]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Input.c
0990d1803588f98a1abb0ad9ab26c861de01154d
[mirror_edk2.git] / MdeModulePkg / Universal / Network / Ip4Dxe / Ip4Input.c
1 /** @file
2 IP4 input process.
3
4 Copyright (c) 2005 - 2011, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "Ip4Impl.h"
16
17
18 /**
19 Create an empty assemble entry for the packet identified by
20 (Dst, Src, Id, Protocol). The default life for the packet is
21 120 seconds.
22
23 @param[in] Dst The destination address
24 @param[in] Src The source address
25 @param[in] Id The ID field in IP header
26 @param[in] Protocol The protocol field in IP header
27
28 @return NULL if failed to allocate memory for the entry, otherwise
29 the point to just created reassemble entry.
30
31 **/
32 IP4_ASSEMBLE_ENTRY *
33 Ip4CreateAssembleEntry (
34 IN IP4_ADDR Dst,
35 IN IP4_ADDR Src,
36 IN UINT16 Id,
37 IN UINT8 Protocol
38 )
39 {
40
41 IP4_ASSEMBLE_ENTRY *Assemble;
42
43 Assemble = AllocatePool (sizeof (IP4_ASSEMBLE_ENTRY));
44
45 if (Assemble == NULL) {
46 return NULL;
47 }
48
49 InitializeListHead (&Assemble->Link);
50 InitializeListHead (&Assemble->Fragments);
51
52 Assemble->Dst = Dst;
53 Assemble->Src = Src;
54 Assemble->Id = Id;
55 Assemble->Protocol = Protocol;
56 Assemble->TotalLen = 0;
57 Assemble->CurLen = 0;
58 Assemble->Head = NULL;
59 Assemble->Info = NULL;
60 Assemble->Life = IP4_FRAGMENT_LIFE;
61
62 return Assemble;
63 }
64
65
66 /**
67 Release all the fragments of a packet, then free the assemble entry.
68
69 @param[in] Assemble The assemble entry to free
70
71 **/
72 VOID
73 Ip4FreeAssembleEntry (
74 IN IP4_ASSEMBLE_ENTRY *Assemble
75 )
76 {
77 LIST_ENTRY *Entry;
78 LIST_ENTRY *Next;
79 NET_BUF *Fragment;
80
81 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Assemble->Fragments) {
82 Fragment = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
83
84 RemoveEntryList (Entry);
85 NetbufFree (Fragment);
86 }
87
88 FreePool (Assemble);
89 }
90
91
92 /**
93 Initialize an already allocated assemble table. This is generally
94 the assemble table embedded in the IP4 service instance.
95
96 @param[in, out] Table The assemble table to initialize.
97
98 **/
99 VOID
100 Ip4InitAssembleTable (
101 IN OUT IP4_ASSEMBLE_TABLE *Table
102 )
103 {
104 UINT32 Index;
105
106 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
107 InitializeListHead (&Table->Bucket[Index]);
108 }
109 }
110
111
112 /**
113 Clean up the assemble table: remove all the fragments
114 and assemble entries.
115
116 @param[in] Table The assemble table to clean up
117
118 **/
119 VOID
120 Ip4CleanAssembleTable (
121 IN IP4_ASSEMBLE_TABLE *Table
122 )
123 {
124 LIST_ENTRY *Entry;
125 LIST_ENTRY *Next;
126 IP4_ASSEMBLE_ENTRY *Assemble;
127 UINT32 Index;
128
129 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
130 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Table->Bucket[Index]) {
131 Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);
132
133 RemoveEntryList (Entry);
134 Ip4FreeAssembleEntry (Assemble);
135 }
136 }
137 }
138
139
140 /**
141 Trim the packet to fit in [Start, End), and update the per
142 packet information.
143
144 @param Packet Packet to trim
145 @param Start The sequence of the first byte to fit in
146 @param End One beyond the sequence of last byte to fit in.
147
148 **/
149 VOID
150 Ip4TrimPacket (
151 IN OUT NET_BUF *Packet,
152 IN INTN Start,
153 IN INTN End
154 )
155 {
156 IP4_CLIP_INFO *Info;
157 INTN Len;
158
159 Info = IP4_GET_CLIP_INFO (Packet);
160
161 ASSERT (Info->Start + Info->Length == Info->End);
162 ASSERT ((Info->Start < End) && (Start < Info->End));
163
164 if (Info->Start < Start) {
165 Len = Start - Info->Start;
166
167 NetbufTrim (Packet, (UINT32) Len, NET_BUF_HEAD);
168 Info->Start = Start;
169 Info->Length -= Len;
170 }
171
172 if (End < Info->End) {
173 Len = End - Info->End;
174
175 NetbufTrim (Packet, (UINT32) Len, NET_BUF_TAIL);
176 Info->End = End;
177 Info->Length -= Len;
178 }
179 }
180
181
182 /**
183 Release all the fragments of the packet. This is the callback for
184 the assembled packet's OnFree. It will free the assemble entry,
185 which in turn will free all the fragments of the packet.
186
187 @param[in] Arg The assemble entry to free
188
189 **/
190 VOID
191 EFIAPI
192 Ip4OnFreeFragments (
193 IN VOID *Arg
194 )
195 {
196 Ip4FreeAssembleEntry ((IP4_ASSEMBLE_ENTRY *) Arg);
197 }
198
199
200 /**
201 Reassemble the IP fragments. If all the fragments of the packet
202 have been received, it will wrap the packet in a net buffer then
203 return it to caller. If the packet can't be assembled, NULL is
204 return.
205
206 @param Table The assemble table used. New assemble entry will be created
207 if the Packet is from a new chain of fragments.
208 @param Packet The fragment to assemble. It might be freed if the fragment
209 can't be re-assembled.
210
211 @return NULL if the packet can't be reassemble. The point to just assembled
212 packet if all the fragments of the packet have arrived.
