]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Network/Ip4Dxe/Ip4Input.c
Fix minor gcc build break.
[mirror_edk2.git] / MdeModulePkg / Universal / Network / Ip4Dxe / Ip4Input.c
1 /** @file
2 IP4 input process.
3
4 Copyright (c) 2005 - 2010, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "Ip4Impl.h"
16
17
18 /**
19 Create an empty assemble entry for the packet identified by
20 (Dst, Src, Id, Protocol). The default life for the packet is
21 120 seconds.
22
23 @param[in] Dst The destination address
24 @param[in] Src The source address
25 @param[in] Id The ID field in IP header
26 @param[in] Protocol The protocol field in IP header
27
28 @return NULL if failed to allocate memory for the entry, otherwise
29 the point to just created reassemble entry.
30
31 **/
32 IP4_ASSEMBLE_ENTRY *
33 Ip4CreateAssembleEntry (
34 IN IP4_ADDR Dst,
35 IN IP4_ADDR Src,
36 IN UINT16 Id,
37 IN UINT8 Protocol
38 )
39 {
40
41 IP4_ASSEMBLE_ENTRY *Assemble;
42
43 Assemble = AllocatePool (sizeof (IP4_ASSEMBLE_ENTRY));
44
45 if (Assemble == NULL) {
46 return NULL;
47 }
48
49 InitializeListHead (&Assemble->Link);
50 InitializeListHead (&Assemble->Fragments);
51
52 Assemble->Dst = Dst;
53 Assemble->Src = Src;
54 Assemble->Id = Id;
55 Assemble->Protocol = Protocol;
56 Assemble->TotalLen = 0;
57 Assemble->CurLen = 0;
58 Assemble->Head = NULL;
59 Assemble->Info = NULL;
60 Assemble->Life = IP4_FRAGMENT_LIFE;
61
62 return Assemble;
63 }
64
65
66 /**
67 Release all the fragments of a packet, then free the assemble entry.
68
69 @param[in] Assemble The assemble entry to free
70
71 **/
72 VOID
73 Ip4FreeAssembleEntry (
74 IN IP4_ASSEMBLE_ENTRY *Assemble
75 )
76 {
77 LIST_ENTRY *Entry;
78 LIST_ENTRY *Next;
79 NET_BUF *Fragment;
80
81 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Assemble->Fragments) {
82 Fragment = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
83
84 RemoveEntryList (Entry);
85 NetbufFree (Fragment);
86 }
87
88 FreePool (Assemble);
89 }
90
91
92 /**
93 Initialize an already allocated assemble table. This is generally
94 the assemble table embedded in the IP4 service instance.
95
96 @param[in, out] Table The assemble table to initialize.
97
98 **/
99 VOID
100 Ip4InitAssembleTable (
101 IN OUT IP4_ASSEMBLE_TABLE *Table
102 )
103 {
104 UINT32 Index;
105
106 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
107 InitializeListHead (&Table->Bucket[Index]);
108 }
109 }
110
111
112 /**
113 Clean up the assemble table: remove all the fragments
114 and assemble entries.
115
116 @param[in] Table The assemble table to clean up
117
118 **/
119 VOID
120 Ip4CleanAssembleTable (
121 IN IP4_ASSEMBLE_TABLE *Table
122 )
123 {
124 LIST_ENTRY *Entry;
125 LIST_ENTRY *Next;
126 IP4_ASSEMBLE_ENTRY *Assemble;
127 UINT32 Index;
128
129 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
130 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Table->Bucket[Index]) {
131 Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);
132
133 RemoveEntryList (Entry);
134 Ip4FreeAssembleEntry (Assemble);
135 }
136 }
137 }
138
139
140 /**
141 Trim the packet to fit in [Start, End), and update the per
142 packet information.
143
144 @param Packet Packet to trim
145 @param Start The sequence of the first byte to fit in
146 @param End One beyond the sequence of last byte to fit in.
147
148 **/
149 VOID
150 Ip4TrimPacket (
151 IN OUT NET_BUF *Packet,
152 IN INTN Start,
153 IN INTN End
154 )
155 {
156 IP4_CLIP_INFO *Info;
157 INTN Len;
158
159 Info = IP4_GET_CLIP_INFO (Packet);
160
161 ASSERT (Info->Start + Info->Length == Info->End);
162 ASSERT ((Info->Start < End) && (Start < Info->End));
163
164 if (Info->Start < Start) {
165 Len = Start - Info->Start;
166
167 NetbufTrim (Packet, (UINT32) Len, NET_BUF_HEAD);
168 Info->Start = Start;
169 Info->Length -= Len;
170 }
171
172 if (End < Info->End) {
173 Len = End - Info->End;
174
175 NetbufTrim (Packet, (UINT32) Len, NET_BUF_TAIL);
176 Info->End = End;
177 Info->Length -= Len;
178 }
179 }
180
181
182 /**
183 Release all the fragments of the packet. This is the callback for
184 the assembled packet's OnFree. It will free the assemble entry,
185 which in turn will free all the fragments of the packet.
186
187 @param[in] Arg The assemble entry to free
188
189 **/
190 VOID
191 EFIAPI
192 Ip4OnFreeFragments (
193 IN VOID *Arg
194 )
195 {
196 Ip4FreeAssembleEntry ((IP4_ASSEMBLE_ENTRY *) Arg);
197 }
198
199
200 /**
201 Reassemble the IP fragments. If all the fragments of the packet
202 have been received, it will wrap the packet in a net buffer then
203 return it to caller. If the packet can't be assembled, NULL is
204 return.
205
206 @param Table The assemble table used. New assemble entry will be created
207 if the Packet is from a new chain of fragments.
208 @param Packet The fragment to assemble. It might be freed if the fragment
209 can't be re-assembled.
210
211 @return NULL if the packet can't be reassemble. The point to just assembled
212 packet if all the fragments of the packet have arrived.
