]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteSmm.c
8b88ae41ee5df33d86b5c74f2cda680814594b1e
[mirror_edk2.git] / MdeModulePkg / Universal / FaultTolerantWriteDxe / FaultTolerantWriteSmm.c
1 /** @file
2
3 This is a simple fault tolerant write driver that is intended to use in the SMM environment.
4
5 This boot service protocol only provides fault tolerant write capability for
6 block devices. The protocol has internal non-volatile intermediate storage
7 of the data and private information. It should be able to recover
8 automatically from a critical fault, such as power failure.
9
10 The implementation uses an FTW (Fault Tolerant Write) Work Space.
11 This work space is a memory copy of the work space on the Working Block,
12 the size of the work space is the FTW_WORK_SPACE_SIZE bytes.
13
14 The work space stores each write record as EFI_FTW_RECORD structure.
15 The spare block stores the write buffer before write to the target block.
16
17 The write record has three states to specify the different phase of write operation.
18 1) WRITE_ALLOCATED is that the record is allocated in write space.
19 The information of write operation is stored in write record structure.
20 2) SPARE_COMPLETED is that the data from write buffer is writed into the spare block as the backup.
21 3) WRITE_COMPLETED is that the data is copied from the spare block to the target block.
22
23 This driver operates the data as the whole size of spare block.
24 It first read the SpareAreaLength data from the target block into the spare memory buffer.
25 Then copy the write buffer data into the spare memory buffer.
26 Then write the spare memory buffer into the spare block.
27 Final copy the data from the spare block to the target block.
28
29 To make this drive work well, the following conditions must be satisfied:
30 1. The write NumBytes data must be fit within Spare area.
31 Offset + NumBytes <= SpareAreaLength
32 2. The whole flash range has the same block size.
33 3. Working block is an area which contains working space in its last block and has the same size as spare block.
34 4. Working Block area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
35 5. Spare area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
36 6. Any write data area (SpareAreaLength Area) which the data will be written into must be
37 in the single one Firmware Volume Block range which FVB protocol is produced on.
38 7. If write data area (such as Variable range) is enlarged, the spare area range must be enlarged.
39 The spare area must be enough large to store the write data before write them into the target range.
40 If one of them is not satisfied, FtwWrite may fail.
41 Usually, Spare area only takes one block. That's SpareAreaLength = BlockSize, NumberOfSpareBlock = 1.
42
43 Caution: This module requires additional review when modified.
44 This driver need to make sure the CommBuffer is not in the SMRAM range.
45
46 Copyright (c) 2010 - 2013, Intel Corporation. All rights reserved.<BR>
47 This program and the accompanying materials
48 are licensed and made available under the terms and conditions of the BSD License
49 which accompanies this distribution. The full text of the license may be found at
50 http://opensource.org/licenses/bsd-license.php
51
52 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
53 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
54
55 **/
56
57 #include <PiSmm.h>
58 #include <Library/SmmServicesTableLib.h>
59 #include <Protocol/SmmSwapAddressRange.h>
60 #include "FaultTolerantWrite.h"
61 #include "FaultTolerantWriteSmmCommon.h"
62 #include <Protocol/SmmAccess2.h>
63 #include <Protocol/SmmEndOfDxe.h>
64
65 EFI_EVENT mFvbRegistration = NULL;
66 EFI_FTW_DEVICE *mFtwDevice = NULL;
67 EFI_SMRAM_DESCRIPTOR *mSmramRanges;
68 UINTN mSmramRangeCount;
69
70 ///
71 /// The flag to indicate whether the platform has left the DXE phase of execution.
72 ///
73 BOOLEAN mEndOfDxe = FALSE;
74
75 /**
76 This function check if the address is in SMRAM.
77
78 @param Buffer the buffer address to be checked.
79 @param Length the buffer length to be checked.
80
81 @retval TRUE this address is in SMRAM.
82 @retval FALSE this address is NOT in SMRAM.
