MdeModulePkg Variable: Abstract GetHobVariableStore function
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2 The common variable operation routines shared by DXE_RUNTIME variable
3 module and DXE_SMM variable module.
4
5 Caution: This module requires additional review when modified.
6 This driver will have external input - variable data. They may be input in SMM mode.
7 This external input must be validated carefully to avoid security issue like
8 buffer overflow, integer overflow.
9
10 VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
11 They need check input parameter.
12
13 VariableServiceGetVariable() and VariableServiceSetVariable() are external API
14 to receive datasize and data buffer. The size should be checked carefully.
15
16 VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
17 integer overflow. It should also check attribute to avoid authentication bypass.
18
19 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
20 (C) Copyright 2015-2018 Hewlett Packard Enterprise Development LP<BR>
21 This program and the accompanying materials
22 are licensed and made available under the terms and conditions of the BSD License
23 which accompanies this distribution. The full text of the license may be found at
24 http://opensource.org/licenses/bsd-license.php
25
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
28
29 **/
30
31 #include "Variable.h"
32
33 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
34
35 ///
36 /// Define a memory cache that improves the search performance for a variable.
37 ///
38 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
39
40 ///
41 /// Memory cache of Fv Header.
42 ///
43 EFI_FIRMWARE_VOLUME_HEADER *mNvFvHeaderCache = NULL;
44
45 ///
46 /// The memory entry used for variable statistics data.
47 ///
48 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
49
50 ///
51 /// The flag to indicate whether the platform has left the DXE phase of execution.
52 ///
53 BOOLEAN mEndOfDxe = FALSE;
54
55 ///
56 /// It indicates the var check request source.
57 /// In the implementation, DXE is regarded as untrusted, and SMM is trusted.
58 ///
59 VAR_CHECK_REQUEST_SOURCE mRequestSource = VarCheckFromUntrusted;
60
61 //
62 // It will record the current boot error flag before EndOfDxe.
63 //
64 VAR_ERROR_FLAG mCurrentBootVarErrFlag = VAR_ERROR_FLAG_NO_ERROR;
65
66 VARIABLE_ENTRY_PROPERTY mVariableEntryProperty[] = {
67 {
68 &gEdkiiVarErrorFlagGuid,
69 VAR_ERROR_FLAG_NAME,
70 {
71 VAR_CHECK_VARIABLE_PROPERTY_REVISION,
72 VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY,
73 VARIABLE_ATTRIBUTE_NV_BS_RT,
74 sizeof (VAR_ERROR_FLAG),
75 sizeof (VAR_ERROR_FLAG)
76 }
77 },
78 };
79
80 AUTH_VAR_LIB_CONTEXT_IN mAuthContextIn = {
81 AUTH_VAR_LIB_CONTEXT_IN_STRUCT_VERSION,
82 //
83 // StructSize, TO BE FILLED
84 //
85 0,
86 //
87 // MaxAuthVariableSize, TO BE FILLED
88 //
89 0,
90 VariableExLibFindVariable,
91 VariableExLibFindNextVariable,
92 VariableExLibUpdateVariable,
93 VariableExLibGetScratchBuffer,
94 VariableExLibCheckRemainingSpaceForConsistency,
95 VariableExLibAtRuntime,
96 };
97
98 AUTH_VAR_LIB_CONTEXT_OUT mAuthContextOut;
99
100 /**
101 Routine used to track statistical information about variable usage.
102 The data is stored in the EFI system table so it can be accessed later.
103 VariableInfo.efi can dump out the table. Only Boot Services variable
104 accesses are tracked by this code. The PcdVariableCollectStatistics
105 build flag controls if this feature is enabled.
106
107 A read that hits in the cache will have Read and Cache true for
108 the transaction. Data is allocated by this routine, but never
109 freed.
110
111 @param[in] VariableName Name of the Variable to track.
112 @param[in] VendorGuid Guid of the Variable to track.
113 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
114 @param[in] Read TRUE if GetVariable() was called.
115 @param[in] Write TRUE if SetVariable() was called.
116 @param[in] Delete TRUE if deleted via SetVariable().
117 @param[in] Cache TRUE for a cache hit.
118
119 **/
120 VOID
121 UpdateVariableInfo (
122 IN CHAR16 *VariableName,
123 IN EFI_GUID *VendorGuid,
124 IN BOOLEAN Volatile,
125 IN BOOLEAN Read,
126 IN BOOLEAN Write,
127 IN BOOLEAN Delete,
128 IN BOOLEAN Cache
129 )
130 {
131 VARIABLE_INFO_ENTRY *Entry;
132
133 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
134
135 if (AtRuntime ()) {
136 // Don't collect statistics at runtime.
137 return;
138 }
139
140 if (gVariableInfo == NULL) {
141 //
142 // On the first call allocate a entry and place a pointer to it in
143 // the EFI System Table.
144 //
145 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
146 ASSERT (gVariableInfo != NULL);
147
148 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
149 gVariableInfo->Name = AllocateZeroPool (StrSize (VariableName));
150 ASSERT (gVariableInfo->Name != NULL);
151 StrCpyS (gVariableInfo->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
152 gVariableInfo->Volatile = Volatile;
153 }
154
155
156 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
157 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
158 if (StrCmp (VariableName, Entry->Name) == 0) {
159 if (Read) {
160 Entry->ReadCount++;
161 }
162 if (Write) {
163 Entry->WriteCount++;
164 }
165 if (Delete) {
166 Entry->DeleteCount++;
167 }
168 if (Cache) {
169 Entry->CacheCount++;
170 }
171
172 return;
173 }
174 }
175
176 if (Entry->Next == NULL) {
177 //
178 // If the entry is not in the table add it.
179 // Next iteration of the loop will fill in the data.
180 //
181 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
182 ASSERT (Entry->Next != NULL);
183
184 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
185 Entry->Next->Name = AllocateZeroPool (StrSize (VariableName));
186 ASSERT (Entry->Next->Name != NULL);
187 StrCpyS (Entry->Next->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
188 Entry->Next->Volatile = Volatile;
189 }
190
191 }
192 }
193 }
194
195
196 /**
197
198 This code checks if variable header is valid or not.
199
200 @param Variable Pointer to the Variable Header.
201 @param VariableStoreEnd Pointer to the Variable Store End.
202
203 @retval TRUE Variable header is valid.
204 @retval FALSE Variable header is not valid.
205
206 **/
207 BOOLEAN
208 IsValidVariableHeader (
209 IN VARIABLE_HEADER *Variable,
210 IN VARIABLE_HEADER *VariableStoreEnd
211 )
212 {
213 if ((Variable == NULL) || (Variable >= VariableStoreEnd) || (Variable->StartId != VARIABLE_DATA)) {
214 //
215 // Variable is NULL or has reached the end of variable store,
216 // or the StartId is not correct.
217 //
218 return FALSE;
219 }
220
221 return TRUE;
222 }
223
224
225 /**
226
227 This function writes data to the FWH at the correct LBA even if the LBAs
228 are fragmented.
229
230 @param Global Pointer to VARAIBLE_GLOBAL structure.
231 @param Volatile Point out the Variable is Volatile or Non-Volatile.
232 @param SetByIndex TRUE if target pointer is given as index.
233 FALSE if target pointer is absolute.
234 @param Fvb Pointer to the writable FVB protocol.
235 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
236 structure.
237 @param DataSize Size of data to be written.
238 @param Buffer Pointer to the buffer from which data is written.
239
240 @retval EFI_INVALID_PARAMETER Parameters not valid.
241 @retval EFI_UNSUPPORTED Fvb is a NULL for Non-Volatile variable update.
242 @retval EFI_OUT_OF_RESOURCES The remaining size is not enough.
243 @retval EFI_SUCCESS Variable store successfully updated.
244
245 **/
246 EFI_STATUS
247 UpdateVariableStore (
248 IN VARIABLE_GLOBAL *Global,
249 IN BOOLEAN Volatile,
250 IN BOOLEAN SetByIndex,
251 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
252 IN UINTN DataPtrIndex,
253 IN UINT32 DataSize,
254 IN UINT8 *Buffer
255 )
256 {
257 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
258 UINTN BlockIndex2;
259 UINTN LinearOffset;
260 UINTN CurrWriteSize;
261 UINTN CurrWritePtr;
262 UINT8 *CurrBuffer;
263 EFI_LBA LbaNumber;
264 UINTN Size;
265 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
266 VARIABLE_STORE_HEADER *VolatileBase;
267 EFI_PHYSICAL_ADDRESS FvVolHdr;
268 EFI_PHYSICAL_ADDRESS DataPtr;
269 EFI_STATUS Status;
270
271 FwVolHeader = NULL;
272 DataPtr = DataPtrIndex;
273
274 //
275 // Check if the Data is Volatile.
276 //
277 if (!Volatile) {
278 if (Fvb == NULL) {
279 return EFI_UNSUPPORTED;
280 }
281 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
282 ASSERT_EFI_ERROR (Status);
283
284 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
285 //
286 // Data Pointer should point to the actual Address where data is to be
287 // written.
288 //
289 if (SetByIndex) {
290 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
291 }
292
293 if ((DataPtr + DataSize) > ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
294 return EFI_OUT_OF_RESOURCES;
295 }
296 } else {
297 //
298 // Data Pointer should point to the actual Address where data is to be
299 // written.
300 //
301 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
302 if (SetByIndex) {
303 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
304 }
305
306 if ((DataPtr + DataSize) > ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
307 return EFI_OUT_OF_RESOURCES;
308 }
309
310 //
311 // If Volatile Variable just do a simple mem copy.
312 //
313 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
314 return EFI_SUCCESS;
315 }
316
317 //
318 // If we are here we are dealing with Non-Volatile Variables.
319 //
320 LinearOffset = (UINTN) FwVolHeader;
321 CurrWritePtr = (UINTN) DataPtr;
322 CurrWriteSize = DataSize;
323 CurrBuffer = Buffer;
324 LbaNumber = 0;
325
326 if (CurrWritePtr < LinearOffset) {
327 return EFI_INVALID_PARAMETER;
328 }
329
330 for (PtrBlockMapEntry = mNvFvHeaderCache->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
331 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
332 //
333 // Check to see if the Variable Writes are spanning through multiple
334 // blocks.
335 //
336 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
337 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
338 Status = Fvb->Write (
339 Fvb,
340 LbaNumber,
341 (UINTN) (CurrWritePtr - LinearOffset),
342 &CurrWriteSize,
343 CurrBuffer
344 );
345 return Status;
346 } else {
347 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
348 Status = Fvb->Write (
349 Fvb,
350 LbaNumber,
351 (UINTN) (CurrWritePtr - LinearOffset),
352 &Size,
353 CurrBuffer
354 );
355 if (EFI_ERROR (Status)) {
356 return Status;
357 }
358
359 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
360 CurrBuffer = CurrBuffer + Size;
361 CurrWriteSize = CurrWriteSize - Size;
362 }
363 }
364
365 LinearOffset += PtrBlockMapEntry->Length;
366 LbaNumber++;
367 }
368 }
369
370 return EFI_SUCCESS;
371 }
372
373
374 /**
375
376 This code gets the current status of Variable Store.
377
378 @param VarStoreHeader Pointer to the Variable Store Header.
