]> git.proxmox.com Git - mirror_edk2.git/blob - MdePkg/Library/BaseLib/BaseLibInternals.h
MdePkg: Apply uncrustify changes
[mirror_edk2.git] / MdePkg / Library / BaseLib / BaseLibInternals.h
1 /** @file
2 Declaration of internal functions in BaseLib.
3
4 Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
5 SPDX-License-Identifier: BSD-2-Clause-Patent
6
7 **/
8
9 #ifndef __BASE_LIB_INTERNALS__
10 #define __BASE_LIB_INTERNALS__
11
12 #include <Base.h>
13 #include <Library/BaseLib.h>
14 #include <Library/BaseMemoryLib.h>
15 #include <Library/DebugLib.h>
16 #include <Library/PcdLib.h>
17
18 //
19 // Math functions
20 //
21
22 /**
23 Shifts a 64-bit integer left between 0 and 63 bits. The low bits
24 are filled with zeros. The shifted value is returned.
25
26 This function shifts the 64-bit value Operand to the left by Count bits. The
27 low Count bits are set to zero. The shifted value is returned.
28
29 @param Operand The 64-bit operand to shift left.
30 @param Count The number of bits to shift left.
31
32 @return Operand << Count
33
34 **/
35 UINT64
36 EFIAPI
37 InternalMathLShiftU64 (
38 IN UINT64 Operand,
39 IN UINTN Count
40 );
41
42 /**
43 Shifts a 64-bit integer right between 0 and 63 bits. The high bits
44 are filled with zeros. The shifted value is returned.
45
46 This function shifts the 64-bit value Operand to the right by Count bits. The
47 high Count bits are set to zero. The shifted value is returned.
48
49 @param Operand The 64-bit operand to shift right.
50 @param Count The number of bits to shift right.
51
52 @return Operand >> Count
53
54 **/
55 UINT64
56 EFIAPI
57 InternalMathRShiftU64 (
58 IN UINT64 Operand,
59 IN UINTN Count
60 );
61
62 /**
63 Shifts a 64-bit integer right between 0 and 63 bits. The high bits
64 are filled with original integer's bit 63. The shifted value is returned.
65
66 This function shifts the 64-bit value Operand to the right by Count bits. The
67 high Count bits are set to bit 63 of Operand. The shifted value is returned.
68
69 @param Operand The 64-bit operand to shift right.
70 @param Count The number of bits to shift right.
71
72 @return Operand arithmetically shifted right by Count
73
74 **/
75 UINT64
76 EFIAPI
77 InternalMathARShiftU64 (
78 IN UINT64 Operand,
79 IN UINTN Count
80 );
81
82 /**
83 Rotates a 64-bit integer left between 0 and 63 bits, filling
84 the low bits with the high bits that were rotated.
85
86 This function rotates the 64-bit value Operand to the left by Count bits. The
87 low Count bits are filled with the high Count bits of Operand. The rotated
88 value is returned.
89
90 @param Operand The 64-bit operand to rotate left.
91 @param Count The number of bits to rotate left.
92
93 @return Operand <<< Count
94
95 **/
96 UINT64
97 EFIAPI
98 InternalMathLRotU64 (
99 IN UINT64 Operand,
100 IN UINTN Count
101 );
102
103 /**
104 Rotates a 64-bit integer right between 0 and 63 bits, filling
105 the high bits with the high low bits that were rotated.
106
107 This function rotates the 64-bit value Operand to the right by Count bits.
108 The high Count bits are filled with the low Count bits of Operand. The rotated
109 value is returned.
110
111 @param Operand The 64-bit operand to rotate right.
112 @param Count The number of bits to rotate right.
113
114 @return Operand >>> Count
115
116 **/
117 UINT64
118 EFIAPI
119 InternalMathRRotU64 (
120 IN UINT64 Operand,
121 IN UINTN Count
122 );
123
124 /**
125 Switches the endianess of a 64-bit integer.
126
127 This function swaps the bytes in a 64-bit unsigned value to switch the value
128 from little endian to big endian or vice versa. The byte swapped value is
129 returned.
130
131 @param Operand A 64-bit unsigned value.
132
133 @return The byte swapped Operand.
134
135 **/
136 UINT64
137 EFIAPI
138 InternalMathSwapBytes64 (
139 IN UINT64 Operand
140 );
141
142 /**
143 Multiplies a 64-bit unsigned integer by a 32-bit unsigned integer
144 and generates a 64-bit unsigned result.
