]> git.proxmox.com Git - mirror_edk2.git/blob - MdePkg/Library/BaseLib/BaseLibInternals.h
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / MdePkg / Library / BaseLib / BaseLibInternals.h
1 /** @file
2 Declaration of internal functions in BaseLib.
3
4 Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
5 SPDX-License-Identifier: BSD-2-Clause-Patent
6
7 **/
8
9 #ifndef __BASE_LIB_INTERNALS__
10 #define __BASE_LIB_INTERNALS__
11
12 #include <Base.h>
13 #include <Library/BaseLib.h>
14 #include <Library/BaseMemoryLib.h>
15 #include <Library/DebugLib.h>
16 #include <Library/PcdLib.h>
17
18 //
19 // Math functions
20 //
21
22 /**
23 Shifts a 64-bit integer left between 0 and 63 bits. The low bits
24 are filled with zeros. The shifted value is returned.
25
26 This function shifts the 64-bit value Operand to the left by Count bits. The
27 low Count bits are set to zero. The shifted value is returned.
28
29 @param Operand The 64-bit operand to shift left.
30 @param Count The number of bits to shift left.
31
32 @return Operand << Count
33
34 **/
35 UINT64
36 EFIAPI
37 InternalMathLShiftU64 (
38 IN UINT64 Operand,
39 IN UINTN Count
40 );
41
42 /**
43 Shifts a 64-bit integer right between 0 and 63 bits. The high bits
44 are filled with zeros. The shifted value is returned.
45
46 This function shifts the 64-bit value Operand to the right by Count bits. The
47 high Count bits are set to zero. The shifted value is returned.
48
49 @param Operand The 64-bit operand to shift right.
50 @param Count The number of bits to shift right.
51
52 @return Operand >> Count
53
54 **/
55 UINT64
56 EFIAPI
57 InternalMathRShiftU64 (
58 IN UINT64 Operand,
59 IN UINTN Count
60 );
61
62 /**
63 Shifts a 64-bit integer right between 0 and 63 bits. The high bits
64 are filled with original integer's bit 63. The shifted value is returned.
65
66 This function shifts the 64-bit value Operand to the right by Count bits. The
67 high Count bits are set to bit 63 of Operand. The shifted value is returned.
68
69 @param Operand The 64-bit operand to shift right.
70 @param Count The number of bits to shift right.
71
72 @return Operand arithmetically shifted right by Count
73
74 **/
75 UINT64
76 EFIAPI
77 InternalMathARShiftU64 (
78 IN UINT64 Operand,
79 IN UINTN Count
80 );
81
82 /**
83 Rotates a 64-bit integer left between 0 and 63 bits, filling
84 the low bits with the high bits that were rotated.
85
86 This function rotates the 64-bit value Operand to the left by Count bits. The
87 low Count bits are filled with the high Count bits of Operand. The rotated
88 value is returned.
89
90 @param Operand The 64-bit operand to rotate left.
91 @param Count The number of bits to rotate left.
92
93 @return Operand <<< Count
94
95 **/
96 UINT64
97 EFIAPI
98 InternalMathLRotU64 (
99 IN UINT64 Operand,
100 IN UINTN Count
101 );
102
103 /**
104 Rotates a 64-bit integer right between 0 and 63 bits, filling
105 the high bits with the high low bits that were rotated.
106
107 This function rotates the 64-bit value Operand to the right by Count bits.
108 The high Count bits are filled with the low Count bits of Operand. The rotated
109 value is returned.
110
111 @param Operand The 64-bit operand to rotate right.
112 @param Count The number of bits to rotate right.
113
114 @return Operand >>> Count
115
116 **/
117 UINT64
118 EFIAPI
119 InternalMathRRotU64 (
120 IN UINT64 Operand,
121 IN UINTN Count
122 );
123
124 /**
125 Switches the endianess of a 64-bit integer.
126
127 This function swaps the bytes in a 64-bit unsigned value to switch the value
128 from little endian to big endian or vice versa. The byte swapped value is
129 returned.
130
131 @param Operand A 64-bit unsigned value.
132
133 @return The byte swapped Operand.
134
135 **/
136 UINT64
137 EFIAPI
138 InternalMathSwapBytes64 (
139 IN UINT64 Operand
140 );
141
142 /**
143 Multiplies a 64-bit unsigned integer by a 32-bit unsigned integer
144 and generates a 64-bit unsigned result.