379
380 @retval EfiRaw Variable store status is raw.
381 @retval EfiValid Variable store status is valid.
382 @retval EfiInvalid Variable store status is invalid.
383
384 **/
385 VARIABLE_STORE_STATUS
386 GetVariableStoreStatus (
387 IN VARIABLE_STORE_HEADER *VarStoreHeader
388 )
389 {
390 if ((CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) ||
391 CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid)) &&
392 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
393 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
394 ) {
395
396 return EfiValid;
397 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
398 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
399 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
400 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
401 VarStoreHeader->Size == 0xffffffff &&
402 VarStoreHeader->Format == 0xff &&
403 VarStoreHeader->State == 0xff
404 ) {
405
406 return EfiRaw;
407 } else {
408 return EfiInvalid;
409 }
410 }
411
412 /**
413 This code gets the size of variable header.
414
415 @return Size of variable header in bytes in type UINTN.
416
417 **/
418 UINTN
419 GetVariableHeaderSize (
420 VOID
421 )
422 {
423 UINTN Value;
424
425 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
426 Value = sizeof (AUTHENTICATED_VARIABLE_HEADER);
427 } else {
428 Value = sizeof (VARIABLE_HEADER);
429 }
430
431 return Value;
432 }
433
434 /**
435
436 This code gets the size of name of variable.
437
438 @param Variable Pointer to the Variable Header.
439
440 @return UINTN Size of variable in bytes.
441
442 **/
443 UINTN
444 NameSizeOfVariable (
445 IN VARIABLE_HEADER *Variable
446 )
447 {
448 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
449
450 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
451 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
452 if (AuthVariable->State == (UINT8) (-1) ||
453 AuthVariable->DataSize == (UINT32) (-1) ||
454 AuthVariable->NameSize == (UINT32) (-1) ||
455 AuthVariable->Attributes == (UINT32) (-1)) {
456 return 0;
457 }
458 return (UINTN) AuthVariable->NameSize;
459 } else {
460 if (Variable->State == (UINT8) (-1) ||
461 Variable->DataSize == (UINT32) (-1) ||
462 Variable->NameSize == (UINT32) (-1) ||
463 Variable->Attributes == (UINT32) (-1)) {
464 return 0;
465 }
466 return (UINTN) Variable->NameSize;
467 }
468 }
469
470 /**
471 This code sets the size of name of variable.
472
473 @param[in] Variable Pointer to the Variable Header.
474 @param[in] NameSize Name size to set.
475
476 **/
477 VOID
478 SetNameSizeOfVariable (
479 IN VARIABLE_HEADER *Variable,
480 IN UINTN NameSize
481 )
482 {
483 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
484
485 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
486 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
487 AuthVariable->NameSize = (UINT32) NameSize;
488 } else {
489 Variable->NameSize = (UINT32) NameSize;
490 }
491 }
492
493 /**
494
495 This code gets the size of variable data.
496
497 @param Variable Pointer to the Variable Header.
498
499 @return Size of variable in bytes.
500
501 **/
502 UINTN
503 DataSizeOfVariable (
504 IN VARIABLE_HEADER *Variable
505 )
506 {
507 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
508
509 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
510 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
511 if (AuthVariable->State == (UINT8) (-1) ||
512 AuthVariable->DataSize == (UINT32) (-1) ||
513 AuthVariable->NameSize == (UINT32) (-1) ||
514 AuthVariable->Attributes == (UINT32) (-1)) {
515 return 0;
516 }
517 return (UINTN) AuthVariable->DataSize;
518 } else {
519 if (Variable->State == (UINT8) (-1) ||
520 Variable->DataSize == (UINT32) (-1) ||
521 Variable->NameSize == (UINT32) (-1) ||
522 Variable->Attributes == (UINT32) (-1)) {
523 return 0;
524 }
525 return (UINTN) Variable->DataSize;
526 }
527 }
528
529 /**
530 This code sets the size of variable data.
531
532 @param[in] Variable Pointer to the Variable Header.
533 @param[in] DataSize Data size to set.
534
535 **/
536 VOID
537 SetDataSizeOfVariable (
538 IN VARIABLE_HEADER *Variable,
539 IN UINTN DataSize
540 )
541 {
542 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
543
544 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
545 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
546 AuthVariable->DataSize = (UINT32) DataSize;
547 } else {
548 Variable->DataSize = (UINT32) DataSize;
549 }
550 }
551
552 /**
553
554 This code gets the pointer to the variable name.
555
556 @param Variable Pointer to the Variable Header.
557
558 @return Pointer to Variable Name which is Unicode encoding.
559
560 **/
561 CHAR16 *
562 GetVariableNamePtr (
563 IN VARIABLE_HEADER *Variable
564 )
565 {
566 return (CHAR16 *) ((UINTN) Variable + GetVariableHeaderSize ());
567 }
568
569 /**
570 This code gets the pointer to the variable guid.
571
572 @param Variable Pointer to the Variable Header.
573
574 @return A EFI_GUID* pointer to Vendor Guid.
575
576 **/
577 EFI_GUID *
578 GetVendorGuidPtr (
579 IN VARIABLE_HEADER *Variable
580 )
581 {
582 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
583
584 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
585 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
586 return &AuthVariable->VendorGuid;
587 } else {
588 return &Variable->VendorGuid;
589 }
590 }
591
592 /**
593
594 This code gets the pointer to the variable data.
595
596 @param Variable Pointer to the Variable Header.
597
598 @return Pointer to Variable Data.
599
600 **/
601 UINT8 *
602 GetVariableDataPtr (
603 IN VARIABLE_HEADER *Variable
604 )
605 {
606 UINTN Value;
607
608 //
609 // Be careful about pad size for alignment.
610 //
611 Value = (UINTN) GetVariableNamePtr (Variable);
612 Value += NameSizeOfVariable (Variable);
613 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
614
615 return (UINT8 *) Value;
616 }
617
618 /**
619 This code gets the variable data offset related to variable header.
620
621 @param Variable Pointer to the Variable Header.
622
623 @return Variable Data offset.
624
625 **/
626 UINTN
627 GetVariableDataOffset (
628 IN VARIABLE_HEADER *Variable
629 )
630 {
631 UINTN Value;
632
633 //
634 // Be careful about pad size for alignment
635 //
636 Value = GetVariableHeaderSize ();
637 Value += NameSizeOfVariable (Variable);
638 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
639
640 return Value;
641 }
642
643 /**
644
645 This code gets the pointer to the next variable header.
646
647 @param Variable Pointer to the Variable Header.
648
649 @return Pointer to next variable header.
650
651 **/
652 VARIABLE_HEADER *
653 GetNextVariablePtr (
654 IN VARIABLE_HEADER *Variable
655 )
656 {
657 UINTN Value;
658
659 Value = (UINTN) GetVariableDataPtr (Variable);
660 Value += DataSizeOfVariable (Variable);
661 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
662
663 //
664 // Be careful about pad size for alignment.
665 //
666 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
667 }
668
669 /**
670
671 Gets the pointer to the first variable header in given variable store area.
672
673 @param VarStoreHeader Pointer to the Variable Store Header.
674
675 @return Pointer to the first variable header.
676
677 **/
678 VARIABLE_HEADER *
679 GetStartPointer (
680 IN VARIABLE_STORE_HEADER *VarStoreHeader
681 )
682 {
683 //
684 // The end of variable store.
685 //
686 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
687 }
688
689 /**
690
691 Gets the pointer to the end of the variable storage area.
692
693 This function gets pointer to the end of the variable storage
694 area, according to the input variable store header.
695
696 @param VarStoreHeader Pointer to the Variable Store Header.
697
698 @return Pointer to the end of the variable storage area.
699
700 **/
701 VARIABLE_HEADER *
702 GetEndPointer (
703 IN VARIABLE_STORE_HEADER *VarStoreHeader
704 )
705 {
706 //
707 // The end of variable store
708 //
709 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
710 }
711
712 /**
713 Record variable error flag.
714
715 @param[in] Flag Variable error flag to record.
716 @param[in] VariableName Name of variable.
717 @param[in] VendorGuid Guid of variable.
718 @param[in] Attributes Attributes of the variable.
719 @param[in] VariableSize Size of the variable.
720
721 **/
722 VOID
723 RecordVarErrorFlag (
724 IN VAR_ERROR_FLAG Flag,
725 IN CHAR16 *VariableName,
726 IN EFI_GUID *VendorGuid,
727 IN UINT32 Attributes,
728 IN UINTN VariableSize
729 )
730 {
731 EFI_STATUS Status;
732 VARIABLE_POINTER_TRACK Variable;
733 VAR_ERROR_FLAG *VarErrFlag;
734 VAR_ERROR_FLAG TempFlag;
735
736 DEBUG_CODE (
737 DEBUG ((EFI_D_ERROR, "RecordVarErrorFlag (0x%02x) %s:%g - 0x%08x - 0x%x\n", Flag, VariableName, VendorGuid, Attributes, VariableSize));
738 if (Flag == VAR_ERROR_FLAG_SYSTEM_ERROR) {
739 if (AtRuntime ()) {
740 DEBUG ((EFI_D_ERROR, "CommonRuntimeVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonRuntimeVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
741 } else {
742 DEBUG ((EFI_D_ERROR, "CommonVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
743 }
744 } else {
745 DEBUG ((EFI_D_ERROR, "CommonMaxUserVariableSpace = 0x%x - CommonUserVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonMaxUserVariableSpace, mVariableModuleGlobal->CommonUserVariableTotalSize));
746 }
747 );
748
749 if (!mEndOfDxe) {
750 //
751 // Before EndOfDxe, just record the current boot variable error flag to local variable,
752 // and leave the variable error flag in NV flash as the last boot variable error flag.
753 // After EndOfDxe in InitializeVarErrorFlag (), the variable error flag in NV flash
754 // will be initialized to this local current boot variable error flag.
755 //
756 mCurrentBootVarErrFlag &= Flag;
757 return;
758 }
759
760 //
761 // Record error flag (it should have be initialized).
762 //
763 Status = FindVariable (
764 VAR_ERROR_FLAG_NAME,
765 &gEdkiiVarErrorFlagGuid,
766 &Variable,
767 &mVariableModuleGlobal->VariableGlobal,
768 FALSE
769 );
770 if (!EFI_ERROR (Status)) {
771 VarErrFlag = (VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr);
772 TempFlag = *VarErrFlag;
773 TempFlag &= Flag;
774 if (TempFlag == *VarErrFlag) {
775 return;
776 }
777 Status = UpdateVariableStore (
778 &mVariableModuleGlobal->VariableGlobal,
779 FALSE,
780 FALSE,
781 mVariableModuleGlobal->FvbInstance,
782 (UINTN) VarErrFlag - (UINTN) mNvVariableCache + (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
783 sizeof (TempFlag),
784 &TempFlag
785 );
786 if (!EFI_ERROR (Status)) {
787 //
788 // Update the data in NV cache.
789 //
790 *VarErrFlag = TempFlag;
791 }
792 }
793 }
794
795 /**
796 Initialize variable error flag.
797
798 Before EndOfDxe, the variable indicates the last boot variable error flag,
799 then it means the last boot variable error flag must be got before EndOfDxe.