213
214 **/
215 NET_BUF *
216 Ip4Reassemble (
217 IN OUT IP4_ASSEMBLE_TABLE *Table,
218 IN OUT NET_BUF *Packet
219 )
220 {
221 IP4_HEAD *IpHead;
222 IP4_CLIP_INFO *This;
223 IP4_CLIP_INFO *Node;
224 IP4_ASSEMBLE_ENTRY *Assemble;
225 LIST_ENTRY *Head;
226 LIST_ENTRY *Prev;
227 LIST_ENTRY *Cur;
228 NET_BUF *Fragment;
229 NET_BUF *NewPacket;
230 INTN Index;
231
232 IpHead = Packet->Ip.Ip4;
233 This = IP4_GET_CLIP_INFO (Packet);
234
235 ASSERT (IpHead != NULL);
236
237 //
238 // First: find the related assemble entry
239 //
240 Assemble = NULL;
241 Index = IP4_ASSEMBLE_HASH (IpHead->Dst, IpHead->Src, IpHead->Id, IpHead->Protocol);
242
243 NET_LIST_FOR_EACH (Cur, &Table->Bucket[Index]) {
244 Assemble = NET_LIST_USER_STRUCT (Cur, IP4_ASSEMBLE_ENTRY, Link);
245
246 if ((Assemble->Dst == IpHead->Dst) && (Assemble->Src == IpHead->Src) &&
247 (Assemble->Id == IpHead->Id) && (Assemble->Protocol == IpHead->Protocol)) {
248 break;
249 }
250 }
251
252 //
253 // Create a new assemble entry if no assemble entry is related to this packet
254 //
255 if (Cur == &Table->Bucket[Index]) {
256 Assemble = Ip4CreateAssembleEntry (
257 IpHead->Dst,
258 IpHead->Src,
259 IpHead->Id,
260 IpHead->Protocol
261 );
262
263 if (Assemble == NULL) {
264 goto DROP;
265 }
266
267 InsertHeadList (&Table->Bucket[Index], &Assemble->Link);
268 }
269 //
270 // Assemble shouldn't be NULL here
271 //
272 ASSERT (Assemble != NULL);
273
274 //
275 // Find the point to insert the packet: before the first
276 // fragment with THIS.Start < CUR.Start. the previous one
277 // has PREV.Start <= THIS.Start < CUR.Start.
278 //
279 Head = &Assemble->Fragments;
280
281 NET_LIST_FOR_EACH (Cur, Head) {
282 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
283
284 if (This->Start < IP4_GET_CLIP_INFO (Fragment)->Start) {
285 break;
286 }
287 }
288
289 //
290 // Check whether the current fragment overlaps with the previous one.
291 // It holds that: PREV.Start <= THIS.Start < THIS.End. Only need to
292 // check whether THIS.Start < PREV.End for overlap. If two fragments
293 // overlaps, trim the overlapped part off THIS fragment.
294 //
295 if ((Cur != Head) && ((Prev = Cur->BackLink) != Head)) {
296 Fragment = NET_LIST_USER_STRUCT (Prev, NET_BUF, List);
297 Node = IP4_GET_CLIP_INFO (Fragment);
298
299 if (This->Start < Node->End) {
300 if (This->End <= Node->End) {
301 NetbufFree (Packet);
302 return NULL;
303 }
304
305 Ip4TrimPacket (Packet, Node->End, This->End);
306 }
307 }
308
309 //
310 // Insert the fragment into the packet. The fragment may be removed
311 // from the list by the following checks.
312 //
313 NetListInsertBefore (Cur, &Packet->List);
314
315 //
316 // Check the packets after the insert point. It holds that:
317 // THIS.Start <= NODE.Start < NODE.End. The equality holds
318 // if PREV and NEXT are continuous. THIS fragment may fill
319 // several holes. Remove the completely overlapped fragments
320 //
321 while (Cur != Head) {
322 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
323 Node = IP4_GET_CLIP_INFO (Fragment);
324
325 //
326 // Remove fragments completely overlapped by this fragment
327 //
328 if (Node->End <= This->End) {
329 Cur = Cur->ForwardLink;
330
331 RemoveEntryList (&Fragment->List);
332 Assemble->CurLen -= Node->Length;
333
334 NetbufFree (Fragment);
335 continue;
336 }
337
338 //
339 // The conditions are: THIS.Start <= NODE.Start, and THIS.End <
340 // NODE.End. Two fragments overlaps if NODE.Start < THIS.End.
341 // If two fragments start at the same offset, remove THIS fragment
342 // because ((THIS.Start == NODE.Start) && (THIS.End < NODE.End)).
343 //
344 if (Node->Start < This->End) {
345 if (This->Start == Node->Start) {
346 RemoveEntryList (&Packet->List);
347 goto DROP;
348 }
349
350 Ip4TrimPacket (Packet, This->Start, Node->Start);
351 }
352
353 break;
354 }
355
356 //
357 // Update the assemble info: increase the current length. If it is
358 // the frist fragment, update the packet's IP head and per packet
359 // info. If it is the last fragment, update the total length.
360 //
361 Assemble->CurLen += This->Length;
362
363 if (This->Start == 0) {
364 //
365 // Once the first fragment is enqueued, it can't be removed
366 // from the fragment list. So, Assemble->Head always point
367 // to valid memory area.
368 //
369 ASSERT (Assemble->Head == NULL);
370
371 Assemble->Head = IpHead;
372 Assemble->Info = IP4_GET_CLIP_INFO (Packet);
373 }
374
375 //
376 // Don't update the length more than once.
377 //
378 if (IP4_LAST_FRAGMENT (IpHead->Fragment) && (Assemble->TotalLen == 0)) {
379 Assemble->TotalLen = This->End;
380 }
381
382 //
383 // Deliver the whole packet if all the fragments received.
384 // All fragments received if:
385 // 1. received the last one, so, the total length is know
386 // 2. received all the data. If the last fragment on the
387 // queue ends at the total length, all data is received.
388 //
389 if ((Assemble->TotalLen != 0) && (Assemble->CurLen >= Assemble->TotalLen)) {
390
391 RemoveEntryList (&Assemble->Link);
392
393 //
394 // If the packet is properly formated, the last fragment's End
395 // equals to the packet's total length. Otherwise, the packet
396 // is a fake, drop it now.
397 //
398 Fragment = NET_LIST_USER_STRUCT (Head->BackLink, NET_BUF, List);
399
400 if (IP4_GET_CLIP_INFO (Fragment)->End != Assemble->TotalLen) {
401 Ip4FreeAssembleEntry (Assemble);
402 return NULL;
403 }
404
405 //
406 // Wrap the packet in a net buffer then deliver it up
407 //
408 NewPacket = NetbufFromBufList (
409 &Assemble->Fragments,
410 0,
411 0,
412 Ip4OnFreeFragments,
413 Assemble
414 );
415
416 if (NewPacket == NULL) {
417 Ip4FreeAssembleEntry (Assemble);
418 return NULL;
419 }
420
421 NewPacket->Ip.Ip4 = Assemble->Head;
422
423 ASSERT (Assemble->Info != NULL);
424
425 CopyMem (
426 IP4_GET_CLIP_INFO (NewPacket),
427 Assemble->Info,
428 sizeof (*IP4_GET_CLIP_INFO (NewPacket))
429 );
430
431 return NewPacket;
432 }
433
434 return NULL;
435
436 DROP:
437 NetbufFree (Packet);
438 return NULL;
