]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c
1) Add type cast for better coding style.
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2
3 The common variable operation routines shared by DXE_RUNTIME variable
4 module and DXE_SMM variable module.
5
6 Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "Variable.h"
18
19 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
20
21 ///
22 /// Define a memory cache that improves the search performance for a variable.
23 ///
24 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
25
26 ///
27 /// The memory entry used for variable statistics data.
28 ///
29 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
30
31 ///
32 /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID
33 /// or EVT_GROUP_READY_TO_BOOT event.
34 ///
35 LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList);
36
37 ///
38 /// The flag to indicate whether the platform has left the DXE phase of execution.
39 ///
40 BOOLEAN mEndOfDxe = FALSE;
41
42 ///
43 /// The flag to indicate whether the variable storage locking is enabled.
44 ///
45 BOOLEAN mEnableLocking = TRUE;
46
47 //
48 // To prevent name collisions with possible future globally defined variables,
49 // other internal firmware data variables that are not defined here must be
50 // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or
51 // any other GUID defined by the UEFI Specification. Implementations must
52 // only permit the creation of variables with a UEFI Specification-defined
53 // VendorGuid when these variables are documented in the UEFI Specification.
54 //
55 GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = {
56 {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
57 {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
58 {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
59 {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
60 {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
61 {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
62 {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
63 {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
64 {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
65 {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
66 {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
67 {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
68 {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
69 {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
70 {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
71 {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
72 {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
73 {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
74 {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
75 {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
76 {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT},
77 {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
78 {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
79 {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
80 {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
81 {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
82 {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
83 {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
84 {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
85 {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
86 };
87 GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = {
88 {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT},
89 {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT},
90 {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT},
91 };
92
93 /**
94 Routine used to track statistical information about variable usage.
95 The data is stored in the EFI system table so it can be accessed later.
96 VariableInfo.efi can dump out the table. Only Boot Services variable
97 accesses are tracked by this code. The PcdVariableCollectStatistics
98 build flag controls if this feature is enabled.
99
100 A read that hits in the cache will have Read and Cache true for
101 the transaction. Data is allocated by this routine, but never
102 freed.
103
104 @param[in] VariableName Name of the Variable to track.
105 @param[in] VendorGuid Guid of the Variable to track.
106 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
107 @param[in] Read TRUE if GetVariable() was called.
108 @param[in] Write TRUE if SetVariable() was called.
109 @param[in] Delete TRUE if deleted via SetVariable().
110 @param[in] Cache TRUE for a cache hit.
111
112 **/
113 VOID
114 UpdateVariableInfo (
115 IN CHAR16 *VariableName,
116 IN EFI_GUID *VendorGuid,
117 IN BOOLEAN Volatile,
118 IN BOOLEAN Read,
119 IN BOOLEAN Write,
120 IN BOOLEAN Delete,
121 IN BOOLEAN Cache
122 )
123 {
124 VARIABLE_INFO_ENTRY *Entry;
125
126 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
127
128 if (AtRuntime ()) {
129 // Don't collect statistics at runtime.
130 return;
131 }
132
133 if (gVariableInfo == NULL) {
134 //
135 // On the first call allocate a entry and place a pointer to it in
136 // the EFI System Table.
137 //
138 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
139 ASSERT (gVariableInfo != NULL);
140
141 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
142 gVariableInfo->Name = AllocateZeroPool (StrSize (VariableName));
143 ASSERT (gVariableInfo->Name != NULL);
144 StrnCpy (gVariableInfo->Name, VariableName, StrLen (VariableName));
145 gVariableInfo->Volatile = Volatile;
146 }
147
148
149 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
150 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
151 if (StrCmp (VariableName, Entry->Name) == 0) {
152 if (Read) {
153 Entry->ReadCount++;
154 }
155 if (Write) {
156 Entry->WriteCount++;
157 }
158 if (Delete) {
159 Entry->DeleteCount++;
160 }
161 if (Cache) {
162 Entry->CacheCount++;
163 }
164
165 return;
166 }
167 }
168
169 if (Entry->Next == NULL) {
170 //
171 // If the entry is not in the table add it.
172 // Next iteration of the loop will fill in the data.
173 //
174 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
175 ASSERT (Entry->Next != NULL);
176
177 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
178 Entry->Next->Name = AllocateZeroPool (StrSize (VariableName));
179 ASSERT (Entry->Next->Name != NULL);
180 StrnCpy (Entry->Next->Name, VariableName, StrLen (VariableName));
181 Entry->Next->Volatile = Volatile;
182 }
183
184 }
185 }
186 }
187
188
189 /**
190
191 This code checks if variable header is valid or not.
192
193 @param Variable Pointer to the Variable Header.
194
195 @retval TRUE Variable header is valid.
196 @retval FALSE Variable header is not valid.
197
198 **/
199 BOOLEAN
200 IsValidVariableHeader (
201 IN VARIABLE_HEADER *Variable
202 )
203 {
204 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
205 return FALSE;
206 }
207
208 return TRUE;
209 }
210
211
212 /**
213
214 This function writes data to the FWH at the correct LBA even if the LBAs
215 are fragmented.
216
217 @param Global Pointer to VARAIBLE_GLOBAL structure.
218 @param Volatile Point out the Variable is Volatile or Non-Volatile.
219 @param SetByIndex TRUE if target pointer is given as index.
220 FALSE if target pointer is absolute.
221 @param Fvb Pointer to the writable FVB protocol.
222 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
223 structure.
224 @param DataSize Size of data to be written.
225 @param Buffer Pointer to the buffer from which data is written.
226
227 @retval EFI_INVALID_PARAMETER Parameters not valid.
228 @retval EFI_SUCCESS Variable store successfully updated.
229
230 **/
231 EFI_STATUS
232 UpdateVariableStore (
233 IN VARIABLE_GLOBAL *Global,
234 IN BOOLEAN Volatile,
235 IN BOOLEAN SetByIndex,
236 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
237 IN UINTN DataPtrIndex,
238 IN UINT32 DataSize,
239 IN UINT8 *Buffer
240 )
241 {
242 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
243 UINTN BlockIndex2;
244 UINTN LinearOffset;
245 UINTN CurrWriteSize;
246 UINTN CurrWritePtr;
247 UINT8 *CurrBuffer;
248 EFI_LBA LbaNumber;
249 UINTN Size;
250 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
251 VARIABLE_STORE_HEADER *VolatileBase;
252 EFI_PHYSICAL_ADDRESS FvVolHdr;
253 EFI_PHYSICAL_ADDRESS DataPtr;
254 EFI_STATUS Status;
255
256 FwVolHeader = NULL;
257 DataPtr = DataPtrIndex;
258
259 //
260 // Check if the Data is Volatile.
261 //
262 if (!Volatile) {
263 ASSERT (Fvb != NULL);
264 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
265 ASSERT_EFI_ERROR (Status);
266
267 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
268 //
269 // Data Pointer should point to the actual Address where data is to be
270 // written.
271 //
272 if (SetByIndex) {
273 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
274 }
275
276 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
277 return EFI_INVALID_PARAMETER;
278 }
279 } else {
280 //
281 // Data Pointer should point to the actual Address where data is to be
282 // written.
283 //
284 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
285 if (SetByIndex) {
286 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
287 }
288
289 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
290 return EFI_INVALID_PARAMETER;
291 }
292
293 //
294 // If Volatile Variable just do a simple mem copy.
295 //
296 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
297 return EFI_SUCCESS;
298 }
299
300 //
301 // If we are here we are dealing with Non-Volatile Variables.
302 //
303 LinearOffset = (UINTN) FwVolHeader;
304 CurrWritePtr = (UINTN) DataPtr;
305 CurrWriteSize = DataSize;
306 CurrBuffer = Buffer;
307 LbaNumber = 0;
308
309 if (CurrWritePtr < LinearOffset) {
310 return EFI_INVALID_PARAMETER;
311 }
312
313 for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
314 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
315 //
316 // Check to see if the Variable Writes are spanning through multiple
317 // blocks.
318 //
319 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
320 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
321 Status = Fvb->Write (
322 Fvb,
323 LbaNumber,
324 (UINTN) (CurrWritePtr - LinearOffset),
325 &CurrWriteSize,
326 CurrBuffer
327 );
328 return Status;
329 } else {
330 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
331 Status = Fvb->Write (
332 Fvb,
333 LbaNumber,
334 (UINTN) (CurrWritePtr - LinearOffset),
335 &Size,
336 CurrBuffer
337 );
338 if (EFI_ERROR (Status)) {
339 return Status;
340 }
341
342 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
343 CurrBuffer = CurrBuffer + Size;
344 CurrWriteSize = CurrWriteSize - Size;
345 }
346 }
347
348 LinearOffset += PtrBlockMapEntry->Length;
349 LbaNumber++;
350 }
351 }
352
353 return EFI_SUCCESS;
354 }
355
356
357 /**
358
359 This code gets the current status of Variable Store.
360
361 @param VarStoreHeader Pointer to the Variable Store Header.
362
363 @retval EfiRaw Variable store status is raw.
364 @retval EfiValid Variable store status is valid.
365 @retval EfiInvalid Variable store status is invalid.
366
367 **/
368 VARIABLE_STORE_STATUS
369 GetVariableStoreStatus (
370 IN VARIABLE_STORE_HEADER *VarStoreHeader
371 )
372 {
373 if (CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid) &&
374 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
375 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
376 ) {
377
378 return EfiValid;
379 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
380 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
381 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
382 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
383 VarStoreHeader->Size == 0xffffffff &&
384 VarStoreHeader->Format == 0xff &&
385 VarStoreHeader->State == 0xff
386 ) {
387
388 return EfiRaw;
389 } else {
390 return EfiInvalid;
391 }
392 }
393
394
395 /**
396
397 This code gets the size of name of variable.
398
399 @param Variable Pointer to the Variable Header.
400
401 @return UINTN Size of variable in bytes.
402
403 **/
404 UINTN
405 NameSizeOfVariable (
406 IN VARIABLE_HEADER *Variable
407 )
408 {
409 if (Variable->State == (UINT8) (-1) ||
410 Variable->DataSize == (UINT32) (-1) ||
411 Variable->NameSize == (UINT32) (-1) ||
412 Variable->Attributes == (UINT32) (-1)) {
413 return 0;
414 }
415 return (UINTN) Variable->NameSize;
416 }
417
418 /**
419
420 This code gets the size of variable data.
421
422 @param Variable Pointer to the Variable Header.
423
424 @return Size of variable in bytes.
425
426 **/
427 UINTN
428 DataSizeOfVariable (
429 IN VARIABLE_HEADER *Variable
430 )
431 {
432 if (Variable->State == (UINT8) (-1) ||
433 Variable->DataSize == (UINT32) (-1) ||
434 Variable->NameSize == (UINT32) (-1) ||
435 Variable->Attributes == (UINT32) (-1)) {
436 return 0;
437 }
438 return (UINTN) Variable->DataSize;
439 }
440
441 /**
442
443 This code gets the pointer to the variable name.
444
445 @param Variable Pointer to the Variable Header.
446
447 @return Pointer to Variable Name which is Unicode encoding.