145
146 This function multiplies the 64-bit unsigned value Multiplicand by the 32-bit
147 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
148 bit unsigned result is returned.
149
150 @param Multiplicand A 64-bit unsigned value.
151 @param Multiplier A 32-bit unsigned value.
152
153 @return Multiplicand * Multiplier
154
155 **/
156 UINT64
157 EFIAPI
158 InternalMathMultU64x32 (
159 IN UINT64 Multiplicand,
160 IN UINT32 Multiplier
161 );
162
163 /**
164 Multiplies a 64-bit unsigned integer by a 64-bit unsigned integer
165 and generates a 64-bit unsigned result.
166
167 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit
168 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
169 bit unsigned result is returned.
170
171 @param Multiplicand A 64-bit unsigned value.
172 @param Multiplier A 64-bit unsigned value.
173
174 @return Multiplicand * Multiplier
175
176 **/
177 UINT64
178 EFIAPI
179 InternalMathMultU64x64 (
180 IN UINT64 Multiplicand,
181 IN UINT64 Multiplier
182 );
183
184 /**
185 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and
186 generates a 64-bit unsigned result.
187
188 This function divides the 64-bit unsigned value Dividend by the 32-bit
189 unsigned value Divisor and generates a 64-bit unsigned quotient. This
190 function returns the 64-bit unsigned quotient.
191
192 @param Dividend A 64-bit unsigned value.
193 @param Divisor A 32-bit unsigned value.
194
195 @return Dividend / Divisor
196
197 **/
198 UINT64
199 EFIAPI
200 InternalMathDivU64x32 (
201 IN UINT64 Dividend,
202 IN UINT32 Divisor
203 );
204
205 /**
206 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and
207 generates a 32-bit unsigned remainder.
208
209 This function divides the 64-bit unsigned value Dividend by the 32-bit
210 unsigned value Divisor and generates a 32-bit remainder. This function
211 returns the 32-bit unsigned remainder.
212
213 @param Dividend A 64-bit unsigned value.
214 @param Divisor A 32-bit unsigned value.
215
216 @return Dividend % Divisor
217
218 **/
219 UINT32
220 EFIAPI
221 InternalMathModU64x32 (
222 IN UINT64 Dividend,
223 IN UINT32 Divisor
224 );
225
226 /**
227 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and
228 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.
229
230 This function divides the 64-bit unsigned value Dividend by the 32-bit
231 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
232 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.
233 This function returns the 64-bit unsigned quotient.
234
235 @param Dividend A 64-bit unsigned value.
236 @param Divisor A 32-bit unsigned value.
237 @param Remainder A pointer to a 32-bit unsigned value. This parameter is
238 optional and may be NULL.
239
240 @return Dividend / Divisor
241
242 **/
243 UINT64
244 EFIAPI
245 InternalMathDivRemU64x32 (
246 IN UINT64 Dividend,
247 IN UINT32 Divisor,
248 OUT UINT32 *Remainder OPTIONAL
249 );
250
251 /**
252 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and
253 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.
254
255 This function divides the 64-bit unsigned value Dividend by the 64-bit
256 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
257 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.
258 This function returns the 64-bit unsigned quotient.
259
260 @param Dividend A 64-bit unsigned value.
261 @param Divisor A 64-bit unsigned value.
262 @param Remainder A pointer to a 64-bit unsigned value. This parameter is
263 optional and may be NULL.
264
265 @return Dividend / Divisor
266
267 **/
268 UINT64
269 EFIAPI
270 InternalMathDivRemU64x64 (
271 IN UINT64 Dividend,
272 IN UINT64 Divisor,
273 OUT UINT64 *Remainder OPTIONAL
274 );
275
276 /**
277 Divides a 64-bit signed integer by a 64-bit signed integer and
278 generates a 64-bit signed result and an optional 64-bit signed remainder.
279
280 This function divides the 64-bit signed value Dividend by the 64-bit
281 signed value Divisor and generates a 64-bit signed quotient. If Remainder
282 is not NULL, then the 64-bit signed remainder is returned in Remainder.
283 This function returns the 64-bit signed quotient.
284
285 @param Dividend A 64-bit signed value.
286 @param Divisor A 64-bit signed value.
287 @param Remainder A pointer to a 64-bit signed value. This parameter is
288 optional and may be NULL.