439 }
440
441 /**
442 The callback function for the net buffer which wraps the packet processed by
443 IPsec. It releases the wrap packet and also signals IPsec to free the resources.
444
445 @param[in] Arg The wrap context
446
447 **/
448 VOID
449 EFIAPI
450 Ip4IpSecFree (
451 IN VOID *Arg
452 )
453 {
454 IP4_IPSEC_WRAP *Wrap;
455
456 Wrap = (IP4_IPSEC_WRAP *) Arg;
457
458 if (Wrap->IpSecRecycleSignal != NULL) {
459 gBS->SignalEvent (Wrap->IpSecRecycleSignal);
460 }
461
462 NetbufFree (Wrap->Packet);
463
464 FreePool (Wrap);
465
466 return;
467 }
468
469 /**
470 The work function to locate IPsec protocol to process the inbound or
471 outbound IP packets. The process routine handls the packet with following
472 actions: bypass the packet, discard the packet, or protect the packet.
473
474 @param[in] IpSb The IP4 service instance.
475 @param[in, out] Head The The caller supplied IP4 header.
476 @param[in, out] Netbuf The IP4 packet to be processed by IPsec.
477 @param[in, out] Options The caller supplied options.
478 @param[in, out] OptionsLen The length of the option.
479 @param[in] Direction The directionality in an SPD entry,
480 EfiIPsecInBound or EfiIPsecOutBound.
481 @param[in] Context The token's wrap.
482
483 @retval EFI_SUCCESS The IPsec protocol is not available or disabled.
484 @retval EFI_SUCCESS The packet was bypassed and all buffers remain the same.
485 @retval EFI_SUCCESS The packet was protected.
486 @retval EFI_ACCESS_DENIED The packet was discarded.
487 @retval EFI_OUT_OF_RESOURCES There is no suffcient resource to complete the operation.
488 @retval EFI_BUFFER_TOO_SMALL The number of non-empty block is bigger than the
489 number of input data blocks when build a fragment table.
490
491 **/
492 EFI_STATUS
493 Ip4IpSecProcessPacket (
494 IN IP4_SERVICE *IpSb,
495 IN OUT IP4_HEAD **Head,
496 IN OUT NET_BUF **Netbuf,
497 IN OUT UINT8 **Options,
498 IN OUT UINT32 *OptionsLen,
499 IN EFI_IPSEC_TRAFFIC_DIR Direction,
500 IN VOID *Context
501 )
502 {
503 NET_FRAGMENT *FragmentTable;
504 NET_FRAGMENT *OriginalFragmentTable;
505 UINT32 FragmentCount;
506 UINT32 OriginalFragmentCount;
507 EFI_EVENT RecycleEvent;
508 NET_BUF *Packet;
509 IP4_TXTOKEN_WRAP *TxWrap;
510 IP4_IPSEC_WRAP *IpSecWrap;
511 EFI_STATUS Status;
512 IP4_HEAD ZeroHead;
513
514 Status = EFI_SUCCESS;
515 Packet = *Netbuf;
516 RecycleEvent = NULL;
517 IpSecWrap = NULL;
518 FragmentTable = NULL;
519 TxWrap = (IP4_TXTOKEN_WRAP *) Context;
520 FragmentCount = Packet->BlockOpNum;
521
522 ZeroMem (&ZeroHead, sizeof (IP4_HEAD));
523
524 if (mIpSec == NULL) {
525 gBS->LocateProtocol (&gEfiIpSec2ProtocolGuid, NULL, (VOID **) &mIpSec);
526 if (mIpSec == NULL) {
527 goto ON_EXIT;
528 }
529 }
530
531 //
532 // Check whether the IPsec enable variable is set.
533 //
534 if (mIpSec->DisabledFlag) {
535 //
536 // If IPsec is disabled, restore the original MTU
537 //
538 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize;
539 goto ON_EXIT;
540 } else {
541 //
542 // If IPsec is enabled, use the MTU which reduce the IPsec header length.
543 //
544 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize - IP4_MAX_IPSEC_HEADLEN;
545 }
546
547 //
548 // Rebuild fragment table from netbuf to ease IPsec process.
549 //
550 FragmentTable = AllocateZeroPool (FragmentCount * sizeof (NET_FRAGMENT));
551
552 if (FragmentTable == NULL) {
553 Status = EFI_OUT_OF_RESOURCES;
554 goto ON_EXIT;
555 }
556
557 Status = NetbufBuildExt (Packet, FragmentTable, &FragmentCount);
558
559 //
560 // Record the original FragmentTable and count.
561 //
562 OriginalFragmentTable = FragmentTable;
563 OriginalFragmentCount = FragmentCount;
564
565 if (EFI_ERROR (Status)) {
566 FreePool (FragmentTable);
567 goto ON_EXIT;
568 }
569
570 //
571 // Convert host byte order to network byte order
572 //
573 Ip4NtohHead (*Head);
574
575 Status = mIpSec->ProcessExt (
576 mIpSec,
577 IpSb->Controller,
578 IP_VERSION_4,
579 (VOID *) (*Head),
580 &(*Head)->Protocol,
581 (VOID **) Options,
582 OptionsLen,
583 (EFI_IPSEC_FRAGMENT_DATA **) (&FragmentTable),
584 &FragmentCount,
585 Direction,
586 &RecycleEvent
587 );
588 //
589 // Convert back to host byte order
590 //
591 Ip4NtohHead (*Head);
592
593 if (EFI_ERROR (Status)) {
594 FreePool (OriginalFragmentTable);
595 goto ON_EXIT;
596 }
597
598 if (OriginalFragmentTable == FragmentTable && OriginalFragmentCount == FragmentCount) {
599 //
600 // For ByPass Packet
601 //
602 FreePool (FragmentTable);
603 goto ON_EXIT;
604 } else {
605 //
606 // Free the FragmentTable which allocated before calling the IPsec.
607 //
608 FreePool (OriginalFragmentTable);
609 }
610
611 if (Direction == EfiIPsecOutBound && TxWrap != NULL) {
612
613 TxWrap->IpSecRecycleSignal = RecycleEvent;
614 TxWrap->Packet = NetbufFromExt (
615 FragmentTable,
616 FragmentCount,
617 IP4_MAX_HEADLEN,
618 0,
619 Ip4FreeTxToken,
620 TxWrap
621 );
622 if (TxWrap->Packet == NULL) {
623 //
624 // Recover the TxWrap->Packet, if meet a error, and the caller will free
625 // the TxWrap.