448
449 **/
450 CHAR16 *
451 GetVariableNamePtr (
452 IN VARIABLE_HEADER *Variable
453 )
454 {
455
456 return (CHAR16 *) (Variable + 1);
457 }
458
459 /**
460
461 This code gets the pointer to the variable data.
462
463 @param Variable Pointer to the Variable Header.
464
465 @return Pointer to Variable Data.
466
467 **/
468 UINT8 *
469 GetVariableDataPtr (
470 IN VARIABLE_HEADER *Variable
471 )
472 {
473 UINTN Value;
474
475 //
476 // Be careful about pad size for alignment.
477 //
478 Value = (UINTN) GetVariableNamePtr (Variable);
479 Value += NameSizeOfVariable (Variable);
480 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
481
482 return (UINT8 *) Value;
483 }
484
485
486 /**
487
488 This code gets the pointer to the next variable header.
489
490 @param Variable Pointer to the Variable Header.
491
492 @return Pointer to next variable header.
493
494 **/
495 VARIABLE_HEADER *
496 GetNextVariablePtr (
497 IN VARIABLE_HEADER *Variable
498 )
499 {
500 UINTN Value;
501
502 if (!IsValidVariableHeader (Variable)) {
503 return NULL;
504 }
505
506 Value = (UINTN) GetVariableDataPtr (Variable);
507 Value += DataSizeOfVariable (Variable);
508 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
509
510 //
511 // Be careful about pad size for alignment.
512 //
513 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
514 }
515
516 /**
517
518 Gets the pointer to the first variable header in given variable store area.
519
520 @param VarStoreHeader Pointer to the Variable Store Header.
521
522 @return Pointer to the first variable header.
523
524 **/
525 VARIABLE_HEADER *
526 GetStartPointer (
527 IN VARIABLE_STORE_HEADER *VarStoreHeader
528 )
529 {
530 //
531 // The end of variable store.
532 //
533 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
534 }
535
536 /**
537
538 Gets the pointer to the end of the variable storage area.
539
540 This function gets pointer to the end of the variable storage
541 area, according to the input variable store header.
542
543 @param VarStoreHeader Pointer to the Variable Store Header.
544
545 @return Pointer to the end of the variable storage area.
546
547 **/
548 VARIABLE_HEADER *
549 GetEndPointer (
550 IN VARIABLE_STORE_HEADER *VarStoreHeader
551 )
552 {
553 //
554 // The end of variable store
555 //
556 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
557 }
558
559
560 /**
561
562 Variable store garbage collection and reclaim operation.
563
564 @param VariableBase Base address of variable store.
565 @param LastVariableOffset Offset of last variable.
566 @param IsVolatile The variable store is volatile or not;
567 if it is non-volatile, need FTW.
568 @param UpdatingPtrTrack Pointer to updating variable pointer track structure.
569 @param NewVariable Pointer to new variable.
570 @param NewVariableSize New variable size.
571
572 @return EFI_OUT_OF_RESOURCES
573 @return EFI_SUCCESS
574 @return Others
575
576 **/
577 EFI_STATUS
578 Reclaim (
579 IN EFI_PHYSICAL_ADDRESS VariableBase,
580 OUT UINTN *LastVariableOffset,
581 IN BOOLEAN IsVolatile,
582 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
583 IN VARIABLE_HEADER *NewVariable,
584 IN UINTN NewVariableSize
585 )
586 {
587 VARIABLE_HEADER *Variable;
588 VARIABLE_HEADER *AddedVariable;
589 VARIABLE_HEADER *NextVariable;
590 VARIABLE_HEADER *NextAddedVariable;
591 VARIABLE_STORE_HEADER *VariableStoreHeader;
592 UINT8 *ValidBuffer;
593 UINTN MaximumBufferSize;
594 UINTN VariableSize;
595 UINTN NameSize;
596 UINT8 *CurrPtr;
597 VOID *Point0;
598 VOID *Point1;
599 BOOLEAN FoundAdded;
600 EFI_STATUS Status;
601 UINTN CommonVariableTotalSize;
602 UINTN HwErrVariableTotalSize;
603 VARIABLE_HEADER *UpdatingVariable;
604 VARIABLE_HEADER *UpdatingInDeletedTransition;
605
606 UpdatingVariable = NULL;
607 UpdatingInDeletedTransition = NULL;
608 if (UpdatingPtrTrack != NULL) {
609 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
610 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
611 }
612
613 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
614
615 CommonVariableTotalSize = 0;
616 HwErrVariableTotalSize = 0;
617
618 if (IsVolatile) {
619 //
620 // Start Pointers for the variable.
621 //
622 Variable = GetStartPointer (VariableStoreHeader);
623 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
624
625 while (IsValidVariableHeader (Variable)) {
626 NextVariable = GetNextVariablePtr (Variable);
627 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
628 Variable != UpdatingVariable &&
629 Variable != UpdatingInDeletedTransition
630 ) {
631 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
632 MaximumBufferSize += VariableSize;
633 }
634
635 Variable = NextVariable;
636 }
637
638 if (NewVariable != NULL) {
639 //
640 // Add the new variable size.
641 //
642 MaximumBufferSize += NewVariableSize;
643 }
644
645 //
646 // Reserve the 1 Bytes with Oxff to identify the
647 // end of the variable buffer.
648 //
649 MaximumBufferSize += 1;
650 ValidBuffer = AllocatePool (MaximumBufferSize);
651 if (ValidBuffer == NULL) {
652 return EFI_OUT_OF_RESOURCES;
653 }
654 } else {
655 //
656 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
657 // as the buffer to reduce SMRAM consumption for SMM variable driver.
658 //
659 MaximumBufferSize = mNvVariableCache->Size;
660 ValidBuffer = (UINT8 *) mNvVariableCache;
661 }
662
663 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
664
665 //
666 // Copy variable store header.
667 //
668 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
669 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
670
671 //
672 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
673 //
674 Variable = GetStartPointer (VariableStoreHeader);
675 while (IsValidVariableHeader (Variable)) {
676 NextVariable = GetNextVariablePtr (Variable);
677 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
678 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
679 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
680 CurrPtr += VariableSize;
681 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
682 HwErrVariableTotalSize += VariableSize;
683 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
684 CommonVariableTotalSize += VariableSize;
685 }
686 }
687 Variable = NextVariable;
688 }
689
690 //
691 // Reinstall all in delete transition variables.
692 //
693 Variable = GetStartPointer (VariableStoreHeader);
694 while (IsValidVariableHeader (Variable)) {
695 NextVariable = GetNextVariablePtr (Variable);
696 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
697
698 //
699 // Buffer has cached all ADDED variable.
700 // Per IN_DELETED variable, we have to guarantee that
701 // no ADDED one in previous buffer.
702 //
703
704 FoundAdded = FALSE;
705 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
706 while (IsValidVariableHeader (AddedVariable)) {
707 NextAddedVariable = GetNextVariablePtr (AddedVariable);
708 NameSize = NameSizeOfVariable (AddedVariable);
709 if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
710 NameSize == NameSizeOfVariable (Variable)
711 ) {
712 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
713 Point1 = (VOID *) GetVariableNamePtr (Variable);
714 if (CompareMem (Point0, Point1, NameSize) == 0) {
715 FoundAdded = TRUE;
716 break;
717 }
718 }
719 AddedVariable = NextAddedVariable;
720 }
721 if (!FoundAdded) {
722 //
723 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
724 //
725 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
726 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
727 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
728 CurrPtr += VariableSize;
729 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
730 HwErrVariableTotalSize += VariableSize;
731 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
732 CommonVariableTotalSize += VariableSize;
733 }
734 }
735 }
736
737 Variable = NextVariable;
738 }
739
740 //
741 // Install the new variable if it is not NULL.
742 //
743 if (NewVariable != NULL) {
744 if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
745 //
746 // No enough space to store the new variable.
747 //
748 Status = EFI_OUT_OF_RESOURCES;
749 goto Done;
750 }
751 if (!IsVolatile) {
752 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
753 HwErrVariableTotalSize += NewVariableSize;
754 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
755 CommonVariableTotalSize += NewVariableSize;
756 }
757 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
758 (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) {
759 //
760 // No enough space to store the new variable by NV or NV+HR attribute.
761 //
762 Status = EFI_OUT_OF_RESOURCES;
763 goto Done;
764 }
765 }
766
767 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
768 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
769 if (UpdatingVariable != NULL) {
770 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
771 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
772 }
773 CurrPtr += NewVariableSize;
774 }
775
776 if (IsVolatile) {
777 //
778 // If volatile variable store, just copy valid buffer.
779 //
780 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
781 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer));
782 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
783 Status = EFI_SUCCESS;
784 } else {
785 //
786 // If non-volatile variable store, perform FTW here.
787 //
788 Status = FtwVariableSpace (
789 VariableBase,
790 (VARIABLE_STORE_HEADER *) ValidBuffer
791 );
792 if (!EFI_ERROR (Status)) {
793 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
794 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
795 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
796 } else {
797 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
798 while (IsValidVariableHeader (NextVariable)) {
799 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
800 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
801 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
802 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
803 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
804 }
805
806 NextVariable = GetNextVariablePtr (NextVariable);
807 }
808 *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
809 }
810 }
811
812 Done:
813 if (IsVolatile) {
814 FreePool (ValidBuffer);
815 } else {
816 //
817 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
818 //
819 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
820 }
821
822 return Status;
823 }
824
825 /**
826 Find the variable in the specified variable store.
827
828 @param VariableName Name of the variable to be found
829 @param VendorGuid Vendor GUID to be found.
830 @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
831 check at runtime when searching variable.
832 @param PtrTrack Variable Track Pointer structure that contains Variable Information.
833
834 @retval EFI_SUCCESS Variable found successfully
835 @retval EFI_NOT_FOUND Variable not found
836 **/
837 EFI_STATUS
838 FindVariableEx (
839 IN CHAR16 *VariableName,
840 IN EFI_GUID *VendorGuid,
841 IN BOOLEAN IgnoreRtCheck,
842 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
843 )
844 {
845 VARIABLE_HEADER *InDeletedVariable;
846 VOID *Point;
847
848 PtrTrack->InDeletedTransitionPtr = NULL;
849
850 //
851 // Find the variable by walk through HOB, volatile and non-volatile variable store.
852 //
853 InDeletedVariable = NULL;
854
855 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
856 ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
857 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
858 ) {
859 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
860 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
861 ) {
862 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
863 if (VariableName[0] == 0) {
864 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
865 InDeletedVariable = PtrTrack->CurrPtr;
866 } else {
867 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
868 return EFI_SUCCESS;
869 }
870 } else {
871 if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
872 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
873
874 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
875 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
876 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
877 InDeletedVariable = PtrTrack->CurrPtr;
878 } else {
879 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
880 return EFI_SUCCESS;
881 }
882 }
883 }
884 }
885 }
886 }
887 }
888
889 PtrTrack->CurrPtr = InDeletedVariable;
890 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
891 }
892
893
894 /**
895 Finds variable in storage blocks of volatile and non-volatile storage areas.
896
897 This code finds variable in storage blocks of volatile and non-volatile storage areas.
898 If VariableName is an empty string, then we just return the first
899 qualified variable without comparing VariableName and VendorGuid.
900 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
901 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
902 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
903
904 @param VariableName Name of the variable to be found.
905 @param VendorGuid Vendor GUID to be found.
906 @param PtrTrack VARIABLE_POINTER_TRACK structure for output,
907 including the range searched and the target position.