83 **/
84 BOOLEAN
85 InternalIsAddressInSmram (
86 IN EFI_PHYSICAL_ADDRESS Buffer,
87 IN UINT64 Length
88 )
89 {
90 UINTN Index;
91
92 for (Index = 0; Index < mSmramRangeCount; Index ++) {
93 if (((Buffer >= mSmramRanges[Index].CpuStart) && (Buffer < mSmramRanges[Index].CpuStart + mSmramRanges[Index].PhysicalSize)) ||
94 ((mSmramRanges[Index].CpuStart >= Buffer) && (mSmramRanges[Index].CpuStart < Buffer + Length))) {
95 return TRUE;
96 }
97 }
98
99 return FALSE;
100 }
101
102 /**
103 This function check if the address refered by Buffer and Length is valid.
104
105 @param Buffer the buffer address to be checked.
106 @param Length the buffer length to be checked.
107
108 @retval TRUE this address is valid.
109 @retval FALSE this address is NOT valid.
110 **/
111 BOOLEAN
112 InternalIsAddressValid (
113 IN UINTN Buffer,
114 IN UINTN Length
115 )
116 {
117 if (Buffer > (MAX_ADDRESS - Length)) {
118 //
119 // Overflow happen
120 //
121 return FALSE;
122 }
123 if (InternalIsAddressInSmram ((EFI_PHYSICAL_ADDRESS)Buffer, (UINT64)Length)) {
124 return FALSE;
125 }
126 return TRUE;
127 }
128
129 /**
130 Retrive the SMM FVB protocol interface by HANDLE.
131
132 @param[in] FvBlockHandle The handle of SMM FVB protocol that provides services for
133 reading, writing, and erasing the target block.
134 @param[out] FvBlock The interface of SMM FVB protocol
135
136 @retval EFI_SUCCESS The interface information for the specified protocol was returned.
137 @retval EFI_UNSUPPORTED The device does not support the SMM FVB protocol.
138 @retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL.
139
140 **/
141 EFI_STATUS
142 FtwGetFvbByHandle (
143 IN EFI_HANDLE FvBlockHandle,
144 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
145 )
146 {
147 //
148 // To get the SMM FVB protocol interface on the handle
149 //
150 return gSmst->SmmHandleProtocol (
151 FvBlockHandle,
152 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
153 (VOID **) FvBlock
154 );
155 }
156
157 /**
158 Retrive the SMM Swap Address Range protocol interface.
159
160 @param[out] SarProtocol The interface of SMM SAR protocol
161
162 @retval EFI_SUCCESS The SMM SAR protocol instance was found and returned in SarProtocol.
163 @retval EFI_NOT_FOUND The SMM SAR protocol instance was not found.
164 @retval EFI_INVALID_PARAMETER SarProtocol is NULL.
165
166 **/
167 EFI_STATUS
168 FtwGetSarProtocol (
169 OUT VOID **SarProtocol
170 )
171 {
172 EFI_STATUS Status;
173
174 //
175 // Locate Smm Swap Address Range protocol
176 //
177 Status = gSmst->SmmLocateProtocol (
178 &gEfiSmmSwapAddressRangeProtocolGuid,
179 NULL,
180 SarProtocol
181 );
182 return Status;
183 }
184
185 /**
186 Function returns an array of handles that support the SMM FVB protocol
187 in a buffer allocated from pool.
188
189 @param[out] NumberHandles The number of handles returned in Buffer.
190 @param[out] Buffer A pointer to the buffer to return the requested
191 array of handles that support SMM FVB protocol.
192
193 @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of
194 handles in Buffer was returned in NumberHandles.
195 @retval EFI_NOT_FOUND No SMM FVB handle was found.
196 @retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
197 @retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL.
198
199 **/
200 EFI_STATUS
201 GetFvbCountAndBuffer (
202 OUT UINTN *NumberHandles,
203 OUT EFI_HANDLE **Buffer
204 )
205 {
206 EFI_STATUS Status;
207 UINTN BufferSize;
208
209 if ((NumberHandles == NULL) || (Buffer == NULL)) {
210 return EFI_INVALID_PARAMETER;
211 }
212
213 BufferSize = 0;
214 *NumberHandles = 0;
215 *Buffer = NULL;
216 Status = gSmst->SmmLocateHandle (
217 ByProtocol,
218 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
219 NULL,
220 &BufferSize,
221 *Buffer
222 );
223 if (EFI_ERROR(Status) && Status != EFI_BUFFER_TOO_SMALL) {
224 return EFI_NOT_FOUND;
225 }
226
227 *Buffer = AllocatePool (BufferSize);
228 if (*Buffer == NULL) {
229 return EFI_OUT_OF_RESOURCES;
230 }
231
232 Status = gSmst->SmmLocateHandle (
233 ByProtocol,
234 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
235 NULL,
236 &BufferSize,
237 *Buffer
238 );
239
240 *NumberHandles = BufferSize / sizeof(EFI_HANDLE);
241 if (EFI_ERROR(Status)) {
242 *NumberHandles = 0;
243 FreePool (*Buffer);
244 *Buffer = NULL;
245 }
246
247 return Status;