626 //
627 TxWrap->Packet = *Netbuf;
628 Status = EFI_OUT_OF_RESOURCES;
629 goto ON_EXIT;
630 }
631
632 //
633 // Free orginal Netbuf.
634 //
635 NetIpSecNetbufFree (*Netbuf);
636 *Netbuf = TxWrap->Packet;
637
638 } else {
639
640 IpSecWrap = AllocateZeroPool (sizeof (IP4_IPSEC_WRAP));
641
642 if (IpSecWrap == NULL) {
643 Status = EFI_OUT_OF_RESOURCES;
644 gBS->SignalEvent (RecycleEvent);
645 goto ON_EXIT;
646 }
647
648 IpSecWrap->IpSecRecycleSignal = RecycleEvent;
649 IpSecWrap->Packet = Packet;
650 Packet = NetbufFromExt (
651 FragmentTable,
652 FragmentCount,
653 IP4_MAX_HEADLEN,
654 0,
655 Ip4IpSecFree,
656 IpSecWrap
657 );
658
659 if (Packet == NULL) {
660 Packet = IpSecWrap->Packet;
661 gBS->SignalEvent (RecycleEvent);
662 FreePool (IpSecWrap);
663 Status = EFI_OUT_OF_RESOURCES;
664 goto ON_EXIT;
665 }
666
667 if (Direction == EfiIPsecInBound && 0 != CompareMem (*Head, &ZeroHead, sizeof (IP4_HEAD))) {
668 Ip4PrependHead (Packet, *Head, *Options, *OptionsLen);
669 Ip4NtohHead (Packet->Ip.Ip4);
670 NetbufTrim (Packet, ((*Head)->HeadLen << 2), TRUE);
671
672 CopyMem (
673 IP4_GET_CLIP_INFO (Packet),
674 IP4_GET_CLIP_INFO (IpSecWrap->Packet),
675 sizeof (IP4_CLIP_INFO)
676 );
677 }
678 *Netbuf = Packet;
679 }
680
681 ON_EXIT:
682 return Status;
683 }
684
685 /**
686 Pre-process the IPv4 packet. First validates the IPv4 packet, and
687 then reassembles packet if it is necessary.
688
689 @param[in] IpSb Pointer to IP4_SERVICE.
690 @param[in, out] Packet Pointer to the Packet to be processed.
691 @param[in] Head Pointer to the IP4_HEAD.
692 @param[in] Option Pointer to a buffer which contains the IPv4 option.
693 @param[in] OptionLen The length of Option in bytes.
694 @param[in] Flag The link layer flag for the packet received, such
695 as multicast.
696
697 @retval EFI_SEUCCESS The recieved packet is in well form.
698 @retval EFI_INVAILD_PARAMETER The recieved packet is malformed.
699
700 **/
701 EFI_STATUS
702 Ip4PreProcessPacket (
703 IN IP4_SERVICE *IpSb,
704 IN OUT NET_BUF **Packet,
705 IN IP4_HEAD *Head,
706 IN UINT8 *Option,
707 IN UINT32 OptionLen,
708 IN UINT32 Flag
709 )
710 {
711 IP4_CLIP_INFO *Info;
712 UINT32 HeadLen;
713 UINT32 TotalLen;
714 UINT16 Checksum;
715
716 //
717 // Check that the IP4 header is correctly formatted
718 //
719 if ((*Packet)->TotalSize < IP4_MIN_HEADLEN) {
720 return EFI_INVALID_PARAMETER;
721 }
722
723 HeadLen = (Head->HeadLen << 2);
724 TotalLen = NTOHS (Head->TotalLen);
725
726 //
727 // Mnp may deliver frame trailer sequence up, trim it off.
728 //
729 if (TotalLen < (*Packet)->TotalSize) {
730 NetbufTrim (*Packet, (*Packet)->TotalSize - TotalLen, FALSE);
731 }
732
733 if ((Head->Ver != 4) || (HeadLen < IP4_MIN_HEADLEN) ||
734 (TotalLen < HeadLen) || (TotalLen != (*Packet)->TotalSize)) {
735 return EFI_INVALID_PARAMETER;
736 }
737
738 //
739 // Some OS may send IP packets without checksum.
740 //
741 Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Head, HeadLen));
742
743 if ((Head->Checksum != 0) && (Checksum != 0)) {
744 return EFI_INVALID_PARAMETER;
745 }
746
747 //
748 // Convert the IP header to host byte order, then get the per packet info.
749 //
750 (*Packet)->Ip.Ip4 = Ip4NtohHead (Head);
751
752 Info = IP4_GET_CLIP_INFO (*Packet);
753 Info->LinkFlag = Flag;
754 Info->CastType = Ip4GetHostCast (IpSb, Head->Dst, Head->Src);
755 Info->Start = (Head->Fragment & IP4_HEAD_OFFSET_MASK) << 3;
756 Info->Length = Head->TotalLen - HeadLen;
757 Info->End = Info->Start + Info->Length;
758 Info->Status = EFI_SUCCESS;
759
760 //
761 // The packet is destinated to us if the CastType is non-zero.
762 //
763 if ((Info->CastType == 0) || (Info->End > IP4_MAX_PACKET_SIZE)) {
764 return EFI_INVALID_PARAMETER;
765 }
766
767 //
768 // Validate the options. Don't call the Ip4OptionIsValid if
769 // there is no option to save some CPU process.
770 //
771
772 if ((OptionLen > 0) && !Ip4OptionIsValid (Option, OptionLen, TRUE)) {
773 return EFI_INVALID_PARAMETER;
774 }
775
776 //
777 // Trim the head off, after this point, the packet is headless.
778 // and Packet->TotalLen == Info->Length.
779 //
780 NetbufTrim (*Packet, HeadLen, TRUE);
781
782 //
783 // Reassemble the packet if this is a fragment. The packet is a
784 // fragment if its head has MF (more fragment) set, or it starts
785 // at non-zero byte.
786 //
787 if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) || (Info->Start != 0)) {
788 //
789 // Drop the fragment if DF is set but it is fragmented. Gateway
790 // need to send a type 4 destination unreache ICMP message here.
791 //
792 if ((Head->Fragment & IP4_HEAD_DF_MASK) != 0) {
793 return EFI_INVALID_PARAMETER;
794 }
795
796 //
797 // The length of all but the last fragments is in the unit of 8 bytes.
798 //
799 if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) && (Info->Length % 8 != 0)) {
800 return EFI_INVALID_PARAMETER;
801 }
802
803 *Packet = Ip4Reassemble (&IpSb->Assemble, *Packet);
804
805 //
806 // Packet assembly isn't complete, start receive more packet.