908 @param Global Pointer to VARIABLE_GLOBAL structure, including
909 base of volatile variable storage area, base of
910 NV variable storage area, and a lock.
911 @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
912 check at runtime when searching variable.
913
914 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
915 VendorGuid is NULL.
916 @retval EFI_SUCCESS Variable successfully found.
917 @retval EFI_NOT_FOUND Variable not found
918
919 **/
920 EFI_STATUS
921 FindVariable (
922 IN CHAR16 *VariableName,
923 IN EFI_GUID *VendorGuid,
924 OUT VARIABLE_POINTER_TRACK *PtrTrack,
925 IN VARIABLE_GLOBAL *Global,
926 IN BOOLEAN IgnoreRtCheck
927 )
928 {
929 EFI_STATUS Status;
930 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
931 VARIABLE_STORE_TYPE Type;
932
933 if (VariableName[0] != 0 && VendorGuid == NULL) {
934 return EFI_INVALID_PARAMETER;
935 }
936
937 //
938 // 0: Volatile, 1: HOB, 2: Non-Volatile.
939 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
940 // make use of this mapping to implement search algorithm.
941 //
942 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
943 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
944 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
945
946 //
947 // Find the variable by walk through HOB, volatile and non-volatile variable store.
948 //
949 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
950 if (VariableStoreHeader[Type] == NULL) {
951 continue;
952 }
953
954 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
955 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
956 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
957
958 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
959 if (!EFI_ERROR (Status)) {
960 return Status;
961 }
962 }
963 return EFI_NOT_FOUND;
964 }
965
966 /**
967 Get index from supported language codes according to language string.
968
969 This code is used to get corresponding index in supported language codes. It can handle
970 RFC4646 and ISO639 language tags.
971 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
972 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
973
974 For example:
975 SupportedLang = "engfraengfra"
976 Lang = "eng"
977 Iso639Language = TRUE
978 The return value is "0".
979 Another example:
980 SupportedLang = "en;fr;en-US;fr-FR"
981 Lang = "fr-FR"
982 Iso639Language = FALSE
983 The return value is "3".
984
985 @param SupportedLang Platform supported language codes.
986 @param Lang Configured language.
987 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
988
989 @retval The index of language in the language codes.
990
991 **/
992 UINTN
993 GetIndexFromSupportedLangCodes(
994 IN CHAR8 *SupportedLang,
995 IN CHAR8 *Lang,
996 IN BOOLEAN Iso639Language
997 )
998 {
999 UINTN Index;
1000 UINTN CompareLength;
1001 UINTN LanguageLength;
1002
1003 if (Iso639Language) {
1004 CompareLength = ISO_639_2_ENTRY_SIZE;
1005 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1006 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1007 //
1008 // Successfully find the index of Lang string in SupportedLang string.
1009 //
1010 Index = Index / CompareLength;
1011 return Index;
1012 }
1013 }
1014 ASSERT (FALSE);
1015 return 0;
1016 } else {
1017 //
1018 // Compare RFC4646 language code
1019 //
1020 Index = 0;
1021 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1022
1023 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1024 //
1025 // Skip ';' characters in SupportedLang
1026 //
1027 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1028 //
1029 // Determine the length of the next language code in SupportedLang
1030 //
1031 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1032
1033 if ((CompareLength == LanguageLength) &&
1034 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1035 //
1036 // Successfully find the index of Lang string in SupportedLang string.
1037 //
1038 return Index;
1039 }
1040 }
1041 ASSERT (FALSE);
1042 return 0;
1043 }
1044 }
1045
1046 /**
1047 Get language string from supported language codes according to index.
1048
1049 This code is used to get corresponding language strings in supported language codes. It can handle
1050 RFC4646 and ISO639 language tags.
1051 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1052 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1053
1054 For example:
1055 SupportedLang = "engfraengfra"
1056 Index = "1"
1057 Iso639Language = TRUE
1058 The return value is "fra".
1059 Another example:
1060 SupportedLang = "en;fr;en-US;fr-FR"
1061 Index = "1"
1062 Iso639Language = FALSE
1063 The return value is "fr".
1064
1065 @param SupportedLang Platform supported language codes.
1066 @param Index The index in supported language codes.
1067 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1068
1069 @retval The language string in the language codes.
1070
1071 **/
1072 CHAR8 *
1073 GetLangFromSupportedLangCodes (
1074 IN CHAR8 *SupportedLang,
1075 IN UINTN Index,
1076 IN BOOLEAN Iso639Language
1077 )
1078 {
1079 UINTN SubIndex;
1080 UINTN CompareLength;
1081 CHAR8 *Supported;
1082
1083 SubIndex = 0;
1084 Supported = SupportedLang;
1085 if (Iso639Language) {
1086 //
1087 // According to the index of Lang string in SupportedLang string to get the language.
1088 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1089 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1090 //
1091 CompareLength = ISO_639_2_ENTRY_SIZE;
1092 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1093 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1094
1095 } else {
1096 while (TRUE) {
1097 //
1098 // Take semicolon as delimitation, sequentially traverse supported language codes.
1099 //
1100 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1101 Supported++;
1102 }
1103 if ((*Supported == '\0') && (SubIndex != Index)) {
1104 //
1105 // Have completed the traverse, but not find corrsponding string.
1106 // This case is not allowed to happen.
1107 //
1108 ASSERT(FALSE);
1109 return NULL;
1110 }
1111 if (SubIndex == Index) {
1112 //
1113 // According to the index of Lang string in SupportedLang string to get the language.
1114 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1115 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1116 //
1117 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1118 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1119 }
1120 SubIndex++;
1121
1122 //
1123 // Skip ';' characters in Supported
1124 //
1125 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1126 }
1127 }
1128 }
1129
1130 /**
1131 Returns a pointer to an allocated buffer that contains the best matching language
1132 from a set of supported languages.
1133
1134 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1135 code types may not be mixed in a single call to this function. This function
1136 supports a variable argument list that allows the caller to pass in a prioritized
1137 list of language codes to test against all the language codes in SupportedLanguages.
1138
1139 If SupportedLanguages is NULL, then ASSERT().
1140
1141 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1142 contains a set of language codes in the format
1143 specified by Iso639Language.
1144 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1145 in ISO 639-2 format. If FALSE, then all language
1146 codes are assumed to be in RFC 4646 language format
1147 @param[in] ... A variable argument list that contains pointers to
1148 Null-terminated ASCII strings that contain one or more
1149 language codes in the format specified by Iso639Language.
1150 The first language code from each of these language
1151 code lists is used to determine if it is an exact or
1152 close match to any of the language codes in
1153 SupportedLanguages. Close matches only apply to RFC 4646
1154 language codes, and the matching algorithm from RFC 4647
1155 is used to determine if a close match is present. If
1156 an exact or close match is found, then the matching
1157 language code from SupportedLanguages is returned. If
1158 no matches are found, then the next variable argument
1159 parameter is evaluated. The variable argument list
1160 is terminated by a NULL.
1161
1162 @retval NULL The best matching language could not be found in SupportedLanguages.
1163 @retval NULL There are not enough resources available to return the best matching
1164 language.
1165 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1166 language in SupportedLanguages.
1167
1168 **/
1169 CHAR8 *
1170 EFIAPI
1171 VariableGetBestLanguage (
1172 IN CONST CHAR8 *SupportedLanguages,
1173 IN BOOLEAN Iso639Language,
1174 ...
1175 )
1176 {
1177 VA_LIST Args;
1178 CHAR8 *Language;
1179 UINTN CompareLength;
1180 UINTN LanguageLength;
1181 CONST CHAR8 *Supported;
1182 CHAR8 *Buffer;
1183
1184 ASSERT (SupportedLanguages != NULL);
1185
1186 VA_START (Args, Iso639Language);
1187 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1188 //
1189 // Default to ISO 639-2 mode
1190 //
1191 CompareLength = 3;
1192 LanguageLength = MIN (3, AsciiStrLen (Language));
1193
1194 //
1195 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1196 //
1197 if (!Iso639Language) {
1198 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1199 }
1200
1201 //
1202 // Trim back the length of Language used until it is empty
1203 //
1204 while (LanguageLength > 0) {
1205 //
1206 // Loop through all language codes in SupportedLanguages
1207 //
1208 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1209 //
1210 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1211 //
1212 if (!Iso639Language) {
1213 //
1214 // Skip ';' characters in Supported
1215 //
1216 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1217 //
1218 // Determine the length of the next language code in Supported
1219 //
1220 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1221 //
1222 // If Language is longer than the Supported, then skip to the next language
1223 //
1224 if (LanguageLength > CompareLength) {
1225 continue;
1226 }
1227 }
1228 //
1229 // See if the first LanguageLength characters in Supported match Language
1230 //
1231 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1232 VA_END (Args);
1233
1234 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1235 Buffer[CompareLength] = '\0';
1236 return CopyMem (Buffer, Supported, CompareLength);
1237 }
1238 }
1239
1240 if (Iso639Language) {
1241 //
1242 // If ISO 639 mode, then each language can only be tested once
1243 //
1244 LanguageLength = 0;
1245 } else {
1246 //
1247 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1248 //
1249 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1250 }
1251 }
1252 }
1253 VA_END (Args);
1254
1255 //
1256 // No matches were found
1257 //
1258 return NULL;
1259 }
1260
1261 /**
1262 This function is to check if the remaining variable space is enough to set
1263 all Variables from argument list successfully. The purpose of the check
1264 is to keep the consistency of the Variables to be in variable storage.
1265
1266 Note: Variables are assumed to be in same storage.
1267 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1268 so follow the argument sequence to check the Variables.
1269
1270 @param[in] Attributes Variable attributes for Variable entries.
1271 @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1272 A NULL terminates the list. The VariableSize of
1273 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1274 It will be changed to variable total size as output.
1275
1276 @retval TRUE Have enough variable space to set the Variables successfully.
1277 @retval FALSE No enough variable space to set the Variables successfully.
1278
1279 **/
1280 BOOLEAN
1281 EFIAPI
1282 CheckRemainingSpaceForConsistency (
1283 IN UINT32 Attributes,
1284 ...
1285 )
1286 {
1287 EFI_STATUS Status;
1288 VA_LIST Args;
1289 VARIABLE_ENTRY_CONSISTENCY *VariableEntry;
1290 UINT64 MaximumVariableStorageSize;
1291 UINT64 RemainingVariableStorageSize;
1292 UINT64 MaximumVariableSize;
1293 UINTN TotalNeededSize;
1294 UINTN OriginalVarSize;
1295 VARIABLE_STORE_HEADER *VariableStoreHeader;
1296 VARIABLE_POINTER_TRACK VariablePtrTrack;
1297 VARIABLE_HEADER *NextVariable;
1298 UINTN VarNameSize;
1299 UINTN VarDataSize;
1300
1301 //
1302 // Non-Volatile related.
1303 //
1304 VariableStoreHeader = mNvVariableCache;
1305
1306 Status = VariableServiceQueryVariableInfoInternal (
1307 Attributes,
1308 &MaximumVariableStorageSize,
1309 &RemainingVariableStorageSize,
1310 &MaximumVariableSize
1311 );
1312 ASSERT_EFI_ERROR (Status);
1313
1314 TotalNeededSize = 0;
1315 VA_START (Args, Attributes);
1316 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1317 while (VariableEntry != NULL) {
1318 //
1319 // Calculate variable total size.