248 }
249
250
251 /**
252 Get the handle of the SMM FVB protocol by the FVB base address and attributes.
253
254 @param[in] Address The base address of SMM FVB protocol.
255 @param[in] Attributes The attributes of the SMM FVB protocol.
256 @param[out] SmmFvbHandle The handle of the SMM FVB protocol.
257
258 @retval EFI_SUCCESS The FVB handle is found.
259 @retval EFI_ABORTED The FVB protocol is not found.
260
261 **/
262 EFI_STATUS
263 GetFvbByAddressAndAttribute (
264 IN EFI_PHYSICAL_ADDRESS Address,
265 IN EFI_FVB_ATTRIBUTES_2 Attributes,
266 OUT EFI_HANDLE *SmmFvbHandle
267 )
268 {
269 EFI_STATUS Status;
270 EFI_HANDLE *HandleBuffer;
271 UINTN HandleCount;
272 UINTN Index;
273 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
274 EFI_FVB_ATTRIBUTES_2 FvbAttributes;
275 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
276
277 //
278 // Locate all handles of SMM Fvb protocol.
279 //
280 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
281 if (EFI_ERROR (Status)) {
282 return EFI_ABORTED;
283 }
284
285 //
286 // Find the proper SMM Fvb handle by the address and attributes.
287 //
288 for (Index = 0; Index < HandleCount; Index++) {
289 Status = FtwGetFvbByHandle (HandleBuffer[Index], &Fvb);
290 if (EFI_ERROR (Status)) {
291 break;
292 }
293 //
294 // Compare the address.
295 //
296 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
297 if (EFI_ERROR (Status)) {
298 continue;
299 }
300 if (Address != FvbBaseAddress) {
301 continue;
302 }
303
304 //
305 // Compare the attribute.
306 //
307 Status = Fvb->GetAttributes (Fvb, &FvbAttributes);
308 if (EFI_ERROR (Status)) {
309 continue;
310 }
311 if (Attributes != FvbAttributes) {
312 continue;
313 }
314
315 //
316 // Found the proper FVB handle.
317 //
318 *SmmFvbHandle = HandleBuffer[Index];
319 FreePool (HandleBuffer);
320 return EFI_SUCCESS;
321 }
322
323 FreePool (HandleBuffer);
324 return EFI_ABORTED;
325 }
326
327 /**
328 Communication service SMI Handler entry.
329
330 This SMI handler provides services for the fault tolerant write wrapper driver.
331
332 Caution: This function requires additional review when modified.
333 This driver need to make sure the CommBuffer is not in the SMRAM range.
334 Also in FTW_FUNCTION_GET_LAST_WRITE case, check SmmFtwGetLastWriteHeader->Data +
335 SmmFtwGetLastWriteHeader->PrivateDataSize within communication buffer.
336
337 @param[in] DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
338 @param[in] RegisterContext Points to an optional handler context which was specified when the
339 handler was registered.
340 @param[in, out] CommBuffer A pointer to a collection of data in memory that will be conveyed
341 from a non-SMM environment into an SMM environment.
342 @param[in, out] CommBufferSize The size of the CommBuffer.
343
344 @retval EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
345 should still be called.
346 @retval EFI_WARN_INTERRUPT_SOURCE_QUIESCED The interrupt has been quiesced but other handlers should
347 still be called.
348 @retval EFI_WARN_INTERRUPT_SOURCE_PENDING The interrupt is still pending and other handlers should still
349 be called.