800 After EndOfDxe, the variable indicates the current boot variable error flag,
801 then it means the current boot variable error flag must be got after EndOfDxe.
802
803 **/
804 VOID
805 InitializeVarErrorFlag (
806 VOID
807 )
808 {
809 EFI_STATUS Status;
810 VARIABLE_POINTER_TRACK Variable;
811 VAR_ERROR_FLAG Flag;
812 VAR_ERROR_FLAG VarErrFlag;
813
814 if (!mEndOfDxe) {
815 return;
816 }
817
818 Flag = mCurrentBootVarErrFlag;
819 DEBUG ((EFI_D_INFO, "Initialize variable error flag (%02x)\n", Flag));
820
821 Status = FindVariable (
822 VAR_ERROR_FLAG_NAME,
823 &gEdkiiVarErrorFlagGuid,
824 &Variable,
825 &mVariableModuleGlobal->VariableGlobal,
826 FALSE
827 );
828 if (!EFI_ERROR (Status)) {
829 VarErrFlag = *((VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr));
830 if (VarErrFlag == Flag) {
831 return;
832 }
833 }
834
835 UpdateVariable (
836 VAR_ERROR_FLAG_NAME,
837 &gEdkiiVarErrorFlagGuid,
838 &Flag,
839 sizeof (Flag),
840 VARIABLE_ATTRIBUTE_NV_BS_RT,
841 0,
842 0,
843 &Variable,
844 NULL
845 );
846 }
847
848 /**
849 Is user variable?
850
851 @param[in] Variable Pointer to variable header.
852
853 @retval TRUE User variable.
854 @retval FALSE System variable.
855
856 **/
857 BOOLEAN
858 IsUserVariable (
859 IN VARIABLE_HEADER *Variable
860 )
861 {
862 VAR_CHECK_VARIABLE_PROPERTY Property;
863
864 //
865 // Only after End Of Dxe, the variables belong to system variable are fixed.
866 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
867 // then no need to check if the variable is user variable or not specially.
868 //
869 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
870 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
871 return TRUE;
872 }
873 }
874 return FALSE;
875 }
876
877 /**
878 Calculate common user variable total size.
879
880 **/
881 VOID
882 CalculateCommonUserVariableTotalSize (
883 VOID
884 )
885 {
886 VARIABLE_HEADER *Variable;
887 VARIABLE_HEADER *NextVariable;
888 UINTN VariableSize;
889 VAR_CHECK_VARIABLE_PROPERTY Property;
890
891 //
892 // Only after End Of Dxe, the variables belong to system variable are fixed.
893 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
894 // then no need to calculate the common user variable total size specially.
895 //
896 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
897 Variable = GetStartPointer (mNvVariableCache);
898 while (IsValidVariableHeader (Variable, GetEndPointer (mNvVariableCache))) {
899 NextVariable = GetNextVariablePtr (Variable);
900 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
901 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
902 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
903 //
904 // No property, it is user variable.
905 //
906 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
907 }
908 }
909
910 Variable = NextVariable;
911 }
912 }
913 }
914
915 /**
916 Initialize variable quota.
917
918 **/
919 VOID
920 InitializeVariableQuota (
921 VOID
922 )
923 {
924 if (!mEndOfDxe) {
925 return;
926 }
927
928 InitializeVarErrorFlag ();
929 CalculateCommonUserVariableTotalSize ();
930 }
931
932 /**
933
934 Variable store garbage collection and reclaim operation.
935
936 @param[in] VariableBase Base address of variable store.
937 @param[out] LastVariableOffset Offset of last variable.
938 @param[in] IsVolatile The variable store is volatile or not;
939 if it is non-volatile, need FTW.
940 @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
941 @param[in] NewVariable Pointer to new variable.
942 @param[in] NewVariableSize New variable size.
943
944 @return EFI_SUCCESS Reclaim operation has finished successfully.
945 @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space.
946 @return Others Unexpect error happened during reclaim operation.
947
948 **/
949 EFI_STATUS
950 Reclaim (
951 IN EFI_PHYSICAL_ADDRESS VariableBase,
952 OUT UINTN *LastVariableOffset,
953 IN BOOLEAN IsVolatile,
954 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
955 IN VARIABLE_HEADER *NewVariable,
956 IN UINTN NewVariableSize
957 )
958 {
959 VARIABLE_HEADER *Variable;
960 VARIABLE_HEADER *AddedVariable;
961 VARIABLE_HEADER *NextVariable;
962 VARIABLE_HEADER *NextAddedVariable;
963 VARIABLE_STORE_HEADER *VariableStoreHeader;
964 UINT8 *ValidBuffer;
965 UINTN MaximumBufferSize;
966 UINTN VariableSize;
967 UINTN NameSize;
968 UINT8 *CurrPtr;
969 VOID *Point0;
970 VOID *Point1;
971 BOOLEAN FoundAdded;
972 EFI_STATUS Status;
973 UINTN CommonVariableTotalSize;
974 UINTN CommonUserVariableTotalSize;
975 UINTN HwErrVariableTotalSize;
976 VARIABLE_HEADER *UpdatingVariable;
977 VARIABLE_HEADER *UpdatingInDeletedTransition;
978
979 UpdatingVariable = NULL;
980 UpdatingInDeletedTransition = NULL;
981 if (UpdatingPtrTrack != NULL) {
982 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
983 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
984 }
985
986 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
987
988 CommonVariableTotalSize = 0;
989 CommonUserVariableTotalSize = 0;
990 HwErrVariableTotalSize = 0;
991
992 if (IsVolatile) {
993 //
994 // Start Pointers for the variable.
995 //
996 Variable = GetStartPointer (VariableStoreHeader);
997 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
998
999 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1000 NextVariable = GetNextVariablePtr (Variable);
1001 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
1002 Variable != UpdatingVariable &&
1003 Variable != UpdatingInDeletedTransition
1004 ) {
1005 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1006 MaximumBufferSize += VariableSize;
1007 }
1008
1009 Variable = NextVariable;
1010 }
1011
1012 if (NewVariable != NULL) {
1013 //
1014 // Add the new variable size.
1015 //
1016 MaximumBufferSize += NewVariableSize;
1017 }
1018
1019 //
1020 // Reserve the 1 Bytes with Oxff to identify the
1021 // end of the variable buffer.
1022 //
1023 MaximumBufferSize += 1;
1024 ValidBuffer = AllocatePool (MaximumBufferSize);
1025 if (ValidBuffer == NULL) {
1026 return EFI_OUT_OF_RESOURCES;
1027 }
1028 } else {
1029 //
1030 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
1031 // as the buffer to reduce SMRAM consumption for SMM variable driver.
1032 //
1033 MaximumBufferSize = mNvVariableCache->Size;
1034 ValidBuffer = (UINT8 *) mNvVariableCache;
1035 }
1036
1037 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
1038
1039 //
1040 // Copy variable store header.
1041 //
1042 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
1043 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1044
1045 //
1046 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
1047 //
1048 Variable = GetStartPointer (VariableStoreHeader);
1049 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1050 NextVariable = GetNextVariablePtr (Variable);
1051 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
1052 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1053 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1054 CurrPtr += VariableSize;
1055 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1056 HwErrVariableTotalSize += VariableSize;
1057 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1058 CommonVariableTotalSize += VariableSize;
1059 if (IsUserVariable (Variable)) {
1060 CommonUserVariableTotalSize += VariableSize;
1061 }
1062 }
1063 }
1064 Variable = NextVariable;
1065 }
1066
1067 //
1068 // Reinstall all in delete transition variables.
1069 //
1070 Variable = GetStartPointer (VariableStoreHeader);
1071 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1072 NextVariable = GetNextVariablePtr (Variable);
1073 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1074
1075 //
1076 // Buffer has cached all ADDED variable.
1077 // Per IN_DELETED variable, we have to guarantee that
1078 // no ADDED one in previous buffer.
1079 //
1080
1081 FoundAdded = FALSE;
1082 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1083 while (IsValidVariableHeader (AddedVariable, GetEndPointer ((VARIABLE_STORE_HEADER *) ValidBuffer))) {
1084 NextAddedVariable = GetNextVariablePtr (AddedVariable);
1085 NameSize = NameSizeOfVariable (AddedVariable);
1086 if (CompareGuid (GetVendorGuidPtr (AddedVariable), GetVendorGuidPtr (Variable)) &&
1087 NameSize == NameSizeOfVariable (Variable)
1088 ) {
1089 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
1090 Point1 = (VOID *) GetVariableNamePtr (Variable);
1091 if (CompareMem (Point0, Point1, NameSize) == 0) {
1092 FoundAdded = TRUE;
1093 break;
1094 }
1095 }
1096 AddedVariable = NextAddedVariable;
1097 }
1098 if (!FoundAdded) {
1099 //
1100 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
1101 //
1102 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1103 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1104 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1105 CurrPtr += VariableSize;
1106 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1107 HwErrVariableTotalSize += VariableSize;
1108 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1109 CommonVariableTotalSize += VariableSize;
1110 if (IsUserVariable (Variable)) {
1111 CommonUserVariableTotalSize += VariableSize;
1112 }
1113 }
1114 }
1115 }
1116
1117 Variable = NextVariable;
1118 }
1119
1120 //
1121 // Install the new variable if it is not NULL.
1122 //
1123 if (NewVariable != NULL) {
1124 if (((UINTN) CurrPtr - (UINTN) ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
1125 //
1126 // No enough space to store the new variable.
1127 //
1128 Status = EFI_OUT_OF_RESOURCES;
1129 goto Done;
1130 }
1131 if (!IsVolatile) {
1132 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1133 HwErrVariableTotalSize += NewVariableSize;
1134 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1135 CommonVariableTotalSize += NewVariableSize;
1136 if (IsUserVariable (NewVariable)) {
1137 CommonUserVariableTotalSize += NewVariableSize;
1138 }
1139 }
1140 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
1141 (CommonVariableTotalSize > mVariableModuleGlobal->CommonVariableSpace) ||
1142 (CommonUserVariableTotalSize > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
1143 //
1144 // No enough space to store the new variable by NV or NV+HR attribute.
1145 //
1146 Status = EFI_OUT_OF_RESOURCES;
1147 goto Done;
1148 }
1149 }
1150
1151 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
1152 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1153 if (UpdatingVariable != NULL) {
1154 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
1155 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
1156 }
1157 CurrPtr += NewVariableSize;
1158 }
1159
1160 if (IsVolatile) {
1161 //
1162 // If volatile variable store, just copy valid buffer.
1163 //
1164 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
1165 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) CurrPtr - (UINTN) ValidBuffer);
1166 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1167 Status = EFI_SUCCESS;
1168 } else {
1169 //
1170 // If non-volatile variable store, perform FTW here.