1320 //
1321 VarNameSize = StrSize (VariableEntry->Name);
1322 VarNameSize += GET_PAD_SIZE (VarNameSize);
1323 VarDataSize = VariableEntry->VariableSize;
1324 VarDataSize += GET_PAD_SIZE (VarDataSize);
1325 VariableEntry->VariableSize = HEADER_ALIGN (sizeof (VARIABLE_HEADER) + VarNameSize + VarDataSize);
1326
1327 TotalNeededSize += VariableEntry->VariableSize;
1328 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1329 }
1330 VA_END (Args);
1331
1332 if (RemainingVariableStorageSize >= TotalNeededSize) {
1333 //
1334 // Already have enough space.
1335 //
1336 return TRUE;
1337 } else if (AtRuntime ()) {
1338 //
1339 // At runtime, no reclaim.
1340 // The original variable space of Variables can't be reused.
1341 //
1342 return FALSE;
1343 }
1344
1345 VA_START (Args, Attributes);
1346 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1347 while (VariableEntry != NULL) {
1348 //
1349 // Check if Variable[Index] has been present and get its size.
1350 //
1351 OriginalVarSize = 0;
1352 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
1353 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
1354 Status = FindVariableEx (
1355 VariableEntry->Name,
1356 VariableEntry->Guid,
1357 FALSE,
1358 &VariablePtrTrack
1359 );
1360 if (!EFI_ERROR (Status)) {
1361 //
1362 // Get size of Variable[Index].
1363 //
1364 NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr);
1365 OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr;
1366 //
1367 // Add the original size of Variable[Index] to remaining variable storage size.
1368 //
1369 RemainingVariableStorageSize += OriginalVarSize;
1370 }
1371 if (VariableEntry->VariableSize > RemainingVariableStorageSize) {
1372 //
1373 // No enough space for Variable[Index].
1374 //
1375 VA_END (Args);
1376 return FALSE;
1377 }
1378 //
1379 // Sub the (new) size of Variable[Index] from remaining variable storage size.
1380 //
1381 RemainingVariableStorageSize -= VariableEntry->VariableSize;
1382 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1383 }
1384 VA_END (Args);
1385
1386 return TRUE;
1387 }
1388
1389 /**
1390 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1391
1392 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1393
1394 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1395 and are read-only. Therefore, in variable driver, only store the original value for other use.
1396
1397 @param[in] VariableName Name of variable.
1398
1399 @param[in] Data Variable data.
1400
1401 @param[in] DataSize Size of data. 0 means delete.
1402
1403 @retval EFI_SUCCESS The update operation is successful or ignored.
1404 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1405 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1406 @retval Others Other errors happened during the update operation.
1407
1408 **/
1409 EFI_STATUS
1410 AutoUpdateLangVariable (
1411 IN CHAR16 *VariableName,
1412 IN VOID *Data,
1413 IN UINTN DataSize
1414 )
1415 {
1416 EFI_STATUS Status;
1417 CHAR8 *BestPlatformLang;
1418 CHAR8 *BestLang;
1419 UINTN Index;
1420 UINT32 Attributes;
1421 VARIABLE_POINTER_TRACK Variable;
1422 BOOLEAN SetLanguageCodes;
1423 VARIABLE_ENTRY_CONSISTENCY VariableEntry[2];
1424
1425 //
1426 // Don't do updates for delete operation
1427 //
1428 if (DataSize == 0) {
1429 return EFI_SUCCESS;
1430 }
1431
1432 SetLanguageCodes = FALSE;
1433
1434 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1435 //
1436 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1437 //
1438 if (AtRuntime ()) {
1439 return EFI_WRITE_PROTECTED;
1440 }
1441
1442 SetLanguageCodes = TRUE;
1443
1444 //
1445 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1446 // Therefore, in variable driver, only store the original value for other use.
1447 //
1448 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1449 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1450 }
1451 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1452 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1453
1454 //
1455 // PlatformLang holds a single language from PlatformLangCodes,
1456 // so the size of PlatformLangCodes is enough for the PlatformLang.
1457 //
1458 if (mVariableModuleGlobal->PlatformLang != NULL) {
1459 FreePool (mVariableModuleGlobal->PlatformLang);
1460 }
1461 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1462 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1463
1464 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1465 //
1466 // LangCodes is a volatile variable, so it can not be updated at runtime.
1467 //
1468 if (AtRuntime ()) {
1469 return EFI_WRITE_PROTECTED;
1470 }
1471
1472 SetLanguageCodes = TRUE;
1473
1474 //
1475 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1476 // Therefore, in variable driver, only store the original value for other use.
1477 //
1478 if (mVariableModuleGlobal->LangCodes != NULL) {
1479 FreePool (mVariableModuleGlobal->LangCodes);
1480 }
1481 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1482 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1483 }
1484
1485 if (SetLanguageCodes
1486 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1487 && (mVariableModuleGlobal->LangCodes != NULL)) {
1488 //
1489 // Update Lang if PlatformLang is already set
1490 // Update PlatformLang if Lang is already set
1491 //
1492 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1493 if (!EFI_ERROR (Status)) {
1494 //
1495 // Update Lang
1496 //
1497 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1498 Data = GetVariableDataPtr (Variable.CurrPtr);
1499 DataSize = Variable.CurrPtr->DataSize;
1500 } else {
1501 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1502 if (!EFI_ERROR (Status)) {
1503 //
1504 // Update PlatformLang
1505 //
1506 VariableName = EFI_LANG_VARIABLE_NAME;
1507 Data = GetVariableDataPtr (Variable.CurrPtr);
1508 DataSize = Variable.CurrPtr->DataSize;
1509 } else {
1510 //
1511 // Neither PlatformLang nor Lang is set, directly return
1512 //
1513 return EFI_SUCCESS;
1514 }
1515 }
1516 }
1517
1518 Status = EFI_SUCCESS;
1519
1520 //
1521 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1522 //
1523 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1524
1525 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1526 //
1527 // Update Lang when PlatformLangCodes/LangCodes were set.
1528 //
1529 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1530 //
1531 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1532 //
1533 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1534 if (BestPlatformLang != NULL) {
1535 //
1536 // Get the corresponding index in language codes.
1537 //
1538 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1539
1540 //
1541 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1542 //
1543 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1544
1545 //
1546 // Check the variable space for both Lang and PlatformLang variable.
1547 //
1548 VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1549 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1550 VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME;
1551
1552 VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang);
1553 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1554 VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1555 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1556 //
1557 // No enough variable space to set both Lang and PlatformLang successfully.
1558 //
1559 Status = EFI_OUT_OF_RESOURCES;
1560 } else {
1561 //
1562 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1563 //
1564 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1565
1566 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1567 ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable);
1568 }
1569
1570 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
1571 }
1572 }
1573
1574 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
1575 //
1576 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1577 //
1578 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1579 //
1580 // When setting Lang, firstly get most matched language string from supported language codes.
1581 //
1582 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
1583 if (BestLang != NULL) {
1584 //
1585 // Get the corresponding index in language codes.
1586 //
1587 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
1588
1589 //
1590 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1591 //
1592 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
1593
1594 //
1595 // Check the variable space for both PlatformLang and Lang variable.
1596 //
1597 VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang);
1598 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1599 VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1600
1601 VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1602 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1603 VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME;
1604 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1605 //
1606 // No enough variable space to set both PlatformLang and Lang successfully.
1607 //
1608 Status = EFI_OUT_OF_RESOURCES;
1609 } else {
1610 //
1611 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1612 //
1613 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1614
1615 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
1616 AsciiStrSize (BestPlatformLang), Attributes, &Variable);
1617 }
1618
1619 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
1620 }
1621 }
1622 }
1623
1624 if (SetLanguageCodes) {
1625 //
1626 // Continue to set PlatformLangCodes or LangCodes.
1627 //
1628 return EFI_SUCCESS;
1629 } else {
1630 return Status;
1631 }
1632 }
1633
1634 /**
1635 Update the variable region with Variable information. These are the same
1636 arguments as the EFI Variable services.
1637
1638 @param[in] VariableName Name of variable.
1639 @param[in] VendorGuid Guid of variable.
1640 @param[in] Data Variable data.
1641 @param[in] DataSize Size of data. 0 means delete.
1642 @param[in] Attributes Attribues of the variable.
1643 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
1644
1645 @retval EFI_SUCCESS The update operation is success.
1646 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1647
1648 **/
1649 EFI_STATUS
1650 UpdateVariable (
1651 IN CHAR16 *VariableName,
1652 IN EFI_GUID *VendorGuid,
1653 IN VOID *Data,
1654 IN UINTN DataSize,
1655 IN UINT32 Attributes OPTIONAL,
1656 IN OUT VARIABLE_POINTER_TRACK *CacheVariable
1657 )
1658 {
1659 EFI_STATUS Status;
1660 VARIABLE_HEADER *NextVariable;
1661 UINTN ScratchSize;
1662 UINTN NonVolatileVarableStoreSize;
1663 UINTN VarNameOffset;
1664 UINTN VarDataOffset;
1665 UINTN VarNameSize;
1666 UINTN VarSize;
1667 BOOLEAN Volatile;
1668 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
1669 UINT8 State;
1670 VARIABLE_POINTER_TRACK *Variable;
1671 VARIABLE_POINTER_TRACK NvVariable;
1672 VARIABLE_STORE_HEADER *VariableStoreHeader;
1673 UINTN CacheOffset;
1674
1675 if ((mVariableModuleGlobal->FvbInstance == NULL) && ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0)) {
1676 //
1677 // The FVB protocol is not ready. Trying to update NV variable prior to the installation
1678 // of EFI_VARIABLE_WRITE_ARCH_PROTOCOL.
1679 //
1680 return EFI_NOT_AVAILABLE_YET;
1681 }
1682
1683 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
1684 Variable = CacheVariable;
1685 } else {
1686 //
1687 // Update/Delete existing NV variable.
1688 // CacheVariable points to the variable in the memory copy of Flash area
1689 // Now let Variable points to the same variable in Flash area.
1690 //
1691 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
1692 Variable = &NvVariable;
1693 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
1694 Variable->EndPtr = GetEndPointer (VariableStoreHeader);
1695 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
1696 if (CacheVariable->InDeletedTransitionPtr != NULL) {
1697 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
1698 } else {
1699 Variable->InDeletedTransitionPtr = NULL;
1700 }
1701 Variable->Volatile = FALSE;
1702 }
1703
1704 Fvb = mVariableModuleGlobal->FvbInstance;
1705
1706 if (Variable->CurrPtr != NULL) {
1707 //
1708 // Update/Delete existing variable.
1709 //
1710 if (AtRuntime ()) {
1711 //
1712 // If AtRuntime and the variable is Volatile and Runtime Access,
1713 // the volatile is ReadOnly, and SetVariable should be aborted and
1714 // return EFI_WRITE_PROTECTED.
1715 //
1716 if (Variable->Volatile) {
1717 Status = EFI_WRITE_PROTECTED;
1718 goto Done;
1719 }
1720 //
1721 // Only variable that have NV|RT attributes can be updated/deleted in Runtime.