289
290 @return Dividend / Divisor
291
292 **/
293 INT64
294 EFIAPI
295 InternalMathDivRemS64x64 (
296 IN INT64 Dividend,
297 IN INT64 Divisor,
298 OUT INT64 *Remainder OPTIONAL
299 );
300
301 /**
302 Transfers control to a function starting with a new stack.
303
304 Transfers control to the function specified by EntryPoint using the
305 new stack specified by NewStack and passing in the parameters specified
306 by Context1 and Context2. Context1 and Context2 are optional and may
307 be NULL. The function EntryPoint must never return.
308 Marker will be ignored on IA-32, x64, and EBC.
309 IPF CPUs expect one additional parameter of type VOID * that specifies
310 the new backing store pointer.
311
312 If EntryPoint is NULL, then ASSERT().
313 If NewStack is NULL, then ASSERT().
314
315 @param EntryPoint A pointer to function to call with the new stack.
316 @param Context1 A pointer to the context to pass into the EntryPoint
317 function.
318 @param Context2 A pointer to the context to pass into the EntryPoint
319 function.
320 @param NewStack A pointer to the new stack to use for the EntryPoint
321 function.
322 @param Marker VA_LIST marker for the variable argument list.
323
324 **/
325 VOID
326 EFIAPI
327 InternalSwitchStack (
328 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
329 IN VOID *Context1, OPTIONAL
330 IN VOID *Context2, OPTIONAL
331 IN VOID *NewStack,
332 IN VA_LIST Marker
333 );
334
335
336 /**
337 Worker function that returns a bit field from Operand.
338
339 Returns the bitfield specified by the StartBit and the EndBit from Operand.
340
341 @param Operand Operand on which to perform the bitfield operation.
342 @param StartBit The ordinal of the least significant bit in the bit field.
343 @param EndBit The ordinal of the most significant bit in the bit field.
344
345 @return The bit field read.
346
347 **/
348 UINTN
349 EFIAPI
350 BitFieldReadUint (
351 IN UINTN Operand,
352 IN UINTN StartBit,
353 IN UINTN EndBit
354 );
355
356
357 /**
358 Worker function that reads a bit field from Operand, performs a bitwise OR,
359 and returns the result.
360
361 Performs a bitwise OR between the bit field specified by StartBit and EndBit
362 in Operand and the value specified by AndData. All other bits in Operand are
363 preserved. The new value is returned.
364
365 @param Operand Operand on which to perform the bitfield operation.
366 @param StartBit The ordinal of the least significant bit in the bit field.
367 @param EndBit The ordinal of the most significant bit in the bit field.
368 @param OrData The value to OR with the read value from the value
369
370 @return The new value.
371
372 **/
373 UINTN
374 EFIAPI
375 BitFieldOrUint (
376 IN UINTN Operand,
377 IN UINTN StartBit,
378 IN UINTN EndBit,
379 IN UINTN OrData
380 );
381
382
383 /**
384 Worker function that reads a bit field from Operand, performs a bitwise AND,
385 and returns the result.
386
387 Performs a bitwise AND between the bit field specified by StartBit and EndBit
388 in Operand and the value specified by AndData. All other bits in Operand are
389 preserved. The new value is returned.
390
391 @param Operand Operand on which to perform the bitfield operation.
392 @param StartBit The ordinal of the least significant bit in the bit field.
393 @param EndBit The ordinal of the most significant bit in the bit field.
394 @param AndData The value to And with the read value from the value
395
396 @return The new value.
397
398 **/
399 UINTN
400 EFIAPI
401 BitFieldAndUint (
402 IN UINTN Operand,
403 IN UINTN StartBit,
404 IN UINTN EndBit,
405 IN UINTN AndData
406 );
407
408
409 /**
410 Worker function that checks ASSERT condition for JumpBuffer
411
412 Checks ASSERT condition for JumpBuffer.
413
414 If JumpBuffer is NULL, then ASSERT().
415 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
416
417 @param JumpBuffer A pointer to CPU context buffer.
418
419 **/
420 VOID
421 EFIAPI
422 InternalAssertJumpBuffer (
423 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer
424 );
425
426
427 /**
428 Restores the CPU context that was saved with SetJump().
429
430 Restores the CPU context from the buffer specified by JumpBuffer.
431 This function never returns to the caller.
432 Instead is resumes execution based on the state of JumpBuffer.
433
434 @param JumpBuffer A pointer to CPU context buffer.