1171 //
1172 Status = FtwVariableSpace (
1173 VariableBase,
1174 (VARIABLE_STORE_HEADER *) ValidBuffer
1175 );
1176 if (!EFI_ERROR (Status)) {
1177 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1178 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
1179 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
1180 mVariableModuleGlobal->CommonUserVariableTotalSize = CommonUserVariableTotalSize;
1181 } else {
1182 mVariableModuleGlobal->HwErrVariableTotalSize = 0;
1183 mVariableModuleGlobal->CommonVariableTotalSize = 0;
1184 mVariableModuleGlobal->CommonUserVariableTotalSize = 0;
1185 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
1186 while (IsValidVariableHeader (Variable, GetEndPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase))) {
1187 NextVariable = GetNextVariablePtr (Variable);
1188 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1189 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1190 mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize;
1191 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1192 mVariableModuleGlobal->CommonVariableTotalSize += VariableSize;
1193 if (IsUserVariable (Variable)) {
1194 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
1195 }
1196 }
1197
1198 Variable = NextVariable;
1199 }
1200 *LastVariableOffset = (UINTN) Variable - (UINTN) VariableBase;
1201 }
1202 }
1203
1204 Done:
1205 if (IsVolatile) {
1206 FreePool (ValidBuffer);
1207 } else {
1208 //
1209 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
1210 //
1211 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
1212 }
1213
1214 return Status;
1215 }
1216
1217 /**
1218 Find the variable in the specified variable store.
1219
1220 @param[in] VariableName Name of the variable to be found
1221 @param[in] VendorGuid Vendor GUID to be found.
1222 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1223 check at runtime when searching variable.
1224 @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
1225
1226 @retval EFI_SUCCESS Variable found successfully
1227 @retval EFI_NOT_FOUND Variable not found
1228 **/
1229 EFI_STATUS
1230 FindVariableEx (
1231 IN CHAR16 *VariableName,
1232 IN EFI_GUID *VendorGuid,
1233 IN BOOLEAN IgnoreRtCheck,
1234 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
1235 )
1236 {
1237 VARIABLE_HEADER *InDeletedVariable;
1238 VOID *Point;
1239
1240 PtrTrack->InDeletedTransitionPtr = NULL;
1241
1242 //
1243 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1244 //
1245 InDeletedVariable = NULL;
1246
1247 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
1248 ; IsValidVariableHeader (PtrTrack->CurrPtr, PtrTrack->EndPtr)
1249 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
1250 ) {
1251 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
1252 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
1253 ) {
1254 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
1255 if (VariableName[0] == 0) {
1256 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1257 InDeletedVariable = PtrTrack->CurrPtr;
1258 } else {
1259 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1260 return EFI_SUCCESS;
1261 }
1262 } else {
1263 if (CompareGuid (VendorGuid, GetVendorGuidPtr (PtrTrack->CurrPtr))) {
1264 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
1265
1266 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
1267 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
1268 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1269 InDeletedVariable = PtrTrack->CurrPtr;
1270 } else {
1271 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1272 return EFI_SUCCESS;
1273 }
1274 }
1275 }
1276 }
1277 }
1278 }
1279 }
1280
1281 PtrTrack->CurrPtr = InDeletedVariable;
1282 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
1283 }
1284
1285
1286 /**
1287 Finds variable in storage blocks of volatile and non-volatile storage areas.
1288
1289 This code finds variable in storage blocks of volatile and non-volatile storage areas.
1290 If VariableName is an empty string, then we just return the first
1291 qualified variable without comparing VariableName and VendorGuid.
1292 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
1293 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
1294 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
1295
1296 @param[in] VariableName Name of the variable to be found.
1297 @param[in] VendorGuid Vendor GUID to be found.
1298 @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
1299 including the range searched and the target position.
1300 @param[in] Global Pointer to VARIABLE_GLOBAL structure, including
1301 base of volatile variable storage area, base of
1302 NV variable storage area, and a lock.
1303 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1304 check at runtime when searching variable.
1305
1306 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
1307 VendorGuid is NULL.
1308 @retval EFI_SUCCESS Variable successfully found.
1309 @retval EFI_NOT_FOUND Variable not found
1310
1311 **/
1312 EFI_STATUS
1313 FindVariable (
1314 IN CHAR16 *VariableName,
1315 IN EFI_GUID *VendorGuid,
1316 OUT VARIABLE_POINTER_TRACK *PtrTrack,
1317 IN VARIABLE_GLOBAL *Global,
1318 IN BOOLEAN IgnoreRtCheck
1319 )
1320 {
1321 EFI_STATUS Status;
1322 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
1323 VARIABLE_STORE_TYPE Type;
1324
1325 if (VariableName[0] != 0 && VendorGuid == NULL) {
1326 return EFI_INVALID_PARAMETER;
1327 }
1328
1329 //
1330 // 0: Volatile, 1: HOB, 2: Non-Volatile.
1331 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
1332 // make use of this mapping to implement search algorithm.
1333 //
1334 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
1335 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
1336 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
1337
1338 //
1339 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1340 //
1341 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
1342 if (VariableStoreHeader[Type] == NULL) {
1343 continue;
1344 }
1345
1346 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
1347 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
1348 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
1349
1350 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
1351 if (!EFI_ERROR (Status)) {
1352 return Status;
1353 }
1354 }
1355 return EFI_NOT_FOUND;
1356 }
1357
1358 /**
1359 Get index from supported language codes according to language string.
1360
1361 This code is used to get corresponding index in supported language codes. It can handle
1362 RFC4646 and ISO639 language tags.
1363 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
1364 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
1365
1366 For example:
1367 SupportedLang = "engfraengfra"
1368 Lang = "eng"
1369 Iso639Language = TRUE
1370 The return value is "0".
1371 Another example:
1372 SupportedLang = "en;fr;en-US;fr-FR"
1373 Lang = "fr-FR"
1374 Iso639Language = FALSE
1375 The return value is "3".
1376
1377 @param SupportedLang Platform supported language codes.
1378 @param Lang Configured language.
1379 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1380
1381 @retval The index of language in the language codes.
1382
1383 **/
1384 UINTN
1385 GetIndexFromSupportedLangCodes(
1386 IN CHAR8 *SupportedLang,
1387 IN CHAR8 *Lang,
1388 IN BOOLEAN Iso639Language
1389 )
1390 {
1391 UINTN Index;
1392 UINTN CompareLength;
1393 UINTN LanguageLength;
1394
1395 if (Iso639Language) {
1396 CompareLength = ISO_639_2_ENTRY_SIZE;
1397 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1398 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1399 //
1400 // Successfully find the index of Lang string in SupportedLang string.
1401 //
1402 Index = Index / CompareLength;
1403 return Index;
1404 }
1405 }
1406 ASSERT (FALSE);
1407 return 0;
1408 } else {
1409 //
1410 // Compare RFC4646 language code
1411 //
1412 Index = 0;
1413 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1414
1415 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1416 //
1417 // Skip ';' characters in SupportedLang
1418 //
1419 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1420 //
1421 // Determine the length of the next language code in SupportedLang
1422 //
1423 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1424
1425 if ((CompareLength == LanguageLength) &&
1426 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1427 //
1428 // Successfully find the index of Lang string in SupportedLang string.
1429 //
1430 return Index;
1431 }
1432 }
1433 ASSERT (FALSE);
1434 return 0;
1435 }
1436 }
1437
1438 /**
1439 Get language string from supported language codes according to index.
1440
1441 This code is used to get corresponding language strings in supported language codes. It can handle
1442 RFC4646 and ISO639 language tags.
1443 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1444 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1445
1446 For example:
1447 SupportedLang = "engfraengfra"
1448 Index = "1"
1449 Iso639Language = TRUE
1450 The return value is "fra".
1451 Another example:
1452 SupportedLang = "en;fr;en-US;fr-FR"
1453 Index = "1"
1454 Iso639Language = FALSE
1455 The return value is "fr".
1456
1457 @param SupportedLang Platform supported language codes.
1458 @param Index The index in supported language codes.
1459 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1460
1461 @retval The language string in the language codes.
1462
1463 **/
1464 CHAR8 *
1465 GetLangFromSupportedLangCodes (
1466 IN CHAR8 *SupportedLang,
1467 IN UINTN Index,
1468 IN BOOLEAN Iso639Language
1469 )
1470 {
1471 UINTN SubIndex;
1472 UINTN CompareLength;
1473 CHAR8 *Supported;
1474
1475 SubIndex = 0;
1476 Supported = SupportedLang;
1477 if (Iso639Language) {
1478 //
1479 // According to the index of Lang string in SupportedLang string to get the language.
1480 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1481 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1482 //
1483 CompareLength = ISO_639_2_ENTRY_SIZE;
1484 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1485 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1486
1487 } else {
1488 while (TRUE) {
1489 //
1490 // Take semicolon as delimitation, sequentially traverse supported language codes.
1491 //
1492 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1493 Supported++;
1494 }
1495 if ((*Supported == '\0') && (SubIndex != Index)) {
1496 //
1497 // Have completed the traverse, but not find corrsponding string.
1498 // This case is not allowed to happen.
1499 //
1500 ASSERT(FALSE);
1501 return NULL;
1502 }
1503 if (SubIndex == Index) {
1504 //
1505 // According to the index of Lang string in SupportedLang string to get the language.
1506 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1507 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1508 //
1509 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1510 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1511 }
1512 SubIndex++;
1513
1514 //
1515 // Skip ';' characters in Supported
1516 //
1517 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1518 }
1519 }
1520 }
1521
1522 /**
1523 Returns a pointer to an allocated buffer that contains the best matching language
1524 from a set of supported languages.
1525
1526 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1527 code types may not be mixed in a single call to this function. This function
1528 supports a variable argument list that allows the caller to pass in a prioritized
1529 list of language codes to test against all the language codes in SupportedLanguages.
1530
1531 If SupportedLanguages is NULL, then ASSERT().
1532
1533 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1534 contains a set of language codes in the format
1535 specified by Iso639Language.
1536 @param[in] Iso639Language If not zero, then all language codes are assumed to be
1537 in ISO 639-2 format. If zero, then all language
1538 codes are assumed to be in RFC 4646 language format
1539 @param[in] ... A variable argument list that contains pointers to
1540 Null-terminated ASCII strings that contain one or more
1541 language codes in the format specified by Iso639Language.
1542 The first language code from each of these language
1543 code lists is used to determine if it is an exact or
1544 close match to any of the language codes in
1545 SupportedLanguages. Close matches only apply to RFC 4646
1546 language codes, and the matching algorithm from RFC 4647
1547 is used to determine if a close match is present. If
1548 an exact or close match is found, then the matching
1549 language code from SupportedLanguages is returned. If
1550 no matches are found, then the next variable argument
1551 parameter is evaluated. The variable argument list
1552 is terminated by a NULL.
1553
1554 @retval NULL The best matching language could not be found in SupportedLanguages.
1555 @retval NULL There are not enough resources available to return the best matching
1556 language.
1557 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1558 language in SupportedLanguages.
1559
1560 **/
1561 CHAR8 *
1562 EFIAPI
1563 VariableGetBestLanguage (
1564 IN CONST CHAR8 *SupportedLanguages,
1565 IN UINTN Iso639Language,
1566 ...