1722 //
1723 if (((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0)) {
1724 Status = EFI_INVALID_PARAMETER;
1725 goto Done;
1726 }
1727 }
1728
1729 //
1730 // Setting a data variable with no access, or zero DataSize attributes
1731 // causes it to be deleted.
1732 //
1733 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1734 if (Variable->InDeletedTransitionPtr != NULL) {
1735 //
1736 // Both ADDED and IN_DELETED_TRANSITION variable are present,
1737 // set IN_DELETED_TRANSITION one to DELETED state first.
1738 //
1739 State = Variable->InDeletedTransitionPtr->State;
1740 State &= VAR_DELETED;
1741 Status = UpdateVariableStore (
1742 &mVariableModuleGlobal->VariableGlobal,
1743 Variable->Volatile,
1744 FALSE,
1745 Fvb,
1746 (UINTN) &Variable->InDeletedTransitionPtr->State,
1747 sizeof (UINT8),
1748 &State
1749 );
1750 if (!EFI_ERROR (Status)) {
1751 if (!Variable->Volatile) {
1752 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
1753 CacheVariable->InDeletedTransitionPtr->State = State;
1754 }
1755 } else {
1756 goto Done;
1757 }
1758 }
1759
1760 State = Variable->CurrPtr->State;
1761 State &= VAR_DELETED;
1762
1763 Status = UpdateVariableStore (
1764 &mVariableModuleGlobal->VariableGlobal,
1765 Variable->Volatile,
1766 FALSE,
1767 Fvb,
1768 (UINTN) &Variable->CurrPtr->State,
1769 sizeof (UINT8),
1770 &State
1771 );
1772 if (!EFI_ERROR (Status)) {
1773 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
1774 if (!Variable->Volatile) {
1775 CacheVariable->CurrPtr->State = State;
1776 FlushHobVariableToFlash (VariableName, VendorGuid);
1777 }
1778 }
1779 goto Done;
1780 }
1781 //
1782 // If the variable is marked valid, and the same data has been passed in,
1783 // then return to the caller immediately.
1784 //
1785 if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
1786 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)) {
1787
1788 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
1789 Status = EFI_SUCCESS;
1790 goto Done;
1791 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
1792 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1793
1794 //
1795 // Mark the old variable as in delete transition.
1796 //
1797 State = Variable->CurrPtr->State;
1798 State &= VAR_IN_DELETED_TRANSITION;
1799
1800 Status = UpdateVariableStore (
1801 &mVariableModuleGlobal->VariableGlobal,
1802 Variable->Volatile,
1803 FALSE,
1804 Fvb,
1805 (UINTN) &Variable->CurrPtr->State,
1806 sizeof (UINT8),
1807 &State
1808 );
1809 if (EFI_ERROR (Status)) {
1810 goto Done;
1811 }
1812 if (!Variable->Volatile) {
1813 CacheVariable->CurrPtr->State = State;
1814 }
1815 }
1816 } else {
1817 //
1818 // Not found existing variable. Create a new variable.
1819 //
1820
1821 //
1822 // Make sure we are trying to create a new variable.
1823 // Setting a data variable with zero DataSize or no access attributes means to delete it.
1824 //
1825 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1826 Status = EFI_NOT_FOUND;
1827 goto Done;
1828 }
1829
1830 //
1831 // Only variable have NV|RT attribute can be created in Runtime.
1832 //
1833 if (AtRuntime () &&
1834 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
1835 Status = EFI_INVALID_PARAMETER;
1836 goto Done;
1837 }
1838 }
1839
1840 //
1841 // Function part - create a new variable and copy the data.
1842 // Both update a variable and create a variable will come here.
1843
1844 //
1845 // Tricky part: Use scratch data area at the end of volatile variable store
1846 // as a temporary storage.
1847 //
1848 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
1849 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
1850
1851 SetMem (NextVariable, ScratchSize, 0xff);
1852
1853 NextVariable->StartId = VARIABLE_DATA;
1854 NextVariable->Attributes = Attributes;
1855 //
1856 // NextVariable->State = VAR_ADDED;
1857 //
1858 NextVariable->Reserved = 0;
1859 VarNameOffset = sizeof (VARIABLE_HEADER);
1860 VarNameSize = StrSize (VariableName);
1861 CopyMem (
1862 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
1863 VariableName,
1864 VarNameSize
1865 );
1866 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
1867 CopyMem (
1868 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
1869 Data,
1870 DataSize
1871 );
1872 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
1873 //
1874 // There will be pad bytes after Data, the NextVariable->NameSize and
1875 // NextVariable->DataSize should not include pad size so that variable
1876 // service can get actual size in GetVariable.
1877 //
1878 NextVariable->NameSize = (UINT32)VarNameSize;
1879 NextVariable->DataSize = (UINT32)DataSize;
1880
1881 //
1882 // The actual size of the variable that stores in storage should
1883 // include pad size.
1884 //
1885 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
1886 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1887 //
1888 // Create a nonvolatile variable.
1889 //
1890 Volatile = FALSE;
1891 NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
1892 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
1893 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
1894 || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
1895 && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
1896 if (AtRuntime ()) {
1897 Status = EFI_OUT_OF_RESOURCES;
1898 goto Done;
1899 }
1900 //
1901 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
1902 //
1903 Status = Reclaim (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
1904 &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, Variable, NextVariable, HEADER_ALIGN (VarSize));
1905 if (!EFI_ERROR (Status)) {
1906 //
1907 // The new variable has been integrated successfully during reclaiming.
1908 //
1909 if (Variable->CurrPtr != NULL) {
1910 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
1911 CacheVariable->InDeletedTransitionPtr = NULL;
1912 }
1913 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
1914 FlushHobVariableToFlash (VariableName, VendorGuid);
1915 }
1916 goto Done;
1917 }
1918 //
1919 // Four steps
1920 // 1. Write variable header
1921 // 2. Set variable state to header valid
1922 // 3. Write variable data
1923 // 4. Set variable state to valid
1924 //
1925 //
1926 // Step 1:
1927 //
1928 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
1929 Status = UpdateVariableStore (
1930 &mVariableModuleGlobal->VariableGlobal,
1931 FALSE,
1932 TRUE,
1933 Fvb,
1934 mVariableModuleGlobal->NonVolatileLastVariableOffset,
1935 sizeof (VARIABLE_HEADER),
1936 (UINT8 *) NextVariable
1937 );
1938
1939 if (EFI_ERROR (Status)) {
1940 goto Done;
1941 }
1942
1943 //
1944 // Step 2:
1945 //
1946 NextVariable->State = VAR_HEADER_VALID_ONLY;
1947 Status = UpdateVariableStore (
1948 &mVariableModuleGlobal->VariableGlobal,
1949 FALSE,
1950 TRUE,
1951 Fvb,
1952 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
1953 sizeof (UINT8),
1954 &NextVariable->State
1955 );
1956
1957 if (EFI_ERROR (Status)) {
1958 goto Done;
1959 }
1960 //
1961 // Step 3:
1962 //
1963 Status = UpdateVariableStore (
1964 &mVariableModuleGlobal->VariableGlobal,
1965 FALSE,
1966 TRUE,
1967 Fvb,
1968 mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
1969 (UINT32) VarSize - sizeof (VARIABLE_HEADER),
1970 (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
1971 );
1972
1973 if (EFI_ERROR (Status)) {
1974 goto Done;
1975 }
1976 //
1977 // Step 4:
1978 //
1979 NextVariable->State = VAR_ADDED;
1980 Status = UpdateVariableStore (
1981 &mVariableModuleGlobal->VariableGlobal,
1982 FALSE,
1983 TRUE,
1984 Fvb,
1985 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
1986 sizeof (UINT8),
1987 &NextVariable->State
1988 );
1989
1990 if (EFI_ERROR (Status)) {
1991 goto Done;
1992 }
1993
1994 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
1995
1996 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
1997 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
1998 } else {
1999 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2000 }
2001 //
2002 // update the memory copy of Flash region.
2003 //
2004 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2005 } else {
2006 //
2007 // Create a volatile variable.
2008 //
2009 Volatile = TRUE;
2010
2011 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2012 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2013 //
2014 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2015 //
2016 Status = Reclaim (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2017 &mVariableModuleGlobal->VolatileLastVariableOffset, TRUE, Variable, NextVariable, HEADER_ALIGN (VarSize));
2018 if (!EFI_ERROR (Status)) {
2019 //
2020 // The new variable has been integrated successfully during reclaiming.
2021 //
2022 if (Variable->CurrPtr != NULL) {
2023 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2024 CacheVariable->InDeletedTransitionPtr = NULL;
2025 }
2026 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2027 }
2028 goto Done;
2029 }
2030
2031 NextVariable->State = VAR_ADDED;
2032 Status = UpdateVariableStore (
2033 &mVariableModuleGlobal->VariableGlobal,
2034 TRUE,
2035 TRUE,
2036 Fvb,
2037 mVariableModuleGlobal->VolatileLastVariableOffset,
2038 (UINT32) VarSize,
2039 (UINT8 *) NextVariable
2040 );
2041
2042 if (EFI_ERROR (Status)) {
2043 goto Done;
2044 }
2045
2046 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2047 }
2048
2049 //
2050 // Mark the old variable as deleted.
2051 //
2052 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2053 if (Variable->InDeletedTransitionPtr != NULL) {
2054 //
2055 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2056 // set IN_DELETED_TRANSITION one to DELETED state first.
2057 //
2058 State = Variable->InDeletedTransitionPtr->State;
2059 State &= VAR_DELETED;
2060 Status = UpdateVariableStore (
2061 &mVariableModuleGlobal->VariableGlobal,
2062 Variable->Volatile,
2063 FALSE,
2064 Fvb,
2065 (UINTN) &Variable->InDeletedTransitionPtr->State,
2066 sizeof (UINT8),
2067 &State
2068 );
2069 if (!EFI_ERROR (Status)) {
2070 if (!Variable->Volatile) {
2071 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2072 CacheVariable->InDeletedTransitionPtr->State = State;
2073 }
2074 } else {
2075 goto Done;
2076 }
2077 }
2078
2079 State = Variable->CurrPtr->State;
2080 State &= VAR_DELETED;
2081
2082 Status = UpdateVariableStore (
2083 &mVariableModuleGlobal->VariableGlobal,
2084 Variable->Volatile,
2085 FALSE,
2086 Fvb,
2087 (UINTN) &Variable->CurrPtr->State,
2088 sizeof (UINT8),
2089 &State
2090 );
2091 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2092 CacheVariable->CurrPtr->State = State;
2093 }
2094 }
2095
2096 if (!EFI_ERROR (Status)) {
2097 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2098 if (!Volatile) {
2099 FlushHobVariableToFlash (VariableName, VendorGuid);
2100 }
2101 }
2102
2103 Done:
2104 return Status;
2105 }
2106
2107 /**
2108 Check if a Unicode character is a hexadecimal character.
2109
2110 This function checks if a Unicode character is a
2111 hexadecimal character. The valid hexadecimal character is
2112 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
2113
2114
2115 @param Char The character to check against.
2116
2117 @retval TRUE If the Char is a hexadecmial character.
2118 @retval FALSE If the Char is not a hexadecmial character.
