr (
489 IN EFI_IPv6_ADDRESS *Ip6
490 );
491
492 /**
493 Check whether the Ipv6 address1 and address2 are on the connected network.
494
495 ASSERT if Ip1 or Ip2 is NULL.
496 ASSERT if PrefixLength exceeds or equals to IP6_PREFIX_MAX.
497
498 @param[in] Ip1 - Ip6 address1, in network order.
499 @param[in] Ip2 - Ip6 address2, in network order.
500 @param[in] PrefixLength - The prefix length of the checking net.
501
502 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
503 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
504
505 **/
506 BOOLEAN
507 EFIAPI
508 NetIp6IsNetEqual (
509 EFI_IPv6_ADDRESS *Ip1,
510 EFI_IPv6_ADDRESS *Ip2,
511 UINT8 PrefixLength
512 );
513
514 /**
515 Switches the endianess of an IPv6 address.
516
517 ASSERT if Ip6 is NULL.
518
519 This function swaps the bytes in a 128-bit IPv6 address to switch the value
520 from little endian to big endian or vice versa. The byte swapped value is
521 returned.
522
523 @param Ip6 Points to an IPv6 address.
524
525 @return The byte swapped IPv6 address.
526
527 **/
528 EFI_IPv6_ADDRESS *
529 EFIAPI
530 Ip6Swap128 (
531 EFI_IPv6_ADDRESS *Ip6
532 );
533
534 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
535
536
537 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
538
539 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
540 #define NET_IS_HEX(Ch) ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))
541 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
542 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
543 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
544
545 #define TICKS_PER_MS 10000U
546 #define TICKS_PER_SECOND 10000000U
547
548 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
549
550 /**
551 Extract a UINT32 from a byte stream.
552
553 ASSERT if Buf is NULL.
554
555 This function copies a UINT32 from a byte stream, and then converts it from Network
556 byte order to host byte order. Use this function to avoid alignment error.
557
558 @param[in] Buf The buffer to extract the UINT32.
559
560 @return The UINT32 extracted.
561
562 **/
563 UINT32
564 EFIAPI
565 NetGetUint32 (
566 IN UINT8 *Buf
567 );
568
569 /**
570 Puts a UINT32 into the byte stream in network byte order.
571
572 ASSERT if Buf is NULL.
573
574 Converts a UINT32 from host byte order to network byte order, then copies it to the
575 byte stream.
576
577 @param[in, out] Buf The buffer in which to put the UINT32.
578 @param[in] Data The data to be converted and put into the byte stream.
579
580 **/
581 VOID
582 EFIAPI
583 NetPutUint32 (
584 IN OUT UINT8 *Buf,
585 IN UINT32 Data
586 );
587
588 /**
589 Initialize a random seed using current time and monotonic count.
590
591 Get current time and monotonic count first. Then initialize a random seed
592 based on some basic mathematics operation on the hour, day, minute, second,
593 nanosecond and year of the current time and the monotonic count value.
594
595 @return The random seed initialized with current time.
596
597 **/
598 UINT32
599 EFIAPI
600 NetRandomInitSeed (
601 VOID
602 );
603
604
605 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
606 BASE_CR(Entry, Type, Field)
607
608 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
609 CR(Entry, Type, Field, Sig)
610
611 //
612 // Iterate through the double linked list. It is NOT delete safe
613 //
614 #define NET_LIST_FOR_EACH(Entry, ListHead) \
615 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
616
617 //
618 // Iterate through the double linked list. This is delete-safe.
619 // Don't touch NextEntry. Also, don't use this macro if list
620 // entries other than the Entry may be deleted when processing
621 // the current Entry.
622 //
623 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
624 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
625 Entry != (ListHead); \
626 Entry = NextEntry, NextEntry = Entry->ForwardLink \
627 )
628
629 //
630 // Make sure the list isn't empty before getting the first/last record.
631 //
632 #define NET_LIST_HEAD(ListHead, Type, Field) \
633 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
634
635 #define NET_LIST_TAIL(ListHead, Type, Field) \
636 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
637
638
639 /**
640 Remove the first node entry on the list, and return the removed node entry.
641
642 Removes the first node entry from a doubly linked list. It is up to the caller of
643 this function to release the memory used by the first node, if that is required. On
644 exit, the removed node is returned.
645
646 If Head is NULL, then ASSERT().
647 If Head was not initialized, then ASSERT().
648 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
649 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
650 then ASSERT().
651
652 @param[in, out] Head The list header.
653
654 @return The first node entry that is removed from the list, NULL if the list is empty.
655
656 **/
657 LIST_ENTRY *
658 EFIAPI
659 NetListRemoveHead (
660 IN OUT LIST_ENTRY *Head
661 );
662
663 /**
664 Remove the last node entry on the list and return the removed node entry.
665
666 Removes the last node entry from a doubly linked list. It is up to the caller of
667 this function to release the memory used by the first node, if that is required. On
668 exit, the removed node is returned.
669
670 If Head is NULL, then ASSERT().
671 If Head was not initialized, then ASSERT().
672 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
673 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
674 then ASSERT().
675
676 @param[in, out] Head The list head.
677
678 @return The last node entry that is removed from the list, NULL if the list is empty.
679
680 **/
681 LIST_ENTRY *
682 EFIAPI
683 NetListRemoveTail (
684 IN OUT LIST_ENTRY *Head
685 );
686
687 /**
688 Insert a new node entry after a designated node entry of a doubly linked list.
689
690 ASSERT if PrevEntry or NewEntry is NULL.
691
692 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
693 of the doubly linked list.
694
695 @param[in, out] PrevEntry The entry after which to insert.
696 @param[in, out] NewEntry The new entry to insert.
697
698 **/
699 VOID
700 EFIAPI
701 NetListInsertAfter (
702 IN OUT LIST_ENTRY *PrevEntry,
703 IN OUT LIST_ENTRY *NewEntry
704 );
705
706 /**
707 Insert a new node entry before a designated node entry of a doubly linked list.
708
709 ASSERT if PostEntry or NewEntry is NULL.
710
711 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
712 of the doubly linked list.
713
714 @param[in, out] PostEntry The entry to insert before.
715 @param[in, out] NewEntry The new entry to insert.
716
717 **/
718 VOID
719 EFIAPI
720 NetListInsertBefore (
721 IN OUT LIST_ENTRY *PostEntry,
722 IN OUT LIST_ENTRY *NewEntry
723 );
724
725 /**
726 Callback function which provided by user to remove one node in NetDestroyLinkList process.
727
728 @param[in] Entry The entry to be removed.
729 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
730
731 @retval EFI_SUCCESS The entry has been removed successfully.
732 @retval Others Fail to remove the entry.
733
734 **/
735 typedef
736 EFI_STATUS
737 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
738 IN LIST_ENTRY *Entry,
739 IN VOID *Context OPTIONAL
740 );
741
742 /**
743 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
744
745 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
746 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
747 has been removed from the list or not.