213
214 **/
215 NET_BUF *
216 Ip4Reassemble (
217 IN OUT IP4_ASSEMBLE_TABLE *Table,
218 IN OUT NET_BUF *Packet
219 )
220 {
221 IP4_HEAD *IpHead;
222 IP4_CLIP_INFO *This;
223 IP4_CLIP_INFO *Node;
224 IP4_ASSEMBLE_ENTRY *Assemble;
225 LIST_ENTRY *Head;
226 LIST_ENTRY *Prev;
227 LIST_ENTRY *Cur;
228 NET_BUF *Fragment;
229 NET_BUF *NewPacket;
230 INTN Index;
231
232 IpHead = Packet->Ip.Ip4;
233 This = IP4_GET_CLIP_INFO (Packet);
234
235 ASSERT (IpHead != NULL);
236
237 //
238 // First: find the related assemble entry
239 //
240 Assemble = NULL;
241 Index = IP4_ASSEMBLE_HASH (IpHead->Dst, IpHead->Src, IpHead->Id, IpHead->Protocol);
242
243 NET_LIST_FOR_EACH (Cur, &Table->Bucket[Index]) {
244 Assemble = NET_LIST_USER_STRUCT (Cur, IP4_ASSEMBLE_ENTRY, Link);
245
246 if ((Assemble->Dst == IpHead->Dst) && (Assemble->Src == IpHead->Src) &&
247 (Assemble->Id == IpHead->Id) && (Assemble->Protocol == IpHead->Protocol)) {
248 break;
249 }
250 }
251
252 //
253 // Create a new assemble entry if no assemble entry is related to this packet
254 //
255 if (Cur == &Table->Bucket[Index]) {
256 Assemble = Ip4CreateAssembleEntry (
257 IpHead->Dst,
258 IpHead->Src,
259 IpHead->Id,
260 IpHead->Protocol
261 );
262
263 if (Assemble == NULL) {
264 goto DROP;
265 }
266
267 InsertHeadList (&Table->Bucket[Index], &Assemble->Link);
268 }
269 //
270 // Assemble shouldn't be NULL here
271 //
272 ASSERT (Assemble != NULL);
273
274 //
275 // Find the point to insert the packet: before the first
276 // fragment with THIS.Start < CUR.Start. the previous one
277 // has PREV.Start <= THIS.Start < CUR.Start.
278 //
279 Head = &Assemble->Fragments;
280
281 NET_LIST_FOR_EACH (Cur, Head) {
282 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
283
284 if (This->Start < IP4_GET_CLIP_INFO (Fragment)->Start) {
285 break;
286 }
287 }
288
289 //
290 // Check whether the current fragment overlaps with the previous one.
291 // It holds that: PREV.Start <= THIS.Start < THIS.End. Only need to
292 // check whether THIS.Start < PREV.End for overlap. If two fragments
293 // overlaps, trim the overlapped part off THIS fragment.
294 //
295 if ((Cur != Head) && ((Prev = Cur->BackLink) != Head)) {
296 Fragment = NET_LIST_USER_STRUCT (Prev, NET_BUF, List);
297 Node = IP4_GET_CLIP_INFO (Fragment);
298
299 if (This->Start < Node->End) {
300 if (This->End <= Node->End) {
301 NetbufFree (Packet);
302 return NULL;
303 }
304
305 Ip4TrimPacket (Packet, Node->End, This->End);
306 }
307 }
308
309 //
310 // Insert the fragment into the packet. The fragment may be removed
311 // from the list by the following checks.
312 //
313 NetListInsertBefore (Cur, &Packet->List);
314
315 //
316 // Check the packets after the insert point. It holds that:
317 // THIS.Start <= NODE.Start < NODE.End. The equality holds
318 // if PREV and NEXT are continuous. THIS fragment may fill
319 // several holes. Remove the completely overlapped fragments
320 //
321 while (Cur != Head) {
322 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
323 Node = IP4_GET_CLIP_INFO (Fragment);
324
325 //
326 // Remove fragments completely overlapped by this fragment
327 //
328 if (Node->End <= This->End) {
329 Cur = Cur->ForwardLink;
330
331 RemoveEntryList (&Fragment->List);
332 Assemble->CurLen -= Node->Length;
333
334 NetbufFree (Fragment);
335 continue;
336 }
337
338 //
339 // The conditions are: THIS.Start <= NODE.Start, and THIS.End <
340 // NODE.End. Two fragments overlaps if NODE.Start < THIS.End.
341 // If two fragments start at the same offset, remove THIS fragment
342 // because ((THIS.Start == NODE.Start) && (THIS.End < NODE.End)).
343 //
344 if (Node->Start < This->End) {
345 if (This->Start == Node->Start) {
346 RemoveEntryList (&Packet->List);
347 goto DROP;
348 }
349
350 Ip4TrimPacket (Packet, This->Start, Node->Start);
351 }
352
353 break;
354 }
355
356 //
357 // Update the assemble info: increase the current length. If it is
358 // the frist fragment, update the packet's IP head and per packet
359 // info. If it is the last fragment, update the total length.
360 //
361 Assemble->CurLen += This->Length;
362
363 if (This->Start == 0) {
364 //
365 // Once the first fragment is enqueued, it can't be removed
366 // from the fragment list. So, Assemble->Head always point
367 // to valid memory area.
368 //
369 ASSERT (Assemble->Head == NULL);
370
371 Assemble->Head = IpHead;
372 Assemble->Info = IP4_GET_CLIP_INFO (Packet);
373 }
374
375 //
376 // Don't update the length more than once.
377 //
378 if (IP4_LAST_FRAGMENT (IpHead->Fragment) && (Assemble->TotalLen == 0)) {
379 Assemble->TotalLen = This->End;
380 }
381
382 //
383 // Deliver the whole packet if all the fragments received.
384 // All fragments received if:
385 // 1. received the last one, so, the total length is know
386 // 2. received all the data. If the last fragment on the
387 // queue ends at the total length, all data is received.
388 //
389 if ((Assemble->TotalLen != 0) && (Assemble->CurLen >= Assemble->TotalLen)) {
390
391 RemoveEntryList (&Assemble->Link);
392
393 //
394 // If the packet is properly formated, the last fragment's End
395 // equals to the packet's total length. Otherwise, the packet
396 // is a fake, drop it now.