350 @retval EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
351
352 **/
353 EFI_STATUS
354 EFIAPI
355 SmmFaultTolerantWriteHandler (
356 IN EFI_HANDLE DispatchHandle,
357 IN CONST VOID *RegisterContext,
358 IN OUT VOID *CommBuffer,
359 IN OUT UINTN *CommBufferSize
360 )
361 {
362 EFI_STATUS Status;
363 SMM_FTW_COMMUNICATE_FUNCTION_HEADER *SmmFtwFunctionHeader;
364 SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER *SmmGetMaxBlockSizeHeader;
365 SMM_FTW_ALLOCATE_HEADER *SmmFtwAllocateHeader;
366 SMM_FTW_WRITE_HEADER *SmmFtwWriteHeader;
367 SMM_FTW_RESTART_HEADER *SmmFtwRestartHeader;
368 SMM_FTW_GET_LAST_WRITE_HEADER *SmmFtwGetLastWriteHeader;
369 VOID *PrivateData;
370 EFI_HANDLE SmmFvbHandle;
371 UINTN InfoSize;
372
373
374 //
375 // If input is invalid, stop processing this SMI
376 //
377 if (CommBuffer == NULL || CommBufferSize == NULL) {
378 return EFI_SUCCESS;
379 }
380
381 if (*CommBufferSize < SMM_FTW_COMMUNICATE_HEADER_SIZE) {
382 return EFI_SUCCESS;
383 }
384
385 if (!InternalIsAddressValid ((UINTN)CommBuffer, *CommBufferSize)) {
386 DEBUG ((EFI_D_ERROR, "SMM communication buffer in SMRAM or overflow!\n"));
387 return EFI_SUCCESS;
388 }
389
390 SmmFtwFunctionHeader = (SMM_FTW_COMMUNICATE_FUNCTION_HEADER *)CommBuffer;
391
392 if (mEndOfDxe) {
393 //
394 // It will be not safe to expose the operations after End Of Dxe.
395 //
396 DEBUG ((EFI_D_ERROR, "SmmFtwHandler: Not safe to do the operation: %x after End Of Dxe, so access denied!\n", SmmFtwFunctionHeader->Function));
397 SmmFtwFunctionHeader->ReturnStatus = EFI_ACCESS_DENIED;
398 return EFI_SUCCESS;
399 }
400
401 switch (SmmFtwFunctionHeader->Function) {
402 case FTW_FUNCTION_GET_MAX_BLOCK_SIZE:
403 SmmGetMaxBlockSizeHeader = (SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER *) SmmFtwFunctionHeader->Data;
404 InfoSize = sizeof (SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER);
405
406 //
407 // SMRAM range check already covered before
408 //
409 if (InfoSize > *CommBufferSize - SMM_FTW_COMMUNICATE_HEADER_SIZE) {
410 DEBUG ((EFI_D_ERROR, "Data size exceed communication buffer size limit!\n"));
411 Status = EFI_ACCESS_DENIED;
412 break;
413 }
414
415 Status = FtwGetMaxBlockSize (
416 &mFtwDevice->FtwInstance,
417 &SmmGetMaxBlockSizeHeader->BlockSize
418 );
419 break;
420
421 case FTW_FUNCTION_ALLOCATE:
422 SmmFtwAllocateHeader = (SMM_FTW_ALLOCATE_HEADER *) SmmFtwFunctionHeader->Data;
423 Status = FtwAllocate (
424 &mFtwDevice->FtwInstance,
425 &SmmFtwAllocateHeader->CallerId,
426 SmmFtwAllocateHeader->PrivateDataSize,
427 SmmFtwAllocateHeader->NumberOfWrites
428 );
429 break;
430
431 case FTW_FUNCTION_WRITE:
432 SmmFtwWriteHeader = (SMM_FTW_WRITE_HEADER *) SmmFtwFunctionHeader->Data;
433 if (SmmFtwWriteHeader->PrivateDataSize == 0) {
434 PrivateData = NULL;
435 } else {
436 PrivateData = (VOID *)&SmmFtwWriteHeader->Data[SmmFtwWriteHeader->Length];
437 }