748 If it has been removed, then restart the traversal from the head.
749 If it hasn't been removed, then continue with the next node directly.
750 This function will end the iterate and return the CallBack's last return value if error happens,
751 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
752
753 @param[in] List The head of the list.
754 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
755 @param[in] Context Pointer to the callback function's context: corresponds to the
756 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
757 @param[out] ListLength The length of the link list if the function returns successfully.
758
759 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
760 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
761 @retval Others Return the CallBack's last return value.
762
763 **/
764 EFI_STATUS
765 EFIAPI
766 NetDestroyLinkList (
767 IN LIST_ENTRY *List,
768 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
769 IN VOID *Context, OPTIONAL
770 OUT UINTN *ListLength OPTIONAL
771 );
772
773 /**
774 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
775
776 @param[in] Handle Handle to be checked.
777 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
778 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
779 if NumberOfChildren is 0.
780
781 @retval TRUE Found the input Handle in ChildHandleBuffer.
782 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
783
784 **/
785 BOOLEAN
786 EFIAPI
787 NetIsInHandleBuffer (
788 IN EFI_HANDLE Handle,
789 IN UINTN NumberOfChildren,
790 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
791 );
792
793 //
794 // Object container: EFI network stack spec defines various kinds of
795 // tokens. The drivers can share code to manage those objects.
796 //
797 typedef struct {
798 LIST_ENTRY Link;
799 VOID *Key;
800 VOID *Value;
801 } NET_MAP_ITEM;
802
803 typedef struct {
804 LIST_ENTRY Used;
805 LIST_ENTRY Recycled;
806 UINTN Count;
807 } NET_MAP;
808
809 #define NET_MAP_INCREAMENT 64
810
811 /**
812 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
813
814 Initialize the forward and backward links of two head nodes donated by Map->Used
815 and Map->Recycled of two doubly linked lists.
816 Initializes the count of the <Key, Value> pairs in the netmap to zero.
817
818 If Map is NULL, then ASSERT().
819 If the address of Map->Used is NULL, then ASSERT().
820 If the address of Map->Recycled is NULl, then ASSERT().
821
822 @param[in, out] Map The netmap to initialize.
823
824 **/
825 VOID
826 EFIAPI
827 NetMapInit (
828 IN OUT NET_MAP *Map
829 );
830
831 /**
832 To clean up the netmap, that is, release allocated memories.
833
834 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
835 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
836 The number of the <Key, Value> pairs in the netmap is set to zero.
837
838 If Map is NULL, then ASSERT().
839
840 @param[in, out] Map The netmap to clean up.
841
842 **/
843 VOID
844 EFIAPI
845 NetMapClean (
846 IN OUT NET_MAP *Map
847 );
848
849 /**
850 Test whether the netmap is empty and return true if it is.
851
852 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
853
854 If Map is NULL, then ASSERT().
855
856 @param[in] Map The net map to test.
857
858 @return TRUE if the netmap is empty, otherwise FALSE.
859
860 **/
861 BOOLEAN
862 EFIAPI
863 NetMapIsEmpty (
864 IN NET_MAP *Map
865 );
866
867 /**
868 Return the number of the <Key, Value> pairs in the netmap.
869
870 If Map is NULL, then ASSERT().
871
872 @param[in] Map The netmap to get the entry number.
873
874 @return The entry number in the netmap.
875
876 **/
877 UINTN
878 EFIAPI
879 NetMapGetCount (
880 IN NET_MAP *Map
881 );
882
883 /**
884 Allocate an item to save the <Key, Value> pair to the head of the netmap.
885
886 Allocate an item to save the <Key, Value> pair and add corresponding node entry
887 to the beginning of the Used doubly linked list. The number of the <Key, Value>
888 pairs in the netmap increase by 1.
889
890 If Map is NULL, then ASSERT().
891 If Key is NULL, then ASSERT().
892
893 @param[in, out] Map The netmap to insert into.
894 @param[in] Key The user's key.
895 @param[in] Value The user's value for the key.
896
897 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
898 @retval EFI_SUCCESS The item is inserted to the head.
899
900 **/
901 EFI_STATUS
902 EFIAPI
903 NetMapInsertHead (
904 IN OUT NET_MAP *Map,
905 IN VOID *Key,
906 IN VOID *Value OPTIONAL
907 );
908
909 /**
910 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
911
912 Allocate an item to save the <Key, Value> pair and add corresponding node entry
913 to the tail of the Used doubly linked list. The number of the <Key, Value>
914 pairs in the netmap increase by 1.
915
916 If Map is NULL, then ASSERT().
917 If Key is NULL, then ASSERT().
918
919 @param[in, out] Map The netmap to insert into.
920 @param[in] Key The user's key.
921 @param[in] Value The user's value for the key.
922
923 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
924 @retval EFI_SUCCESS The item is inserted to the tail.
925
926 **/
927 EFI_STATUS
928 EFIAPI
929 NetMapInsertTail (
930 IN OUT NET_MAP *Map,
931 IN VOID *Key,
932 IN VOID *Value OPTIONAL
933 );
934
935 /**
936 Finds the key in the netmap and returns the point to the item containing the Key.
937
938 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
939 item with the key to search. It returns the point to the item contains the Key if found.
940
941 If Map is NULL, then ASSERT().
942 If Key is NULL, then ASSERT().
943
944 @param[in] Map The netmap to search within.
945 @param[in] Key The key to search.
946
947 @return The point to the item contains the Key, or NULL if Key isn't in the map.
948
949 **/
950 NET_MAP_ITEM *
951 EFIAPI
952 NetMapFindKey (
953 IN NET_MAP *Map,
954 IN VOID *Key
955 );
956
957 /**
958 Remove the node entry of the item from the netmap and return the key of the removed item.
959
960 Remove the node entry of the item from the Used doubly linked list of the netmap.
961 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
962 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
963 Value will point to the value of the item. It returns the key of the removed item.
964
965 If Map is NULL, then ASSERT().
966 If Item is NULL, then ASSERT().
967 if item in not in the netmap, then ASSERT().
968
969 @param[in, out] Map The netmap to remove the item from.
970 @param[in, out] Item The item to remove.
971 @param[out] Value The variable to receive the value if not NULL.
972
973 @return The key of the removed item.
974
975 **/
976 VOID *
977 EFIAPI
978 NetMapRemoveItem (
979 IN OUT NET_MAP *Map,
980 IN OUT NET_MAP_ITEM *Item,
981 OUT VOID **Value OPTIONAL
982 );
983
984 /**
985 Remove the first node entry on the netmap and return the key of the removed item.
986
987 Remove the first node entry from the Used doubly linked list of the netmap.
988 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
989 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
990 parameter Value will point to the value of the item. It returns the key of the removed item.
991
992 If Map is NULL, then ASSERT().
993 If the Used doubly linked list is empty, then ASSERT().
994
995 @param[in, out] Map The netmap to remove the head from.