397 //
398 Fragment = NET_LIST_USER_STRUCT (Head->BackLink, NET_BUF, List);
399
400 if (IP4_GET_CLIP_INFO (Fragment)->End != Assemble->TotalLen) {
401 Ip4FreeAssembleEntry (Assemble);
402 return NULL;
403 }
404
405 //
406 // Wrap the packet in a net buffer then deliver it up
407 //
408 NewPacket = NetbufFromBufList (
409 &Assemble->Fragments,
410 0,
411 0,
412 Ip4OnFreeFragments,
413 Assemble
414 );
415
416 if (NewPacket == NULL) {
417 Ip4FreeAssembleEntry (Assemble);
418 return NULL;
419 }
420
421 NewPacket->Ip.Ip4 = Assemble->Head;
422 CopyMem (IP4_GET_CLIP_INFO (NewPacket), Assemble->Info, sizeof (*IP4_GET_CLIP_INFO (NewPacket)));
423 return NewPacket;
424 }
425
426 return NULL;
427
428 DROP:
429 NetbufFree (Packet);
430 return NULL;
431 }
432
433 /**
434 The callback function for the net buffer which wraps the packet processed by
435 IPsec. It releases the wrap packet and also signals IPsec to free the resources.
436
437 @param[in] Arg The wrap context
438
439 **/
440 VOID
441 EFIAPI
442 Ip4IpSecFree (
443 IN VOID *Arg
444 )
445 {
446 IP4_IPSEC_WRAP *Wrap;
447
448 Wrap = (IP4_IPSEC_WRAP *) Arg;
449
450 if (Wrap->IpSecRecycleSignal != NULL) {
451 gBS->SignalEvent (Wrap->IpSecRecycleSignal);
452 }
453
454 NetbufFree (Wrap->Packet);
455
456 FreePool (Wrap);
457
458 return;
459 }
460
461 /**
462 The work function to locate IPsec protocol to process the inbound or
463 outbound IP packets. The process routine handls the packet with following
464 actions: bypass the packet, discard the packet, or protect the packet.
465
466 @param[in] IpSb The IP4 service instance.
467 @param[in, out] Head The The caller supplied IP4 header.
468 @param[in, out] Netbuf The IP4 packet to be processed by IPsec.
469 @param[in, out] Options The caller supplied options.
470 @param[in, out] OptionsLen The length of the option.
471 @param[in] Direction The directionality in an SPD entry,
472 EfiIPsecInBound or EfiIPsecOutBound.
473 @param[in] Context The token's wrap.
474
475 @retval EFI_SUCCESS The IPsec protocol is not available or disabled.
476 @retval EFI_SUCCESS The packet was bypassed and all buffers remain the same.
477 @retval EFI_SUCCESS The packet was protected.
478 @retval EFI_ACCESS_DENIED The packet was discarded.
479 @retval EFI_OUT_OF_RESOURCES There is no suffcient resource to complete the operation.
480 @retval EFI_BUFFER_TOO_SMALL The number of non-empty block is bigger than the
481 number of input data blocks when build a fragment table.
482
483 **/
484 EFI_STATUS
485 Ip4IpSecProcessPacket (
486 IN IP4_SERVICE *IpSb,
487 IN OUT IP4_HEAD **Head,
488 IN OUT NET_BUF **Netbuf,
489 IN OUT UINT8 **Options,
490 IN OUT UINT32 *OptionsLen,
491 IN EFI_IPSEC_TRAFFIC_DIR Direction,
492 IN VOID *Context
493 )
494 {
495 NET_FRAGMENT *FragmentTable;
496 NET_FRAGMENT *OriginalFragmentTable;
497 UINT32 FragmentCount;
498 UINT32 OriginalFragmentCount;
499 EFI_EVENT RecycleEvent;
500 NET_BUF *Packet;
501 IP4_TXTOKEN_WRAP *TxWrap;
502 IP4_IPSEC_WRAP *IpSecWrap;
503 EFI_STATUS Status;
504 IP4_HEAD ZeroHead;
505
506 Status = EFI_SUCCESS;
507 Packet = *Netbuf;
508 RecycleEvent = NULL;
509 IpSecWrap = NULL;
510 FragmentTable = NULL;
511 TxWrap = (IP4_TXTOKEN_WRAP *) Context;
512 FragmentCount = Packet->BlockOpNum;
513
514 ZeroMem (&ZeroHead, sizeof (IP4_HEAD));
515
516 if (mIpSec == NULL) {
517 gBS->LocateProtocol (&gEfiIpSecProtocolGuid, NULL, (VOID **) &mIpSec);
518 if (mIpSec == NULL) {
519 goto ON_EXIT;
520 }
521 }
522
523 //
524 // Check whether the IPsec enable variable is set.
525 //
526 if (mIpSec->DisabledFlag) {
527 //
528 // If IPsec is disabled, restore the original MTU
529 //
530 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize;
531 goto ON_EXIT;
532 } else {
533 //
534 // If IPsec is enabled, use the MTU which reduce the IPsec header length.
535 //
536 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize - IP4_MAX_IPSEC_HEADLEN;
537 }
538
539 //
540 // Rebuild fragment table from netbuf to ease IPsec process.
541 //
542 FragmentTable = AllocateZeroPool (FragmentCount * sizeof (NET_FRAGMENT));
543
544 if (FragmentTable == NULL) {
545 Status = EFI_OUT_OF_RESOURCES;
546 goto ON_EXIT;
547 }
548
549 Status = NetbufBuildExt (Packet, FragmentTable, &FragmentCount);
550
551 //
552 // Record the original FragmentTable and count.
553 //
554 OriginalFragmentTable = FragmentTable;
555 OriginalFragmentCount = FragmentCount;
556
557 if (EFI_ERROR (Status)) {
558 FreePool (FragmentTable);
559 goto ON_EXIT;
560 }
561
562 //
563 // Convert host byte order to network byte order
564 //
565 Ip4NtohHead (*Head);
566
567 Status = mIpSec->ProcessExt (
568 mIpSec,
569 IpSb->Controller,
570 IP_VERSION_4,
571 (VOID *) (*Head),
572 &(*Head)->Protocol,
573 (VOID **)Options,
574 OptionsLen,
575 (EFI_IPSEC_FRAGMENT_DATA **) (&FragmentTable),
576 &FragmentCount,
577 Direction,
578 &RecycleEvent
579 );
580 //
581 // Convert back to host byte order
582 //
583 Ip4NtohHead (*Head);
584
585 if (EFI_ERROR (Status)) {
586 goto ON_EXIT;
587 }
588
589 if (OriginalFragmentTable == FragmentTable && OriginalFragmentCount == FragmentCount) {
590 goto ON_EXIT;
591 }
592
593 if (Direction == EfiIPsecOutBound && TxWrap != NULL) {
594
595 TxWrap->IpSecRecycleSignal = RecycleEvent;
596 TxWrap->Packet = NetbufFromExt (
597 FragmentTable,
598 FragmentCount,
599 IP4_MAX_HEADLEN,
600 0,
601 Ip4FreeTxToken,
602 TxWrap
603 );
604 if (TxWrap->Packet == NULL) {
605 Status = EFI_OUT_OF_RESOURCES;
606 goto ON_EXIT;
607 }
608
609 //
610 // Free orginal Netbuf.