145
146 This function multiplies the 64-bit unsigned value Multiplicand by the 32-bit
147 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
148 bit unsigned result is returned.
149
150 @param Multiplicand A 64-bit unsigned value.
151 @param Multiplier A 32-bit unsigned value.
152
153 @return Multiplicand * Multiplier
154
155 **/
156 UINT64
157 EFIAPI
158 InternalMathMultU64x32 (
159 IN UINT64 Multiplicand,
160 IN UINT32 Multiplier
161 );
162
163 /**
164 Multiplies a 64-bit unsigned integer by a 64-bit unsigned integer
165 and generates a 64-bit unsigned result.
166
167 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit
168 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
169 bit unsigned result is returned.
170
171 @param Multiplicand A 64-bit unsigned value.
172 @param Multiplier A 64-bit unsigned value.
173
174 @return Multiplicand * Multiplier
175
176 **/
177 UINT64
178 EFIAPI
179 InternalMathMultU64x64 (
180 IN UINT64 Multiplicand,
181 IN UINT64 Multiplier
182 );
183
184 /**
185 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and
186 generates a 64-bit unsigned result.
187
188 This function divides the 64-bit unsigned value Dividend by the 32-bit
189 unsigned value Divisor and generates a 64-bit unsigned quotient. This
190 function returns the 64-bit unsigned quotient.
191
192 @param Dividend A 64-bit unsigned value.
193 @param Divisor A 32-bit unsigned value.
194
195 @return Dividend / Divisor
196
197 **/
198 UINT64
199 EFIAPI
200 InternalMathDivU64x32 (
201 IN UINT64 Dividend,
202 IN UINT32 Divisor
203 );
204
205 /**
206 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and
207 generates a 32-bit unsigned remainder.
208
209 This function divides the 64-bit unsigned value Dividend by the 32-bit
210 unsigned value Divisor and generates a 32-bit remainder. This function
211 returns the 32-bit unsigned remainder.
212
213 @param Dividend A 64-bit unsigned value.
214 @param Divisor A 32-bit unsigned value.
215
216 @return Dividend % Divisor
217
218 **/
219 UINT32
220 EFIAPI
221 InternalMathModU64x32 (
222 IN UINT64 Dividend,
223 IN UINT32 Divisor
224 );
225
226 /**
227 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and
228 generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.
229
230 This function divides the 64-bit unsigned value Dividend by the 32-bit
231 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
232 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.
233 This function returns the 64-bit unsigned quotient.
234
235 @param Dividend A 64-bit unsigned value.
236 @param Divisor A 32-bit unsigned value.
237 @param Remainder A pointer to a 32-bit unsigned value. This parameter is
238 optional and may be NULL.
239
240 @return Dividend / Divisor
241
242 **/
243 UINT64
244 EFIAPI
245 InternalMathDivRemU64x32 (
246 IN UINT64 Dividend,
247 IN UINT32 Divisor,
248 OUT UINT32 *Remainder OPTIONAL
249 );
250
251 /**
252 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and
253 generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.
254
255 This function divides the 64-bit unsigned value Dividend by the 64-bit
256 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder
257 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.
258 This function returns the 64-bit unsigned quotient.
259
260 @param Dividend A 64-bit unsigned value.
261 @param Divisor A 64-bit unsigned value.
262 @param Remainder A pointer to a 64-bit unsigned value. This parameter is
263 optional and may be NULL.
264
265 @return Dividend / Divisor
266
267 **/
268 UINT64
269 EFIAPI
270 InternalMathDivRemU64x64 (
271 IN UINT64 Dividend,
272 IN UINT64 Divisor,
273 OUT UINT64 *Remainder OPTIONAL
274 );
275
276 /**
277 Divides a 64-bit signed integer by a 64-bit signed integer and
278 generates a 64-bit signed result and an optional 64-bit signed remainder.
279
280 This function divides the 64-bit signed value Dividend by the 64-bit
281 signed value Divisor and generates a 64-bit signed quotient. If Remainder
282 is not NULL, then the 64-bit signed remainder is returned in Remainder.
283 This function returns the 64-bit signed quotient.
284
285 @param Dividend A 64-bit signed value.
286 @param Divisor A 64-bit signed value.
287 @param Remainder A pointer to a 64-bit signed value. This parameter is
288 optional and may be NULL.