996 @param[out] Value The variable to receive the value if not NULL.
997
998 @return The key of the item removed.
999
1000 **/
1001 VOID *
1002 EFIAPI
1003 NetMapRemoveHead (
1004 IN OUT NET_MAP *Map,
1005 OUT VOID **Value OPTIONAL
1006 );
1007
1008 /**
1009 Remove the last node entry on the netmap and return the key of the removed item.
1010
1011 Remove the last node entry from the Used doubly linked list of the netmap.
1012 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
1013 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
1014 parameter Value will point to the value of the item. It returns the key of the removed item.
1015
1016 If Map is NULL, then ASSERT().
1017 If the Used doubly linked list is empty, then ASSERT().
1018
1019 @param[in, out] Map The netmap to remove the tail from.
1020 @param[out] Value The variable to receive the value if not NULL.
1021
1022 @return The key of the item removed.
1023
1024 **/
1025 VOID *
1026 EFIAPI
1027 NetMapRemoveTail (
1028 IN OUT NET_MAP *Map,
1029 OUT VOID **Value OPTIONAL
1030 );
1031
1032 typedef
1033 EFI_STATUS
1034 (EFIAPI *NET_MAP_CALLBACK) (
1035 IN NET_MAP *Map,
1036 IN NET_MAP_ITEM *Item,
1037 IN VOID *Arg
1038 );
1039
1040 /**
1041 Iterate through the netmap and call CallBack for each item.
1042
1043 It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
1044 from the loop. It returns the CallBack's last return value. This function is
1045 delete safe for the current item.
1046
1047 If Map is NULL, then ASSERT().
1048 If CallBack is NULL, then ASSERT().
1049
1050 @param[in] Map The Map to iterate through.
1051 @param[in] CallBack The callback function to call for each item.
1052 @param[in] Arg The opaque parameter to the callback.
1053
1054 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
1055 returns EFI_SUCCESS.
1056 @retval Others It returns the CallBack's last return value.
1057
1058 **/
1059 EFI_STATUS
1060 EFIAPI
1061 NetMapIterate (
1062 IN NET_MAP *Map,
1063 IN NET_MAP_CALLBACK CallBack,
1064 IN VOID *Arg OPTIONAL
1065 );
1066
1067
1068 //
1069 // Helper functions to implement driver binding and service binding protocols.
1070 //
1071 /**
1072 Create a child of the service that is identified by ServiceBindingGuid.
1073
1074 Get the ServiceBinding Protocol first, then use it to create a child.
1075
1076 If ServiceBindingGuid is NULL, then ASSERT().
1077 If ChildHandle is NULL, then ASSERT().
1078
1079 @param[in] Controller The controller which has the service installed.
1080 @param[in] Image The image handle used to open service.
1081 @param[in] ServiceBindingGuid The service's Guid.
1082 @param[in, out] ChildHandle The handle to receive the created child.
1083
1084 @retval EFI_SUCCESS The child was successfully created.
1085 @retval Others Failed to create the child.
1086
1087 **/
1088 EFI_STATUS
1089 EFIAPI
1090 NetLibCreateServiceChild (
1091 IN EFI_HANDLE Controller,
1092 IN EFI_HANDLE Image,
1093 IN EFI_GUID *ServiceBindingGuid,
1094 IN OUT EFI_HANDLE *ChildHandle
1095 );
1096
1097 /**
1098 Destroy a child of the service that is identified by ServiceBindingGuid.
1099
1100 Get the ServiceBinding Protocol first, then use it to destroy a child.
1101
1102 If ServiceBindingGuid is NULL, then ASSERT().
1103
1104 @param[in] Controller The controller which has the service installed.
1105 @param[in] Image The image handle used to open service.
1106 @param[in] ServiceBindingGuid The service's Guid.
1107 @param[in] ChildHandle The child to destroy.
1108
1109 @retval EFI_SUCCESS The child was destroyed.
1110 @retval Others Failed to destroy the child.
1111
1112 **/
1113 EFI_STATUS
1114 EFIAPI
1115 NetLibDestroyServiceChild (
1116 IN EFI_HANDLE Controller,
1117 IN EFI_HANDLE Image,
1118 IN EFI_GUID *ServiceBindingGuid,
1119 IN EFI_HANDLE ChildHandle
1120 );
1121
1122 /**
1123 Get handle with Simple Network Protocol installed on it.
1124
1125 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1126 If Simple Network Protocol is already installed on the ServiceHandle, the
1127 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1128 try to find its parent handle with SNP installed.
1129
1130 @param[in] ServiceHandle The handle where network service binding protocols are
1131 installed on.
1132 @param[out] Snp The pointer to store the address of the SNP instance.
1133 This is an optional parameter that may be NULL.
1134
1135 @return The SNP handle, or NULL if not found.
1136
1137 **/
1138 EFI_HANDLE
1139 EFIAPI
1140 NetLibGetSnpHandle (
1141 IN EFI_HANDLE ServiceHandle,
1142 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1143 );
1144
1145 /**
1146 Retrieve VLAN ID of a VLAN device handle.
1147
1148 Search VLAN device path node in Device Path of specified ServiceHandle and
1149 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1150 is not a VLAN device handle, and 0 will be returned.
1151
1152 @param[in] ServiceHandle The handle where network service binding protocols are
1153 installed on.
1154
1155 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1156
1157 **/
1158 UINT16
1159 EFIAPI
1160 NetLibGetVlanId (
1161 IN EFI_HANDLE ServiceHandle
1162 );
1163
1164 /**
1165 Find VLAN device handle with specified VLAN ID.
1166
1167 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1168 This function will append VLAN device path node to the parent device path,
1169 and then use LocateDevicePath() to find the correct VLAN device handle.
1170
1171 @param[in] ControllerHandle The handle where network service binding protocols are
1172 installed on.
1173 @param[in] VlanId The configured VLAN ID for the VLAN device.
1174
1175 @return The VLAN device handle, or NULL if not found.
1176
1177 **/
1178 EFI_HANDLE
1179 EFIAPI
1180 NetLibGetVlanHandle (
1181 IN EFI_HANDLE ControllerHandle,
1182 IN UINT16 VlanId
1183 );
1184
1185 /**
1186 Get MAC address associated with the network service handle.
1187
1188 If MacAddress is NULL, then ASSERT().
1189 If AddressSize is NULL, then ASSERT().
1190
1191 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1192 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1193 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1194
1195 @param[in] ServiceHandle The handle where network service binding protocols are
1196 installed on.
1197 @param[out] MacAddress The pointer to store the returned MAC address.
1198 @param[out] AddressSize The length of returned MAC address.
1199
1200 @retval EFI_SUCCESS MAC address was returned successfully.
1201 @retval Others Failed to get SNP mode data.