1567 )
1568 {
1569 VA_LIST Args;
1570 CHAR8 *Language;
1571 UINTN CompareLength;
1572 UINTN LanguageLength;
1573 CONST CHAR8 *Supported;
1574 CHAR8 *Buffer;
1575
1576 if (SupportedLanguages == NULL) {
1577 return NULL;
1578 }
1579
1580 VA_START (Args, Iso639Language);
1581 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1582 //
1583 // Default to ISO 639-2 mode
1584 //
1585 CompareLength = 3;
1586 LanguageLength = MIN (3, AsciiStrLen (Language));
1587
1588 //
1589 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1590 //
1591 if (Iso639Language == 0) {
1592 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1593 }
1594
1595 //
1596 // Trim back the length of Language used until it is empty
1597 //
1598 while (LanguageLength > 0) {
1599 //
1600 // Loop through all language codes in SupportedLanguages
1601 //
1602 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1603 //
1604 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1605 //
1606 if (Iso639Language == 0) {
1607 //
1608 // Skip ';' characters in Supported
1609 //
1610 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1611 //
1612 // Determine the length of the next language code in Supported
1613 //
1614 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1615 //
1616 // If Language is longer than the Supported, then skip to the next language
1617 //
1618 if (LanguageLength > CompareLength) {
1619 continue;
1620 }
1621 }
1622 //
1623 // See if the first LanguageLength characters in Supported match Language
1624 //
1625 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1626 VA_END (Args);
1627
1628 Buffer = (Iso639Language != 0) ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1629 Buffer[CompareLength] = '\0';
1630 return CopyMem (Buffer, Supported, CompareLength);
1631 }
1632 }
1633
1634 if (Iso639Language != 0) {
1635 //
1636 // If ISO 639 mode, then each language can only be tested once
1637 //
1638 LanguageLength = 0;
1639 } else {
1640 //
1641 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1642 //
1643 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1644 }
1645 }
1646 }
1647 VA_END (Args);
1648
1649 //
1650 // No matches were found
1651 //
1652 return NULL;
1653 }
1654
1655 /**
1656 This function is to check if the remaining variable space is enough to set
1657 all Variables from argument list successfully. The purpose of the check
1658 is to keep the consistency of the Variables to be in variable storage.
1659
1660 Note: Variables are assumed to be in same storage.
1661 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1662 so follow the argument sequence to check the Variables.
1663
1664 @param[in] Attributes Variable attributes for Variable entries.
1665 @param[in] Marker VA_LIST style variable argument list.
1666 The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1667 A NULL terminates the list. The VariableSize of
1668 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1669 It will be changed to variable total size as output.
1670
1671 @retval TRUE Have enough variable space to set the Variables successfully.
1672 @retval FALSE No enough variable space to set the Variables successfully.
1673
1674 **/
1675 BOOLEAN
1676 EFIAPI
1677 CheckRemainingSpaceForConsistencyInternal (
1678 IN UINT32 Attributes,
1679 IN VA_LIST Marker
1680 )
1681 {
1682 EFI_STATUS Status;
1683 VA_LIST Args;
1684 VARIABLE_ENTRY_CONSISTENCY *VariableEntry;
1685 UINT64 MaximumVariableStorageSize;
1686 UINT64 RemainingVariableStorageSize;
1687 UINT64 MaximumVariableSize;
1688 UINTN TotalNeededSize;
1689 UINTN OriginalVarSize;
1690 VARIABLE_STORE_HEADER *VariableStoreHeader;
1691 VARIABLE_POINTER_TRACK VariablePtrTrack;
1692 VARIABLE_HEADER *NextVariable;
1693 UINTN VarNameSize;
1694 UINTN VarDataSize;
1695
1696 //
1697 // Non-Volatile related.
1698 //
1699 VariableStoreHeader = mNvVariableCache;
1700
1701 Status = VariableServiceQueryVariableInfoInternal (
1702 Attributes,
1703 &MaximumVariableStorageSize,
1704 &RemainingVariableStorageSize,
1705 &MaximumVariableSize
1706 );
1707 ASSERT_EFI_ERROR (Status);
1708
1709 TotalNeededSize = 0;
1710 VA_COPY (Args, Marker);
1711 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1712 while (VariableEntry != NULL) {
1713 //
1714 // Calculate variable total size.
1715 //
1716 VarNameSize = StrSize (VariableEntry->Name);
1717 VarNameSize += GET_PAD_SIZE (VarNameSize);
1718 VarDataSize = VariableEntry->VariableSize;
1719 VarDataSize += GET_PAD_SIZE (VarDataSize);
1720 VariableEntry->VariableSize = HEADER_ALIGN (GetVariableHeaderSize () + VarNameSize + VarDataSize);
1721
1722 TotalNeededSize += VariableEntry->VariableSize;
1723 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1724 }
1725 VA_END (Args);
1726
1727 if (RemainingVariableStorageSize >= TotalNeededSize) {
1728 //
1729 // Already have enough space.
1730 //
1731 return TRUE;
1732 } else if (AtRuntime ()) {
1733 //
1734 // At runtime, no reclaim.
1735 // The original variable space of Variables can't be reused.
1736 //
1737 return FALSE;
1738 }
1739
1740 VA_COPY (Args, Marker);
1741 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1742 while (VariableEntry != NULL) {
1743 //
1744 // Check if Variable[Index] has been present and get its size.
1745 //
1746 OriginalVarSize = 0;
1747 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
1748 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
1749 Status = FindVariableEx (
1750 VariableEntry->Name,
1751 VariableEntry->Guid,
1752 FALSE,
1753 &VariablePtrTrack
1754 );
1755 if (!EFI_ERROR (Status)) {
1756 //
1757 // Get size of Variable[Index].
1758 //
1759 NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr);
1760 OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr;
1761 //
1762 // Add the original size of Variable[Index] to remaining variable storage size.
1763 //
1764 RemainingVariableStorageSize += OriginalVarSize;
1765 }
1766 if (VariableEntry->VariableSize > RemainingVariableStorageSize) {
1767 //
1768 // No enough space for Variable[Index].
1769 //
1770 VA_END (Args);
1771 return FALSE;
1772 }
1773 //
1774 // Sub the (new) size of Variable[Index] from remaining variable storage size.
1775 //
1776 RemainingVariableStorageSize -= VariableEntry->VariableSize;
1777 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1778 }
1779 VA_END (Args);
1780
1781 return TRUE;
1782 }
1783
1784 /**
1785 This function is to check if the remaining variable space is enough to set
1786 all Variables from argument list successfully. The purpose of the check
1787 is to keep the consistency of the Variables to be in variable storage.
1788
1789 Note: Variables are assumed to be in same storage.
1790 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1791 so follow the argument sequence to check the Variables.
1792
1793 @param[in] Attributes Variable attributes for Variable entries.
1794 @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1795 A NULL terminates the list. The VariableSize of
1796 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1797 It will be changed to variable total size as output.
1798
1799 @retval TRUE Have enough variable space to set the Variables successfully.
1800 @retval FALSE No enough variable space to set the Variables successfully.
1801
1802 **/
1803 BOOLEAN
1804 EFIAPI
1805 CheckRemainingSpaceForConsistency (
1806 IN UINT32 Attributes,
1807 ...
1808 )
1809 {
1810 VA_LIST Marker;
1811 BOOLEAN Return;
1812
1813 VA_START (Marker, Attributes);
1814
1815 Return = CheckRemainingSpaceForConsistencyInternal (Attributes, Marker);
1816
1817 VA_END (Marker);
1818
1819 return Return;
1820 }
1821
1822 /**
1823 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1824
1825 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1826
1827 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1828 and are read-only. Therefore, in variable driver, only store the original value for other use.
1829
1830 @param[in] VariableName Name of variable.
1831
1832 @param[in] Data Variable data.
1833
1834 @param[in] DataSize Size of data. 0 means delete.
1835
1836 @retval EFI_SUCCESS The update operation is successful or ignored.
1837 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1838 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1839 @retval Others Other errors happened during the update operation.
1840
1841 **/
1842 EFI_STATUS
1843 AutoUpdateLangVariable (
1844 IN CHAR16 *VariableName,
1845 IN VOID *Data,
1846 IN UINTN DataSize
1847 )
1848 {
1849 EFI_STATUS Status;
1850 CHAR8 *BestPlatformLang;
1851 CHAR8 *BestLang;
1852 UINTN Index;
1853 UINT32 Attributes;
1854 VARIABLE_POINTER_TRACK Variable;
1855 BOOLEAN SetLanguageCodes;
1856 VARIABLE_ENTRY_CONSISTENCY VariableEntry[2];
1857
1858 //
1859 // Don't do updates for delete operation
1860 //
1861 if (DataSize == 0) {
1862 return EFI_SUCCESS;
1863 }
1864
1865 SetLanguageCodes = FALSE;
1866
1867 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1868 //
1869 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1870 //
1871 if (AtRuntime ()) {
1872 return EFI_WRITE_PROTECTED;
1873 }
1874
1875 SetLanguageCodes = TRUE;
1876
1877 //
1878 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1879 // Therefore, in variable driver, only store the original value for other use.
1880 //
1881 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1882 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1883 }
1884 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1885 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1886
1887 //
1888 // PlatformLang holds a single language from PlatformLangCodes,
1889 // so the size of PlatformLangCodes is enough for the PlatformLang.
1890 //
1891 if (mVariableModuleGlobal->PlatformLang != NULL) {
1892 FreePool (mVariableModuleGlobal->PlatformLang);
1893 }
1894 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1895 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1896
1897 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1898 //
1899 // LangCodes is a volatile variable, so it can not be updated at runtime.
1900 //
1901 if (AtRuntime ()) {
1902 return EFI_WRITE_PROTECTED;
1903 }
1904
1905 SetLanguageCodes = TRUE;
1906
1907 //
1908 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1909 // Therefore, in variable driver, only store the original value for other use.
1910 //
1911 if (mVariableModuleGlobal->LangCodes != NULL) {
1912 FreePool (mVariableModuleGlobal->LangCodes);
1913 }
1914 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1915 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1916 }
1917
1918 if (SetLanguageCodes
1919 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1920 && (mVariableModuleGlobal->LangCodes != NULL)) {
1921 //
1922 // Update Lang if PlatformLang is already set
1923 // Update PlatformLang if Lang is already set
1924 //
1925 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1926 if (!EFI_ERROR (Status)) {
1927 //
1928 // Update Lang
1929 //
1930 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1931 Data = GetVariableDataPtr (Variable.CurrPtr);
1932 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1933 } else {
1934 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1935 if (!EFI_ERROR (Status)) {
1936 //
1937 // Update PlatformLang
1938 //
1939 VariableName = EFI_LANG_VARIABLE_NAME;
1940 Data = GetVariableDataPtr (Variable.CurrPtr);
1941 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1942 } else {
1943 //
1944 // Neither PlatformLang nor Lang is set, directly return
1945 //
1946 return EFI_SUCCESS;
1947 }
1948 }
1949 }
1950
1951 Status = EFI_SUCCESS;
1952
1953 //
1954 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1955 //
1956 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1957
1958 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1959 //
1960 // Update Lang when PlatformLangCodes/LangCodes were set.
1961 //
1962 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1963 //
1964 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1965 //
1966 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1967 if (BestPlatformLang != NULL) {
1968 //
1969 // Get the corresponding index in language codes.
1970 //
1971 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1972
1973 //
1974 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1975 //
1976 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1977
1978 //
1979 // Check the variable space for both Lang and PlatformLang variable.
1980 //
1981 VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1982 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1983 VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME;
1984
1985 VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang);
1986 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1987 VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1988 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1989 //
1990 // No enough variable space to set both Lang and PlatformLang successfully.