289
290 @return Dividend / Divisor
291
292 **/
293 INT64
294 EFIAPI
295 InternalMathDivRemS64x64 (
296 IN INT64 Dividend,
297 IN INT64 Divisor,
298 OUT INT64 *Remainder OPTIONAL
299 );
300
301 /**
302 Transfers control to a function starting with a new stack.
303
304 Transfers control to the function specified by EntryPoint using the
305 new stack specified by NewStack and passing in the parameters specified
306 by Context1 and Context2. Context1 and Context2 are optional and may
307 be NULL. The function EntryPoint must never return.
308 Marker will be ignored on IA-32, x64, and EBC.
309 IPF CPUs expect one additional parameter of type VOID * that specifies
310 the new backing store pointer.
311
312 If EntryPoint is NULL, then ASSERT().
313 If NewStack is NULL, then ASSERT().
314
315 @param EntryPoint A pointer to function to call with the new stack.
316 @param Context1 A pointer to the context to pass into the EntryPoint
317 function.
318 @param Context2 A pointer to the context to pass into the EntryPoint
319 function.
320 @param NewStack A pointer to the new stack to use for the EntryPoint
321 function.
322 @param Marker VA_LIST marker for the variable argument list.
323
324 **/
325 VOID
326 EFIAPI
327 InternalSwitchStack (
328 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
329 IN VOID *Context1 OPTIONAL,
330 IN VOID *Context2 OPTIONAL,
331 IN VOID *NewStack,
332 IN VA_LIST Marker
333 );
334
335 /**
336 Worker function that returns a bit field from Operand.
337
338 Returns the bitfield specified by the StartBit and the EndBit from Operand.
339
340 @param Operand Operand on which to perform the bitfield operation.
341 @param StartBit The ordinal of the least significant bit in the bit field.
342 @param EndBit The ordinal of the most significant bit in the bit field.
343
344 @return The bit field read.
345
346 **/
347 UINTN
348 EFIAPI
349 BitFieldReadUint (
350 IN UINTN Operand,
351 IN UINTN StartBit,
352 IN UINTN EndBit
353 );
354
355 /**
356 Worker function that reads a bit field from Operand, performs a bitwise OR,
357 and returns the result.
358
359 Performs a bitwise OR between the bit field specified by StartBit and EndBit
360 in Operand and the value specified by AndData. All other bits in Operand are
361 preserved. The new value is returned.
362
363 @param Operand Operand on which to perform the bitfield operation.
364 @param StartBit The ordinal of the least significant bit in the bit field.
365 @param EndBit The ordinal of the most significant bit in the bit field.
366 @param OrData The value to OR with the read value from the value
367
368 @return The new value.
369
370 **/
371 UINTN
372 EFIAPI
373 BitFieldOrUint (
374 IN UINTN Operand,
375 IN UINTN StartBit,
376 IN UINTN EndBit,
377 IN UINTN OrData
378 );
379
380 /**
381 Worker function that reads a bit field from Operand, performs a bitwise AND,
382 and returns the result.
383
384 Performs a bitwise AND between the bit field specified by StartBit and EndBit
385 in Operand and the value specified by AndData. All other bits in Operand are
386 preserved. The new value is returned.
387
388 @param Operand Operand on which to perform the bitfield operation.
389 @param StartBit The ordinal of the least significant bit in the bit field.
390 @param EndBit The ordinal of the most significant bit in the bit field.
391 @param AndData The value to And with the read value from the value
392
393 @return The new value.
394
395 **/
396 UINTN
397 EFIAPI
398 BitFieldAndUint (
399 IN UINTN Operand,
400 IN UINTN StartBit,
401 IN UINTN EndBit,
402 IN UINTN AndData
403 );
404
405 /**
406 Worker function that checks ASSERT condition for JumpBuffer
407
408 Checks ASSERT condition for JumpBuffer.
409
410 If JumpBuffer is NULL, then ASSERT().
411 For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
412
413 @param JumpBuffer A pointer to CPU context buffer.
414
415 **/
416 VOID
417 EFIAPI
418 InternalAssertJumpBuffer (
419 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer
420 );
421
422 /**
423 Restores the CPU context that was saved with SetJump().
424
425 Restores the CPU context from the buffer specified by JumpBuffer.
426 This function never returns to the caller.
427 Instead is resumes execution based on the state of JumpBuffer.
428
429 @param JumpBuffer A pointer to CPU context buffer.
430 @param Value The value to return when the SetJump() context is restored.