435 @param Value The value to return when the SetJump() context is restored.
436
437 **/
438 VOID
439 EFIAPI
440 InternalLongJump (
441 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,
442 IN UINTN Value
443 );
444
445
446 /**
447 Check if a Unicode character is a decimal character.
448
449 This internal function checks if a Unicode character is a
450 decimal character. The valid decimal character is from
451 L'0' to L'9'.
452
453 @param Char The character to check against.
454
455 @retval TRUE If the Char is a decmial character.
456 @retval FALSE If the Char is not a decmial character.
457
458 **/
459 BOOLEAN
460 EFIAPI
461 InternalIsDecimalDigitCharacter (
462 IN CHAR16 Char
463 );
464
465
466 /**
467 Convert a Unicode character to numerical value.
468
469 This internal function only deal with Unicode character
470 which maps to a valid hexadecimal ASII character, i.e.
471 L'0' to L'9', L'a' to L'f' or L'A' to L'F'. For other
472 Unicode character, the value returned does not make sense.
473
474 @param Char The character to convert.
475
476 @return The numerical value converted.
477
478 **/
479 UINTN
480 EFIAPI
481 InternalHexCharToUintn (
482 IN CHAR16 Char
483 );
484
485
486 /**
487 Check if a Unicode character is a hexadecimal character.
488
489 This internal function checks if a Unicode character is a
490 decimal character. The valid hexadecimal character is
491 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
492
493
494 @param Char The character to check against.
495
496 @retval TRUE If the Char is a hexadecmial character.
497 @retval FALSE If the Char is not a hexadecmial character.
498
499 **/
500 BOOLEAN
501 EFIAPI
502 InternalIsHexaDecimalDigitCharacter (
503 IN CHAR16 Char
504 );
505
506
507 /**
508 Check if a ASCII character is a decimal character.
509
510 This internal function checks if a Unicode character is a
511 decimal character. The valid decimal character is from
512 '0' to '9'.
513
514 @param Char The character to check against.
515
516 @retval TRUE If the Char is a decmial character.
517 @retval FALSE If the Char is not a decmial character.
518
519 **/
520 BOOLEAN
521 EFIAPI
522 InternalAsciiIsDecimalDigitCharacter (
523 IN CHAR8 Char
524 );
525
526
527 /**
528 Check if a ASCII character is a hexadecimal character.
529
530 This internal function checks if a ASCII character is a
531 decimal character. The valid hexadecimal character is
532 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
533
534
535 @param Char The character to check against.
536
537 @retval TRUE If the Char is a hexadecmial character.
538 @retval FALSE If the Char is not a hexadecmial character.
539
540 **/
541 BOOLEAN
542 EFIAPI
543 InternalAsciiIsHexaDecimalDigitCharacter (
544 IN CHAR8 Char
545 );
546
547
548 /**
549 Convert a ASCII character to numerical value.
550
551 This internal function only deal with Unicode character
552 which maps to a valid hexadecimal ASII character, i.e.
553 '0' to '9', 'a' to 'f' or 'A' to 'F'. For other
554 ASCII character, the value returned does not make sense.
555
556 @param Char The character to convert.
557
558 @return The numerical value converted.
559
560 **/
561 UINTN
562 EFIAPI
563 InternalAsciiHexCharToUintn (
564 IN CHAR8 Char
565 );
566
567
568 //
569 // Ia32 and x64 specific functions
570 //
571 #if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)
572
573 /**
574 Reads the current Global Descriptor Table Register(GDTR) descriptor.
575
576 Reads and returns the current GDTR descriptor and returns it in Gdtr. This
577 function is only available on IA-32 and x64.
578
579 @param Gdtr The pointer to a GDTR descriptor.
580
581 **/
582 VOID
583 EFIAPI
584 InternalX86ReadGdtr (
585 OUT IA32_DESCRIPTOR *Gdtr
586 );
587
588 /**
589 Writes the current Global Descriptor Table Register (GDTR) descriptor.
590
591 Writes and the current GDTR descriptor specified by Gdtr. This function is
592 only available on IA-32 and x64.
593
594 @param Gdtr The pointer to a GDTR descriptor.
595
596 **/
597 VOID
598 EFIAPI
599 InternalX86WriteGdtr (
600 IN CONST IA32_DESCRIPTOR *Gdtr
601 );
602
603 /**
604 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.
