]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteDxe.c
965dd3968e356250a7b3bcc903394240deef91c2
[mirror_edk2.git] / MdeModulePkg / Universal / FaultTolerantWriteDxe / FaultTolerantWriteDxe.c
1 /** @file
2
3 This is a simple fault tolerant write driver.
4
5 This boot service protocol only provides fault tolerant write capability for
6 block devices. The protocol has internal non-volatile intermediate storage
7 of the data and private information. It should be able to recover
8 automatically from a critical fault, such as power failure.
9
10 The implementation uses an FTW (Fault Tolerant Write) Work Space.
11 This work space is a memory copy of the work space on the Working Block,
12 the size of the work space is the FTW_WORK_SPACE_SIZE bytes.
13
14 The work space stores each write record as EFI_FTW_RECORD structure.
15 The spare block stores the write buffer before write to the target block.
16
17 The write record has three states to specify the different phase of write operation.
18 1) WRITE_ALLOCATED is that the record is allocated in write space.
19 The information of write operation is stored in write record structure.
20 2) SPARE_COMPLETED is that the data from write buffer is writed into the spare block as the backup.
21 3) WRITE_COMPLETED is that the data is copied from the spare block to the target block.
22
23 This driver operates the data as the whole size of spare block.
24 It first read the SpareAreaLength data from the target block into the spare memory buffer.
25 Then copy the write buffer data into the spare memory buffer.
26 Then write the spare memory buffer into the spare block.
27 Final copy the data from the spare block to the target block.
28
29 To make this drive work well, the following conditions must be satisfied:
30 1. The write NumBytes data must be fit within Spare area.
31 Offset + NumBytes <= SpareAreaLength
32 2. The whole flash range has the same block size.
33 3. Working block is an area which contains working space in its last block and has the same size as spare block.
34 4. Working Block area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
35 5. Spare area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
36 6. Any write data area (SpareAreaLength Area) which the data will be written into must be
37 in the single one Firmware Volume Block range which FVB protocol is produced on.
38 7. If write data area (such as Variable range) is enlarged, the spare area range must be enlarged.
39 The spare area must be enough large to store the write data before write them into the target range.
40 If one of them is not satisfied, FtwWrite may fail.
41 Usually, Spare area only takes one block. That's SpareAreaLength = BlockSize, NumberOfSpareBlock = 1.
42
43 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
44 SPDX-License-Identifier: BSD-2-Clause-Patent
45
46 **/
47
48 #include <Library/UefiBootServicesTableLib.h>
49 #include "FaultTolerantWrite.h"
50 VOID *mFvbRegistration = NULL;
51
52 /**
53 Retrieve the FVB protocol interface by HANDLE.
54
55 @param[in] FvBlockHandle The handle of FVB protocol that provides services for
56 reading, writing, and erasing the target block.
57 @param[out] FvBlock The interface of FVB protocol
58
59 @retval EFI_SUCCESS The interface information for the specified protocol was returned.
60 @retval EFI_UNSUPPORTED The device does not support the FVB protocol.
61 @retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL.
62
63 **/
64 EFI_STATUS
65 FtwGetFvbByHandle (
66 IN EFI_HANDLE FvBlockHandle,
67 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
68 )
69 {
70 //
71 // To get the FVB protocol interface on the handle
72 //
73 return gBS->HandleProtocol (
74 FvBlockHandle,
75 &gEfiFirmwareVolumeBlockProtocolGuid,
76 (VOID **)FvBlock
77 );
78 }
79
80 /**
81 Retrieve the Swap Address Range protocol interface.
82
83 @param[out] SarProtocol The interface of SAR protocol
84
85 @retval EFI_SUCCESS The SAR protocol instance was found and returned in SarProtocol.
86 @retval EFI_NOT_FOUND The SAR protocol instance was not found.
87 @retval EFI_INVALID_PARAMETER SarProtocol is NULL.
88
89 **/
90 EFI_STATUS
91 FtwGetSarProtocol (
92 OUT VOID **SarProtocol
93 )
94 {
95 EFI_STATUS Status;
96
97 //
98 // Locate Swap Address Range protocol
99 //
100 Status = gBS->LocateProtocol (
101 &gEfiSwapAddressRangeProtocolGuid,
102 NULL,
103 SarProtocol
104 );
105 return Status;
106 }
107
108 /**
109 Function returns an array of handles that support the FVB protocol
110 in a buffer allocated from pool.
111
112 @param[out] NumberHandles The number of handles returned in Buffer.
113 @param[out] Buffer A pointer to the buffer to return the requested
114 array of handles that support FVB protocol.
115
116 @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of
117 handles in Buffer was returned in NumberHandles.
118 @retval EFI_NOT_FOUND No FVB handle was found.