807 //
808 if (*Packet == NULL) {
809 return EFI_INVALID_PARAMETER;
810 }
811 }
812
813 return EFI_SUCCESS;
814 }
815
816 /**
817 The IP4 input routine. It is called by the IP4_INTERFACE when a
818 IP4 fragment is received from MNP.
819
820 @param[in] Ip4Instance The IP4 child that request the receive, most like
821 it is NULL.
822 @param[in] Packet The IP4 packet received.
823 @param[in] IoStatus The return status of receive request.
824 @param[in] Flag The link layer flag for the packet received, such
825 as multicast.
826 @param[in] Context The IP4 service instance that own the MNP.
827
828 **/
829 VOID
830 Ip4AccpetFrame (
831 IN IP4_PROTOCOL *Ip4Instance,
832 IN NET_BUF *Packet,
833 IN EFI_STATUS IoStatus,
834 IN UINT32 Flag,
835 IN VOID *Context
836 )
837 {
838 IP4_SERVICE *IpSb;
839 IP4_HEAD *Head;
840 EFI_STATUS Status;
841 IP4_HEAD ZeroHead;
842 UINT8 *Option;
843 UINT32 OptionLen;
844
845 IpSb = (IP4_SERVICE *) Context;
846 Option = NULL;
847
848 if (EFI_ERROR (IoStatus) || (IpSb->State == IP4_SERVICE_DESTORY)) {
849 goto DROP;
850 }
851
852 Head = (IP4_HEAD *) NetbufGetByte (Packet, 0, NULL);
853 OptionLen = (Head->HeadLen << 2) - IP4_MIN_HEADLEN;
854 if (OptionLen > 0) {
855 Option = (UINT8 *) (Head + 1);
856 }
857
858 //
859 // Validate packet format and reassemble packet if it is necessary.
860 //
861 Status = Ip4PreProcessPacket (
862 IpSb,
863 &Packet,
864 Head,
865 Option,
866 OptionLen,
867 Flag
868 );
869
870 if (EFI_ERROR (Status)) {
871 goto RESTART;
872 }
873
874 //
875 // After trim off, the packet is a esp/ah/udp/tcp/icmp6 net buffer,
876 // and no need consider any other ahead ext headers.
877 //
878 Status = Ip4IpSecProcessPacket (
879 IpSb,
880 &Head,
881 &Packet,
882 &Option,
883 &OptionLen,
884 EfiIPsecInBound,
885 NULL
886 );
887
888 if (EFI_ERROR (Status)) {
889 goto RESTART;
890 }
891
892 //
893 // If the packet is protected by tunnel mode, parse the inner Ip Packet.
894 //
895 ZeroMem (&ZeroHead, sizeof (IP4_HEAD));
896 if (0 == CompareMem (Head, &ZeroHead, sizeof (IP4_HEAD))) {
897 // Packet may have been changed. Head, HeadLen, TotalLen, and
898 // info must be reloaded bofore use. The ownership of the packet
899 // is transfered to the packet process logic.
900 //
901 Head = (IP4_HEAD *) NetbufGetByte (Packet, 0, NULL);
902 Status = Ip4PreProcessPacket (
903 IpSb,
904 &Packet,
905 Head,
906 Option,
907 OptionLen,
908 Flag
909 );
910 if (EFI_ERROR (Status)) {
911 goto RESTART;
912 }
913 }
914
915 ASSERT (Packet != NULL);
916 Head = Packet->Ip.Ip4;
917 IP4_GET_CLIP_INFO (Packet)->Status = EFI_SUCCESS;
918
919 switch (Head->Protocol) {
920 case EFI_IP_PROTO_ICMP:
921 Ip4IcmpHandle (IpSb, Head, Packet);
922 break;
923
924 case IP4_PROTO_IGMP:
925 Ip4IgmpHandle (IpSb, Head, Packet);
926 break;
927
928 default:
929 Ip4Demultiplex (IpSb, Head, Packet);
930 }
931
932 Packet = NULL;
933
934 //
935 // Dispatch the DPCs queued by the NotifyFunction of the rx token's events
936 // which are signaled with received data.
937 //
938 DispatchDpc ();
939
940 RESTART:
941 Ip4ReceiveFrame (IpSb->DefaultInterface, NULL, Ip4AccpetFrame, IpSb);
942
943 DROP:
944 if (Packet != NULL) {
945 NetbufFree (Packet);
946 }
947
948 return ;
949 }
950
951
952 /**
953 Check whether this IP child accepts the packet.
954
955 @param[in] IpInstance The IP child to check
956 @param[in] Head The IP header of the packet
957 @param[in] Packet The data of the packet
958
959 @retval TRUE If the child wants to receive the packet.
960 @retval FALSE Otherwise.
961
962 **/
963 BOOLEAN
964 Ip4InstanceFrameAcceptable (
965 IN IP4_PROTOCOL *IpInstance,
966 IN IP4_HEAD *Head,
967 IN NET_BUF *Packet
968 )
969 {
970 IP4_ICMP_ERROR_HEAD Icmp;
971 EFI_IP4_CONFIG_DATA *Config;
972 IP4_CLIP_INFO *Info;
973 UINT16 Proto;
974 UINT32 Index;
975
976 Config = &IpInstance->ConfigData;
977
978 //
979 // Dirty trick for the Tiano UEFI network stack implmentation. If
980 // ReceiveTimeout == -1, the receive of the packet for this instance
981 // is disabled. The UEFI spec don't have such capability. We add
982 // this to improve the performance because IP will make a copy of
983 // the received packet for each accepting instance. Some IP instances
984 // used by UDP/TCP only send packets, they don't wants to receive.
985 //
986 if (Config->ReceiveTimeout == (UINT32)(-1)) {
987 return FALSE;
988 }
989
990 if (Config->AcceptPromiscuous) {
991 return TRUE;
992 }
993
994 //
995 // Use protocol from the IP header embedded in the ICMP error
996 // message to filter, instead of ICMP itself. ICMP handle will
997 // call Ip4Demultiplex to deliver ICMP errors.