1202
1203 **/
1204 EFI_STATUS
1205 EFIAPI
1206 NetLibGetMacAddress (
1207 IN EFI_HANDLE ServiceHandle,
1208 OUT EFI_MAC_ADDRESS *MacAddress,
1209 OUT UINTN *AddressSize
1210 );
1211
1212 /**
1213 Convert MAC address of the NIC associated with specified Service Binding Handle
1214 to a unicode string. Callers are responsible for freeing the string storage.
1215
1216 If MacString is NULL, then ASSERT().
1217
1218 Locate simple network protocol associated with the Service Binding Handle and
1219 get the mac address from SNP. Then convert the mac address into a unicode
1220 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1221 Plus one unicode character for the null-terminator.
1222
1223 @param[in] ServiceHandle The handle where network service binding protocol is
1224 installed.
1225 @param[in] ImageHandle The image handle used to act as the agent handle to
1226 get the simple network protocol. This parameter is
1227 optional and may be NULL.
1228 @param[out] MacString The pointer to store the address of the string
1229 representation of the mac address.
1230
1231 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1232 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1233 @retval Others Failed to open the simple network protocol.
1234
1235 **/
1236 EFI_STATUS
1237 EFIAPI
1238 NetLibGetMacString (
1239 IN EFI_HANDLE ServiceHandle,
1240 IN EFI_HANDLE ImageHandle, OPTIONAL
1241 OUT CHAR16 **MacString
1242 );
1243
1244 /**
1245 Detect media status for specified network device.
1246
1247 If MediaPresent is NULL, then ASSERT().
1248
1249 The underlying UNDI driver may or may not support reporting media status from
1250 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1251 will try to invoke Snp->GetStatus() to get the media status. If media is already
1252 present, it returns directly. If media is not present, it will stop SNP and then
1253 restart SNP to get the latest media status. This provides an opportunity to get
1254 the correct media status for old UNDI driver, which doesn't support reporting
1255 media status from GET_STATUS command.
1256 Note: there are two limitations for the current algorithm:
1257 1) For UNDI with this capability, when the cable is not attached, there will
1258 be an redundant Stop/Start() process.
1259 2) for UNDI without this capability, in case that network cable is attached when
1260 Snp->Initialize() is invoked while network cable is unattached later,
1261 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1262 apps to wait for timeout time.
1263
1264 @param[in] ServiceHandle The handle where network service binding protocols are
1265 installed.
1266 @param[out] MediaPresent The pointer to store the media status.
1267
1268 @retval EFI_SUCCESS Media detection success.
1269 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1270 @retval EFI_UNSUPPORTED The network device does not support media detection.
1271 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1272
1273 **/
1274 EFI_STATUS
1275 EFIAPI
1276 NetLibDetectMedia (
1277 IN EFI_HANDLE ServiceHandle,
1278 OUT BOOLEAN *MediaPresent
1279 );
1280
1281 /**
1282 Detect media state for a network device. This routine will wait for a period of time at
1283 a specified checking interval when a certain network is under connecting until connection
1284 process finishes or timeout. If Aip protocol is supported by low layer drivers, three kinds
1285 of media states can be detected: EFI_SUCCESS, EFI_NOT_READY and EFI_NO_MEDIA, represents
1286 connected state, connecting state and no media state respectively. When function detects
1287 the current state is EFI_NOT_READY, it will loop to wait for next time's check until state
1288 turns to be EFI_SUCCESS or EFI_NO_MEDIA. If Aip protocol is not supported, function will
1289 call NetLibDetectMedia() and return state directly.
1290
1291 @param[in] ServiceHandle The handle where network service binding protocols are
1292 installed on.
1293 @param[in] Timeout The maximum number of 100ns units to wait when network
1294 is connecting. Zero value means detect once and return
1295 immediately.
1296 @param[out] MediaState The pointer to the detected media state.
1297
1298 @retval EFI_SUCCESS Media detection success.
1299 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle or
1300 MediaState pointer is NULL.
1301 @retval EFI_DEVICE_ERROR A device error occurred.
1302 @retval EFI_TIMEOUT Network is connecting but timeout.
1303
1304 **/
1305 EFI_STATUS
1306 EFIAPI
1307 NetLibDetectMediaWaitTimeout (
1308 IN EFI_HANDLE ServiceHandle,
1309 IN UINT64 Timeout,
1310 OUT EFI_STATUS *MediaState
1311 );
1312
1313
1314 /**
1315 Create an IPv4 device path node.
1316
1317 If Node is NULL, then ASSERT().
1318
1319 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1320 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1321 The length of the IPv4 device path node in bytes is 19.
1322 Get other information from parameters to make up the whole IPv4 device path node.
1323
1324 @param[in, out] Node The pointer to the IPv4 device path node.
1325 @param[in] Controller The controller handle.
1326 @param[in] LocalIp The local IPv4 address.
1327 @param[in] LocalPort The local port.
1328 @param[in] RemoteIp The remote IPv4 address.
1329 @param[in] RemotePort The remote port.
1330 @param[in] Protocol The protocol type in the IP header.
1331 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1332
1333 **/
1334 VOID
1335 EFIAPI
1336 NetLibCreateIPv4DPathNode (
1337 IN OUT IPv4_DEVICE_PATH *Node,
1338 IN EFI_HANDLE Controller,
1339 IN IP4_ADDR LocalIp,
1340 IN UINT16 LocalPort,
1341 IN IP4_ADDR RemoteIp,
1342 IN UINT16 RemotePort,
1343 IN UINT16 Protocol,
1344 IN BOOLEAN UseDefaultAddress
1345 );
1346
1347 /**
1348 Create an IPv6 device path node.
1349
1350 If Node is NULL, then ASSERT().
1351 If LocalIp is NULL, then ASSERT().
1352 If RemoteIp is NULL, then ASSERT().
1353
1354 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1355 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1356 The length of the IPv6 device path node in bytes is 43.
1357 Get other information from parameters to make up the whole IPv6 device path node.
1358
1359 @param[in, out] Node The pointer to the IPv6 device path node.
1360 @param[in] Controller The controller handle.
1361 @param[in] LocalIp The local IPv6 address.
1362 @param[in] LocalPort The local port.
1363 @param[in] RemoteIp The remote IPv6 address.
1364 @param[in] RemotePort The remote port.
1365 @param[in] Protocol The protocol type in the IP header.
1366
1367 **/
1368 VOID
1369 EFIAPI
1370 NetLibCreateIPv6DPathNode (
1371 IN OUT IPv6_DEVICE_PATH *Node,
1372 IN EFI_HANDLE Controller,
1373 IN EFI_IPv6_ADDRESS *LocalIp,
1374 IN UINT16 LocalPort,
1375 IN EFI_IPv6_ADDRESS *RemoteIp,
1376 IN UINT16 RemotePort,
1377 IN UINT16 Protocol
1378 );
1379
1380
1381 /**
1382 Find the UNDI/SNP handle from controller and protocol GUID.
1383
1384 If ProtocolGuid is NULL, then ASSERT().
1385
1386 For example, IP will open an MNP child to transmit/receive
1387 packets. When MNP is stopped, IP should also be stopped. IP
1388 needs to find its own private data that is related the IP's
1389 service binding instance that is installed on the UNDI/SNP handle.