605
606 Reads and returns the current IDTR descriptor and returns it in Idtr. This
607 function is only available on IA-32 and x64.
608
609 @param Idtr The pointer to an IDTR descriptor.
610
611 **/
612 VOID
613 EFIAPI
614 InternalX86ReadIdtr (
615 OUT IA32_DESCRIPTOR *Idtr
616 );
617
618 /**
619 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.
620
621 Writes the current IDTR descriptor and returns it in Idtr. This function is
622 only available on IA-32 and x64.
623
624 @param Idtr The pointer to an IDTR descriptor.
625
626 **/
627 VOID
628 EFIAPI
629 InternalX86WriteIdtr (
630 IN CONST IA32_DESCRIPTOR *Idtr
631 );
632
633 /**
634 Save the current floating point/SSE/SSE2 context to a buffer.
635
636 Saves the current floating point/SSE/SSE2 state to the buffer specified by
637 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only
638 available on IA-32 and x64.
639
640 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.
641
642 **/
643 VOID
644 EFIAPI
645 InternalX86FxSave (
646 OUT IA32_FX_BUFFER *Buffer
647 );
648
649 /**
650 Restores the current floating point/SSE/SSE2 context from a buffer.
651
652 Restores the current floating point/SSE/SSE2 state from the buffer specified
653 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is
654 only available on IA-32 and x64.
655
656 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.
657
658 **/
659 VOID
660 EFIAPI
661 InternalX86FxRestore (
662 IN CONST IA32_FX_BUFFER *Buffer
663 );
664
665 /**
666 Enables the 32-bit paging mode on the CPU.
667
668 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables
669 must be properly initialized prior to calling this service. This function
670 assumes the current execution mode is 32-bit protected mode. This function is
671 only available on IA-32. After the 32-bit paging mode is enabled, control is
672 transferred to the function specified by EntryPoint using the new stack
673 specified by NewStack and passing in the parameters specified by Context1 and
674 Context2. Context1 and Context2 are optional and may be NULL. The function
675 EntryPoint must never return.
676
677 There are a number of constraints that must be followed before calling this
678 function:
679 1) Interrupts must be disabled.
680 2) The caller must be in 32-bit protected mode with flat descriptors. This
681 means all descriptors must have a base of 0 and a limit of 4GB.
682 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat
683 descriptors.
684 4) CR3 must point to valid page tables that will be used once the transition
685 is complete, and those page tables must guarantee that the pages for this
686 function and the stack are identity mapped.
687
688 @param EntryPoint A pointer to function to call with the new stack after
689 paging is enabled.
690 @param Context1 A pointer to the context to pass into the EntryPoint
691 function as the first parameter after paging is enabled.
692 @param Context2 A pointer to the context to pass into the EntryPoint
693 function as the second parameter after paging is enabled.
694 @param NewStack A pointer to the new stack to use for the EntryPoint
695 function after paging is enabled.
696
697 **/
698 VOID
699 EFIAPI
700 InternalX86EnablePaging32 (
701 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
702 IN VOID *Context1, OPTIONAL
703 IN VOID *Context2, OPTIONAL
704 IN VOID *NewStack
705 );
706
707 /**
708 Disables the 32-bit paging mode on the CPU.
709
710 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected
711 mode. This function assumes the current execution mode is 32-paged protected
712 mode. This function is only available on IA-32. After the 32-bit paging mode
713 is disabled, control is transferred to the function specified by EntryPoint
714 using the new stack specified by NewStack and passing in the parameters
715 specified by Context1 and Context2. Context1 and Context2 are optional and
716 may be NULL. The function EntryPoint must never return.
717
718 There are a number of constraints that must be followed before calling this
719 function:
720 1) Interrupts must be disabled.
721 2) The caller must be in 32-bit paged mode.
722 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.
723 4) CR3 must point to valid page tables that guarantee that the pages for
724 this function and the stack are identity mapped.
725
726 @param EntryPoint A pointer to function to call with the new stack after
727 paging is disabled.
728 @param Context1 A pointer to the context to pass into the EntryPoint
729 function as the first parameter after paging is disabled.
730 @param Context2 A pointer to the context to pass into the EntryPoint
731 function as the second parameter after paging is
732 disabled.
733 @param NewStack A pointer to the new stack to use for the EntryPoint
734 function after paging is disabled.