998 //
999 Proto = Head->Protocol;
1000
1001 if ((Proto == EFI_IP_PROTO_ICMP) && (!Config->AcceptAnyProtocol) && (Proto != Config->DefaultProtocol)) {
1002 NetbufCopy (Packet, 0, sizeof (Icmp.Head), (UINT8 *) &Icmp.Head);
1003
1004 if (mIcmpClass[Icmp.Head.Type].IcmpClass == ICMP_ERROR_MESSAGE) {
1005 if (!Config->AcceptIcmpErrors) {
1006 return FALSE;
1007 }
1008
1009 NetbufCopy (Packet, 0, sizeof (Icmp), (UINT8 *) &Icmp);
1010 Proto = Icmp.IpHead.Protocol;
1011 }
1012 }
1013
1014 //
1015 // Match the protocol
1016 //
1017 if (!Config->AcceptAnyProtocol && (Proto != Config->DefaultProtocol)) {
1018 return FALSE;
1019 }
1020
1021 //
1022 // Check for broadcast, the caller has computed the packet's
1023 // cast type for this child's interface.
1024 //
1025 Info = IP4_GET_CLIP_INFO (Packet);
1026
1027 if (IP4_IS_BROADCAST (Info->CastType)) {
1028 return Config->AcceptBroadcast;
1029 }
1030
1031 //
1032 // If it is a multicast packet, check whether we are in the group.
1033 //
1034 if (Info->CastType == IP4_MULTICAST) {
1035 //
1036 // Receive the multicast if the instance wants to receive all packets.
1037 //
1038 if (!IpInstance->ConfigData.UseDefaultAddress && (IpInstance->Interface->Ip == 0)) {
1039 return TRUE;
1040 }
1041
1042 for (Index = 0; Index < IpInstance->GroupCount; Index++) {
1043 if (IpInstance->Groups[Index] == HTONL (Head->Dst)) {
1044 break;
1045 }
1046 }
1047
1048 return (BOOLEAN)(Index < IpInstance->GroupCount);
1049 }
1050
1051 return TRUE;
1052 }
1053
1054
1055 /**
1056 Enqueue a shared copy of the packet to the IP4 child if the
1057 packet is acceptable to it. Here the data of the packet is
1058 shared, but the net buffer isn't.
1059
1060 @param[in] IpInstance The IP4 child to enqueue the packet to
1061 @param[in] Head The IP header of the received packet
1062 @param[in] Packet The data of the received packet
1063
1064 @retval EFI_NOT_STARTED The IP child hasn't been configured.
1065 @retval EFI_INVALID_PARAMETER The child doesn't want to receive the packet
1066 @retval EFI_OUT_OF_RESOURCES Failed to allocate some resource
1067 @retval EFI_SUCCESS A shared copy the packet is enqueued to the child.
1068
1069 **/
1070 EFI_STATUS
1071 Ip4InstanceEnquePacket (
1072 IN IP4_PROTOCOL *IpInstance,
1073 IN IP4_HEAD *Head,
1074 IN NET_BUF *Packet
1075 )
1076 {
1077 IP4_CLIP_INFO *Info;
1078 NET_BUF *Clone;
1079
1080 //
1081 // Check whether the packet is acceptable to this instance.
1082 //
1083 if (IpInstance->State != IP4_STATE_CONFIGED) {
1084 return EFI_NOT_STARTED;
1085 }
1086
1087 if (!Ip4InstanceFrameAcceptable (IpInstance, Head, Packet)) {
1088 return EFI_INVALID_PARAMETER;
1089 }
1090
1091 //
1092 // Enque a shared copy of the packet.
1093 //
1094 Clone = NetbufClone (Packet);
1095
1096 if (Clone == NULL) {
1097 return EFI_OUT_OF_RESOURCES;
1098 }
1099
1100 //
1101 // Set the receive time out for the assembled packet. If it expires,
1102 // packet will be removed from the queue.
1103 //
1104 Info = IP4_GET_CLIP_INFO (Clone);
1105 Info->Life = IP4_US_TO_SEC (IpInstance->ConfigData.ReceiveTimeout);
1106
1107 InsertTailList (&IpInstance->Received, &Clone->List);
1108 return EFI_SUCCESS;
1109 }
1110
1111
1112 /**
1113 The signal handle of IP4's recycle event. It is called back
1114 when the upper layer release the packet.
1115
1116 @param Event The IP4's recycle event.
1117 @param Context The context of the handle, which is a
1118 IP4_RXDATA_WRAP
1119
1120 **/
1121 VOID
1122 EFIAPI
1123 Ip4OnRecyclePacket (
1124 IN EFI_EVENT Event,
1125 IN VOID *Context
1126 )
1127 {
1128 IP4_RXDATA_WRAP *Wrap;
1129
1130 Wrap = (IP4_RXDATA_WRAP *) Context;
1131
1132 EfiAcquireLockOrFail (&Wrap->IpInstance->RecycleLock);
1133 RemoveEntryList (&Wrap->Link);
1134 EfiReleaseLock (&Wrap->IpInstance->RecycleLock);
1135
1136 ASSERT (!NET_BUF_SHARED (Wrap->Packet));
1137 NetbufFree (Wrap->Packet);
1138
1139 gBS->CloseEvent (Wrap->RxData.RecycleSignal);
1140 FreePool (Wrap);
1141 }
1142
1143
1144 /**
1145 Wrap the received packet to a IP4_RXDATA_WRAP, which will be
1146 delivered to the upper layer. Each IP4 child that accepts the
1147 packet will get a not-shared copy of the packet which is wrapped
1148 in the IP4_RXDATA_WRAP. The IP4_RXDATA_WRAP->RxData is passed
1149 to the upper layer. Upper layer will signal the recycle event in
1150 it when it is done with the packet.
1151
1152 @param[in] IpInstance The IP4 child to receive the packet
1153 @param[in] Packet The packet to deliver up.
1154
1155 @retval Wrap if warp the packet succeed.
1156 @retval NULL failed to wrap the packet .
1157
1158 **/
1159 IP4_RXDATA_WRAP *
1160 Ip4WrapRxData (
1161 IN IP4_PROTOCOL *IpInstance,
1162 IN NET_BUF *Packet
1163 )
1164 {
1165 IP4_RXDATA_WRAP *Wrap;
1166 EFI_IP4_RECEIVE_DATA *RxData;
1167 EFI_STATUS Status;
1168
1169 Wrap = AllocatePool (IP4_RXDATA_WRAP_SIZE (Packet->BlockOpNum));
1170
1171 if (Wrap == NULL) {
1172 return NULL;
1173 }
1174
1175 InitializeListHead (&Wrap->Link);
1176
1177 Wrap->IpInstance = IpInstance;
1178 Wrap->Packet = Packet;
1179 RxData = &Wrap->RxData;
1180
1181 ZeroMem (&RxData->TimeStamp, sizeof (EFI_TIME));
1182
1183 Status = gBS->CreateEvent (
1184 EVT_NOTIFY_SIGNAL,
1185 TPL_NOTIFY,
1186 Ip4OnRecyclePacket,
1187 Wrap,
1188 &RxData->RecycleSignal
1189 );
1190
1191 if (EFI_ERROR (Status)) {
1192 FreePool (Wrap);
1193 return NULL;
1194 }
1195
1196 ASSERT (Packet->Ip.Ip4 != NULL);
1197
1198 //
1199 // The application expects a network byte order header.