119 @retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
120 @retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL.
121
122 **/
123 EFI_STATUS
124 GetFvbCountAndBuffer (
125 OUT UINTN *NumberHandles,
126 OUT EFI_HANDLE **Buffer
127 )
128 {
129 EFI_STATUS Status;
130
131 //
132 // Locate all handles of Fvb protocol
133 //
134 Status = gBS->LocateHandleBuffer (
135 ByProtocol,
136 &gEfiFirmwareVolumeBlockProtocolGuid,
137 NULL,
138 NumberHandles,
139 Buffer
140 );
141 return Status;
142 }
143
144 /**
145 Firmware Volume Block Protocol notification event handler.
146
147 @param[in] Event Event whose notification function is being invoked.
148 @param[in] Context Pointer to the notification function's context.
149
150 **/
151 VOID
152 EFIAPI
153 FvbNotificationEvent (
154 IN EFI_EVENT Event,
155 IN VOID *Context
156 )
157 {
158 EFI_STATUS Status;
159 EFI_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol;
160 EFI_FTW_DEVICE *FtwDevice;
161
162 //
163 // Just return to avoid installing FaultTolerantWriteProtocol again
164 // if Fault Tolerant Write protocol has been installed.
165 //
166 Status = gBS->LocateProtocol (
167 &gEfiFaultTolerantWriteProtocolGuid,
168 NULL,
169 (VOID **)&FtwProtocol
170 );
171 if (!EFI_ERROR (Status)) {
172 return;
173 }
174
175 //
176 // Found proper FVB protocol and initialize FtwDevice for protocol installation
177 //
178 FtwDevice = (EFI_FTW_DEVICE *)Context;
179 Status = InitFtwProtocol (FtwDevice);
180 if (EFI_ERROR (Status)) {
181 return;
182 }
183
184 //
185 // Install protocol interface
186 //
187 Status = gBS->InstallProtocolInterface (
188 &FtwDevice->Handle,
189 &gEfiFaultTolerantWriteProtocolGuid,
190 EFI_NATIVE_INTERFACE,
191 &FtwDevice->FtwInstance
192 );
193 ASSERT_EFI_ERROR (Status);
194
195 Status = gBS->CloseEvent (Event);
196 ASSERT_EFI_ERROR (Status);
197
198 return;
199 }
200
201 /**
202 This function is the entry point of the Fault Tolerant Write driver.
203
204 @param[in] ImageHandle A handle for the image that is initializing this driver
205 @param[in] SystemTable A pointer to the EFI system table
206
207 @retval EFI_SUCCESS The initialization finished successfully.
208 @retval EFI_OUT_OF_RESOURCES Allocate memory error
209 @retval EFI_INVALID_PARAMETER Workspace or Spare block does not exist
210
211 **/
212 EFI_STATUS
213 EFIAPI
214 FaultTolerantWriteInitialize (
215 IN EFI_HANDLE ImageHandle,
216 IN EFI_SYSTEM_TABLE *SystemTable
217 )
218 {
219 EFI_STATUS Status;
220 EFI_FTW_DEVICE *FtwDevice;
221
222 FtwDevice = NULL;
223
224 //
225 // Allocate private data structure for FTW protocol and do some initialization
226 //
227 Status = InitFtwDevice (&FtwDevice);
228 if (EFI_ERROR (Status)) {
229 return Status;
230 }
231
232 //
233 // Register FvbNotificationEvent () notify function.
234 //
235 EfiCreateProtocolNotifyEvent (
236 &gEfiFirmwareVolumeBlockProtocolGuid,
237 TPL_CALLBACK,
238 FvbNotificationEvent,
239 (VOID *)FtwDevice,
240 &mFvbRegistration
241 );
242
243 return EFI_SUCCESS;
244 }
245
246 /**
247 Internal implementation of CRC32. Depending on the execution context
248 (traditional SMM or DXE vs standalone MM), this function is implemented
249 via a call to the CalculateCrc32 () boot service, or via a library
250 call.
251
252 If Buffer is NULL, then ASSERT().
253 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
254
255 @param[in] Buffer A pointer to the buffer on which the 32-bit CRC is to be computed.
256 @param[in] Length The number of bytes in the buffer Data.
257
258 @retval Crc32 The 32-bit CRC was computed for the data buffer.
259
260 **/
261 UINT32
262 FtwCalculateCrc32 (
263 IN VOID *Buffer,
264 IN UINTN Length
265 )
266 {
267 EFI_STATUS Status;
268 UINT32 ReturnValue;
269
270 Status = gBS->CalculateCrc32 (Buffer, Length, &ReturnValue);
271 ASSERT_EFI_ERROR (Status);
272
273 return ReturnValue;
274 }