438 Status = GetFvbByAddressAndAttribute (
439 SmmFtwWriteHeader->FvbBaseAddress,
440 SmmFtwWriteHeader->FvbAttributes,
441 &SmmFvbHandle
442 );
443 if (!EFI_ERROR (Status)) {
444 Status = FtwWrite(
445 &mFtwDevice->FtwInstance,
446 SmmFtwWriteHeader->Lba,
447 SmmFtwWriteHeader->Offset,
448 SmmFtwWriteHeader->Length,
449 PrivateData,
450 SmmFvbHandle,
451 SmmFtwWriteHeader->Data
452 );
453 }
454 break;
455
456 case FTW_FUNCTION_RESTART:
457 SmmFtwRestartHeader = (SMM_FTW_RESTART_HEADER *) SmmFtwFunctionHeader->Data;
458 Status = GetFvbByAddressAndAttribute (
459 SmmFtwRestartHeader->FvbBaseAddress,
460 SmmFtwRestartHeader->FvbAttributes,
461 &SmmFvbHandle
462 );
463 if (!EFI_ERROR (Status)) {
464 Status = FtwRestart (&mFtwDevice->FtwInstance, SmmFvbHandle);
465 }
466 break;
467
468 case FTW_FUNCTION_ABORT:
469 Status = FtwAbort (&mFtwDevice->FtwInstance);
470 break;
471
472 case FTW_FUNCTION_GET_LAST_WRITE:
473 SmmFtwGetLastWriteHeader = (SMM_FTW_GET_LAST_WRITE_HEADER *) SmmFtwFunctionHeader->Data;
474 if ((UINTN)(~0) - SmmFtwGetLastWriteHeader->PrivateDataSize < OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data)){
475 //
476 // Prevent InfoSize overflow
477 //
478 Status = EFI_ACCESS_DENIED;
479 break;
480 }
481 InfoSize = OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data) + SmmFtwGetLastWriteHeader->PrivateDataSize;
482
483 //
484 // SMRAM range check already covered before
485 //
486 if (InfoSize > *CommBufferSize - SMM_FTW_COMMUNICATE_HEADER_SIZE) {
487 DEBUG ((EFI_D_ERROR, "Data size exceed communication buffer size limit!\n"));
488 Status = EFI_ACCESS_DENIED;
489 break;
490 }
491
492 Status = FtwGetLastWrite (
493 &mFtwDevice->FtwInstance,
494 &SmmFtwGetLastWriteHeader->CallerId,
495 &SmmFtwGetLastWriteHeader->Lba,
496 &SmmFtwGetLastWriteHeader->Offset,
497 &SmmFtwGetLastWriteHeader->Length,
498 &SmmFtwGetLastWriteHeader->PrivateDataSize,
499 (VOID *)SmmFtwGetLastWriteHeader->Data,
500 &SmmFtwGetLastWriteHeader->Complete
501 );
502 break;
503
504 default:
505 Status = EFI_UNSUPPORTED;
506 }
507
508 SmmFtwFunctionHeader->ReturnStatus = Status;
509
510 return EFI_SUCCESS;
511 }
512
513
514 /**
515 SMM Firmware Volume Block Protocol notification event handler.
516
517 @param[in] Protocol Points to the protocol's unique identifier
518 @param[in] Interface Points to the interface instance
519 @param[in] Handle The handle on which the interface was installed
520
521 @retval EFI_SUCCESS SmmEventCallback runs successfully
522
523 **/
524 EFI_STATUS
525 EFIAPI
526 FvbNotificationEvent (
527 IN CONST EFI_GUID *Protocol,
528 IN VOID *Interface,
529 IN EFI_HANDLE Handle
530 )
531 {
532 EFI_STATUS Status;
533 EFI_SMM_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol;
534 EFI_HANDLE SmmFtwHandle;
535
536 //
537 // Just return to avoid install SMM FaultTolerantWriteProtocol again
538 // if SMM Fault Tolerant Write protocol had been installed.