431
432 **/
433 VOID
434 EFIAPI
435 InternalLongJump (
436 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,
437 IN UINTN Value
438 );
439
440 /**
441 Check if a Unicode character is a decimal character.
442
443 This internal function checks if a Unicode character is a
444 decimal character. The valid decimal character is from
445 L'0' to L'9'.
446
447 @param Char The character to check against.
448
449 @retval TRUE If the Char is a decmial character.
450 @retval FALSE If the Char is not a decmial character.
451
452 **/
453 BOOLEAN
454 EFIAPI
455 InternalIsDecimalDigitCharacter (
456 IN CHAR16 Char
457 );
458
459 /**
460 Convert a Unicode character to numerical value.
461
462 This internal function only deal with Unicode character
463 which maps to a valid hexadecimal ASII character, i.e.
464 L'0' to L'9', L'a' to L'f' or L'A' to L'F'. For other
465 Unicode character, the value returned does not make sense.
466
467 @param Char The character to convert.
468
469 @return The numerical value converted.
470
471 **/
472 UINTN
473 EFIAPI
474 InternalHexCharToUintn (
475 IN CHAR16 Char
476 );
477
478 /**
479 Check if a Unicode character is a hexadecimal character.
480
481 This internal function checks if a Unicode character is a
482 decimal character. The valid hexadecimal character is
483 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
484
485
486 @param Char The character to check against.
487
488 @retval TRUE If the Char is a hexadecmial character.
489 @retval FALSE If the Char is not a hexadecmial character.
490
491 **/
492 BOOLEAN
493 EFIAPI
494 InternalIsHexaDecimalDigitCharacter (
495 IN CHAR16 Char
496 );
497
498 /**
499 Check if a ASCII character is a decimal character.
500
501 This internal function checks if a Unicode character is a
502 decimal character. The valid decimal character is from
503 '0' to '9'.
504
505 @param Char The character to check against.
506
507 @retval TRUE If the Char is a decmial character.
508 @retval FALSE If the Char is not a decmial character.
509
510 **/
511 BOOLEAN
512 EFIAPI
513 InternalAsciiIsDecimalDigitCharacter (
514 IN CHAR8 Char
515 );
516
517 /**
518 Check if a ASCII character is a hexadecimal character.
519
520 This internal function checks if a ASCII character is a
521 decimal character. The valid hexadecimal character is
522 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
523
524
525 @param Char The character to check against.
526
527 @retval TRUE If the Char is a hexadecmial character.
528 @retval FALSE If the Char is not a hexadecmial character.
529
530 **/
531 BOOLEAN
532 EFIAPI
533 InternalAsciiIsHexaDecimalDigitCharacter (
534 IN CHAR8 Char
535 );
536
537 /**
538 Convert a ASCII character to numerical value.
539
540 This internal function only deal with Unicode character
541 which maps to a valid hexadecimal ASII character, i.e.
542 '0' to '9', 'a' to 'f' or 'A' to 'F'. For other
543 ASCII character, the value returned does not make sense.
544
545 @param Char The character to convert.
546
547 @return The numerical value converted.
548
549 **/
550 UINTN
551 EFIAPI
552 InternalAsciiHexCharToUintn (
553 IN CHAR8 Char
554 );
555
556 //
557 // Ia32 and x64 specific functions
558 //
559 #if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)
560
561 /**
562 Reads the current Global Descriptor Table Register(GDTR) descriptor.
563
564 Reads and returns the current GDTR descriptor and returns it in Gdtr. This
565 function is only available on IA-32 and x64.
566
567 @param Gdtr The pointer to a GDTR descriptor.
568
569 **/
570 VOID
571 EFIAPI
572 InternalX86ReadGdtr (
573 OUT IA32_DESCRIPTOR *Gdtr
574 );
575
576 /**
577 Writes the current Global Descriptor Table Register (GDTR) descriptor.
578
579 Writes and the current GDTR descriptor specified by Gdtr. This function is
580 only available on IA-32 and x64.
581
582 @param Gdtr The pointer to a GDTR descriptor.
583
584 **/
585 VOID
586 EFIAPI
587 InternalX86WriteGdtr (
588 IN CONST IA32_DESCRIPTOR *Gdtr
589 );
590
591 /**
592 Reads the current Interrupt Descriptor Table Register(GDTR) descriptor.
593
594 Reads and returns the current IDTR descriptor and returns it in Idtr. This
595 function is only available on IA-32 and x64.