1991 //
1992 Status = EFI_OUT_OF_RESOURCES;
1993 } else {
1994 //
1995 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1996 //
1997 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1998
1999 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
2000 ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
2001 }
2002
2003 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
2004 }
2005 }
2006
2007 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
2008 //
2009 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
2010 //
2011 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
2012 //
2013 // When setting Lang, firstly get most matched language string from supported language codes.
2014 //
2015 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
2016 if (BestLang != NULL) {
2017 //
2018 // Get the corresponding index in language codes.
2019 //
2020 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
2021
2022 //
2023 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
2024 //
2025 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
2026
2027 //
2028 // Check the variable space for both PlatformLang and Lang variable.
2029 //
2030 VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang);
2031 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
2032 VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
2033
2034 VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
2035 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
2036 VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME;
2037 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
2038 //
2039 // No enough variable space to set both PlatformLang and Lang successfully.
2040 //
2041 Status = EFI_OUT_OF_RESOURCES;
2042 } else {
2043 //
2044 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
2045 //
2046 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2047
2048 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
2049 AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
2050 }
2051
2052 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
2053 }
2054 }
2055 }
2056
2057 if (SetLanguageCodes) {
2058 //
2059 // Continue to set PlatformLangCodes or LangCodes.
2060 //
2061 return EFI_SUCCESS;
2062 } else {
2063 return Status;
2064 }
2065 }
2066
2067 /**
2068 Compare two EFI_TIME data.
2069
2070
2071 @param FirstTime A pointer to the first EFI_TIME data.
2072 @param SecondTime A pointer to the second EFI_TIME data.
2073
2074 @retval TRUE The FirstTime is not later than the SecondTime.
2075 @retval FALSE The FirstTime is later than the SecondTime.
2076
2077 **/
2078 BOOLEAN
2079 VariableCompareTimeStampInternal (
2080 IN EFI_TIME *FirstTime,
2081 IN EFI_TIME *SecondTime
2082 )
2083 {
2084 if (FirstTime->Year != SecondTime->Year) {
2085 return (BOOLEAN) (FirstTime->Year < SecondTime->Year);
2086 } else if (FirstTime->Month != SecondTime->Month) {
2087 return (BOOLEAN) (FirstTime->Month < SecondTime->Month);
2088 } else if (FirstTime->Day != SecondTime->Day) {
2089 return (BOOLEAN) (FirstTime->Day < SecondTime->Day);
2090 } else if (FirstTime->Hour != SecondTime->Hour) {
2091 return (BOOLEAN) (FirstTime->Hour < SecondTime->Hour);
2092 } else if (FirstTime->Minute != SecondTime->Minute) {
2093 return (BOOLEAN) (FirstTime->Minute < SecondTime->Minute);
2094 }
2095
2096 return (BOOLEAN) (FirstTime->Second <= SecondTime->Second);
2097 }
2098
2099 /**
2100 Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
2101 index of associated public key is needed.
2102
2103 @param[in] VariableName Name of variable.
2104 @param[in] VendorGuid Guid of variable.
2105 @param[in] Data Variable data.
2106 @param[in] DataSize Size of data. 0 means delete.
2107 @param[in] Attributes Attributes of the variable.
2108 @param[in] KeyIndex Index of associated public key.
2109 @param[in] MonotonicCount Value of associated monotonic count.
2110 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
2111 @param[in] TimeStamp Value of associated TimeStamp.
2112
2113 @retval EFI_SUCCESS The update operation is success.
2114 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
2115
2116 **/
2117 EFI_STATUS
2118 UpdateVariable (
2119 IN CHAR16 *VariableName,
2120 IN EFI_GUID *VendorGuid,
2121 IN VOID *Data,
2122 IN UINTN DataSize,
2123 IN UINT32 Attributes OPTIONAL,
2124 IN UINT32 KeyIndex OPTIONAL,
2125 IN UINT64 MonotonicCount OPTIONAL,
2126 IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
2127 IN EFI_TIME *TimeStamp OPTIONAL
2128 )
2129 {
2130 EFI_STATUS Status;
2131 VARIABLE_HEADER *NextVariable;
2132 UINTN ScratchSize;
2133 UINTN MaxDataSize;
2134 UINTN VarNameOffset;
2135 UINTN VarDataOffset;
2136 UINTN VarNameSize;
2137 UINTN VarSize;
2138 BOOLEAN Volatile;
2139 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
2140 UINT8 State;
2141 VARIABLE_POINTER_TRACK *Variable;
2142 VARIABLE_POINTER_TRACK NvVariable;
2143 VARIABLE_STORE_HEADER *VariableStoreHeader;
2144 UINTN CacheOffset;
2145 UINT8 *BufferForMerge;
2146 UINTN MergedBufSize;
2147 BOOLEAN DataReady;
2148 UINTN DataOffset;
2149 BOOLEAN IsCommonVariable;
2150 BOOLEAN IsCommonUserVariable;
2151 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
2152
2153 if (mVariableModuleGlobal->FvbInstance == NULL) {
2154 //
2155 // The FVB protocol is not ready, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
2156 //
2157 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2158 //
2159 // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2160 //
2161 DEBUG ((EFI_D_ERROR, "Update NV variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2162 return EFI_NOT_AVAILABLE_YET;
2163 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2164 //
2165 // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2166 // The authenticated variable perhaps is not initialized, just return here.
2167 //
2168 DEBUG ((EFI_D_ERROR, "Update AUTH variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2169 return EFI_NOT_AVAILABLE_YET;
2170 }
2171 }
2172
2173 //
2174 // Check if CacheVariable points to the variable in variable HOB.
2175 // If yes, let CacheVariable points to the variable in NV variable cache.
2176 //
2177 if ((CacheVariable->CurrPtr != NULL) &&
2178 (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) &&
2179 (CacheVariable->StartPtr == GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase))
2180 ) {
2181 CacheVariable->StartPtr = GetStartPointer (mNvVariableCache);
2182 CacheVariable->EndPtr = GetEndPointer (mNvVariableCache);
2183 CacheVariable->Volatile = FALSE;
2184 Status = FindVariableEx (VariableName, VendorGuid, FALSE, CacheVariable);
2185 if (CacheVariable->CurrPtr == NULL || EFI_ERROR (Status)) {
2186 //
2187 // There is no matched variable in NV variable cache.
2188 //
2189 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0)) || (Attributes == 0)) {
2190 //
2191 // It is to delete variable,
2192 // go to delete this variable in variable HOB and
2193 // try to flush other variables from HOB to flash.
2194 //
2195 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, FALSE, TRUE, FALSE);
2196 FlushHobVariableToFlash (VariableName, VendorGuid);
2197 return EFI_SUCCESS;
2198 }
2199 }
2200 }
2201
2202 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
2203 Variable = CacheVariable;
2204 } else {
2205 //
2206 // Update/Delete existing NV variable.
2207 // CacheVariable points to the variable in the memory copy of Flash area
2208 // Now let Variable points to the same variable in Flash area.
2209 //
2210 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
2211 Variable = &NvVariable;
2212 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
2213 Variable->EndPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->EndPtr - (UINTN)CacheVariable->StartPtr));
2214
2215 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
2216 if (CacheVariable->InDeletedTransitionPtr != NULL) {
2217 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
2218 } else {
2219 Variable->InDeletedTransitionPtr = NULL;
2220 }
2221 Variable->Volatile = FALSE;
2222 }
2223
2224 Fvb = mVariableModuleGlobal->FvbInstance;
2225
2226 //
2227 // Tricky part: Use scratch data area at the end of volatile variable store
2228 // as a temporary storage.
2229 //
2230 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
2231 ScratchSize = mVariableModuleGlobal->ScratchBufferSize;
2232 SetMem (NextVariable, ScratchSize, 0xff);
2233 DataReady = FALSE;
2234
2235 if (Variable->CurrPtr != NULL) {
2236 //
2237 // Update/Delete existing variable.
2238 //
2239 if (AtRuntime ()) {
2240 //
2241 // If AtRuntime and the variable is Volatile and Runtime Access,
2242 // the volatile is ReadOnly, and SetVariable should be aborted and
2243 // return EFI_WRITE_PROTECTED.
2244 //
2245 if (Variable->Volatile) {
2246 Status = EFI_WRITE_PROTECTED;
2247 goto Done;
2248 }
2249 //
2250 // Only variable that have NV attributes can be updated/deleted in Runtime.
2251 //
2252 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2253 Status = EFI_INVALID_PARAMETER;
2254 goto Done;
2255 }
2256
2257 //
2258 // Only variable that have RT attributes can be updated/deleted in Runtime.
2259 //
2260 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
2261 Status = EFI_INVALID_PARAMETER;
2262 goto Done;
2263 }
2264 }
2265
2266 //
2267 // Setting a data variable with no access, or zero DataSize attributes
2268 // causes it to be deleted.
2269 // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
2270 // not delete the variable.
2271 //
2272 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
2273 if (Variable->InDeletedTransitionPtr != NULL) {
2274 //
2275 // Both ADDED and IN_DELETED_TRANSITION variable are present,
2276 // set IN_DELETED_TRANSITION one to DELETED state first.
2277 //
2278 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2279 State = CacheVariable->InDeletedTransitionPtr->State;
2280 State &= VAR_DELETED;
2281 Status = UpdateVariableStore (
2282 &mVariableModuleGlobal->VariableGlobal,
2283 Variable->Volatile,
2284 FALSE,
2285 Fvb,
2286 (UINTN) &Variable->InDeletedTransitionPtr->State,
2287 sizeof (UINT8),
2288 &State
2289 );
2290 if (!EFI_ERROR (Status)) {
2291 if (!Variable->Volatile) {
2292 CacheVariable->InDeletedTransitionPtr->State = State;
2293 }
2294 } else {
2295 goto Done;
2296 }
2297 }
2298
2299 State = CacheVariable->CurrPtr->State;
2300 State &= VAR_DELETED;
2301
2302 Status = UpdateVariableStore (
2303 &mVariableModuleGlobal->VariableGlobal,
2304 Variable->Volatile,
2305 FALSE,
2306 Fvb,
2307 (UINTN) &Variable->CurrPtr->State,
2308 sizeof (UINT8),
2309 &State
2310 );
2311 if (!EFI_ERROR (Status)) {
2312 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
2313 if (!Variable->Volatile) {
2314 CacheVariable->CurrPtr->State = State;
2315 FlushHobVariableToFlash (VariableName, VendorGuid);
2316 }
2317 }
2318 goto Done;
2319 }
2320 //
2321 // If the variable is marked valid, and the same data has been passed in,
2322 // then return to the caller immediately.
2323 //
2324 if (DataSizeOfVariable (CacheVariable->CurrPtr) == DataSize &&
2325 (CompareMem (Data, GetVariableDataPtr (CacheVariable->CurrPtr), DataSize) == 0) &&
2326 ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
2327 (TimeStamp == NULL)) {
2328 //
2329 // Variable content unchanged and no need to update timestamp, just return.
2330 //
2331 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
2332 Status = EFI_SUCCESS;
2333 goto Done;
2334 } else if ((CacheVariable->CurrPtr->State == VAR_ADDED) ||
2335 (CacheVariable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
2336
2337 //
2338 // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable.