1200 //
1201 RxData->HeaderLength = (Packet->Ip.Ip4->HeadLen << 2);
1202 RxData->Header = (EFI_IP4_HEADER *) Ip4NtohHead (Packet->Ip.Ip4);
1203
1204 RxData->OptionsLength = RxData->HeaderLength - IP4_MIN_HEADLEN;
1205 RxData->Options = NULL;
1206
1207 if (RxData->OptionsLength != 0) {
1208 RxData->Options = (VOID *) (RxData->Header + 1);
1209 }
1210
1211 RxData->DataLength = Packet->TotalSize;
1212
1213 //
1214 // Build the fragment table to be delivered up.
1215 //
1216 RxData->FragmentCount = Packet->BlockOpNum;
1217 NetbufBuildExt (Packet, (NET_FRAGMENT *) RxData->FragmentTable, &RxData->FragmentCount);
1218
1219 return Wrap;
1220 }
1221
1222
1223 /**
1224 Deliver the received packets to upper layer if there are both received
1225 requests and enqueued packets. If the enqueued packet is shared, it will
1226 duplicate it to a non-shared packet, release the shared packet, then
1227 deliver the non-shared packet up.
1228
1229 @param[in] IpInstance The IP child to deliver the packet up.
1230
1231 @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to deliver the
1232 packets.
1233 @retval EFI_SUCCESS All the enqueued packets that can be delivered
1234 are delivered up.
1235
1236 **/
1237 EFI_STATUS
1238 Ip4InstanceDeliverPacket (
1239 IN IP4_PROTOCOL *IpInstance
1240 )
1241 {
1242 EFI_IP4_COMPLETION_TOKEN *Token;
1243 IP4_RXDATA_WRAP *Wrap;
1244 NET_BUF *Packet;
1245 NET_BUF *Dup;
1246 UINT8 *Head;
1247
1248 //
1249 // Deliver a packet if there are both a packet and a receive token.
1250 //
1251 while (!IsListEmpty (&IpInstance->Received) &&
1252 !NetMapIsEmpty (&IpInstance->RxTokens)) {
1253
1254 Packet = NET_LIST_HEAD (&IpInstance->Received, NET_BUF, List);
1255
1256 if (!NET_BUF_SHARED (Packet)) {
1257 //
1258 // If this is the only instance that wants the packet, wrap it up.
1259 //
1260 Wrap = Ip4WrapRxData (IpInstance, Packet);
1261
1262 if (Wrap == NULL) {
1263 return EFI_OUT_OF_RESOURCES;
1264 }
1265
1266 RemoveEntryList (&Packet->List);
1267
1268 } else {
1269 //
1270 // Create a duplicated packet if this packet is shared
1271 //
1272 Dup = NetbufDuplicate (Packet, NULL, IP4_MAX_HEADLEN);
1273
1274 if (Dup == NULL) {
1275 return EFI_OUT_OF_RESOURCES;
1276 }
1277
1278 //
1279 // Copy the IP head over. The packet to deliver up is
1280 // headless. Trim the head off after copy. The IP head
1281 // may be not continuous before the data.
1282 //
1283 Head = NetbufAllocSpace (Dup, IP4_MAX_HEADLEN, NET_BUF_HEAD);
1284 ASSERT (Head != NULL);
1285
1286 Dup->Ip.Ip4 = (IP4_HEAD *) Head;
1287
1288 CopyMem (Head, Packet->Ip.Ip4, Packet->Ip.Ip4->HeadLen << 2);
1289 NetbufTrim (Dup, IP4_MAX_HEADLEN, TRUE);
1290
1291 Wrap = Ip4WrapRxData (IpInstance, Dup);
1292
1293 if (Wrap == NULL) {
1294 NetbufFree (Dup);
1295 return EFI_OUT_OF_RESOURCES;
1296 }
1297
1298 RemoveEntryList (&Packet->List);
1299 NetbufFree (Packet);
1300
1301 Packet = Dup;
1302 }
1303
1304 //
1305 // Insert it into the delivered packet, then get a user's
1306 // receive token, pass the wrapped packet up.
1307 //
1308 EfiAcquireLockOrFail (&IpInstance->RecycleLock);
1309 InsertHeadList (&IpInstance->Delivered, &Wrap->Link);
1310 EfiReleaseLock (&IpInstance->RecycleLock);
1311
1312 Token = NetMapRemoveHead (&IpInstance->RxTokens, NULL);
1313 Token->Status = IP4_GET_CLIP_INFO (Packet)->Status;
1314 Token->Packet.RxData = &Wrap->RxData;
1315
1316 gBS->SignalEvent (Token->Event);
1317 }
1318
1319 return EFI_SUCCESS;
1320 }
1321
1322
1323 /**
1324 Enqueue a received packet to all the IP children that share
1325 the same interface.
1326
1327 @param[in] IpSb The IP4 service instance that receive the packet
1328 @param[in] Head The header of the received packet
1329 @param[in] Packet The data of the received packet
1330 @param[in] IpIf The interface to enqueue the packet to
1331
1332 @return The number of the IP4 children that accepts the packet
1333
1334 **/
1335 INTN
1336 Ip4InterfaceEnquePacket (
1337 IN IP4_SERVICE *IpSb,
1338 IN IP4_HEAD *Head,
1339 IN NET_BUF *Packet,
1340 IN IP4_INTERFACE *IpIf
1341 )
1342 {
1343 IP4_PROTOCOL *IpInstance;
1344 IP4_CLIP_INFO *Info;
1345 LIST_ENTRY *Entry;
1346 INTN Enqueued;
1347 INTN LocalType;
1348 INTN SavedType;
1349
1350 //
1351 // First, check that the packet is acceptable to this interface
1352 // and find the local cast type for the interface. A packet sent
1353 // to say 192.168.1.1 should NOT be delliever to 10.0.0.1 unless
1354 // promiscuous receiving.
1355 //
1356 LocalType = 0;
1357 Info = IP4_GET_CLIP_INFO (Packet);
1358
1359 if ((Info->CastType == IP4_MULTICAST) || (Info->CastType == IP4_LOCAL_BROADCAST)) {
1360 //
1361 // If the CastType is multicast, don't need to filter against
1362 // the group address here, Ip4InstanceFrameAcceptable will do
1363 // that later.