2119
2120 **/
2121 BOOLEAN
2122 EFIAPI
2123 IsHexaDecimalDigitCharacter (
2124 IN CHAR16 Char
2125 )
2126 {
2127 return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
2128 }
2129
2130 /**
2131
2132 This code checks if variable is hardware error record variable or not.
2133
2134 According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
2135 and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
2136
2137 @param VariableName Pointer to variable name.
2138 @param VendorGuid Variable Vendor Guid.
2139
2140 @retval TRUE Variable is hardware error record variable.
2141 @retval FALSE Variable is not hardware error record variable.
2142
2143 **/
2144 BOOLEAN
2145 EFIAPI
2146 IsHwErrRecVariable (
2147 IN CHAR16 *VariableName,
2148 IN EFI_GUID *VendorGuid
2149 )
2150 {
2151 if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
2152 (StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
2153 (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
2154 !IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
2155 !IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
2156 !IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
2157 !IsHexaDecimalDigitCharacter (VariableName[0xB])) {
2158 return FALSE;
2159 }
2160
2161 return TRUE;
2162 }
2163
2164 /**
2165 This code checks if variable guid is global variable guid first.
2166 If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched.
2167
2168 @param[in] VariableName Pointer to variable name.
2169 @param[in] VendorGuid Variable Vendor Guid.
2170 @param[in] Attributes Attributes of the variable.
2171
2172 @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched.
2173 @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched.
2174
2175 **/
2176 EFI_STATUS
2177 EFIAPI
2178 CheckEfiGlobalVariable (
2179 IN CHAR16 *VariableName,
2180 IN EFI_GUID *VendorGuid,
2181 IN UINT32 Attributes
2182 )
2183 {
2184 UINTN Index;
2185 UINTN NameLength;
2186
2187 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){
2188 //
2189 // Try list 1, exactly match.
2190 //
2191 for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) {
2192 if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) &&
2193 (Attributes == 0 || Attributes == mGlobalVariableList[Index].Attributes)) {
2194 return EFI_SUCCESS;
2195 }
2196 }
2197
2198 //
2199 // Try list 2.
2200 //
2201 NameLength = StrLen (VariableName) - 4;
2202 for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) {
2203 if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) &&
2204 (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) &&
2205 IsHexaDecimalDigitCharacter (VariableName[NameLength]) &&
2206 IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) &&
2207 IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) &&
2208 IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) &&
2209 (Attributes == 0 || Attributes == mGlobalVariableList2[Index].Attributes)) {
2210 return EFI_SUCCESS;
2211 }
2212 }
2213
2214 DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes));
2215 return EFI_INVALID_PARAMETER;
2216 }
2217
2218 return EFI_SUCCESS;
2219 }
2220
2221 /**
2222 Mark a variable that will become read-only after leaving the DXE phase of execution.
2223
2224 @param[in] This The VARIABLE_LOCK_PROTOCOL instance.
2225 @param[in] VariableName A pointer to the variable name that will be made read-only subsequently.
2226 @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently.
2227
2228 @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked
2229 as pending to be read-only.
2230 @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL.
2231 Or VariableName is an empty string.
2232 @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has
2233 already been signaled.
2234 @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request.
2235 **/
2236 EFI_STATUS
2237 EFIAPI
2238 VariableLockRequestToLock (
2239 IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This,
2240 IN CHAR16 *VariableName,
2241 IN EFI_GUID *VendorGuid
2242 )
2243 {
2244 VARIABLE_ENTRY *Entry;
2245
2246 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2247 return EFI_INVALID_PARAMETER;
2248 }
2249
2250 if (mEndOfDxe) {
2251 return EFI_ACCESS_DENIED;
2252 }
2253
2254 Entry = AllocateRuntimeZeroPool (sizeof (*Entry) + StrSize (VariableName));
2255 if (Entry == NULL) {
2256 return EFI_OUT_OF_RESOURCES;
2257 }
2258
2259 DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName));
2260
2261 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2262
2263 Entry->Name = (CHAR16 *) (Entry + 1);
2264 StrnCpy (Entry->Name, VariableName, StrLen (VariableName));
2265 CopyGuid (&Entry->Guid, VendorGuid);
2266 InsertTailList (&mLockedVariableList, &Entry->Link);
2267
2268 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2269
2270 return EFI_SUCCESS;
2271 }
2272
2273 /**
2274
2275 This code finds variable in storage blocks (Volatile or Non-Volatile).
2276
2277 @param VariableName Name of Variable to be found.
2278 @param VendorGuid Variable vendor GUID.
2279 @param Attributes Attribute value of the variable found.
2280 @param DataSize Size of Data found. If size is less than the
2281 data, this value contains the required size.
2282 @param Data Data pointer.
2283
2284 @return EFI_INVALID_PARAMETER Invalid parameter.
2285 @return EFI_SUCCESS Find the specified variable.
2286 @return EFI_NOT_FOUND Not found.
2287 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2288
2289 **/
2290 EFI_STATUS
2291 EFIAPI
2292 VariableServiceGetVariable (
2293 IN CHAR16 *VariableName,
2294 IN EFI_GUID *VendorGuid,
2295 OUT UINT32 *Attributes OPTIONAL,
2296 IN OUT UINTN *DataSize,
2297 OUT VOID *Data
2298 )
2299 {
2300 EFI_STATUS Status;
2301 VARIABLE_POINTER_TRACK Variable;
2302 UINTN VarDataSize;
2303
2304 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2305 return EFI_INVALID_PARAMETER;
2306 }
2307
2308 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2309
2310 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2311 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2312 goto Done;
2313 }
2314
2315 //
2316 // Get data size
2317 //
2318 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2319 ASSERT (VarDataSize != 0);
2320
2321 if (*DataSize >= VarDataSize) {
2322 if (Data == NULL) {
2323 Status = EFI_INVALID_PARAMETER;
2324 goto Done;
2325 }
2326
2327 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2328 if (Attributes != NULL) {
2329 *Attributes = Variable.CurrPtr->Attributes;
2330 }
2331
2332 *DataSize = VarDataSize;
2333 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2334
2335 Status = EFI_SUCCESS;
2336 goto Done;
2337 } else {
2338 *DataSize = VarDataSize;
2339 Status = EFI_BUFFER_TOO_SMALL;
2340 goto Done;
2341 }
2342
2343 Done:
2344 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2345 return Status;
2346 }
2347
2348
2349
2350 /**
2351
2352 This code Finds the Next available variable.
2353
2354 @param VariableNameSize Size of the variable name.
2355 @param VariableName Pointer to variable name.
2356 @param VendorGuid Variable Vendor Guid.
2357
2358 @return EFI_INVALID_PARAMETER Invalid parameter.
2359 @return EFI_SUCCESS Find the specified variable.
2360 @return EFI_NOT_FOUND Not found.
2361 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2362
2363 **/
2364 EFI_STATUS
2365 EFIAPI
2366 VariableServiceGetNextVariableName (
2367 IN OUT UINTN *VariableNameSize,
2368 IN OUT CHAR16 *VariableName,
2369 IN OUT EFI_GUID *VendorGuid
2370 )
2371 {
2372 VARIABLE_STORE_TYPE Type;
2373 VARIABLE_POINTER_TRACK Variable;
2374 VARIABLE_POINTER_TRACK VariableInHob;
2375 VARIABLE_POINTER_TRACK VariablePtrTrack;
2376 UINTN VarNameSize;
2377 EFI_STATUS Status;
2378 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2379
2380 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
2381 return EFI_INVALID_PARAMETER;
2382 }
2383
2384 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2385
2386 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2387 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2388 goto Done;
2389 }
2390
2391 if (VariableName[0] != 0) {
2392 //
2393 // If variable name is not NULL, get next variable.
2394 //
2395 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2396 }
2397
2398 //
2399 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2400 // The index and attributes mapping must be kept in this order as FindVariable
2401 // makes use of this mapping to implement search algorithm.
2402 //
2403 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2404 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2405 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2406
2407 while (TRUE) {
2408 //
2409 // Switch from Volatile to HOB, to Non-Volatile.
2410 //
2411 while ((Variable.CurrPtr >= Variable.EndPtr) ||
2412 (Variable.CurrPtr == NULL) ||
2413 !IsValidVariableHeader (Variable.CurrPtr)
2414 ) {
2415 //
2416 // Find current storage index
2417 //
2418 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2419 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2420 break;
2421 }
2422 }
2423 ASSERT (Type < VariableStoreTypeMax);
2424 //
2425 // Switch to next storage
2426 //
2427 for (Type++; Type < VariableStoreTypeMax; Type++) {
2428 if (VariableStoreHeader[Type] != NULL) {
2429 break;
2430 }
2431 }
2432 //
2433 // Capture the case that
2434 // 1. current storage is the last one, or
2435 // 2. no further storage
2436 //
2437 if (Type == VariableStoreTypeMax) {
2438 Status = EFI_NOT_FOUND;
2439 goto Done;
2440 }
2441 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2442 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2443 Variable.CurrPtr = Variable.StartPtr;
2444 }
2445
2446 //
2447 // Variable is found
2448 //
2449 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2450 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2451 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2452 //
2453 // If it is a IN_DELETED_TRANSITION variable,
2454 // and there is also a same ADDED one at the same time,
2455 // don't return it.
2456 //
2457 VariablePtrTrack.StartPtr = Variable.StartPtr;
2458 VariablePtrTrack.EndPtr = Variable.EndPtr;
2459 Status = FindVariableEx (
2460 GetVariableNamePtr (Variable.CurrPtr),
2461 &Variable.CurrPtr->VendorGuid,
2462 FALSE,
2463 &VariablePtrTrack
2464 );
2465 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2466 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2467 continue;
2468 }
2469 }
2470
2471 //
2472 // Don't return NV variable when HOB overrides it
2473 //
2474 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2475 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2476 ) {
2477 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2478 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2479 Status = FindVariableEx (
2480 GetVariableNamePtr (Variable.CurrPtr),
2481 &Variable.CurrPtr->VendorGuid,
2482 FALSE,
2483 &VariableInHob
2484 );
2485 if (!EFI_ERROR (Status)) {
2486 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2487 continue;
2488 }
2489 }
2490
2491 VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
2492 ASSERT (VarNameSize != 0);
2493
2494 if (VarNameSize <= *VariableNameSize) {
2495 CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
2496 CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
2497 Status = EFI_SUCCESS;
2498 } else {
2499 Status = EFI_BUFFER_TOO_SMALL;
2500 }
2501
2502 *VariableNameSize = VarNameSize;
2503 goto Done;
2504 }
2505 }
2506
2507 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2508 }
2509
2510 Done:
2511 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2512 return Status;
2513 }
2514
2515 /**
2516
2517 This code sets variable in storage blocks (Volatile or Non-Volatile).
2518
2519 @param VariableName Name of Variable to be found.
2520 @param VendorGuid Variable vendor GUID.
2521 @param Attributes Attribute value of the variable found
2522 @param DataSize Size of Data found. If size is less than the
2523 data, this value contains the required size.
2524 @param Data Data pointer.
2525
2526 @return EFI_INVALID_PARAMETER Invalid parameter.
2527 @return EFI_SUCCESS Set successfully.
2528 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
2529 @return EFI_NOT_FOUND Not found.
2530 @return EFI_WRITE_PROTECTED Variable is read-only.