1390 The controller is then either an MNP or an ARP child handle. Note that
1391 IP opens these handles using BY_DRIVER. Use that information to get the
1392 UNDI/SNP handle.
1393
1394 @param[in] Controller The protocol handle to check.
1395 @param[in] ProtocolGuid The protocol that is related with the handle.
1396
1397 @return The UNDI/SNP handle or NULL for errors.
1398
1399 **/
1400 EFI_HANDLE
1401 EFIAPI
1402 NetLibGetNicHandle (
1403 IN EFI_HANDLE Controller,
1404 IN EFI_GUID *ProtocolGuid
1405 );
1406
1407 /**
1408 This is the default unload handle for all the network drivers.
1409
1410 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1411 Uninstall all the protocols installed in the driver entry point.
1412
1413 @param[in] ImageHandle The drivers' driver image.
1414
1415 @retval EFI_SUCCESS The image is unloaded.
1416 @retval Others Failed to unload the image.
1417
1418 **/
1419 EFI_STATUS
1420 EFIAPI
1421 NetLibDefaultUnload (
1422 IN EFI_HANDLE ImageHandle
1423 );
1424
1425 /**
1426 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1427
1428 @param[in] String The pointer to the Ascii string.
1429 @param[out] Ip4Address The pointer to the converted IPv4 address.
1430
1431 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1432 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip4Address is NULL.
1433
1434 **/
1435 EFI_STATUS
1436 EFIAPI
1437 NetLibAsciiStrToIp4 (
1438 IN CONST CHAR8 *String,
1439 OUT EFI_IPv4_ADDRESS *Ip4Address
1440 );
1441
1442 /**
1443 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1444 string is defined in RFC 4291 - Text Representation of Addresses.
1445
1446 @param[in] String The pointer to the Ascii string.
1447 @param[out] Ip6Address The pointer to the converted IPv6 address.
1448
1449 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1450 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1451
1452 **/
1453 EFI_STATUS
1454 EFIAPI
1455 NetLibAsciiStrToIp6 (
1456 IN CONST CHAR8 *String,
1457 OUT EFI_IPv6_ADDRESS *Ip6Address
1458 );
1459
1460 /**
1461 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1462
1463 @param[in] String The pointer to the Ascii string.
1464 @param[out] Ip4Address The pointer to the converted IPv4 address.
1465
1466 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1467 @retval EFI_INVALID_PARAMETER The string is mal-formatted or Ip4Address is NULL.
1468
1469 **/
1470 EFI_STATUS
1471 EFIAPI
1472 NetLibStrToIp4 (
1473 IN CONST CHAR16 *String,
1474 OUT EFI_IPv4_ADDRESS *Ip4Address
1475 );
1476
1477 /**
1478 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1479 the string is defined in RFC 4291 - Text Representation of Addresses.
1480
1481 @param[in] String The pointer to the Ascii string.
1482 @param[out] Ip6Address The pointer to the converted IPv6 address.
1483
1484 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1485 @retval EFI_INVALID_PARAMETER The string is malformatted or Ip6Address is NULL.
1486
1487 **/
1488 EFI_STATUS
1489 EFIAPI
1490 NetLibStrToIp6 (
1491 IN CONST CHAR16 *String,
1492 OUT EFI_IPv6_ADDRESS *Ip6Address
1493 );
1494
1495 /**
1496 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1497 The format of the string is defined in RFC 4291 - Text Representation of Addresses
1498 Prefixes: ipv6-address/prefix-length.
1499
1500 @param[in] String The pointer to the Ascii string.
1501 @param[out] Ip6Address The pointer to the converted IPv6 address.
1502 @param[out] PrefixLength The pointer to the converted prefix length.
1503
1504 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1505 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1506
1507 **/
1508 EFI_STATUS
1509 EFIAPI
1510 NetLibStrToIp6andPrefix (
1511 IN CONST CHAR16 *String,
1512 OUT EFI_IPv6_ADDRESS *Ip6Address,
1513 OUT UINT8 *PrefixLength
1514 );
1515
1516 /**
1517
1518 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1519 The text representation of address is defined in RFC 4291.
1520
1521 @param[in] Ip6Address The pointer to the IPv6 address.
1522 @param[out] String The buffer to return the converted string.
1523 @param[in] StringSize The length in bytes of the input String.
1524
1525 @retval EFI_SUCCESS Convert to string successfully.
1526 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1527 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1528 updated with the size needed to complete the request.
1529 **/
1530 EFI_STATUS
1531 EFIAPI
1532 NetLibIp6ToStr (
1533 IN EFI_IPv6_ADDRESS *Ip6Address,
1534 OUT CHAR16 *String,
1535 IN UINTN StringSize
1536 );
1537
1538 //
1539 // Various signatures
1540 //
1541 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1542 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1543 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1544
1545
1546 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1547 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1548 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1549 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1550
1551 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1552 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1553
1554 //
1555 // Single memory block in the vector.
1556 //
1557 typedef struct {
1558 UINT32 Len; // The block's length
1559 UINT8 *Bulk; // The block's Data
1560 } NET_BLOCK;
1561
1562 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1563
1564 //
1565 //NET_VECTOR contains several blocks to hold all packet's
1566 //fragments and other house-keeping stuff for sharing. It
1567 //doesn't specify the where actual packet fragment begins.
1568 //
1569 typedef struct {
1570 UINT32 Signature;
1571 INTN RefCnt; // Reference count to share NET_VECTOR.
1572 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1573 VOID *Arg; // opaque argument to Free
1574 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1575 UINT32 Len; // Total length of the associated BLOCKs
1576
1577 UINT32 BlockNum;
1578 NET_BLOCK Block[1];
1579 } NET_VECTOR;
1580
1581 //
1582 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1583 //where the actual fragment begins and ends
1584 //
1585 typedef struct {
1586 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1587 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1588 UINT8 *Head; // 1st byte of the data in the block
1589 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1590 UINT32 Size; // The size of the data
1591 } NET_BLOCK_OP;
1592
1593 typedef union {
1594 IP4_HEAD *Ip4;
1595 EFI_IP6_HEADER *Ip6;
1596 } NET_IP_HEAD;
1597
1598 //
1599 //NET_BUF is the buffer manage structure used by the
1600 //network stack. Every network packet may be fragmented. The Vector points to
1601 //memory blocks used by each fragment, and BlockOp
1602 //specifies where each fragment begins and ends.
1603 //
1604 //It also contains an opaque area for the protocol to store
1605 //per-packet information. Protocol must be careful not
1606 //to overwrite the members after that.