611 //
612 NetIpSecNetbufFree (*Netbuf);
613 *Netbuf = TxWrap->Packet;
614
615 } else {
616
617 IpSecWrap = AllocateZeroPool (sizeof (IP4_IPSEC_WRAP));
618
619 if (IpSecWrap == NULL) {
620 goto ON_EXIT;
621 }
622
623 IpSecWrap->IpSecRecycleSignal = RecycleEvent;
624 IpSecWrap->Packet = Packet;
625 Packet = NetbufFromExt (
626 FragmentTable,
627 FragmentCount,
628 IP4_MAX_HEADLEN,
629 0,
630 Ip4IpSecFree,
631 IpSecWrap
632 );
633
634 if (Packet == NULL) {
635 Status = EFI_OUT_OF_RESOURCES;
636 goto ON_EXIT;
637 }
638
639 if (Direction == EfiIPsecInBound && 0 != CompareMem (*Head, &ZeroHead, sizeof (IP4_HEAD))) {
640 Ip4PrependHead (Packet, *Head, *Options, *OptionsLen);
641 Ip4NtohHead (Packet->Ip.Ip4);
642 NetbufTrim (Packet, ((*Head)->HeadLen << 2), TRUE);
643
644 CopyMem (
645 IP4_GET_CLIP_INFO (Packet),
646 IP4_GET_CLIP_INFO (IpSecWrap->Packet),
647 sizeof (IP4_CLIP_INFO)
648 );
649 }
650 *Netbuf = Packet;
651 }
652
653 ON_EXIT:
654 return Status;
655 }
656
657 /**
658 Pre-process the IPv4 packet. First validates the IPv4 packet, and
659 then reassembles packet if it is necessary.
660
661 @param[in] IpSb Pointer to IP4_SERVICE.
662 @param[in, out] Packet Pointer to the Packet to be processed.
663 @param[in] Head Pointer to the IP4_HEAD.
664 @param[in] Option Pointer to a buffer which contains the IPv4 option.
665 @param[in] OptionLen The length of Option in bytes.
666 @param[in] Flag The link layer flag for the packet received, such
667 as multicast.
668
669 @retval EFI_SEUCCESS The recieved packet is in well form.
670 @retval EFI_INVAILD_PARAMETER The recieved packet is malformed.
671
672 **/
673 EFI_STATUS
674 Ip4PreProcessPacket (
675 IN IP4_SERVICE *IpSb,
676 IN OUT NET_BUF **Packet,
677 IN IP4_HEAD *Head,
678 IN UINT8 *Option,
679 IN UINT32 OptionLen,
680 IN UINT32 Flag
681 )
682 {
683 IP4_CLIP_INFO *Info;
684 UINT32 HeadLen;
685 UINT32 TotalLen;
686 UINT16 Checksum;
687
688 //
689 // Check that the IP4 header is correctly formatted
690 //
691 if ((*Packet)->TotalSize < IP4_MIN_HEADLEN) {
692 return EFI_INVALID_PARAMETER;
693 }
694
695 HeadLen = (Head->HeadLen << 2);
696 TotalLen = NTOHS (Head->TotalLen);
697
698 //
699 // Mnp may deliver frame trailer sequence up, trim it off.
700 //
701 if (TotalLen < (*Packet)->TotalSize) {
702 NetbufTrim (*Packet, (*Packet)->TotalSize - TotalLen, FALSE);
703 }
704
705 if ((Head->Ver != 4) || (HeadLen < IP4_MIN_HEADLEN) ||
706 (TotalLen < HeadLen) || (TotalLen != (*Packet)->TotalSize)) {
707 return EFI_INVALID_PARAMETER;
708 }
709
710 //
711 // Some OS may send IP packets without checksum.
712 //
713 Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Head, HeadLen));
714
715 if ((Head->Checksum != 0) && (Checksum != 0)) {
716 return EFI_INVALID_PARAMETER;
717 }
718
719 //
720 // Convert the IP header to host byte order, then get the per packet info.
721 //
722 (*Packet)->Ip.Ip4 = Ip4NtohHead (Head);
723
724 Info = IP4_GET_CLIP_INFO (*Packet);
725 Info->LinkFlag = Flag;
726 Info->CastType = Ip4GetHostCast (IpSb, Head->Dst, Head->Src);
727 Info->Start = (Head->Fragment & IP4_HEAD_OFFSET_MASK) << 3;
728 Info->Length = Head->TotalLen - HeadLen;
729 Info->End = Info->Start + Info->Length;
730 Info->Status = EFI_SUCCESS;
731
732 //
733 // The packet is destinated to us if the CastType is non-zero.
734 //
735 if ((Info->CastType == 0) || (Info->End > IP4_MAX_PACKET_SIZE)) {
736 return EFI_INVALID_PARAMETER;
737 }
738
739 //
740 // Validate the options. Don't call the Ip4OptionIsValid if
741 // there is no option to save some CPU process.
742 //
743
744 if ((OptionLen > 0) && !Ip4OptionIsValid (Option, OptionLen, TRUE)) {
745 return EFI_INVALID_PARAMETER;
746 }
747
748 //
749 // Trim the head off, after this point, the packet is headless.
750 // and Packet->TotalLen == Info->Length.
751 //
752 NetbufTrim (*Packet, HeadLen, TRUE);
753
754 //
755 // Reassemble the packet if this is a fragment. The packet is a
756 // fragment if its head has MF (more fragment) set, or it starts
757 // at non-zero byte.
758 //
759 if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) || (Info->Start != 0)) {
760 //
761 // Drop the fragment if DF is set but it is fragmented. Gateway
762 // need to send a type 4 destination unreache ICMP message here.
763 //
764 if ((Head->Fragment & IP4_HEAD_DF_MASK) != 0) {
765 return EFI_INVALID_PARAMETER;
766 }
767
768 //
769 // The length of all but the last fragments is in the unit of 8 bytes.
770 //
771 if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) && (Info->Length % 8 != 0)) {
772 return EFI_INVALID_PARAMETER;
773 }
774
775 *Packet = Ip4Reassemble (&IpSb->Assemble, *Packet);
776
777 //
778 // Packet assembly isn't complete, start receive more packet.
779 //
780 if (*Packet == NULL) {
781 return EFI_INVALID_PARAMETER;
782 }
783 }
784
785 return EFI_SUCCESS;
786 }
787
788 /**
789 The IP4 input routine. It is called by the IP4_INTERFACE when a
790 IP4 fragment is received from MNP.
791
792 @param[in] Ip4Instance The IP4 child that request the receive, most like
793 it is NULL.