2531
2532 **/
2533 EFI_STATUS
2534 EFIAPI
2535 VariableServiceSetVariable (
2536 IN CHAR16 *VariableName,
2537 IN EFI_GUID *VendorGuid,
2538 IN UINT32 Attributes,
2539 IN UINTN DataSize,
2540 IN VOID *Data
2541 )
2542 {
2543 VARIABLE_POINTER_TRACK Variable;
2544 EFI_STATUS Status;
2545 VARIABLE_HEADER *NextVariable;
2546 EFI_PHYSICAL_ADDRESS Point;
2547 LIST_ENTRY *Link;
2548 VARIABLE_ENTRY *Entry;
2549
2550 //
2551 // Check input parameters.
2552 //
2553 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2554 return EFI_INVALID_PARAMETER;
2555 }
2556
2557 if (DataSize != 0 && Data == NULL) {
2558 return EFI_INVALID_PARAMETER;
2559 }
2560
2561 //
2562 // Not support authenticated or append variable write yet.
2563 //
2564 if ((Attributes & (EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_APPEND_WRITE)) != 0) {
2565 return EFI_INVALID_PARAMETER;
2566 }
2567
2568 //
2569 // Make sure if runtime bit is set, boot service bit is set also.
2570 //
2571 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2572 return EFI_INVALID_PARAMETER;
2573 }
2574
2575 if ((UINTN)(~0) - DataSize < StrSize(VariableName)){
2576 //
2577 // Prevent whole variable size overflow
2578 //
2579 return EFI_INVALID_PARAMETER;
2580 }
2581
2582 //
2583 // The size of the VariableName, including the Unicode Null in bytes plus
2584 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
2585 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
2586 //
2587 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2588 if ( StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) {
2589 return EFI_INVALID_PARAMETER;
2590 }
2591 if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
2592 return EFI_INVALID_PARAMETER;
2593 }
2594 } else {
2595 //
2596 // The size of the VariableName, including the Unicode Null in bytes plus
2597 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
2598 //
2599 if (StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) {
2600 return EFI_INVALID_PARAMETER;
2601 }
2602 }
2603
2604 Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes);
2605 if (EFI_ERROR (Status)) {
2606 return Status;
2607 }
2608
2609 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2610
2611 //
2612 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
2613 //
2614 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
2615 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
2616 //
2617 // Parse non-volatile variable data and get last variable offset.
2618 //
2619 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
2620 while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
2621 && IsValidVariableHeader (NextVariable)) {
2622 NextVariable = GetNextVariablePtr (NextVariable);
2623 }
2624 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
2625 }
2626
2627 if (mEndOfDxe && mEnableLocking) {
2628 //
2629 // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase.
2630 //
2631 for ( Link = GetFirstNode (&mLockedVariableList)
2632 ; !IsNull (&mLockedVariableList, Link)
2633 ; Link = GetNextNode (&mLockedVariableList, Link)
2634 ) {
2635 Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
2636 if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) {
2637 Status = EFI_WRITE_PROTECTED;
2638 DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName));
2639 goto Done;
2640 }
2641 }
2642 }
2643
2644 //
2645 // Check whether the input variable is already existed.
2646 //
2647 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
2648 if (!EFI_ERROR (Status)) {
2649 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
2650 Status = EFI_WRITE_PROTECTED;
2651 goto Done;
2652 }
2653 if (Attributes != 0 && Attributes != Variable.CurrPtr->Attributes) {
2654 //
2655 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
2656 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
2657 // 1. No access attributes specified
2658 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
2659 //
2660 Status = EFI_INVALID_PARAMETER;
2661 goto Done;
2662 }
2663 }
2664
2665 if (!FeaturePcdGet (PcdUefiVariableDefaultLangDeprecate)) {
2666 //
2667 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
2668 //
2669 Status = AutoUpdateLangVariable (VariableName, Data, DataSize);
2670 if (EFI_ERROR (Status)) {
2671 //
2672 // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang.
2673 //
2674 goto Done;
2675 }
2676 }
2677
2678 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable);
2679
2680 Done:
2681 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
2682 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2683
2684 return Status;
2685 }
2686
2687 /**
2688
2689 This code returns information about the EFI variables.
2690
2691 @param Attributes Attributes bitmask to specify the type of variables
2692 on which to return information.
2693 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
2694 for the EFI variables associated with the attributes specified.
2695 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
2696 for EFI variables associated with the attributes specified.
2697 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
2698 associated with the attributes specified.
2699
2700 @return EFI_SUCCESS Query successfully.
2701
2702 **/
2703 EFI_STATUS
2704 EFIAPI
2705 VariableServiceQueryVariableInfoInternal (
2706 IN UINT32 Attributes,
2707 OUT UINT64 *MaximumVariableStorageSize,
2708 OUT UINT64 *RemainingVariableStorageSize,
2709 OUT UINT64 *MaximumVariableSize
2710 )
2711 {
2712 VARIABLE_HEADER *Variable;
2713 VARIABLE_HEADER *NextVariable;
2714 UINT64 VariableSize;
2715 VARIABLE_STORE_HEADER *VariableStoreHeader;
2716 UINT64 CommonVariableTotalSize;
2717 UINT64 HwErrVariableTotalSize;
2718 EFI_STATUS Status;
2719 VARIABLE_POINTER_TRACK VariablePtrTrack;
2720
2721 CommonVariableTotalSize = 0;
2722 HwErrVariableTotalSize = 0;
2723
2724 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2725 //
2726 // Query is Volatile related.
2727 //
2728 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
2729 } else {
2730 //
2731 // Query is Non-Volatile related.
2732 //
2733 VariableStoreHeader = mNvVariableCache;
2734 }
2735
2736 //
2737 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
2738 // with the storage size (excluding the storage header size).
2739 //
2740 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
2741
2742 //
2743 // Harware error record variable needs larger size.
2744 //
2745 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
2746 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
2747 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
2748 } else {
2749 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2750 ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
2751 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
2752 }
2753
2754 //
2755 // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
2756 //
2757 *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
2758 }
2759
2760 //
2761 // Point to the starting address of the variables.
2762 //
2763 Variable = GetStartPointer (VariableStoreHeader);
2764
2765 //
2766 // Now walk through the related variable store.
2767 //
2768 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
2769 NextVariable = GetNextVariablePtr (Variable);
2770 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
2771
2772 if (AtRuntime ()) {
2773 //
2774 // We don't take the state of the variables in mind
2775 // when calculating RemainingVariableStorageSize,
2776 // since the space occupied by variables not marked with
2777 // VAR_ADDED is not allowed to be reclaimed in Runtime.
2778 //
2779 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2780 HwErrVariableTotalSize += VariableSize;
2781 } else {
2782 CommonVariableTotalSize += VariableSize;
2783 }
2784 } else {
2785 //
2786 // Only care about Variables with State VAR_ADDED, because
2787 // the space not marked as VAR_ADDED is reclaimable now.
2788 //
2789 if (Variable->State == VAR_ADDED) {
2790 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2791 HwErrVariableTotalSize += VariableSize;
2792 } else {
2793 CommonVariableTotalSize += VariableSize;
2794 }
2795 } else if (Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2796 //
2797 // If it is a IN_DELETED_TRANSITION variable,
2798 // and there is not also a same ADDED one at the same time,
2799 // this IN_DELETED_TRANSITION variable is valid.
2800 //
2801 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
2802 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
2803 Status = FindVariableEx (
2804 GetVariableNamePtr (Variable),
2805 &Variable->VendorGuid,
2806 FALSE,
2807 &VariablePtrTrack
2808 );
2809 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State != VAR_ADDED) {
2810 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2811 HwErrVariableTotalSize += VariableSize;
2812 } else {
2813 CommonVariableTotalSize += VariableSize;
2814 }
2815 }
2816 }
2817 }
2818
2819 //
2820 // Go to the next one.
2821 //
2822 Variable = NextVariable;
2823 }
2824
2825 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
2826 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
2827 }else {
2828 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
2829 }
2830
2831 if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
2832 *MaximumVariableSize = 0;
2833 } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
2834 *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
2835 }
2836
2837 return EFI_SUCCESS;
2838 }
2839
2840 /**
2841
2842 This code returns information about the EFI variables.
2843
2844 @param Attributes Attributes bitmask to specify the type of variables
2845 on which to return information.
2846 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
2847 for the EFI variables associated with the attributes specified.
2848 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
2849 for EFI variables associated with the attributes specified.
2850 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
2851 associated with the attributes specified.
2852
2853 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
2854 @return EFI_SUCCESS Query successfully.
2855 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
2856
2857 **/
2858 EFI_STATUS
2859 EFIAPI
2860 VariableServiceQueryVariableInfo (
2861 IN UINT32 Attributes,
2862 OUT UINT64 *MaximumVariableStorageSize,
2863 OUT UINT64 *RemainingVariableStorageSize,
2864 OUT UINT64 *MaximumVariableSize
2865 )
2866 {
2867 EFI_STATUS Status;
2868
2869 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
2870 return EFI_INVALID_PARAMETER;
2871 }
2872
2873 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
2874 //
2875 // Make sure the Attributes combination is supported by the platform.
2876 //
2877 return EFI_UNSUPPORTED;
2878 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2879 //
2880 // Make sure if runtime bit is set, boot service bit is set also.
2881 //
2882 return EFI_INVALID_PARAMETER;
2883 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
2884 //
2885 // Make sure RT Attribute is set if we are in Runtime phase.
2886 //
2887 return EFI_INVALID_PARAMETER;
2888 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2889 //
2890 // Make sure Hw Attribute is set with NV.
2891 //
2892 return EFI_INVALID_PARAMETER;
2893 } else if ((Attributes & (EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_APPEND_WRITE)) != 0) {
2894 //
2895 // Not support authenticated or append variable write yet.
2896 //
2897 return EFI_UNSUPPORTED;
2898 }
2899
2900 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2901
2902 Status = VariableServiceQueryVariableInfoInternal (
2903 Attributes,
2904 MaximumVariableStorageSize,
2905 RemainingVariableStorageSize,
2906 MaximumVariableSize
2907 );
2908
2909 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2910 return Status;
2911 }
2912
2913 /**
2914 This function reclaims variable storage if free size is below the threshold.
2915
2916 **/
2917 VOID
2918 ReclaimForOS(
2919 VOID
2920 )
2921 {
2922 EFI_STATUS Status;
2923 UINTN CommonVariableSpace;
2924 UINTN RemainingCommonVariableSpace;
2925 UINTN RemainingHwErrVariableSpace;
2926
2927 Status = EFI_SUCCESS;
2928
2929 CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
2930
2931 RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
2932
2933 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
2934 //
2935 // Check if the free area is blow a threshold.
2936 //
2937 if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
2938 || ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
2939 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
2940 Status = Reclaim (
2941 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2942 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2943 FALSE,
2944 NULL,
2945 NULL,
2946 0
2947 );
2948 ASSERT_EFI_ERROR (Status);
2949 }
2950 }
2951
2952 /**
2953 Init non-volatile variable store.
2954
2955 @retval EFI_SUCCESS Function successfully executed.