1607 //
1608 typedef struct {
1609 UINT32 Signature;
1610 INTN RefCnt;
1611 LIST_ENTRY List; // The List this NET_BUF is on
1612
1613 NET_IP_HEAD Ip; // Network layer header, for fast access
1614 TCP_HEAD *Tcp; // Transport layer header, for fast access
1615 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1616 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1617
1618 NET_VECTOR *Vector; // The vector containing the packet
1619
1620 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1621 UINT32 TotalSize; // Total size of the actual packet
1622 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1623 } NET_BUF;
1624
1625 //
1626 //A queue of NET_BUFs. It is a thin extension of
1627 //NET_BUF functions.
1628 //
1629 typedef struct {
1630 UINT32 Signature;
1631 INTN RefCnt;
1632 LIST_ENTRY List; // The List this buffer queue is on
1633
1634 LIST_ENTRY BufList; // list of queued buffers
1635 UINT32 BufSize; // total length of DATA in the buffers
1636 UINT32 BufNum; // total number of buffers on the chain
1637 } NET_BUF_QUEUE;
1638
1639 //
1640 // Pseudo header for TCP and UDP checksum
1641 //
1642 #pragma pack(1)
1643 typedef struct {
1644 IP4_ADDR SrcIp;
1645 IP4_ADDR DstIp;
1646 UINT8 Reserved;
1647 UINT8 Protocol;
1648 UINT16 Len;
1649 } NET_PSEUDO_HDR;
1650
1651 typedef struct {
1652 EFI_IPv6_ADDRESS SrcIp;
1653 EFI_IPv6_ADDRESS DstIp;
1654 UINT32 Len;
1655 UINT32 Reserved:24;
1656 UINT32 NextHeader:8;
1657 } NET_IP6_PSEUDO_HDR;
1658 #pragma pack()
1659
1660 //
1661 // The fragment entry table used in network interfaces. This is
1662 // the same as NET_BLOCK now. Use two different to distinguish
1663 // the two in case that NET_BLOCK be enhanced later.
1664 //
1665 typedef struct {
1666 UINT32 Len;
1667 UINT8 *Bulk;
1668 } NET_FRAGMENT;
1669
1670 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1671 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1672 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1673
1674 #define NET_BUF_SHARED(Buf) \
1675 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1676
1677 #define NET_VECTOR_SIZE(BlockNum) \
1678 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1679
1680 #define NET_BUF_SIZE(BlockOpNum) \
1681 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1682
1683 #define NET_HEADSPACE(BlockOp) \
1684 ((UINTN)((BlockOp)->Head) - (UINTN)((BlockOp)->BlockHead))
1685
1686 #define NET_TAILSPACE(BlockOp) \
1687 ((UINTN)((BlockOp)->BlockTail) - (UINTN)((BlockOp)->Tail))
1688
1689 /**
1690 Allocate a single block NET_BUF. Upon allocation, all the
1691 free space is in the tail room.
1692
1693 @param[in] Len The length of the block.
1694
1695 @return The pointer to the allocated NET_BUF, or NULL if the
1696 allocation failed due to resource limitations.
1697
1698 **/
1699 NET_BUF *
1700 EFIAPI
1701 NetbufAlloc (
1702 IN UINT32 Len
1703 );
1704
1705 /**
1706 Free the net buffer and its associated NET_VECTOR.
1707
1708 Decrease the reference count of the net buffer by one. Free the associated net
1709 vector and itself if the reference count of the net buffer is decreased to 0.
1710 The net vector free operation decreases the reference count of the net
1711 vector by one, and performs the resource free operation when the reference count
1712 of the net vector is 0.
1713
1714 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1715
1716 **/
1717 VOID
1718 EFIAPI
1719 NetbufFree (
1720 IN NET_BUF *Nbuf
1721 );
1722
1723 /**
1724 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1725 buffer.
1726
1727 For example, this function can be used to retrieve the IP header in the packet. It
1728 also can be used to get the fragment that contains the byte used
1729 mainly by the library implementation itself.
1730
1731 @param[in] Nbuf The pointer to the net buffer.
1732 @param[in] Offset The offset of the byte.
1733 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1734 Offset.
1735
1736 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1737 if there is no such data in the net buffer.
1738
1739 **/
1740 UINT8 *
1741 EFIAPI
1742 NetbufGetByte (
1743 IN NET_BUF *Nbuf,
1744 IN UINT32 Offset,
1745 OUT UINT32 *Index OPTIONAL
1746 );
1747
1748 /**
1749 Create a copy of the net buffer that shares the associated net vector.
1750
1751 The reference count of the newly created net buffer is set to 1. The reference
1752 count of the associated net vector is increased by one.
1753
1754 @param[in] Nbuf The pointer to the net buffer to be cloned.
1755
1756 @return The pointer to the cloned net buffer, or NULL if the
1757 allocation failed due to resource limitations.
1758
1759 **/
1760 NET_BUF *
1761 EFIAPI
1762 NetbufClone (
1763 IN NET_BUF *Nbuf
1764 );
1765
1766 /**
1767 Create a duplicated copy of the net buffer with data copied and HeadSpace
1768 bytes of head space reserved.
1769
1770 The duplicated net buffer will allocate its own memory to hold the data of the
1771 source net buffer.
1772
1773 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1774 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1775 NULL, a new net buffer is allocated.
1776 @param[in] HeadSpace The length of the head space to reserve.
1777
1778 @return The pointer to the duplicated net buffer, or NULL if
1779 the allocation failed due to resource limitations.
1780
1781 **/
1782 NET_BUF *
1783 EFIAPI
1784 NetbufDuplicate (
1785 IN NET_BUF *Nbuf,
1786 IN OUT NET_BUF *Duplicate OPTIONAL,
1787 IN UINT32 HeadSpace
1788 );
1789
1790 /**
1791 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1792 Offset.
1793
1794 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1795 is shared. This function exists to perform IP packet fragmentation.
1796
1797 @param[in] Nbuf The pointer to the net buffer to be extracted.
1798 @param[in] Offset Starting point of the data to be included in the new
1799 net buffer.
1800 @param[in] Len The bytes of data to be included in the new net buffer.
1801 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1802
1803 @return The pointer to the cloned net buffer, or NULL if the
1804 allocation failed due to resource limitations.
1805
1806 **/
1807 NET_BUF *
1808 EFIAPI
1809 NetbufGetFragment (
1810 IN NET_BUF *Nbuf,
1811 IN UINT32 Offset,
1812 IN UINT32 Len,
1813 IN UINT32 HeadSpace
1814 );
1815
1816 /**
1817 Reserve some space in the header room of the net buffer.
1818
1819 Upon allocation, all the space is in the tail room of the buffer. Call this
1820 function to move space to the header room. This function is quite limited
1821 in that it can only reserve space from the first block of an empty NET_BUF not
1822 built from the external. However, it should be enough for the network stack.
1823
1824 @param[in, out] Nbuf The pointer to the net buffer.
1825 @param[in] Len The length of buffer to be reserved from the header.