2339 //
2340 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
2341 //
2342 // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name.
2343 // From DataOffset of NextVariable is to save the existing variable data.
2344 //
2345 DataOffset = GetVariableDataOffset (CacheVariable->CurrPtr);
2346 BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset);
2347 CopyMem (BufferForMerge, (UINT8 *) ((UINTN) CacheVariable->CurrPtr + DataOffset), DataSizeOfVariable (CacheVariable->CurrPtr));
2348
2349 //
2350 // Set Max Auth/Non-Volatile/Volatile Variable Data Size as default MaxDataSize.
2351 //
2352 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2353 MaxDataSize = mVariableModuleGlobal->MaxAuthVariableSize - DataOffset;
2354 } else if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2355 MaxDataSize = mVariableModuleGlobal->MaxVariableSize - DataOffset;
2356 } else {
2357 MaxDataSize = mVariableModuleGlobal->MaxVolatileVariableSize - DataOffset;
2358 }
2359
2360 //
2361 // Append the new data to the end of existing data.
2362 // Max Harware error record variable data size is different from common/auth variable.
2363 //
2364 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2365 MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset;
2366 }
2367
2368 if (DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize > MaxDataSize) {
2369 //
2370 // Existing data size + new data size exceed maximum variable size limitation.
2371 //
2372 Status = EFI_INVALID_PARAMETER;
2373 goto Done;
2374 }
2375 CopyMem ((UINT8*) ((UINTN) BufferForMerge + DataSizeOfVariable (CacheVariable->CurrPtr)), Data, DataSize);
2376 MergedBufSize = DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize;
2377
2378 //
2379 // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data.
2380 //
2381 Data = BufferForMerge;
2382 DataSize = MergedBufSize;
2383 DataReady = TRUE;
2384 }
2385
2386 //
2387 // Mark the old variable as in delete transition.
2388 //
2389 State = CacheVariable->CurrPtr->State;
2390 State &= VAR_IN_DELETED_TRANSITION;
2391
2392 Status = UpdateVariableStore (
2393 &mVariableModuleGlobal->VariableGlobal,
2394 Variable->Volatile,
2395 FALSE,
2396 Fvb,
2397 (UINTN) &Variable->CurrPtr->State,
2398 sizeof (UINT8),
2399 &State
2400 );
2401 if (EFI_ERROR (Status)) {
2402 goto Done;
2403 }
2404 if (!Variable->Volatile) {
2405 CacheVariable->CurrPtr->State = State;
2406 }
2407 }
2408 } else {
2409 //
2410 // Not found existing variable. Create a new variable.
2411 //
2412
2413 if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
2414 Status = EFI_SUCCESS;
2415 goto Done;
2416 }
2417
2418 //
2419 // Make sure we are trying to create a new variable.
2420 // Setting a data variable with zero DataSize or no access attributes means to delete it.
2421 //
2422 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
2423 Status = EFI_NOT_FOUND;
2424 goto Done;
2425 }
2426
2427 //
2428 // Only variable have NV|RT attribute can be created in Runtime.
2429 //
2430 if (AtRuntime () &&
2431 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
2432 Status = EFI_INVALID_PARAMETER;
2433 goto Done;
2434 }
2435 }
2436
2437 //
2438 // Function part - create a new variable and copy the data.
2439 // Both update a variable and create a variable will come here.
2440 //
2441 NextVariable->StartId = VARIABLE_DATA;
2442 //
2443 // NextVariable->State = VAR_ADDED;
2444 //
2445 NextVariable->Reserved = 0;
2446 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
2447 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) NextVariable;
2448 AuthVariable->PubKeyIndex = KeyIndex;
2449 AuthVariable->MonotonicCount = MonotonicCount;
2450 ZeroMem (&AuthVariable->TimeStamp, sizeof (EFI_TIME));
2451
2452 if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
2453 (TimeStamp != NULL)) {
2454 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
2455 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2456 } else {
2457 //
2458 // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
2459 // when the new TimeStamp value is later than the current timestamp associated
2460 // with the variable, we need associate the new timestamp with the updated value.
2461 //
2462 if (Variable->CurrPtr != NULL) {
2463 if (VariableCompareTimeStampInternal (&(((AUTHENTICATED_VARIABLE_HEADER *) CacheVariable->CurrPtr)->TimeStamp), TimeStamp)) {
2464 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2465 }
2466 }
2467 }
2468 }
2469 }
2470
2471 //
2472 // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
2473 // Attributes bitmask parameter of a GetVariable() call.
2474 //
2475 NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
2476
2477 VarNameOffset = GetVariableHeaderSize ();
2478 VarNameSize = StrSize (VariableName);
2479 CopyMem (
2480 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
2481 VariableName,
2482 VarNameSize
2483 );
2484 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
2485
2486 //
2487 // If DataReady is TRUE, it means the variable data has been saved into
2488 // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation.
2489 //
2490 if (!DataReady) {
2491 CopyMem (
2492 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
2493 Data,
2494 DataSize
2495 );
2496 }
2497
2498 CopyMem (GetVendorGuidPtr (NextVariable), VendorGuid, sizeof (EFI_GUID));
2499 //
2500 // There will be pad bytes after Data, the NextVariable->NameSize and
2501 // NextVariable->DataSize should not include pad size so that variable
2502 // service can get actual size in GetVariable.
2503 //
2504 SetNameSizeOfVariable (NextVariable, VarNameSize);
2505 SetDataSizeOfVariable (NextVariable, DataSize);
2506
2507 //
2508 // The actual size of the variable that stores in storage should
2509 // include pad size.
2510 //
2511 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
2512 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2513 //
2514 // Create a nonvolatile variable.
2515 //
2516 Volatile = FALSE;
2517
2518 IsCommonVariable = FALSE;
2519 IsCommonUserVariable = FALSE;
2520 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) {
2521 IsCommonVariable = TRUE;
2522 IsCommonUserVariable = IsUserVariable (NextVariable);
2523 }
2524 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
2525 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
2526 || (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace))
2527 || (IsCommonVariable && AtRuntime () && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace))
2528 || (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace))) {
2529 if (AtRuntime ()) {
2530 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2531 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2532 }
2533 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace)) {
2534 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2535 }
2536 Status = EFI_OUT_OF_RESOURCES;
2537 goto Done;
2538 }
2539 //
2540 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2541 //
2542 Status = Reclaim (
2543 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2544 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2545 FALSE,
2546 Variable,
2547 NextVariable,
2548 HEADER_ALIGN (VarSize)
2549 );
2550 if (!EFI_ERROR (Status)) {
2551 //
2552 // The new variable has been integrated successfully during reclaiming.
2553 //
2554 if (Variable->CurrPtr != NULL) {
2555 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2556 CacheVariable->InDeletedTransitionPtr = NULL;
2557 }
2558 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
2559 FlushHobVariableToFlash (VariableName, VendorGuid);
2560 } else {
2561 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2562 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2563 }
2564 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace)) {
2565 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2566 }
2567 }
2568 goto Done;
2569 }
2570 //
2571 // Four steps
2572 // 1. Write variable header
2573 // 2. Set variable state to header valid
2574 // 3. Write variable data
2575 // 4. Set variable state to valid
2576 //
2577 //
2578 // Step 1:
2579 //
2580 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
2581 Status = UpdateVariableStore (
2582 &mVariableModuleGlobal->VariableGlobal,
2583 FALSE,
2584 TRUE,
2585 Fvb,
2586 mVariableModuleGlobal->NonVolatileLastVariableOffset,
2587 (UINT32) GetVariableHeaderSize (),
2588 (UINT8 *) NextVariable
2589 );
2590
2591 if (EFI_ERROR (Status)) {
2592 goto Done;
2593 }
2594
2595 //
2596 // Step 2:
2597 //
2598 NextVariable->State = VAR_HEADER_VALID_ONLY;
2599 Status = UpdateVariableStore (
2600 &mVariableModuleGlobal->VariableGlobal,
2601 FALSE,
2602 TRUE,
2603 Fvb,
2604 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2605 sizeof (UINT8),
2606 &NextVariable->State
2607 );
2608
2609 if (EFI_ERROR (Status)) {
2610 goto Done;
2611 }
2612 //
2613 // Step 3:
2614 //
2615 Status = UpdateVariableStore (
2616 &mVariableModuleGlobal->VariableGlobal,
2617 FALSE,
2618 TRUE,
2619 Fvb,
2620 mVariableModuleGlobal->NonVolatileLastVariableOffset + GetVariableHeaderSize (),
2621 (UINT32) (VarSize - GetVariableHeaderSize ()),
2622 (UINT8 *) NextVariable + GetVariableHeaderSize ()
2623 );
2624
2625 if (EFI_ERROR (Status)) {
2626 goto Done;
2627 }
2628 //
2629 // Step 4:
2630 //
2631 NextVariable->State = VAR_ADDED;
2632 Status = UpdateVariableStore (
2633 &mVariableModuleGlobal->VariableGlobal,
2634 FALSE,
2635 TRUE,
2636 Fvb,
2637 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2638 sizeof (UINT8),
2639 &NextVariable->State
2640 );
2641
2642 if (EFI_ERROR (Status)) {
2643 goto Done;
2644 }
2645
2646 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2647
2648 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
2649 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
2650 } else {
2651 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2652 if (IsCommonUserVariable) {
2653 mVariableModuleGlobal->CommonUserVariableTotalSize += HEADER_ALIGN (VarSize);
2654 }
2655 }
2656 //
2657 // update the memory copy of Flash region.
2658 //
2659 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2660 } else {
2661 //
2662 // Create a volatile variable.
2663 //
2664 Volatile = TRUE;
2665
2666 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2667 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2668 //
2669 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2670 //
2671 Status = Reclaim (
2672 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2673 &mVariableModuleGlobal->VolatileLastVariableOffset,
2674 TRUE,
2675 Variable,
2676 NextVariable,
2677 HEADER_ALIGN (VarSize)
2678 );
2679 if (!EFI_ERROR (Status)) {
2680 //
2681 // The new variable has been integrated successfully during reclaiming.
2682 //
2683 if (Variable->CurrPtr != NULL) {
2684 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2685 CacheVariable->InDeletedTransitionPtr = NULL;
2686 }
2687 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2688 }
2689 goto Done;
2690 }
2691
2692 NextVariable->State = VAR_ADDED;
2693 Status = UpdateVariableStore (
2694 &mVariableModuleGlobal->VariableGlobal,
2695 TRUE,
2696 TRUE,
2697 Fvb,
2698 mVariableModuleGlobal->VolatileLastVariableOffset,
2699 (UINT32) VarSize,
2700 (UINT8 *) NextVariable
2701 );
2702
2703 if (EFI_ERROR (Status)) {
2704 goto Done;
2705 }
2706
2707 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2708 }
2709
2710 //
2711 // Mark the old variable as deleted.
2712 //
2713 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2714 if (Variable->InDeletedTransitionPtr != NULL) {
2715 //
2716 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2717 // set IN_DELETED_TRANSITION one to DELETED state first.