735
736 **/
737 VOID
738 EFIAPI
739 InternalX86DisablePaging32 (
740 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
741 IN VOID *Context1, OPTIONAL
742 IN VOID *Context2, OPTIONAL
743 IN VOID *NewStack
744 );
745
746 /**
747 Enables the 64-bit paging mode on the CPU.
748
749 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables
750 must be properly initialized prior to calling this service. This function
751 assumes the current execution mode is 32-bit protected mode with flat
752 descriptors. This function is only available on IA-32. After the 64-bit
753 paging mode is enabled, control is transferred to the function specified by
754 EntryPoint using the new stack specified by NewStack and passing in the
755 parameters specified by Context1 and Context2. Context1 and Context2 are
756 optional and may be 0. The function EntryPoint must never return.
757
758 @param Cs The 16-bit selector to load in the CS before EntryPoint
759 is called. The descriptor in the GDT that this selector
760 references must be setup for long mode.
761 @param EntryPoint The 64-bit virtual address of the function to call with
762 the new stack after paging is enabled.
763 @param Context1 The 64-bit virtual address of the context to pass into
764 the EntryPoint function as the first parameter after
765 paging is enabled.
766 @param Context2 The 64-bit virtual address of the context to pass into
767 the EntryPoint function as the second parameter after
768 paging is enabled.
769 @param NewStack The 64-bit virtual address of the new stack to use for
770 the EntryPoint function after paging is enabled.
771
772 **/
773 VOID
774 EFIAPI
775 InternalX86EnablePaging64 (
776 IN UINT16 Cs,
777 IN UINT64 EntryPoint,
778 IN UINT64 Context1, OPTIONAL
779 IN UINT64 Context2, OPTIONAL
780 IN UINT64 NewStack
781 );
782
783 /**
784 Disables the 64-bit paging mode on the CPU.
785
786 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected
787 mode. This function assumes the current execution mode is 64-paging mode.
788 This function is only available on x64. After the 64-bit paging mode is
789 disabled, control is transferred to the function specified by EntryPoint
790 using the new stack specified by NewStack and passing in the parameters
791 specified by Context1 and Context2. Context1 and Context2 are optional and
792 may be 0. The function EntryPoint must never return.
793
794 @param Cs The 16-bit selector to load in the CS before EntryPoint
795 is called. The descriptor in the GDT that this selector
796 references must be setup for 32-bit protected mode.
797 @param EntryPoint The 64-bit virtual address of the function to call with
798 the new stack after paging is disabled.
799 @param Context1 The 64-bit virtual address of the context to pass into
800 the EntryPoint function as the first parameter after
801 paging is disabled.
802 @param Context2 The 64-bit virtual address of the context to pass into
803 the EntryPoint function as the second parameter after
804 paging is disabled.
805 @param NewStack The 64-bit virtual address of the new stack to use for
806 the EntryPoint function after paging is disabled.
807
808 **/
809 VOID
810 EFIAPI
811 InternalX86DisablePaging64 (
812 IN UINT16 Cs,
813 IN UINT32 EntryPoint,
814 IN UINT32 Context1, OPTIONAL
815 IN UINT32 Context2, OPTIONAL
816 IN UINT32 NewStack
817 );
818
819 /**
820 Generates a 16-bit random number through RDRAND instruction.
821
822 @param[out] Rand Buffer pointer to store the random result.
823
824 @retval TRUE RDRAND call was successful.
825 @retval FALSE Failed attempts to call RDRAND.
826
827 **/
828 BOOLEAN
829 EFIAPI
830 InternalX86RdRand16 (
831 OUT UINT16 *Rand
832 );
833
834 /**
835 Generates a 32-bit random number through RDRAND instruction.
836
837 @param[out] Rand Buffer pointer to store the random result.
838
839 @retval TRUE RDRAND call was successful.
840 @retval FALSE Failed attempts to call RDRAND.
841
842 **/
843 BOOLEAN
844 EFIAPI
845 InternalX86RdRand32 (
846 OUT UINT32 *Rand
847 );
848
849 /**
850 Generates a 64-bit random number through RDRAND instruction.
851
852
853 @param[out] Rand Buffer pointer to store the random result.
854
855 @retval TRUE RDRAND call was successful.
856 @retval FALSE Failed attempts to call RDRAND.
857
858 **/
859 BOOLEAN
860 EFIAPI
861 InternalX86RdRand64 (
862 OUT UINT64 *Rand
863 );
864
865 #else
866
867 #endif
868
869 #endif