1364 //
1365 LocalType = Info->CastType;
1366
1367 } else {
1368 //
1369 // Check the destination againist local IP. If the station
1370 // address is 0.0.0.0, it means receiving all the IP destined
1371 // to local non-zero IP. Otherwise, it is necessary to compare
1372 // the destination to the interface's IP address.
1373 //
1374 if (IpIf->Ip == IP4_ALLZERO_ADDRESS) {
1375 LocalType = IP4_LOCAL_HOST;
1376
1377 } else {
1378 LocalType = Ip4GetNetCast (Head->Dst, IpIf);
1379
1380 if ((LocalType == 0) && IpIf->PromiscRecv) {
1381 LocalType = IP4_PROMISCUOUS;
1382 }
1383 }
1384 }
1385
1386 if (LocalType == 0) {
1387 return 0;
1388 }
1389
1390 //
1391 // Iterate through the ip instances on the interface, enqueue
1392 // the packet if filter passed. Save the original cast type,
1393 // and pass the local cast type to the IP children on the
1394 // interface. The global cast type will be restored later.
1395 //
1396 SavedType = Info->CastType;
1397 Info->CastType = LocalType;
1398
1399 Enqueued = 0;
1400
1401 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
1402 IpInstance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);
1403 NET_CHECK_SIGNATURE (IpInstance, IP4_PROTOCOL_SIGNATURE);
1404
1405 if (Ip4InstanceEnquePacket (IpInstance, Head, Packet) == EFI_SUCCESS) {
1406 Enqueued++;
1407 }
1408 }
1409
1410 Info->CastType = SavedType;
1411 return Enqueued;
1412 }
1413
1414
1415 /**
1416 Deliver the packet for each IP4 child on the interface.
1417
1418 @param[in] IpSb The IP4 service instance that received the packet
1419 @param[in] IpIf The IP4 interface to deliver the packet.
1420
1421 @retval EFI_SUCCESS It always returns EFI_SUCCESS now
1422
1423 **/
1424 EFI_STATUS
1425 Ip4InterfaceDeliverPacket (
1426 IN IP4_SERVICE *IpSb,
1427 IN IP4_INTERFACE *IpIf
1428 )
1429 {
1430 IP4_PROTOCOL *Ip4Instance;
1431 LIST_ENTRY *Entry;
1432
1433 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
1434 Ip4Instance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);
1435 Ip4InstanceDeliverPacket (Ip4Instance);
1436 }
1437
1438 return EFI_SUCCESS;
1439 }
1440
1441
1442 /**
1443 Demultiple the packet. the packet delivery is processed in two
1444 passes. The first pass will enque a shared copy of the packet
1445 to each IP4 child that accepts the packet. The second pass will
1446 deliver a non-shared copy of the packet to each IP4 child that
1447 has pending receive requests. Data is copied if more than one
1448 child wants to consume the packet because each IP child needs
1449 its own copy of the packet to make changes.
1450
1451 @param[in] IpSb The IP4 service instance that received the packet
1452 @param[in] Head The header of the received packet
1453 @param[in] Packet The data of the received packet
1454
1455 @retval EFI_NOT_FOUND No IP child accepts the packet
1456 @retval EFI_SUCCESS The packet is enqueued or delivered to some IP
1457 children.
1458
1459 **/
1460 EFI_STATUS
1461 Ip4Demultiplex (
1462 IN IP4_SERVICE *IpSb,
1463 IN IP4_HEAD *Head,
1464 IN NET_BUF *Packet
1465 )
1466 {
1467 LIST_ENTRY *Entry;
1468 IP4_INTERFACE *IpIf;
1469 INTN Enqueued;
1470
1471 //
1472 // Two pass delivery: first, enque a shared copy of the packet
1473 // to each instance that accept the packet.
1474 //
1475 Enqueued = 0;
1476
1477 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
1478 IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);
1479
1480 if (IpIf->Configured) {
1481 Enqueued += Ip4InterfaceEnquePacket (IpSb, Head, Packet, IpIf);
1482 }
1483 }
1484
1485 //
1486 // Second: deliver a duplicate of the packet to each instance.
1487 // Release the local reference first, so that the last instance
1488 // getting the packet will not copy the data.
1489 //
1490 NetbufFree (Packet);
1491
1492 if (Enqueued == 0) {
1493 return EFI_NOT_FOUND;
1494 }
1495
1496 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
1497 IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);
1498
1499 if (IpIf->Configured) {
1500 Ip4InterfaceDeliverPacket (IpSb, IpIf);
1501 }
1502 }
1503
1504 return EFI_SUCCESS;
1505 }
1506
1507
1508 /**
1509 Timeout the fragment and enqueued packets.
1510
1511 @param[in] IpSb The IP4 service instance to timeout
1512
1513 **/
1514 VOID
1515 Ip4PacketTimerTicking (
1516 IN IP4_SERVICE *IpSb
1517 )
1518 {
1519 LIST_ENTRY *InstanceEntry;
1520 LIST_ENTRY *Entry;
1521 LIST_ENTRY *Next;
1522 IP4_PROTOCOL *IpInstance;
1523 IP4_ASSEMBLE_ENTRY *Assemble;
1524 NET_BUF *Packet;
1525 IP4_CLIP_INFO *Info;
1526 UINT32 Index;
1527
1528 //
1529 // First, time out the fragments. The packet's life is counting down
1530 // once the first-arrived fragment was received.
1531 //
1532 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
1533 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpSb->Assemble.Bucket[Index]) {
1534 Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);
1535
1536 if ((Assemble->Life > 0) && (--Assemble->Life == 0)) {
1537 RemoveEntryList (Entry);
1538 Ip4FreeAssembleEntry (Assemble);
1539 }
1540 }
1541 }
1542
1543 NET_LIST_FOR_EACH (InstanceEntry, &IpSb->Children) {
1544 IpInstance = NET_LIST_USER_STRUCT (InstanceEntry, IP4_PROTOCOL, Link);
1545
1546 //
1547 // Second, time out the assembled packets enqueued on each IP child.
1548 //
1549 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpInstance->Received) {
1550 Packet = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
1551 Info = IP4_GET_CLIP_INFO (Packet);
1552
1553 if ((Info->Life > 0) && (--Info->Life == 0)) {
1554 RemoveEntryList (Entry);
1555 NetbufFree (Packet);
1556 }
1557 }
1558
1559 //
1560 // Third: time out the transmitted packets.
1561 //
1562 NetMapIterate (&IpInstance->TxTokens, Ip4SentPacketTicking, NULL);
1563 }
1564 }