2718 //
2719 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2720 State = CacheVariable->InDeletedTransitionPtr->State;
2721 State &= VAR_DELETED;
2722 Status = UpdateVariableStore (
2723 &mVariableModuleGlobal->VariableGlobal,
2724 Variable->Volatile,
2725 FALSE,
2726 Fvb,
2727 (UINTN) &Variable->InDeletedTransitionPtr->State,
2728 sizeof (UINT8),
2729 &State
2730 );
2731 if (!EFI_ERROR (Status)) {
2732 if (!Variable->Volatile) {
2733 CacheVariable->InDeletedTransitionPtr->State = State;
2734 }
2735 } else {
2736 goto Done;
2737 }
2738 }
2739
2740 State = Variable->CurrPtr->State;
2741 State &= VAR_DELETED;
2742
2743 Status = UpdateVariableStore (
2744 &mVariableModuleGlobal->VariableGlobal,
2745 Variable->Volatile,
2746 FALSE,
2747 Fvb,
2748 (UINTN) &Variable->CurrPtr->State,
2749 sizeof (UINT8),
2750 &State
2751 );
2752 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2753 CacheVariable->CurrPtr->State = State;
2754 }
2755 }
2756
2757 if (!EFI_ERROR (Status)) {
2758 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2759 if (!Volatile) {
2760 FlushHobVariableToFlash (VariableName, VendorGuid);
2761 }
2762 }
2763
2764 Done:
2765 return Status;
2766 }
2767
2768 /**
2769
2770 This code finds variable in storage blocks (Volatile or Non-Volatile).
2771
2772 Caution: This function may receive untrusted input.
2773 This function may be invoked in SMM mode, and datasize is external input.
2774 This function will do basic validation, before parse the data.
2775
2776 @param VariableName Name of Variable to be found.
2777 @param VendorGuid Variable vendor GUID.
2778 @param Attributes Attribute value of the variable found.
2779 @param DataSize Size of Data found. If size is less than the
2780 data, this value contains the required size.
2781 @param Data The buffer to return the contents of the variable. May be NULL
2782 with a zero DataSize in order to determine the size buffer needed.
2783
2784 @return EFI_INVALID_PARAMETER Invalid parameter.
2785 @return EFI_SUCCESS Find the specified variable.
2786 @return EFI_NOT_FOUND Not found.
2787 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2788
2789 **/
2790 EFI_STATUS
2791 EFIAPI
2792 VariableServiceGetVariable (
2793 IN CHAR16 *VariableName,
2794 IN EFI_GUID *VendorGuid,
2795 OUT UINT32 *Attributes OPTIONAL,
2796 IN OUT UINTN *DataSize,
2797 OUT VOID *Data OPTIONAL
2798 )
2799 {
2800 EFI_STATUS Status;
2801 VARIABLE_POINTER_TRACK Variable;
2802 UINTN VarDataSize;
2803
2804 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2805 return EFI_INVALID_PARAMETER;
2806 }
2807
2808 if (VariableName[0] == 0) {
2809 return EFI_NOT_FOUND;
2810 }
2811
2812 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2813
2814 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2815 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2816 goto Done;
2817 }
2818
2819 //
2820 // Get data size
2821 //
2822 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2823 ASSERT (VarDataSize != 0);
2824
2825 if (*DataSize >= VarDataSize) {
2826 if (Data == NULL) {
2827 Status = EFI_INVALID_PARAMETER;
2828 goto Done;
2829 }
2830
2831 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2832 if (Attributes != NULL) {
2833 *Attributes = Variable.CurrPtr->Attributes;
2834 }
2835
2836 *DataSize = VarDataSize;
2837 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2838
2839 Status = EFI_SUCCESS;
2840 goto Done;
2841 } else {
2842 *DataSize = VarDataSize;
2843 Status = EFI_BUFFER_TOO_SMALL;
2844 goto Done;
2845 }
2846
2847 Done:
2848 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2849 return Status;
2850 }
2851
2852 /**
2853 This code Finds the Next available variable.
2854
2855 Caution: This function may receive untrusted input.
2856 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
2857
2858 @param[in] VariableName Pointer to variable name.
2859 @param[in] VendorGuid Variable Vendor Guid.
2860 @param[out] VariablePtr Pointer to variable header address.
2861
2862 @retval EFI_SUCCESS The function completed successfully.
2863 @retval EFI_NOT_FOUND The next variable was not found.
2864 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while VendorGuid is NULL.
2865 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
2866 GUID of an existing variable.
2867
2868 **/
2869 EFI_STATUS
2870 EFIAPI
2871 VariableServiceGetNextVariableInternal (
2872 IN CHAR16 *VariableName,
2873 IN EFI_GUID *VendorGuid,
2874 OUT VARIABLE_HEADER **VariablePtr
2875 )
2876 {
2877 VARIABLE_STORE_TYPE Type;
2878 VARIABLE_POINTER_TRACK Variable;
2879 VARIABLE_POINTER_TRACK VariableInHob;
2880 VARIABLE_POINTER_TRACK VariablePtrTrack;
2881 EFI_STATUS Status;
2882 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2883
2884 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2885 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2886 //
2887 // For VariableName is an empty string, FindVariable() will try to find and return
2888 // the first qualified variable, and if FindVariable() returns error (EFI_NOT_FOUND)
2889 // as no any variable is found, still go to return the error (EFI_NOT_FOUND).
2890 //
2891 if (VariableName[0] != 0) {
2892 //
2893 // For VariableName is not an empty string, and FindVariable() returns error as
2894 // VariableName and VendorGuid are not a name and GUID of an existing variable,
2895 // there is no way to get next variable, follow spec to return EFI_INVALID_PARAMETER.
2896 //
2897 Status = EFI_INVALID_PARAMETER;
2898 }
2899 goto Done;
2900 }
2901
2902 if (VariableName[0] != 0) {
2903 //
2904 // If variable name is not NULL, get next variable.
2905 //
2906 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2907 }
2908
2909 //
2910 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2911 // The index and attributes mapping must be kept in this order as FindVariable
2912 // makes use of this mapping to implement search algorithm.
2913 //
2914 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2915 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2916 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2917
2918 while (TRUE) {
2919 //
2920 // Switch from Volatile to HOB, to Non-Volatile.
2921 //
2922 while (!IsValidVariableHeader (Variable.CurrPtr, Variable.EndPtr)) {
2923 //
2924 // Find current storage index
2925 //
2926 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2927 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2928 break;
2929 }
2930 }
2931 ASSERT (Type < VariableStoreTypeMax);
2932 //
2933 // Switch to next storage
2934 //
2935 for (Type++; Type < VariableStoreTypeMax; Type++) {
2936 if (VariableStoreHeader[Type] != NULL) {
2937 break;
2938 }
2939 }
2940 //
2941 // Capture the case that
2942 // 1. current storage is the last one, or
2943 // 2. no further storage
2944 //
2945 if (Type == VariableStoreTypeMax) {
2946 Status = EFI_NOT_FOUND;
2947 goto Done;
2948 }
2949 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2950 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2951 Variable.CurrPtr = Variable.StartPtr;
2952 }
2953
2954 //
2955 // Variable is found
2956 //
2957 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2958 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2959 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2960 //
2961 // If it is a IN_DELETED_TRANSITION variable,
2962 // and there is also a same ADDED one at the same time,
2963 // don't return it.
2964 //
2965 VariablePtrTrack.StartPtr = Variable.StartPtr;
2966 VariablePtrTrack.EndPtr = Variable.EndPtr;
2967 Status = FindVariableEx (
2968 GetVariableNamePtr (Variable.CurrPtr),
2969 GetVendorGuidPtr (Variable.CurrPtr),
2970 FALSE,
2971 &VariablePtrTrack
2972 );
2973 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2974 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2975 continue;
2976 }
2977 }
2978
2979 //
2980 // Don't return NV variable when HOB overrides it
2981 //
2982 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2983 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2984 ) {
2985 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2986 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2987 Status = FindVariableEx (
2988 GetVariableNamePtr (Variable.CurrPtr),
2989 GetVendorGuidPtr (Variable.CurrPtr),
2990 FALSE,
2991 &VariableInHob
2992 );
2993 if (!EFI_ERROR (Status)) {
2994 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2995 continue;
2996 }
2997 }
2998
2999 *VariablePtr = Variable.CurrPtr;
3000 Status = EFI_SUCCESS;
3001 goto Done;
3002 }
3003 }
3004
3005 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
3006 }
3007
3008 Done:
3009 return Status;
3010 }
3011
3012 /**
3013
3014 This code Finds the Next available variable.
3015
3016 Caution: This function may receive untrusted input.
3017 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3018
3019 @param VariableNameSize The size of the VariableName buffer. The size must be large
3020 enough to fit input string supplied in VariableName buffer.
3021 @param VariableName Pointer to variable name.
3022 @param VendorGuid Variable Vendor Guid.
3023
3024 @retval EFI_SUCCESS The function completed successfully.
3025 @retval EFI_NOT_FOUND The next variable was not found.
3026 @retval EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
3027 VariableNameSize has been updated with the size needed to complete the request.
3028 @retval EFI_INVALID_PARAMETER VariableNameSize is NULL.
3029 @retval EFI_INVALID_PARAMETER VariableName is NULL.
3030 @retval EFI_INVALID_PARAMETER VendorGuid is NULL.
3031 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
3032 GUID of an existing variable.
3033 @retval EFI_INVALID_PARAMETER Null-terminator is not found in the first VariableNameSize bytes of
3034 the input VariableName buffer.
3035
3036 **/
3037 EFI_STATUS
3038 EFIAPI
3039 VariableServiceGetNextVariableName (
3040 IN OUT UINTN *VariableNameSize,
3041 IN OUT CHAR16 *VariableName,
3042 IN OUT EFI_GUID *VendorGuid
3043 )
3044 {
3045 EFI_STATUS Status;
3046 UINTN MaxLen;
3047 UINTN VarNameSize;
3048 VARIABLE_HEADER *VariablePtr;
3049
3050 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
3051 return EFI_INVALID_PARAMETER;
3052 }
3053
3054 //
3055 // Calculate the possible maximum length of name string, including the Null terminator.
3056 //
3057 MaxLen = *VariableNameSize / sizeof (CHAR16);
3058 if ((MaxLen == 0) || (StrnLenS (VariableName, MaxLen) == MaxLen)) {
3059 //
3060 // Null-terminator is not found in the first VariableNameSize bytes of the input VariableName buffer,
3061 // follow spec to return EFI_INVALID_PARAMETER.
3062 //
3063 return EFI_INVALID_PARAMETER;
3064 }
3065
3066 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3067
3068 Status = VariableServiceGetNextVariableInternal (VariableName, VendorGuid, &VariablePtr);
3069 if (!EFI_ERROR (Status)) {
3070 VarNameSize = NameSizeOfVariable (VariablePtr);
3071 ASSERT (VarNameSize != 0);
3072 if (VarNameSize <= *VariableNameSize) {
3073 CopyMem (VariableName, GetVariableNamePtr (VariablePtr), VarNameSize);
3074 CopyMem (VendorGuid, GetVendorGuidPtr (VariablePtr), sizeof (EFI_GUID));
3075 Status = EFI_SUCCESS;
3076 } else {
3077 Status = EFI_BUFFER_TOO_SMALL;
3078 }
3079
3080 *VariableNameSize = VarNameSize;
3081 }
3082
3083 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);