1826
1827 **/
1828 VOID
1829 EFIAPI
1830 NetbufReserve (
1831 IN OUT NET_BUF *Nbuf,
1832 IN UINT32 Len
1833 );
1834
1835 /**
1836 Allocate Len bytes of space from the header or tail of the buffer.
1837
1838 @param[in, out] Nbuf The pointer to the net buffer.
1839 @param[in] Len The length of the buffer to be allocated.
1840 @param[in] FromHead The flag to indicate whether to reserve the data
1841 from head (TRUE) or tail (FALSE).
1842
1843 @return The pointer to the first byte of the allocated buffer,
1844 or NULL, if there is no sufficient space.
1845
1846 **/
1847 UINT8*
1848 EFIAPI
1849 NetbufAllocSpace (
1850 IN OUT NET_BUF *Nbuf,
1851 IN UINT32 Len,
1852 IN BOOLEAN FromHead
1853 );
1854
1855 /**
1856 Trim Len bytes from the header or the tail of the net buffer.
1857
1858 @param[in, out] Nbuf The pointer to the net buffer.
1859 @param[in] Len The length of the data to be trimmed.
1860 @param[in] FromHead The flag to indicate whether trim data is from the
1861 head (TRUE) or the tail (FALSE).
1862
1863 @return The length of the actual trimmed data, which may be less
1864 than Len if the TotalSize of Nbuf is less than Len.
1865
1866 **/
1867 UINT32
1868 EFIAPI
1869 NetbufTrim (
1870 IN OUT NET_BUF *Nbuf,
1871 IN UINT32 Len,
1872 IN BOOLEAN FromHead
1873 );
1874
1875 /**
1876 Copy Len bytes of data from the specific offset of the net buffer to the
1877 destination memory.
1878
1879 The Len bytes of data may cross several fragments of the net buffer.
1880
1881 @param[in] Nbuf The pointer to the net buffer.
1882 @param[in] Offset The sequence number of the first byte to copy.
1883 @param[in] Len The length of the data to copy.
1884 @param[in] Dest The destination of the data to copy to.
1885
1886 @return The length of the actual copied data, or 0 if the offset
1887 specified exceeds the total size of net buffer.
1888
1889 **/
1890 UINT32
1891 EFIAPI
1892 NetbufCopy (
1893 IN NET_BUF *Nbuf,
1894 IN UINT32 Offset,
1895 IN UINT32 Len,
1896 IN UINT8 *Dest
1897 );
1898
1899 /**
1900 Build a NET_BUF from external blocks.
1901
1902 A new NET_BUF structure will be created from external blocks. An additional block
1903 of memory will be allocated to hold reserved HeadSpace bytes of header room
1904 and existing HeadLen bytes of header, but the external blocks are shared by the
1905 net buffer to avoid data copying.
1906
1907 @param[in] ExtFragment The pointer to the data block.
1908 @param[in] ExtNum The number of the data blocks.
1909 @param[in] HeadSpace The head space to be reserved.
1910 @param[in] HeadLen The length of the protocol header. The function
1911 pulls this amount of data into a linear block.
1912 @param[in] ExtFree The pointer to the caller-provided free function.
1913 @param[in] Arg The argument passed to ExtFree when ExtFree is
1914 called.
1915
1916 @return The pointer to the net buffer built from the data blocks,
1917 or NULL if the allocation failed due to resource
1918 limit.
1919
1920 **/
1921 NET_BUF *
1922 EFIAPI
1923 NetbufFromExt (
1924 IN NET_FRAGMENT *ExtFragment,
1925 IN UINT32 ExtNum,
1926 IN UINT32 HeadSpace,
1927 IN UINT32 HeadLen,
1928 IN NET_VECTOR_EXT_FREE ExtFree,
1929 IN VOID *Arg OPTIONAL
1930 );
1931
1932 /**
1933 Build a fragment table to contain the fragments in the net buffer. This is the
1934 opposite operation of the NetbufFromExt.
1935
1936 @param[in] Nbuf Points to the net buffer.
1937 @param[in, out] ExtFragment The pointer to the data block.
1938 @param[in, out] ExtNum The number of the data blocks.
1939
1940 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1941 ExtNum.
1942 @retval EFI_SUCCESS The fragment table was built successfully.
1943
1944 **/
1945 EFI_STATUS
1946 EFIAPI
1947 NetbufBuildExt (
1948 IN NET_BUF *Nbuf,
1949 IN OUT NET_FRAGMENT *ExtFragment,
1950 IN OUT UINT32 *ExtNum
1951 );
1952
1953 /**
1954 Build a net buffer from a list of net buffers.
1955
1956 All the fragments will be collected from the list of NEW_BUF, and then a new
1957 net buffer will be created through NetbufFromExt.
1958
1959 @param[in] BufList A List of the net buffer.
1960 @param[in] HeadSpace The head space to be reserved.
1961 @param[in] HeaderLen The length of the protocol header. The function
1962 pulls this amount of data into a linear block.
1963 @param[in] ExtFree The pointer to the caller provided free function.
1964 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1965
1966 @return The pointer to the net buffer built from the list of net
1967 buffers.
1968
1969 **/
1970 NET_BUF *
1971 EFIAPI
1972 NetbufFromBufList (
1973 IN LIST_ENTRY *BufList,
1974 IN UINT32 HeadSpace,
1975 IN UINT32 HeaderLen,
1976 IN NET_VECTOR_EXT_FREE ExtFree,
1977 IN VOID *Arg OPTIONAL
1978 );
1979
1980 /**
1981 Free a list of net buffers.
1982
1983 @param[in, out] Head The pointer to the head of linked net buffers.
1984
1985 **/
1986 VOID
1987 EFIAPI
1988 NetbufFreeList (
1989 IN OUT LIST_ENTRY *Head
1990 );
1991
1992 /**
1993 Initiate the net buffer queue.
1994
1995 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1996
1997 **/
1998 VOID
1999 EFIAPI
2000 NetbufQueInit (
2001 IN OUT NET_BUF_QUEUE *NbufQue
2002 );
2003
2004 /**
2005 Allocate and initialize a net buffer queue.
2006
2007 @return The pointer to the allocated net buffer queue, or NULL if the
2008 allocation failed due to resource limit.
2009
2010 **/
2011 NET_BUF_QUEUE *
2012 EFIAPI
2013 NetbufQueAlloc (
2014 VOID
2015 );
2016
2017 /**
2018 Free a net buffer queue.
2019
2020 Decrease the reference count of the net buffer queue by one. The real resource
2021 free operation isn't performed until the reference count of the net buffer
2022 queue is decreased to 0.
2023
2024 @param[in] NbufQue The pointer to the net buffer queue to be freed.
2025
2026 **/
2027 VOID
2028 EFIAPI
2029 NetbufQueFree (
2030 IN NET_BUF_QUEUE *NbufQue
2031 );
2032
2033 /**
2034 Remove a net buffer from the head in the specific queue and return it.
2035
2036 @param[in, out] NbufQue The pointer to the net buffer queue.