596
597 @param Idtr The pointer to an IDTR descriptor.
598
599 **/
600 VOID
601 EFIAPI
602 InternalX86ReadIdtr (
603 OUT IA32_DESCRIPTOR *Idtr
604 );
605
606 /**
607 Writes the current Interrupt Descriptor Table Register(GDTR) descriptor.
608
609 Writes the current IDTR descriptor and returns it in Idtr. This function is
610 only available on IA-32 and x64.
611
612 @param Idtr The pointer to an IDTR descriptor.
613
614 **/
615 VOID
616 EFIAPI
617 InternalX86WriteIdtr (
618 IN CONST IA32_DESCRIPTOR *Idtr
619 );
620
621 /**
622 Save the current floating point/SSE/SSE2 context to a buffer.
623
624 Saves the current floating point/SSE/SSE2 state to the buffer specified by
625 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only
626 available on IA-32 and x64.
627
628 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.
629
630 **/
631 VOID
632 EFIAPI
633 InternalX86FxSave (
634 OUT IA32_FX_BUFFER *Buffer
635 );
636
637 /**
638 Restores the current floating point/SSE/SSE2 context from a buffer.
639
640 Restores the current floating point/SSE/SSE2 state from the buffer specified
641 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is
642 only available on IA-32 and x64.
643
644 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.
645
646 **/
647 VOID
648 EFIAPI
649 InternalX86FxRestore (
650 IN CONST IA32_FX_BUFFER *Buffer
651 );
652
653 /**
654 Enables the 32-bit paging mode on the CPU.
655
656 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables
657 must be properly initialized prior to calling this service. This function
658 assumes the current execution mode is 32-bit protected mode. This function is
659 only available on IA-32. After the 32-bit paging mode is enabled, control is
660 transferred to the function specified by EntryPoint using the new stack
661 specified by NewStack and passing in the parameters specified by Context1 and
662 Context2. Context1 and Context2 are optional and may be NULL. The function
663 EntryPoint must never return.
664
665 There are a number of constraints that must be followed before calling this
666 function:
667 1) Interrupts must be disabled.
668 2) The caller must be in 32-bit protected mode with flat descriptors. This
669 means all descriptors must have a base of 0 and a limit of 4GB.
670 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat
671 descriptors.
672 4) CR3 must point to valid page tables that will be used once the transition
673 is complete, and those page tables must guarantee that the pages for this
674 function and the stack are identity mapped.
675
676 @param EntryPoint A pointer to function to call with the new stack after
677 paging is enabled.
678 @param Context1 A pointer to the context to pass into the EntryPoint
679 function as the first parameter after paging is enabled.
680 @param Context2 A pointer to the context to pass into the EntryPoint
681 function as the second parameter after paging is enabled.
682 @param NewStack A pointer to the new stack to use for the EntryPoint
683 function after paging is enabled.
684
685 **/
686 VOID
687 EFIAPI
688 InternalX86EnablePaging32 (
689 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
690 IN VOID *Context1 OPTIONAL,
691 IN VOID *Context2 OPTIONAL,
692 IN VOID *NewStack
693 );
694
695 /**
696 Disables the 32-bit paging mode on the CPU.
697
698 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected
699 mode. This function assumes the current execution mode is 32-paged protected
700 mode. This function is only available on IA-32. After the 32-bit paging mode
701 is disabled, control is transferred to the function specified by EntryPoint
702 using the new stack specified by NewStack and passing in the parameters
703 specified by Context1 and Context2. Context1 and Context2 are optional and
704 may be NULL. The function EntryPoint must never return.
705
706 There are a number of constraints that must be followed before calling this
707 function:
708 1) Interrupts must be disabled.
709 2) The caller must be in 32-bit paged mode.
710 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.
711 4) CR3 must point to valid page tables that guarantee that the pages for
712 this function and the stack are identity mapped.
713
714 @param EntryPoint A pointer to function to call with the new stack after
715 paging is disabled.
716 @param Context1 A pointer to the context to pass into the EntryPoint
717 function as the first parameter after paging is disabled.
718 @param Context2 A pointer to the context to pass into the EntryPoint
719 function as the second parameter after paging is
720 disabled.
721 @param NewStack A pointer to the new stack to use for the EntryPoint
722 function after paging is disabled.