539 //
540 Status = gSmst->SmmLocateProtocol (
541 &gEfiSmmFaultTolerantWriteProtocolGuid,
542 NULL,
543 (VOID **) &FtwProtocol
544 );
545 if (!EFI_ERROR (Status)) {
546 return EFI_SUCCESS;
547 }
548
549 //
550 // Found proper FVB protocol and initialize FtwDevice for protocol installation
551 //
552 Status = InitFtwProtocol (mFtwDevice);
553 if (EFI_ERROR(Status)) {
554 return Status;
555 }
556
557 //
558 // Install protocol interface
559 //
560 Status = gSmst->SmmInstallProtocolInterface (
561 &mFtwDevice->Handle,
562 &gEfiSmmFaultTolerantWriteProtocolGuid,
563 EFI_NATIVE_INTERFACE,
564 &mFtwDevice->FtwInstance
565 );
566 ASSERT_EFI_ERROR (Status);
567
568 //
569 // Notify the Ftw wrapper driver SMM Ftw is ready
570 //
571 SmmFtwHandle = NULL;
572 Status = gBS->InstallProtocolInterface (
573 &SmmFtwHandle,
574 &gEfiSmmFaultTolerantWriteProtocolGuid,
575 EFI_NATIVE_INTERFACE,
576 NULL
577 );
578 ASSERT_EFI_ERROR (Status);
579
580 return EFI_SUCCESS;
581 }
582
583 /**
584 SMM END_OF_DXE protocol notification event handler.
585
586 @param Protocol Points to the protocol's unique identifier
587 @param Interface Points to the interface instance
588 @param Handle The handle on which the interface was installed
589
590 @retval EFI_SUCCESS SmmEndOfDxeCallback runs successfully
591
592 **/
593 EFI_STATUS
594 EFIAPI
595 SmmEndOfDxeCallback (
596 IN CONST EFI_GUID *Protocol,
597 IN VOID *Interface,
598 IN EFI_HANDLE Handle
599 )
600 {
601 mEndOfDxe = TRUE;
602 return EFI_SUCCESS;
603 }
604
605 /**
606 This function is the entry point of the Fault Tolerant Write driver.
607
608 @param[in] ImageHandle A handle for the image that is initializing this driver
609 @param[in] SystemTable A pointer to the EFI system table
610
611 @retval EFI_SUCCESS The initialization finished successfully.
612 @retval EFI_OUT_OF_RESOURCES Allocate memory error
613 @retval EFI_INVALID_PARAMETER Workspace or Spare block does not exist
614
615 **/
616 EFI_STATUS
617 EFIAPI
618 SmmFaultTolerantWriteInitialize (
619 IN EFI_HANDLE ImageHandle,
620 IN EFI_SYSTEM_TABLE *SystemTable
621 )
622 {
623 EFI_STATUS Status;
624 EFI_HANDLE FtwHandle;
625 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
626 UINTN Size;
627 VOID *SmmEndOfDxeRegistration;
628
629 //
630 // Allocate private data structure for SMM FTW protocol and do some initialization
631 //
632 Status = InitFtwDevice (&mFtwDevice);
633 if (EFI_ERROR(Status)) {
634 return Status;
635 }
636
637 //
638 // Get SMRAM information
639 //
640 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
641 ASSERT_EFI_ERROR (Status);
642
643 Size = 0;
644 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
645 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
646
647 Status = gSmst->SmmAllocatePool (
648 EfiRuntimeServicesData,
649 Size,
650 (VOID **)&mSmramRanges
651 );
652 ASSERT_EFI_ERROR (Status);
653
654 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, mSmramRanges);
655 ASSERT_EFI_ERROR (Status);
656
657 mSmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
658
659 //
660 // Register EFI_SMM_END_OF_DXE_PROTOCOL_GUID notify function.
661 //
662 Status = gSmst->SmmRegisterProtocolNotify (
663 &gEfiSmmEndOfDxeProtocolGuid,
664 SmmEndOfDxeCallback,
665 &SmmEndOfDxeRegistration
666 );
667 ASSERT_EFI_ERROR (Status);
668
669 //
670 // Register FvbNotificationEvent () notify function.
671 //
672 Status = gSmst->SmmRegisterProtocolNotify (
673 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
674 FvbNotificationEvent,
675 &mFvbRegistration
676 );
677 ASSERT_EFI_ERROR (Status);
678
679 FvbNotificationEvent (NULL, NULL, NULL);
680
681 ///
682 /// Register SMM FTW SMI handler
683 ///
684 Status = gSmst->SmiHandlerRegister (SmmFaultTolerantWriteHandler, &gEfiSmmFaultTolerantWriteProtocolGuid, &FtwHandle);
685 ASSERT_EFI_ERROR (Status);
686
687 return EFI_SUCCESS;
688 }