2956 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
2957 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
2958
2959 **/
2960 EFI_STATUS
2961 InitNonVolatileVariableStore (
2962 VOID
2963 )
2964 {
2965 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
2966 VARIABLE_HEADER *NextVariable;
2967 EFI_PHYSICAL_ADDRESS VariableStoreBase;
2968 UINT64 VariableStoreLength;
2969 UINTN VariableSize;
2970 EFI_HOB_GUID_TYPE *GuidHob;
2971 EFI_PHYSICAL_ADDRESS NvStorageBase;
2972 UINT8 *NvStorageData;
2973 UINT32 NvStorageSize;
2974 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
2975 UINT32 BackUpOffset;
2976 UINT32 BackUpSize;
2977
2978 mVariableModuleGlobal->FvbInstance = NULL;
2979
2980 //
2981 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
2982 // is stored with common variable in the same NV region. So the platform integrator should
2983 // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
2984 // PcdFlashNvStorageVariableSize.
2985 //
2986 ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
2987
2988 //
2989 // Allocate runtime memory used for a memory copy of the FLASH region.
2990 // Keep the memory and the FLASH in sync as updates occur.
2991 //
2992 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
2993 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
2994 if (NvStorageData == NULL) {
2995 return EFI_OUT_OF_RESOURCES;
2996 }
2997
2998 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
2999 if (NvStorageBase == 0) {
3000 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3001 }
3002 //
3003 // Copy NV storage data to the memory buffer.
3004 //
3005 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
3006
3007 //
3008 // Check the FTW last write data hob.
3009 //
3010 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
3011 if (GuidHob != NULL) {
3012 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
3013 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
3014 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
3015 //
3016 // Copy the backed up NV storage data to the memory buffer from spare block.
3017 //
3018 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
3019 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
3020 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
3021 //
3022 // Flash NV storage from the offset is backed up in spare block.
3023 //
3024 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
3025 BackUpSize = NvStorageSize - BackUpOffset;
3026 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
3027 //
3028 // Copy the partial backed up NV storage data to the memory buffer from spare block.
3029 //
3030 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
3031 }
3032 }
3033
3034 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
3035
3036 //
3037 // Check if the Firmware Volume is not corrupted
3038 //
3039 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
3040 FreePool (NvStorageData);
3041 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
3042 return EFI_VOLUME_CORRUPTED;
3043 }
3044
3045 VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength);
3046 VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength);
3047
3048 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3049 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
3050 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
3051 FreePool (NvStorageData);
3052 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
3053 return EFI_VOLUME_CORRUPTED;
3054 }
3055 ASSERT(mNvVariableCache->Size == VariableStoreLength);
3056
3057 //
3058 // The max variable or hardware error variable size should be < variable store size.
3059 //
3060 ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength);
3061
3062 //
3063 // Parse non-volatile variable data and get last variable offset.
3064 //
3065 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
3066 while (IsValidVariableHeader (NextVariable)) {
3067 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
3068 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3069 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
3070 } else {
3071 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
3072 }
3073
3074 NextVariable = GetNextVariablePtr (NextVariable);
3075 }
3076 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
3077
3078 return EFI_SUCCESS;
3079 }
3080
3081 /**
3082 Flush the HOB variable to flash.
3083
3084 @param[in] VariableName Name of variable has been updated or deleted.
3085 @param[in] VendorGuid Guid of variable has been updated or deleted.
3086
3087 **/
3088 VOID
3089 FlushHobVariableToFlash (
3090 IN CHAR16 *VariableName,
3091 IN EFI_GUID *VendorGuid
3092 )
3093 {
3094 EFI_STATUS Status;
3095 VARIABLE_STORE_HEADER *VariableStoreHeader;
3096 VARIABLE_HEADER *Variable;
3097 VOID *VariableData;
3098 BOOLEAN ErrorFlag;
3099
3100 ErrorFlag = FALSE;
3101
3102 //
3103 // Flush the HOB variable to flash.
3104 //
3105 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3106 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
3107 //
3108 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
3109 //
3110 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
3111 for ( Variable = GetStartPointer (VariableStoreHeader)
3112 ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
3113 ; Variable = GetNextVariablePtr (Variable)
3114 ) {
3115 if (Variable->State != VAR_ADDED) {
3116 //
3117 // The HOB variable has been set to DELETED state in local.
3118 //
3119 continue;
3120 }
3121 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
3122 if (VendorGuid == NULL || VariableName == NULL ||
3123 !CompareGuid (VendorGuid, &Variable->VendorGuid) ||
3124 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
3125 VariableData = GetVariableDataPtr (Variable);
3126 Status = VariableServiceSetVariable (
3127 GetVariableNamePtr (Variable),
3128 &Variable->VendorGuid,
3129 Variable->Attributes,
3130 Variable->DataSize,
3131 VariableData
3132 );
3133 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status));
3134 } else {
3135 //
3136 // The updated or deleted variable is matched with the HOB variable.
3137 // Don't break here because we will try to set other HOB variables
3138 // since this variable could be set successfully.
3139 //
3140 Status = EFI_SUCCESS;
3141 }
3142 if (!EFI_ERROR (Status)) {
3143 //
3144 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
3145 // set the HOB variable to DELETED state in local.
3146 //
3147 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable)));
3148 Variable->State &= VAR_DELETED;
3149 } else {
3150 ErrorFlag = TRUE;
3151 }
3152 }
3153 if (ErrorFlag) {
3154 //
3155 // We still have HOB variable(s) not flushed in flash.
3156 //
3157 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
3158 } else {
3159 //
3160 // All HOB variables have been flushed in flash.
3161 //
3162 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
3163 if (!AtRuntime ()) {
3164 FreePool ((VOID *) VariableStoreHeader);
3165 }
3166 }
3167 }
3168
3169 }
3170
3171 /**
3172 Initializes variable write service after FTW was ready.
3173
3174 @retval EFI_SUCCESS Function successfully executed.
3175 @retval Others Fail to initialize the variable service.
3176
3177 **/
3178 EFI_STATUS
3179 VariableWriteServiceInitialize (
3180 VOID
3181 )
3182 {
3183 EFI_STATUS Status;
3184 VARIABLE_STORE_HEADER *VariableStoreHeader;
3185 UINTN Index;
3186 UINT8 Data;
3187 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3188 EFI_PHYSICAL_ADDRESS NvStorageBase;
3189
3190 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3191 if (NvStorageBase == 0) {
3192 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3193 }
3194 VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength);
3195
3196 //
3197 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
3198 //
3199 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3200 VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
3201
3202 //
3203 // Check if the free area is really free.
3204 //
3205 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
3206 Data = ((UINT8 *) mNvVariableCache)[Index];
3207 if (Data != 0xff) {
3208 //
3209 // There must be something wrong in variable store, do reclaim operation.
3210 //
3211 Status = Reclaim (
3212 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3213 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3214 FALSE,
3215 NULL,
3216 NULL,
3217 0
3218 );
3219 if (EFI_ERROR (Status)) {
3220 return Status;
3221 }
3222 break;
3223 }
3224 }
3225
3226 FlushHobVariableToFlash (NULL, NULL);
3227
3228 return EFI_SUCCESS;
3229 }
3230
3231
3232 /**
3233 Initializes variable store area for non-volatile and volatile variable.
3234
3235 @retval EFI_SUCCESS Function successfully executed.
3236 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3237
3238 **/
3239 EFI_STATUS
3240 VariableCommonInitialize (
3241 VOID
3242 )
3243 {
3244 EFI_STATUS Status;
3245 VARIABLE_STORE_HEADER *VolatileVariableStore;
3246 VARIABLE_STORE_HEADER *VariableStoreHeader;
3247 UINT64 VariableStoreLength;
3248 UINTN ScratchSize;
3249 EFI_HOB_GUID_TYPE *GuidHob;
3250
3251 //
3252 // Allocate runtime memory for variable driver global structure.
3253 //
3254 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
3255 if (mVariableModuleGlobal == NULL) {
3256 return EFI_OUT_OF_RESOURCES;
3257 }
3258
3259 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
3260
3261 //
3262 // Get HOB variable store.
3263 //
3264 GuidHob = GetFirstGuidHob (&gEfiVariableGuid);
3265 if (GuidHob != NULL) {
3266 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
3267 VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE));
3268 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
3269 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
3270 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
3271 FreePool (mVariableModuleGlobal);
3272 return EFI_OUT_OF_RESOURCES;
3273 }
3274 } else {
3275 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
3276 }
3277 }
3278
3279 //
3280 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
3281 //
3282 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
3283 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
3284 if (VolatileVariableStore == NULL) {
3285 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3286 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3287 }
3288 FreePool (mVariableModuleGlobal);
3289 return EFI_OUT_OF_RESOURCES;
3290 }
3291
3292 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
3293
3294 //
3295 // Initialize Variable Specific Data.
3296 //
3297 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
3298 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
3299
3300 CopyGuid (&VolatileVariableStore->Signature, &gEfiVariableGuid);
3301 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
3302 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
3303 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
3304 VolatileVariableStore->Reserved = 0;
3305 VolatileVariableStore->Reserved1 = 0;
3306
3307 //
3308 // Init non-volatile variable store.
3309 //
3310 Status = InitNonVolatileVariableStore ();
3311 if (EFI_ERROR (Status)) {
3312 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3313 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3314 }
3315 FreePool (mVariableModuleGlobal);
3316 FreePool (VolatileVariableStore);
3317 }
3318
3319 return Status;
3320 }
3321
3322
3323 /**
3324 Get the proper fvb handle and/or fvb protocol by the given Flash address.
3325
3326 @param[in] Address The Flash address.
3327 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
3328 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
3329
3330 **/
3331 EFI_STATUS
3332 GetFvbInfoByAddress (
3333 IN EFI_PHYSICAL_ADDRESS Address,
3334 OUT EFI_HANDLE *FvbHandle OPTIONAL,
3335 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
3336 )
3337 {
3338 EFI_STATUS Status;
3339 EFI_HANDLE *HandleBuffer;
3340 UINTN HandleCount;
3341 UINTN Index;
3342 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
3343 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
3344 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
3345 EFI_FVB_ATTRIBUTES_2 Attributes;
3346
3347 Fvb = NULL;
3348 HandleBuffer = NULL;
3349
3350 //
3351 // Get all FVB handles.
3352 //
3353 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
3354 if (EFI_ERROR (Status)) {
3355 return EFI_NOT_FOUND;
3356 }
3357
3358 //
3359 // Get the FVB to access variable store.
3360 //
3361 Fvb = NULL;
3362 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
3363 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
3364 if (EFI_ERROR (Status)) {
3365 Status = EFI_NOT_FOUND;
3366 break;
3367 }
3368
3369 //
3370 // Ensure this FVB protocol supported Write operation.
3371 //
3372 Status = Fvb->GetAttributes (Fvb, &Attributes);
3373 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
3374 continue;
3375 }
3376
3377 //
3378 // Compare the address and select the right one.
3379 //
3380 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
3381 if (EFI_ERROR (Status)) {
3382 continue;
3383 }
3384
3385 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
3386 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
3387 if (FvbHandle != NULL) {
3388 *FvbHandle = HandleBuffer[Index];
3389 }
3390 if (FvbProtocol != NULL) {
3391 *FvbProtocol = Fvb;
3392 }
3393 Status = EFI_SUCCESS;
3394 break;
3395 }
3396 }
3397 FreePool (HandleBuffer);
3398
3399 if (Fvb == NULL) {
3400 Status = EFI_NOT_FOUND;
3401 }
3402
3403 return Status;
3404 }
3405