2037
2038 @return The pointer to the net buffer removed from the specific queue,
2039 or NULL if there is no net buffer in the specific queue.
2040
2041 **/
2042 NET_BUF *
2043 EFIAPI
2044 NetbufQueRemove (
2045 IN OUT NET_BUF_QUEUE *NbufQue
2046 );
2047
2048 /**
2049 Append a net buffer to the net buffer queue.
2050
2051 @param[in, out] NbufQue The pointer to the net buffer queue.
2052 @param[in, out] Nbuf The pointer to the net buffer to be appended.
2053
2054 **/
2055 VOID
2056 EFIAPI
2057 NetbufQueAppend (
2058 IN OUT NET_BUF_QUEUE *NbufQue,
2059 IN OUT NET_BUF *Nbuf
2060 );
2061
2062 /**
2063 Copy Len bytes of data from the net buffer queue at the specific offset to the
2064 destination memory.
2065
2066 The copying operation is the same as NetbufCopy, but applies to the net buffer
2067 queue instead of the net buffer.
2068
2069 @param[in] NbufQue The pointer to the net buffer queue.
2070 @param[in] Offset The sequence number of the first byte to copy.
2071 @param[in] Len The length of the data to copy.
2072 @param[out] Dest The destination of the data to copy to.
2073
2074 @return The length of the actual copied data, or 0 if the offset
2075 specified exceeds the total size of net buffer queue.
2076
2077 **/
2078 UINT32
2079 EFIAPI
2080 NetbufQueCopy (
2081 IN NET_BUF_QUEUE *NbufQue,
2082 IN UINT32 Offset,
2083 IN UINT32 Len,
2084 OUT UINT8 *Dest
2085 );
2086
2087 /**
2088 Trim Len bytes of data from the buffer queue and free any net buffer
2089 that is completely trimmed.
2090
2091 The trimming operation is the same as NetbufTrim but applies to the net buffer
2092 queue instead of the net buffer.
2093
2094 @param[in, out] NbufQue The pointer to the net buffer queue.
2095 @param[in] Len The length of the data to trim.
2096
2097 @return The actual length of the data trimmed.
2098
2099 **/
2100 UINT32
2101 EFIAPI
2102 NetbufQueTrim (
2103 IN OUT NET_BUF_QUEUE *NbufQue,
2104 IN UINT32 Len
2105 );
2106
2107
2108 /**
2109 Flush the net buffer queue.
2110
2111 @param[in, out] NbufQue The pointer to the queue to be flushed.
2112
2113 **/
2114 VOID
2115 EFIAPI
2116 NetbufQueFlush (
2117 IN OUT NET_BUF_QUEUE *NbufQue
2118 );
2119
2120 /**
2121 Compute the checksum for a bulk of data.
2122
2123 @param[in] Bulk The pointer to the data.
2124 @param[in] Len The length of the data, in bytes.
2125
2126 @return The computed checksum.
2127
2128 **/
2129 UINT16
2130 EFIAPI
2131 NetblockChecksum (
2132 IN UINT8 *Bulk,
2133 IN UINT32 Len
2134 );
2135
2136 /**
2137 Add two checksums.
2138
2139 @param[in] Checksum1 The first checksum to be added.
2140 @param[in] Checksum2 The second checksum to be added.
2141
2142 @return The new checksum.
2143
2144 **/
2145 UINT16
2146 EFIAPI
2147 NetAddChecksum (
2148 IN UINT16 Checksum1,
2149 IN UINT16 Checksum2
2150 );
2151
2152 /**
2153 Compute the checksum for a NET_BUF.
2154
2155 @param[in] Nbuf The pointer to the net buffer.
2156
2157 @return The computed checksum.
2158
2159 **/
2160 UINT16
2161 EFIAPI
2162 NetbufChecksum (
2163 IN NET_BUF *Nbuf
2164 );
2165
2166 /**
2167 Compute the checksum for TCP/UDP pseudo header.
2168
2169 Src and Dst are in network byte order, and Len is in host byte order.
2170
2171 @param[in] Src The source address of the packet.
2172 @param[in] Dst The destination address of the packet.
2173 @param[in] Proto The protocol type of the packet.
2174 @param[in] Len The length of the packet.
2175
2176 @return The computed checksum.
2177
2178 **/
2179 UINT16
2180 EFIAPI
2181 NetPseudoHeadChecksum (
2182 IN IP4_ADDR Src,
2183 IN IP4_ADDR Dst,
2184 IN UINT8 Proto,
2185 IN UINT16 Len
2186 );
2187
2188 /**
2189 Compute the checksum for the TCP6/UDP6 pseudo header.
2190
2191 Src and Dst are in network byte order, and Len is in host byte order.
2192
2193 @param[in] Src The source address of the packet.
2194 @param[in] Dst The destination address of the packet.
2195 @param[in] NextHeader The protocol type of the packet.
2196 @param[in] Len The length of the packet.
2197
2198 @return The computed checksum.
2199
2200 **/
2201 UINT16
2202 EFIAPI
2203 NetIp6PseudoHeadChecksum (
2204 IN EFI_IPv6_ADDRESS *Src,
2205 IN EFI_IPv6_ADDRESS *Dst,
2206 IN UINT8 NextHeader,
2207 IN UINT32 Len
2208 );
2209
2210 /**
2211 The function frees the net buffer which allocated by the IP protocol. It releases
2212 only the net buffer and doesn't call the external free function.
2213
2214 This function should be called after finishing the process of mIpSec->ProcessExt()
2215 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2216 buffer for the ESP, so there needs a function to free the old net buffer.
2217
2218 @param[in] Nbuf The network buffer to be freed.
2219
2220 **/
2221 VOID
2222 NetIpSecNetbufFree (
2223 NET_BUF *Nbuf
2224 );
2225
2226 /**
2227 This function obtains the system guid from the smbios table.
2228
2229 If SystemGuid is NULL, then ASSERT().
2230
2231 @param[out] SystemGuid The pointer of the returned system guid.
2232
2233 @retval EFI_SUCCESS Successfully obtained the system guid.
2234 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2235
2236 **/
2237 EFI_STATUS
2238 EFIAPI
2239 NetLibGetSystemGuid (
2240 OUT EFI_GUID *SystemGuid
2241 );
2242
2243 /**
2244 Create Dns QName according the queried domain name.
2245
2246 If DomainName is NULL, then ASSERT().
2247
2248 QName is a domain name represented as a sequence of labels,
2249 where each label consists of a length octet followed by that
2250 number of octets. The QName terminates with the zero
2251 length octet for the null label of the root. Caller should
2252 take responsibility to free the buffer in returned pointer.
2253
2254 @param DomainName The pointer to the queried domain name string.
2255
2256 @retval NULL Failed to fill QName.
2257 @return QName filled successfully.
2258
2259 **/
2260 CHAR8 *
2261 EFIAPI
2262 NetLibCreateDnsQName (
2263 IN CHAR16 *DomainName
2264 );
2265
2266 #endif