794 @param[in] Packet The IP4 packet received.
795 @param[in] IoStatus The return status of receive request.
796 @param[in] Flag The link layer flag for the packet received, such
797 as multicast.
798 @param[in] Context The IP4 service instance that own the MNP.
799
800 **/
801 VOID
802 Ip4AccpetFrame (
803 IN IP4_PROTOCOL *Ip4Instance,
804 IN NET_BUF *Packet,
805 IN EFI_STATUS IoStatus,
806 IN UINT32 Flag,
807 IN VOID *Context
808 )
809 {
810 IP4_SERVICE *IpSb;
811 IP4_HEAD *Head;
812 EFI_STATUS Status;
813 IP4_HEAD ZeroHead;
814 UINT8 *Option;
815 UINT32 OptionLen;
816
817 IpSb = (IP4_SERVICE *) Context;
818 Option = NULL;
819
820 if (EFI_ERROR (IoStatus) || (IpSb->State == IP4_SERVICE_DESTORY)) {
821 goto DROP;
822 }
823
824 Head = (IP4_HEAD *) NetbufGetByte (Packet, 0, NULL);
825 OptionLen = (Head->HeadLen << 2) - IP4_MIN_HEADLEN;
826 if (OptionLen > 0) {
827 Option = (UINT8 *) (Head + 1);
828 }
829
830 //
831 // Validate packet format and reassemble packet if it is necessary.
832 //
833 Status = Ip4PreProcessPacket (
834 IpSb,
835 &Packet,
836 Head,
837 Option,
838 OptionLen,
839 Flag
840 );
841
842 if (EFI_ERROR (Status)) {
843 goto RESTART;
844 }
845
846 //
847 // After trim off, the packet is a esp/ah/udp/tcp/icmp6 net buffer,
848 // and no need consider any other ahead ext headers.
849 //
850 Status = Ip4IpSecProcessPacket (
851 IpSb,
852 &Head,
853 &Packet,
854 &Option,
855 &OptionLen,
856 EfiIPsecInBound,
857 NULL
858 );
859
860 if (EFI_ERROR (Status)) {
861 goto RESTART;
862 }
863
864 //
865 // If the packet is protected by tunnel mode, parse the inner Ip Packet.
866 //
867 ZeroMem (&ZeroHead, sizeof (IP4_HEAD));
868 if (0 == CompareMem (Head, &ZeroHead, sizeof (IP4_HEAD))) {
869 // Packet may have been changed. Head, HeadLen, TotalLen, and
870 // info must be reloaded bofore use. The ownership of the packet
871 // is transfered to the packet process logic.
872 //
873 Head = (IP4_HEAD *) NetbufGetByte (Packet, 0, NULL);
874 Status = Ip4PreProcessPacket (
875 IpSb,
876 &Packet,
877 Head,
878 Option,
879 OptionLen,
880 Flag
881 );
882 if (EFI_ERROR (Status)) {
883 goto RESTART;
884 }
885 }
886 Head = Packet->Ip.Ip4;
887 IP4_GET_CLIP_INFO (Packet)->Status = EFI_SUCCESS;
888
889 switch (Head->Protocol) {
890 case EFI_IP_PROTO_ICMP:
891 Ip4IcmpHandle (IpSb, Head, Packet);
892 break;
893
894 case IP4_PROTO_IGMP:
895 Ip4IgmpHandle (IpSb, Head, Packet);
896 break;
897
898 default:
899 Ip4Demultiplex (IpSb, Head, Packet);
900 }
901
902 Packet = NULL;
903
904 //
905 // Dispatch the DPCs queued by the NotifyFunction of the rx token's events
906 // which are signaled with received data.
907 //
908 DispatchDpc ();
909
910 RESTART:
911 Ip4ReceiveFrame (IpSb->DefaultInterface, NULL, Ip4AccpetFrame, IpSb);
912
913 DROP:
914 if (Packet != NULL) {
915 NetbufFree (Packet);
916 }
917
918 return ;
919 }
920
921
922 /**
923 Check whether this IP child accepts the packet.
924
925 @param[in] IpInstance The IP child to check
926 @param[in] Head The IP header of the packet
927 @param[in] Packet The data of the packet
928
929 @retval TRUE If the child wants to receive the packet.
930 @retval FALSE Otherwise.
931
932 **/
933 BOOLEAN
934 Ip4InstanceFrameAcceptable (
935 IN IP4_PROTOCOL *IpInstance,
936 IN IP4_HEAD *Head,
937 IN NET_BUF *Packet
938 )
939 {
940 IP4_ICMP_ERROR_HEAD Icmp;
941 EFI_IP4_CONFIG_DATA *Config;
942 IP4_CLIP_INFO *Info;
943 UINT16 Proto;
944 UINT32 Index;
945
946 Config = &IpInstance->ConfigData;
947
948 //
949 // Dirty trick for the Tiano UEFI network stack implmentation. If
950 // ReceiveTimeout == -1, the receive of the packet for this instance
951 // is disabled. The UEFI spec don't have such capability. We add
952 // this to improve the performance because IP will make a copy of
953 // the received packet for each accepting instance. Some IP instances
954 // used by UDP/TCP only send packets, they don't wants to receive.
955 //
956 if (Config->ReceiveTimeout == (UINT32)(-1)) {
957 return FALSE;
958 }
959
960 if (Config->AcceptPromiscuous) {
961 return TRUE;
962 }
963
964 //
965 // Use protocol from the IP header embedded in the ICMP error
966 // message to filter, instead of ICMP itself. ICMP handle will
967 // call Ip4Demultiplex to deliver ICMP errors.
968 //
969 Proto = Head->Protocol;
970
971 if ((Proto == EFI_IP_PROTO_ICMP) && (!Config->AcceptAnyProtocol) && (Proto != Config->DefaultProtocol)) {
972 NetbufCopy (Packet, 0, sizeof (Icmp.Head), (UINT8 *) &Icmp.Head);
973
974 if (mIcmpClass[Icmp.Head.Type].IcmpClass == ICMP_ERROR_MESSAGE) {
975 if (!Config->AcceptIcmpErrors) {
976 return FALSE;
977 }
978
979 NetbufCopy (Packet, 0, sizeof (Icmp), (UINT8 *) &Icmp);
980 Proto = Icmp.IpHead.Protocol;
981 }
982 }
983
984 //
985 // Match the protocol
986 //
987 if (!Config->AcceptAnyProtocol && (Proto != Config->DefaultProtocol)) {
988 return FALSE;
989 }
990
991 //
992 // Check for broadcast, the caller has computed the packet's
993 // cast type for this child's interface.