723
724 **/
725 VOID
726 EFIAPI
727 InternalX86DisablePaging32 (
728 IN SWITCH_STACK_ENTRY_POINT EntryPoint,
729 IN VOID *Context1 OPTIONAL,
730 IN VOID *Context2 OPTIONAL,
731 IN VOID *NewStack
732 );
733
734 /**
735 Enables the 64-bit paging mode on the CPU.
736
737 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables
738 must be properly initialized prior to calling this service. This function
739 assumes the current execution mode is 32-bit protected mode with flat
740 descriptors. This function is only available on IA-32. After the 64-bit
741 paging mode is enabled, control is transferred to the function specified by
742 EntryPoint using the new stack specified by NewStack and passing in the
743 parameters specified by Context1 and Context2. Context1 and Context2 are
744 optional and may be 0. The function EntryPoint must never return.
745
746 @param Cs The 16-bit selector to load in the CS before EntryPoint
747 is called. The descriptor in the GDT that this selector
748 references must be setup for long mode.
749 @param EntryPoint The 64-bit virtual address of the function to call with
750 the new stack after paging is enabled.
751 @param Context1 The 64-bit virtual address of the context to pass into
752 the EntryPoint function as the first parameter after
753 paging is enabled.
754 @param Context2 The 64-bit virtual address of the context to pass into
755 the EntryPoint function as the second parameter after
756 paging is enabled.
757 @param NewStack The 64-bit virtual address of the new stack to use for
758 the EntryPoint function after paging is enabled.
759
760 **/
761 VOID
762 EFIAPI
763 InternalX86EnablePaging64 (
764 IN UINT16 Cs,
765 IN UINT64 EntryPoint,
766 IN UINT64 Context1 OPTIONAL,
767 IN UINT64 Context2 OPTIONAL,
768 IN UINT64 NewStack
769 );
770
771 /**
772 Disables the 64-bit paging mode on the CPU.
773
774 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected
775 mode. This function assumes the current execution mode is 64-paging mode.
776 This function is only available on x64. After the 64-bit paging mode is
777 disabled, control is transferred to the function specified by EntryPoint
778 using the new stack specified by NewStack and passing in the parameters
779 specified by Context1 and Context2. Context1 and Context2 are optional and
780 may be 0. The function EntryPoint must never return.
781
782 @param Cs The 16-bit selector to load in the CS before EntryPoint
783 is called. The descriptor in the GDT that this selector
784 references must be setup for 32-bit protected mode.
785 @param EntryPoint The 64-bit virtual address of the function to call with
786 the new stack after paging is disabled.
787 @param Context1 The 64-bit virtual address of the context to pass into
788 the EntryPoint function as the first parameter after
789 paging is disabled.
790 @param Context2 The 64-bit virtual address of the context to pass into
791 the EntryPoint function as the second parameter after
792 paging is disabled.
793 @param NewStack The 64-bit virtual address of the new stack to use for
794 the EntryPoint function after paging is disabled.
795
796 **/
797 VOID
798 EFIAPI
799 InternalX86DisablePaging64 (
800 IN UINT16 Cs,
801 IN UINT32 EntryPoint,
802 IN UINT32 Context1 OPTIONAL,
803 IN UINT32 Context2 OPTIONAL,
804 IN UINT32 NewStack
805 );
806
807 /**
808 Generates a 16-bit random number through RDRAND instruction.
809
810 @param[out] Rand Buffer pointer to store the random result.
811
812 @retval TRUE RDRAND call was successful.
813 @retval FALSE Failed attempts to call RDRAND.
814
815 **/
816 BOOLEAN
817 EFIAPI
818 InternalX86RdRand16 (
819 OUT UINT16 *Rand
820 );
821
822 /**
823 Generates a 32-bit random number through RDRAND instruction.
824
825 @param[out] Rand Buffer pointer to store the random result.
826
827 @retval TRUE RDRAND call was successful.
828 @retval FALSE Failed attempts to call RDRAND.
829
830 **/
831 BOOLEAN
832 EFIAPI
833 InternalX86RdRand32 (
834 OUT UINT32 *Rand
835 );
836
837 /**
838 Generates a 64-bit random number through RDRAND instruction.
839
840
841 @param[out] Rand Buffer pointer to store the random result.
842
843 @retval TRUE RDRAND call was successful.
844 @retval FALSE Failed attempts to call RDRAND.
845
846 **/
847 BOOLEAN
848 EFIAPI
849 InternalX86RdRand64 (
850 OUT UINT64 *Rand
851 );
852
853 #else
854
855 #endif
856
857 #endif