994 //
995 Info = IP4_GET_CLIP_INFO (Packet);
996
997 if (IP4_IS_BROADCAST (Info->CastType)) {
998 return Config->AcceptBroadcast;
999 }
1000
1001 //
1002 // If it is a multicast packet, check whether we are in the group.
1003 //
1004 if (Info->CastType == IP4_MULTICAST) {
1005 //
1006 // Receive the multicast if the instance wants to receive all packets.
1007 //
1008 if (!IpInstance->ConfigData.UseDefaultAddress && (IpInstance->Interface->Ip == 0)) {
1009 return TRUE;
1010 }
1011
1012 for (Index = 0; Index < IpInstance->GroupCount; Index++) {
1013 if (IpInstance->Groups[Index] == HTONL (Head->Dst)) {
1014 break;
1015 }
1016 }
1017
1018 return (BOOLEAN)(Index < IpInstance->GroupCount);
1019 }
1020
1021 return TRUE;
1022 }
1023
1024
1025 /**
1026 Enqueue a shared copy of the packet to the IP4 child if the
1027 packet is acceptable to it. Here the data of the packet is
1028 shared, but the net buffer isn't.
1029
1030 @param[in] IpInstance The IP4 child to enqueue the packet to
1031 @param[in] Head The IP header of the received packet
1032 @param[in] Packet The data of the received packet
1033
1034 @retval EFI_NOT_STARTED The IP child hasn't been configured.
1035 @retval EFI_INVALID_PARAMETER The child doesn't want to receive the packet
1036 @retval EFI_OUT_OF_RESOURCES Failed to allocate some resource
1037 @retval EFI_SUCCESS A shared copy the packet is enqueued to the child.
1038
1039 **/
1040 EFI_STATUS
1041 Ip4InstanceEnquePacket (
1042 IN IP4_PROTOCOL *IpInstance,
1043 IN IP4_HEAD *Head,
1044 IN NET_BUF *Packet
1045 )
1046 {
1047 IP4_CLIP_INFO *Info;
1048 NET_BUF *Clone;
1049
1050 //
1051 // Check whether the packet is acceptable to this instance.
1052 //
1053 if (IpInstance->State != IP4_STATE_CONFIGED) {
1054 return EFI_NOT_STARTED;
1055 }
1056
1057 if (!Ip4InstanceFrameAcceptable (IpInstance, Head, Packet)) {
1058 return EFI_INVALID_PARAMETER;
1059 }
1060
1061 //
1062 // Enque a shared copy of the packet.
1063 //
1064 Clone = NetbufClone (Packet);
1065
1066 if (Clone == NULL) {
1067 return EFI_OUT_OF_RESOURCES;
1068 }
1069
1070 //
1071 // Set the receive time out for the assembled packet. If it expires,
1072 // packet will be removed from the queue.
1073 //
1074 Info = IP4_GET_CLIP_INFO (Clone);
1075 Info->Life = IP4_US_TO_SEC (IpInstance->ConfigData.ReceiveTimeout);
1076
1077 InsertTailList (&IpInstance->Received, &Clone->List);
1078 return EFI_SUCCESS;
1079 }
1080
1081
1082 /**
1083 The signal handle of IP4's recycle event. It is called back
1084 when the upper layer release the packet.
1085
1086 @param Event The IP4's recycle event.
1087 @param Context The context of the handle, which is a
1088 IP4_RXDATA_WRAP
1089
1090 **/
1091 VOID
1092 EFIAPI
1093 Ip4OnRecyclePacket (
1094 IN EFI_EVENT Event,
1095 IN VOID *Context
1096 )
1097 {
1098 IP4_RXDATA_WRAP *Wrap;
1099
1100 Wrap = (IP4_RXDATA_WRAP *) Context;
1101
1102 EfiAcquireLockOrFail (&Wrap->IpInstance->RecycleLock);
1103 RemoveEntryList (&Wrap->Link);
1104 EfiReleaseLock (&Wrap->IpInstance->RecycleLock);
1105
1106 ASSERT (!NET_BUF_SHARED (Wrap->Packet));
1107 NetbufFree (Wrap->Packet);
1108
1109 gBS->CloseEvent (Wrap->RxData.RecycleSignal);
1110 FreePool (Wrap);
1111 }
1112
1113
1114 /**
1115 Wrap the received packet to a IP4_RXDATA_WRAP, which will be
1116 delivered to the upper layer. Each IP4 child that accepts the
1117 packet will get a not-shared copy of the packet which is wrapped
1118 in the IP4_RXDATA_WRAP. The IP4_RXDATA_WRAP->RxData is passed
1119 to the upper layer. Upper layer will signal the recycle event in
1120 it when it is done with the packet.
1121
1122 @param[in] IpInstance The IP4 child to receive the packet
1123 @param[in] Packet The packet to deliver up.
1124
1125 @retval Wrap if warp the packet succeed.
1126 @retval NULL failed to wrap the packet .
1127
1128 **/
1129 IP4_RXDATA_WRAP *
1130 Ip4WrapRxData (
1131 IN IP4_PROTOCOL *IpInstance,
1132 IN NET_BUF *Packet
1133 )
1134 {
1135 IP4_RXDATA_WRAP *Wrap;
1136 EFI_IP4_RECEIVE_DATA *RxData;
1137 EFI_STATUS Status;
1138
1139 Wrap = AllocatePool (IP4_RXDATA_WRAP_SIZE (Packet->BlockOpNum));
1140
1141 if (Wrap == NULL) {
1142 return NULL;
1143 }
1144
1145 InitializeListHead (&Wrap->Link);
1146
1147 Wrap->IpInstance = IpInstance;
1148 Wrap->Packet = Packet;
1149 RxData = &Wrap->RxData;
1150
1151 ZeroMem (&RxData->TimeStamp, sizeof (EFI_TIME));
1152
1153 Status = gBS->CreateEvent (
1154 EVT_NOTIFY_SIGNAL,
1155 TPL_NOTIFY,
1156 Ip4OnRecyclePacket,
1157 Wrap,
1158 &RxData->RecycleSignal
1159 );
1160
1161 if (EFI_ERROR (Status)) {
1162 FreePool (Wrap);
1163 return NULL;
1164 }
1165
1166 ASSERT (Packet->Ip.Ip4 != NULL);
1167
1168 //
1169 // The application expects a network byte order header.
1170 //
1171 RxData->HeaderLength = (Packet->Ip.Ip4->HeadLen << 2);
1172 RxData->Header = (EFI_IP4_HEADER *) Ip4NtohHead (Packet->Ip.Ip4);
1173
1174 RxData->OptionsLength = RxData->HeaderLength - IP4_MIN_HEADLEN;
1175 RxData->Options = NULL;
1176
1177 if (RxData->OptionsLength != 0) {
1178 RxData->Options = (VOID *) (RxData->Header + 1);
1179 }
1180
1181 RxData->DataLength = Packet->TotalSize;
1182
1183 //
1184 // Build the fragment table to be delivered up.
1185 //
1186 RxData->FragmentCount = Packet->BlockOpNum;
1187 NetbufBuildExt (Packet, (NET_FRAGMENT *) RxData->FragmentTable, &RxData->FragmentCount);
1188
1189 return Wrap;
1190 }
1191
1192
1193 /**
1194 Deliver the received packets to upper layer if there are both received
1195 requests and enqueued packets. If the enqueued packet is shared, it will
1196 duplicate it to a non-shared packet, release the shared packet, then
1197 deliver the non-shared packet up.
1198
1199 @param[in] IpInstance The IP child to deliver the packet up.
1200
1201 @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to deliver the
1202 packets.
1203 @retval EFI_SUCCESS All the enqueued packets that can be delivered
1204 are delivered up.
1205
1206 **/
1207 EFI_STATUS
1208 Ip4InstanceDeliverPacket (
1209 IN IP4_PROTOCOL *IpInstance
1210 )
1211 {
1212 EFI_IP4_COMPLETION_TOKEN *Token;
1213 IP4_RXDATA_WRAP *Wrap;
1214 NET_BUF *Packet;
1215 NET_BUF *Dup;
1216 UINT8 *Head;
1217
1218 //
1219 // Deliver a packet if there are both a packet and a receive token.
1220 //
1221 while (!IsListEmpty (&IpInstance->Received) &&
1222 !NetMapIsEmpty (&IpInstance->RxTokens)) {
1223
1224 Packet = NET_LIST_HEAD (&IpInstance->Received, NET_BUF, List);
1225
1226 if (!NET_BUF_SHARED (Packet)) {
1227 //
1228 // If this is the only instance that wants the packet, wrap it up.
1229 //
1230 Wrap = Ip4WrapRxData (IpInstance, Packet);
1231
1232 if (Wrap == NULL) {
1233 return EFI_OUT_OF_RESOURCES;
1234 }
1235
1236 RemoveEntryList (&Packet->List);
1237
1238 } else {
1239 //
1240 // Create a duplicated packet if this packet is shared
1241 //
1242 Dup = NetbufDuplicate (Packet, NULL, IP4_MAX_HEADLEN);
1243
1244 if (Dup == NULL) {
1245 return EFI_OUT_OF_RESOURCES;
1246 }
1247
1248 //
1249 // Copy the IP head over. The packet to deliver up is
1250 // headless. Trim the head off after copy. The IP head
1251 // may be not continuous before the data.
1252 //
1253 Head = NetbufAllocSpace (Dup, IP4_MAX_HEADLEN, NET_BUF_HEAD);
1254 Dup->Ip.Ip4 = (IP4_HEAD *) Head;
1255
1256 CopyMem (Head, Packet->Ip.Ip4, Packet->Ip.Ip4->HeadLen << 2);
1257 NetbufTrim (Dup, IP4_MAX_HEADLEN, TRUE);
1258
1259 Wrap = Ip4WrapRxData (IpInstance, Dup);
1260
1261 if (Wrap == NULL) {
1262 NetbufFree (Dup);
1263 return EFI_OUT_OF_RESOURCES;
1264 }
1265
1266 RemoveEntryList (&Packet->List);
1267 NetbufFree (Packet);
1268
1269 Packet = Dup;
1270 }
1271
1272 //
1273 // Insert it into the delivered packet, then get a user's
1274 // receive token, pass the wrapped packet up.
1275 //
1276 EfiAcquireLockOrFail (&IpInstance->RecycleLock);
1277 InsertHeadList (&IpInstance->Delivered, &Wrap->Link);
1278 EfiReleaseLock (&IpInstance->RecycleLock);
1279
1280 Token = NetMapRemoveHead (&IpInstance->RxTokens, NULL);
1281 Token->Status = IP4_GET_CLIP_INFO (Packet)->Status;
1282 Token->Packet.RxData = &Wrap->RxData;
1283
1284 gBS->SignalEvent (Token->Event);
1285 }
1286
1287 return EFI_SUCCESS;
1288 }
1289
1290
1291 /**
1292 Enqueue a received packet to all the IP children that share
1293 the same interface.
1294
1295 @param[in] IpSb The IP4 service instance that receive the packet
1296 @param[in] Head The header of the received packet
1297 @param[in] Packet The data of the received packet
1298 @param[in] IpIf The interface to enqueue the packet to
1299
1300 @return The number of the IP4 children that accepts the packet
1301
1302 **/
1303 INTN
1304 Ip4InterfaceEnquePacket (
1305 IN IP4_SERVICE *IpSb,
1306 IN IP4_HEAD *Head,
1307 IN NET_BUF *Packet,
1308 IN IP4_INTERFACE *IpIf
1309 )
1310 {
1311 IP4_PROTOCOL *IpInstance;
1312 IP4_CLIP_INFO *Info;
1313 LIST_ENTRY *Entry;
1314 INTN Enqueued;
1315 INTN LocalType;
1316 INTN SavedType;
1317
1318 //
1319 // First, check that the packet is acceptable to this interface
1320 // and find the local cast type for the interface. A packet sent
1321 // to say 192.168.1.1 should NOT be delliever to 10.0.0.1 unless
1322 // promiscuous receiving.
1323 //
1324 LocalType = 0;
1325 Info = IP4_GET_CLIP_INFO (Packet);
1326
1327 if ((Info->CastType == IP4_MULTICAST) || (Info->CastType == IP4_LOCAL_BROADCAST)) {
1328 //
1329 // If the CastType is multicast, don't need to filter against
1330 // the group address here, Ip4InstanceFrameAcceptable will do
1331 // that later.
1332 //
1333 LocalType = Info->CastType;
1334
1335 } else {
1336 //
1337 // Check the destination againist local IP. If the station
1338 // address is 0.0.0.0, it means receiving all the IP destined
1339 // to local non-zero IP. Otherwise, it is necessary to compare
1340 // the destination to the interface's IP address.
1341 //
1342 if (IpIf->Ip == IP4_ALLZERO_ADDRESS) {
1343 LocalType = IP4_LOCAL_HOST;
1344
1345 } else {
1346 LocalType = Ip4GetNetCast (Head->Dst, IpIf);
1347
1348 if ((LocalType == 0) && IpIf->PromiscRecv) {
1349 LocalType = IP4_PROMISCUOUS;
1350 }
1351 }
1352 }
1353
1354 if (LocalType == 0) {
1355 return 0;
1356 }
1357
1358 //
1359 // Iterate through the ip instances on the interface, enqueue
1360 // the packet if filter passed. Save the original cast type,
1361 // and pass the local cast type to the IP children on the
1362 // interface. The global cast type will be restored later.
1363 //
1364 SavedType = Info->CastType;
1365 Info->CastType = LocalType;
1366
1367 Enqueued = 0;
1368
1369 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
1370 IpInstance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);
1371 NET_CHECK_SIGNATURE (IpInstance, IP4_PROTOCOL_SIGNATURE);
1372
1373 if (Ip4InstanceEnquePacket (IpInstance, Head, Packet) == EFI_SUCCESS) {
1374 Enqueued++;
1375 }
1376 }
1377
1378 Info->CastType = SavedType;
1379 return Enqueued;
1380 }
1381
1382
1383 /**
1384 Deliver the packet for each IP4 child on the interface.
1385
1386 @param[in] IpSb The IP4 service instance that received the packet
1387 @param[in] IpIf The IP4 interface to deliver the packet.
1388
1389 @retval EFI_SUCCESS It always returns EFI_SUCCESS now
1390
1391 **/
1392 EFI_STATUS
1393 Ip4InterfaceDeliverPacket (
1394 IN IP4_SERVICE *IpSb,
1395 IN IP4_INTERFACE *IpIf
1396 )
1397 {
1398 IP4_PROTOCOL *Ip4Instance;
1399 LIST_ENTRY *Entry;
1400
1401 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
1402 Ip4Instance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);
1403 Ip4InstanceDeliverPacket (Ip4Instance);
1404 }
1405
1406 return EFI_SUCCESS;
1407 }
1408
1409
1410 /**
1411 Demultiple the packet. the packet delivery is processed in two
1412 passes. The first pass will enque a shared copy of the packet
1413 to each IP4 child that accepts the packet. The second pass will
1414 deliver a non-shared copy of the packet to each IP4 child that
1415 has pending receive requests. Data is copied if more than one
1416 child wants to consume the packet because each IP child needs
1417 its own copy of the packet to make changes.
1418
1419 @param[in] IpSb The IP4 service instance that received the packet
1420 @param[in] Head The header of the received packet
1421 @param[in] Packet The data of the received packet
1422
1423 @retval EFI_NOT_FOUND No IP child accepts the packet
1424 @retval EFI_SUCCESS The packet is enqueued or delivered to some IP
1425 children.
1426
1427 **/
1428 EFI_STATUS
1429 Ip4Demultiplex (
1430 IN IP4_SERVICE *IpSb,
1431 IN IP4_HEAD *Head,
1432 IN NET_BUF *Packet
1433 )
1434 {
1435 LIST_ENTRY *Entry;
1436 IP4_INTERFACE *IpIf;
1437 INTN Enqueued;
1438
1439 //
1440 // Two pass delivery: first, enque a shared copy of the packet
1441 // to each instance that accept the packet.
1442 //
1443 Enqueued = 0;
1444
1445 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
1446 IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);
1447
1448 if (IpIf->Configured) {
1449 Enqueued += Ip4InterfaceEnquePacket (IpSb, Head, Packet, IpIf);
1450 }
1451 }
1452
1453 //
1454 // Second: deliver a duplicate of the packet to each instance.
1455 // Release the local reference first, so that the last instance
1456 // getting the packet will not copy the data.
1457 //
1458 NetbufFree (Packet);
1459
1460 if (Enqueued == 0) {
1461 return EFI_NOT_FOUND;
1462 }
1463
1464 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
1465 IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);
1466
1467 if (IpIf->Configured) {
1468 Ip4InterfaceDeliverPacket (IpSb, IpIf);
1469 }
1470 }
1471
1472 return EFI_SUCCESS;
1473 }
1474
1475
1476 /**
1477 Timeout the fragment and enqueued packets.
1478
1479 @param[in] IpSb The IP4 service instance to timeout
1480
1481 **/
1482 VOID
1483 Ip4PacketTimerTicking (
1484 IN IP4_SERVICE *IpSb
1485 )
1486 {
1487 LIST_ENTRY *InstanceEntry;
1488 LIST_ENTRY *Entry;
1489 LIST_ENTRY *Next;
1490 IP4_PROTOCOL *IpInstance;
1491 IP4_ASSEMBLE_ENTRY *Assemble;
1492 NET_BUF *Packet;
1493 IP4_CLIP_INFO *Info;
1494 UINT32 Index;
1495
1496 //
1497 // First, time out the fragments. The packet's life is counting down
1498 // once the first-arrived fragment was received.
1499 //
1500 for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
1501 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpSb->Assemble.Bucket[Index]) {
1502 Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);
1503
1504 if ((Assemble->Life > 0) && (--Assemble->Life == 0)) {
1505 RemoveEntryList (Entry);
1506 Ip4FreeAssembleEntry (Assemble);
1507 }
1508 }
1509 }
1510
1511 NET_LIST_FOR_EACH (InstanceEntry, &IpSb->Children) {
1512 IpInstance = NET_LIST_USER_STRUCT (InstanceEntry, IP4_PROTOCOL, Link);
1513
1514 //
1515 // Second, time out the assembled packets enqueued on each IP child.
1516 //
1517 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpInstance->Received) {
1518 Packet = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
1519 Info = IP4_GET_CLIP_INFO (Packet);
1520
1521 if ((Info->Life > 0) && (--Info->Life == 0)) {
1522 RemoveEntryList (Entry);
1523 NetbufFree (Packet);
1524 }
1525 }
1526
1527 //
1528 // Third: time out the transmitted packets.
1529 //
1530 NetMapIterate (&IpInstance->TxTokens, Ip4SentPacketTicking, NULL);
1531 }
1532 }